1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
//===--- Existential.cpp - Functions analyzing existentials. -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/Existential.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace swift;
/// Determine InitExistential from global_addr.
/// %3 = global_addr @$P : $*SomeP
/// %4 = init_existential_addr %3 : $*SomeP, $SomeC
/// %5 = alloc_ref $SomeC
/// store %5 to %4 : $*SomeC
/// %8 = alloc_stack $SomeP
/// copy_addr %3 to [init] %8 : $*SomeP
/// %10 = apply %9(%3) : $@convention(thin) (@in_guaranteed SomeP)
/// Assumptions: Insn is a direct user of GAI (e.g., copy_addr or
/// apply pattern shown above) and that a valid init_existential_addr
/// value is returned only if it can prove that the value it
/// initializes is the same value at the use point.
static InitExistentialAddrInst *
findInitExistentialFromGlobalAddr(GlobalAddrInst *GAI, SILInstruction *Insn) {
/// Check for a single InitExistential usage for GAI and
/// a simple dominance check: both InitExistential and Insn are in
/// the same basic block and only one InitExistential
/// occurs between GAI and Insn.
llvm::SmallPtrSet<SILInstruction *, 8> IEUses;
for (auto *Use : GAI->getUses()) {
if (auto *InitExistential =
dyn_cast<InitExistentialAddrInst>(Use->getUser())) {
IEUses.insert(InitExistential);
}
}
/// No InitExistential found in the basic block.
if (IEUses.empty())
return nullptr;
/// Walk backwards from Insn instruction till the beginning of the basic block
/// looking for an InitExistential.
InitExistentialAddrInst *SingleIE = nullptr;
for (auto II = Insn->getIterator().getReverse(),
IE = Insn->getParent()->rend();
II != IE; ++II) {
if (!IEUses.count(&*II))
continue;
if (SingleIE)
return nullptr;
SingleIE = cast<InitExistentialAddrInst>(&*II);
}
return SingleIE;
}
/// Returns the instruction that initializes the given stack address. This is
/// currently either a init_existential_addr, unconditional_checked_cast_addr,
/// store, or copy_addr (if the instruction initializing the source of the copy
/// cannot be determined). Returns nullptr if the initializer does not dominate
/// the alloc_stack user \p ASIUser. If the value is copied from another stack
/// location, \p isCopied is set to true.
///
/// allocStackAddr may either itself be an AllocStackInst or an
/// InitEnumDataAddrInst that projects the value of an AllocStackInst.
static SILInstruction *getStackInitInst(SILValue allocStackAddr,
SILInstruction *ASIUser,
bool &isCopied) {
SILInstruction *SingleWrite = nullptr;
// Check that this alloc_stack is initialized only once.
for (auto Use : allocStackAddr->getUses()) {
auto *User = Use->getUser();
// Ignore instructions which don't write to the stack location.
// Also ignore ASIUser (only kicks in if ASIUser is the original apply).
if (isa<DeallocStackInst>(User) ||
DebugValueInst::hasAddrVal(User) ||
isa<DestroyAddrInst>(User) || isa<WitnessMethodInst>(User) ||
isa<DeinitExistentialAddrInst>(User) ||
OpenExistentialAddrInst::isRead(User) || User == ASIUser) {
continue;
}
if (auto *CAI = dyn_cast<CopyAddrInst>(User)) {
if (CAI->getDest() == allocStackAddr) {
if (SingleWrite)
return nullptr;
SingleWrite = CAI;
isCopied = true;
}
continue;
}
// An unconditional_checked_cast_addr also copies a value into this addr.
if (auto *UCCAI = dyn_cast<UnconditionalCheckedCastAddrInst>(User)) {
if (UCCAI->getDest() == allocStackAddr) {
if (SingleWrite)
return nullptr;
SingleWrite = UCCAI;
isCopied = true;
}
continue;
}
if (auto *store = dyn_cast<StoreInst>(User)) {
if (store->getDest() == allocStackAddr) {
if (SingleWrite)
return nullptr;
SingleWrite = store;
// When we support OSSA here, we need to insert a new copy of the value
// before `store` (and make sure that the copy is destroyed when
// replacing the apply operand).
assert(store->getOwnershipQualifier() ==
StoreOwnershipQualifier::Unqualified);
}
continue;
}
if (isa<InitExistentialAddrInst>(User)) {
if (SingleWrite)
return nullptr;
SingleWrite = User;
continue;
}
if (isa<ApplyInst>(User) || isa<TryApplyInst>(User)) {
// Ignore function calls which do not write to the stack location.
auto Conv = FullApplySite(User).getArgumentConvention(*Use);
if (Conv != SILArgumentConvention::Indirect_In &&
Conv != SILArgumentConvention::Indirect_In_Guaranteed)
return nullptr;
continue;
}
// Bail if there is any unknown (and potentially writing) instruction.
return nullptr;
}
if (!SingleWrite)
return nullptr;
// A very simple dominance check. As ASI is an operand of ASIUser,
// SingleWrite dominates ASIUser if it is in the same block as ASI or
// ASIUser. (SingleWrite can't occur after ASIUser because the address would
// be uninitialized on use).
//
// If allocStack holds an Optional, then ASI is an InitEnumDataAddrInst
// projection and not strictly an operand of ASIUser. We rely on the guarantee
// that this InitEnumDataAddrInst must occur before the InjectEnumAddrInst
// that was the source of the existential address.
SILBasicBlock *BB = SingleWrite->getParent();
if (BB != allocStackAddr->getParentBlock() && BB != ASIUser->getParent())
return nullptr;
if (auto *store = dyn_cast<StoreInst>(SingleWrite))
return store;
if (auto *IE = dyn_cast<InitExistentialAddrInst>(SingleWrite))
return IE;
if (auto *UCCA = dyn_cast<UnconditionalCheckedCastAddrInst>(SingleWrite)) {
assert(isCopied && "isCopied not set for a unconditional_checked_cast_addr");
return UCCA;
}
auto *CAI = cast<CopyAddrInst>(SingleWrite);
assert(isCopied && "isCopied not set for a copy_addr");
// Attempt to recurse to find a concrete type.
if (auto *ASI = dyn_cast<AllocStackInst>(CAI->getSrc()))
return getStackInitInst(ASI, CAI, isCopied);
// Peek through a stack location holding an Enum.
// %stack_adr = alloc_stack
// %data_adr = init_enum_data_addr %stk_adr
// %enum_adr = inject_enum_addr %stack_adr
// %copy_src = unchecked_take_enum_data_addr %enum_adr
// Replace %copy_src with %data_adr and recurse.
//
// TODO: a general Optional elimination sil-combine could
// supersede this check.
if (auto *UTEDAI = dyn_cast<UncheckedTakeEnumDataAddrInst>(CAI->getSrc())) {
if (InitEnumDataAddrInst *IEDAI = findInitAddressForTrivialEnum(UTEDAI))
return getStackInitInst(IEDAI, CAI, isCopied);
}
// Check if the CAISrc is a global_addr.
if (auto *GAI = dyn_cast<GlobalAddrInst>(CAI->getSrc()))
return findInitExistentialFromGlobalAddr(GAI, CAI);
// If the source of the copy cannot be determined, return the copy itself
// because the caller may have special handling for the source address.
return CAI;
}
/// Check if the given operand originates from a recognized OpenArchetype
/// instruction. If so, return the Opened, otherwise return nullptr.
OpenedArchetypeInfo::OpenedArchetypeInfo(Operand &use) {
SILValue openedVal = use.get();
SILInstruction *user = use.getUser();
if (auto *instance = dyn_cast<AllocStackInst>(openedVal)) {
// Handle:
// %opened = open_existential_addr
// %instance = alloc $opened
// <copy|store> %opened to %stack
// <opened_use> %instance
if (auto *initI = getStackInitInst(instance, user, isOpenedValueCopied)) {
// init_existential_addr isn't handled here because it isn't considered an
// "opened" archtype. init_existential_addr should be handled by
// ConcreteExistentialInfo.
if (auto *CAI = dyn_cast<CopyAddrInst>(initI))
openedVal = CAI->getSrc();
if (auto *store = dyn_cast<StoreInst>(initI))
openedVal = store->getSrc();
}
}
if (auto *Open = dyn_cast<OpenExistentialAddrInst>(openedVal)) {
OpenedArchetype = Open->getType().castTo<OpenedArchetypeType>();
OpenedArchetypeValue = Open;
ExistentialValue = Open->getOperand();
return;
}
if (auto *Open = dyn_cast<OpenExistentialRefInst>(openedVal)) {
OpenedArchetype = Open->getType().castTo<OpenedArchetypeType>();
OpenedArchetypeValue = Open;
ExistentialValue = Open->getOperand();
return;
}
if (auto *Open = dyn_cast<OpenExistentialMetatypeInst>(openedVal)) {
auto Ty = Open->getType().getASTType();
while (auto Metatype = dyn_cast<MetatypeType>(Ty))
Ty = Metatype.getInstanceType();
OpenedArchetype = cast<OpenedArchetypeType>(Ty);
OpenedArchetypeValue = Open;
ExistentialValue = Open->getOperand();
}
}
/// Initialize ExistentialSubs from the given conformance list, using the
/// already initialized ExistentialType and ConcreteType.
void ConcreteExistentialInfo::initializeSubstitutionMap(
ArrayRef<ProtocolConformanceRef> ExistentialConformances, SILModule *M) {
// Construct a single-generic-parameter substitution map directly to the
// ConcreteType with this existential's full list of conformances.
//
// NOTE: getOpenedExistentialSignature() generates the signature for passing an
// opened existential as a generic parameter. No opened archetypes are
// actually involved here--the API is only used as a convenient way to create
// a substitution map. Since opened archetypes have different conformances
// than their corresponding existential, ExistentialConformances needs to be
// filtered when using it with this (phony) generic signature.
CanGenericSignature ExistentialSig =
M->getASTContext().getOpenedExistentialSignature(ExistentialType,
GenericSignature());
ExistentialSubs = SubstitutionMap::get(
ExistentialSig, [&](SubstitutableType *type) { return ConcreteType; },
[&](CanType /*depType*/, Type /*replaceType*/,
ProtocolDecl *proto) -> ProtocolConformanceRef {
// Directly providing ExistentialConformances to the SubstitutionMap will
// fail because of the mismatch between opened archetype conformance and
// existential value conformance. Instead, provide a conformance lookup
// function that pulls only the necessary conformances out of
// ExistentialConformances. This assumes that existential conformances
// are a superset of opened archetype conformances.
auto iter =
llvm::find_if(ExistentialConformances,
[&](const ProtocolConformanceRef &conformance) {
return conformance.getRequirement() == proto;
});
assert(iter != ExistentialConformances.end() && "missing conformance");
return *iter;
});
assert(isValid());
}
/// If the ConcreteType is an opened existential, also initialize
/// ConcreteTypeDef to the definition of that type.
void ConcreteExistentialInfo::initializeConcreteTypeDef(
SILInstruction *typeConversionInst) {
if (!ConcreteType->isOpenedExistential())
return;
assert(isValid());
// If the concrete type is another existential, we're "forwarding" an
// opened existential type, so we must keep track of the original
// defining instruction.
if (!typeConversionInst->getTypeDependentOperands().empty()) {
ConcreteTypeDef = cast<SingleValueInstruction>(
typeConversionInst->getTypeDependentOperands()[0].get());
return;
}
auto typeOperand =
cast<InitExistentialMetatypeInst>(typeConversionInst)->getOperand();
assert(typeOperand->getType().hasOpenedExistential()
&& "init_existential is supposed to have a typedef operand");
ConcreteTypeDef = cast<SingleValueInstruction>(typeOperand);
}
/// Construct this ConcreteExistentialInfo based on the given existential use.
///
/// Finds the init_existential, or an address with concrete type used to
/// initialize the given \p openedUse. If the value is copied
/// from another stack location, \p isCopied is set to true.
///
/// If successful, ConcreteExistentialInfo will be valid upon return, with the
/// following fields assigned:
/// - ExistentialType
/// - isCopied
/// - ConcreteType
/// - ConcreteValue
/// - ConcreteTypeDef
/// - ExistentialSubs
ConcreteExistentialInfo::ConcreteExistentialInfo(SILValue existential,
SILInstruction *user) {
if (existential->getType().isAddress()) {
auto *ASI = dyn_cast<AllocStackInst>(existential);
if (!ASI)
return;
SILInstruction *stackInit =
getStackInitInst(ASI, user, isConcreteValueCopied);
if (!stackInit)
return;
if (auto *IE = dyn_cast<InitExistentialAddrInst>(stackInit)) {
ExistentialType = IE->getOperand()->getType().getASTType();
ConcreteType = IE->getFormalConcreteType();
ConcreteValue = IE;
initializeSubstitutionMap(IE->getConformances(), &IE->getModule());
initializeConcreteTypeDef(IE);
return;
}
// TODO: Once we have a way to introduce more constrained archetypes, handle
// any unconditional_checked_cast that wasn't already statically eliminated.
//
// Unexpected stack write.
return;
}
if (auto *IER = dyn_cast<InitExistentialRefInst>(existential)) {
ExistentialType = IER->getType().getASTType();
ConcreteType = IER->getFormalConcreteType();
ConcreteValue = IER->getOperand();
initializeSubstitutionMap(IER->getConformances(), &IER->getModule());
initializeConcreteTypeDef(IER);
return;
}
if (auto *IEM = dyn_cast<InitExistentialMetatypeInst>(existential)) {
ExistentialType = IEM->getType().getASTType();
ConcreteValue = IEM->getOperand();
ConcreteType = ConcreteValue->getType().getASTType();
while (auto InstanceType =
dyn_cast<ExistentialMetatypeType>(ExistentialType)) {
ExistentialType = InstanceType.getInstanceType();
ConcreteType = cast<MetatypeType>(ConcreteType).getInstanceType();
}
initializeSubstitutionMap(IEM->getConformances(), &IEM->getModule());
initializeConcreteTypeDef(IEM);
return;
}
// Unrecognized opened existential producer.
return;
}
/// Initialize a ConcreteExistentialInfo based on a concrete type and protocol
/// declaration that has already been computed via whole module type
/// inference. A cast instruction will be introduced to produce the concrete
/// value from the opened value.
///
/// The simpler constructor taking only the existential value is preferred
/// because it generates simpler SIL and does not require an extra
/// cast. However, if that constructor fails to produce a valid
/// ConcreteExistentialInfo, this constructor may succeed because it doesn't
/// needs to rediscover the whole-module inferred ConcreteTypeCandidate.
ConcreteExistentialInfo::ConcreteExistentialInfo(SILValue existential,
SILInstruction *user,
CanType ConcreteTypeCandidate,
ProtocolDecl *Protocol) {
SILModule *M = existential->getModule();
// We have the open_existential; we still need the conformance.
auto ConformanceRef =
M->getSwiftModule()->checkConformance(ConcreteTypeCandidate, Protocol);
if (ConformanceRef.isInvalid())
return;
// Assert that the conformance is complete.
auto *ConcreteConformance = ConformanceRef.getConcrete();
assert(ConcreteConformance->isComplete());
ConcreteType = ConcreteTypeCandidate;
// There is no ConcreteValue in this case.
/// Determine the ExistentialConformances and SubstitutionMap.
ExistentialType = Protocol->getDeclaredInterfaceType()->getCanonicalType();
initializeSubstitutionMap(ProtocolConformanceRef(ConcreteConformance), M);
assert(isValid());
}
ConcreteOpenedExistentialInfo::ConcreteOpenedExistentialInfo(Operand &use)
: OAI(use) {
if (!OAI.isValid())
return;
CEI.emplace(OAI.ExistentialValue, OAI.OpenedArchetypeValue);
if (!CEI->isValid()) {
CEI.reset();
return;
}
CEI->isConcreteValueCopied |= OAI.isOpenedValueCopied;
}
ConcreteOpenedExistentialInfo::ConcreteOpenedExistentialInfo(
Operand &use, CanType concreteType, ProtocolDecl *protocol)
: OAI(use) {
if (!OAI.isValid())
return;
CEI.emplace(OAI.ExistentialValue, OAI.OpenedArchetypeValue, concreteType,
protocol);
if (!CEI->isValid()) {
CEI.reset();
return;
}
CEI->isConcreteValueCopied |= OAI.isOpenedValueCopied;
}
void LLVM_ATTRIBUTE_USED OpenedArchetypeInfo::dump() const {
if (!isValid()) {
llvm::dbgs() << "invalid OpenedArchetypeInfo\n";
return;
}
llvm::dbgs() << "OpendArchetype: ";
OpenedArchetype->dump(llvm::dbgs());
llvm::dbgs() << "OpendArchetypeValue: ";
OpenedArchetypeValue->dump();
llvm::dbgs() << (isOpenedValueCopied ? "copied " : "") << "ExistentialValue: ";
ExistentialValue->dump();
}
void LLVM_ATTRIBUTE_USED ConcreteExistentialInfo::dump() const {
llvm::dbgs() << "ExistentialType: ";
ExistentialType->dump(llvm::dbgs());
llvm::dbgs() << "ConcreteType: ";
ConcreteType->dump(llvm::dbgs());
llvm::dbgs() << (isConcreteValueCopied ? "copied " : "") << "ConcreteValue: ";
ConcreteValue->dump();
if (ConcreteTypeDef) {
llvm::dbgs() << "ConcreteTypeDef: ";
ConcreteTypeDef->dump();
}
ExistentialSubs.dump(llvm::dbgs());
llvm::dbgs() << '\n';
}
void LLVM_ATTRIBUTE_USED ConcreteOpenedExistentialInfo::dump() const {
OAI.dump();
if (CEI) {
CEI->dump();
} else {
llvm::dbgs() << "no ConcreteExistentialInfo\n";
}
}
|