1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
|
//===--- Generics.cpp ---- Utilities for transforming generics ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "generic-specializer"
#include "swift/SILOptimizer/Utils/Generics.h"
#include "../../IRGen/IRGenModule.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeMatcher.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Statistic.h"
#include "swift/Demangling/ManglingMacros.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/OptimizationRemark.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SILOptimizer/Utils/GenericCloner.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "swift/Serialization/SerializedSILLoader.h"
#include "swift/Strings.h"
using namespace swift;
STATISTIC(NumPreventedGenericSpecializationLoops,
"# of prevented infinite generic specializations loops");
STATISTIC(NumPreventedTooComplexGenericSpecializations,
"# of prevented generic specializations with too complex "
"generic type parameters");
/// Set to true to enable the support for partial specialization.
llvm::cl::opt<bool> EnablePartialSpecialization(
"sil-partial-specialization", llvm::cl::init(false),
llvm::cl::desc("Enable partial specialization of generics"));
/// If set, then generic specialization tries to specialize using
/// all substitutions, even if they the replacement types are generic.
llvm::cl::opt<bool> SupportGenericSubstitutions(
"sil-partial-specialization-with-generic-substitutions",
llvm::cl::init(false),
llvm::cl::desc("Enable partial specialization with generic substitutions"));
/// Set to true to print detected infinite generic specialization loops that
/// were prevented.
llvm::cl::opt<bool> PrintGenericSpecializationLoops(
"sil-print-generic-specialization-loops", llvm::cl::init(false),
llvm::cl::desc("Print detected infinite generic specialization loops that "
"were prevented"));
llvm::cl::opt<bool> VerifyFunctionsAfterSpecialization(
"sil-generic-verify-after-specialization", llvm::cl::init(false),
llvm::cl::desc(
"Verify functions after they are specialized "
"'PrettyStackTraceFunction'-ing the original function if we fail."));
llvm::cl::opt<bool> DumpFunctionsAfterSpecialization(
"sil-generic-dump-functions-after-specialization", llvm::cl::init(false));
static bool OptimizeGenericSubstitutions = false;
/// Max depth of a type which can be processed by the generic
/// specializer.
/// E.g. the depth of Array<Array<Array<T>>> is 3.
/// No specializations will be produced, if any of generic parameters contains
/// a bound generic type with the depth higher than this threshold
static const unsigned TypeDepthThreshold = 50;
/// Set the width threshold rather high, because some projects uses very wide
/// tuples to model fixed size arrays.
static const unsigned TypeWidthThreshold = 2000;
/// Max length of an opaque archetype's type parameter.
static const unsigned TypeLengthThreshold = 10;
/// Compute the width and the depth of a type.
/// We compute both, because some pathological test-cases result in very
/// wide types and some others result in very deep types. It is important
/// to bail as soon as we hit the threshold on any of both dimensions to
/// prevent compiler hangs and crashes.
static bool isTypeTooComplex(Type t) {
struct Walker : TypeWalker {
unsigned Depth = 0;
unsigned MaxDepth = 0;
unsigned MaxWidth = 0;
unsigned MaxLength = 0;
Action walkToTypePre(Type ty) override {
// The TypeWalker won't visit the interface type encapsulated by the
// archetype, so we do it directly to measure its length.
if (auto *opaqueArchetypeTy = ty->getAs<OpaqueTypeArchetypeType>()) {
auto interfaceTy = opaqueArchetypeTy->getInterfaceType();
unsigned length = 0;
while (auto memberTy = interfaceTy->getAs<DependentMemberType>()) {
++length;
interfaceTy = memberTy->getBase();
}
assert(interfaceTy->is<GenericTypeParamType>());
if (length > MaxLength)
MaxLength = length;
}
++Depth;
MaxDepth = std::max(Depth, MaxDepth);
++MaxWidth;
return Action::Continue;
}
Action walkToTypePost(Type ty) override {
--Depth;
return Action::Continue;
}
};
Walker walker;
t.walk(walker);
return (walker.MaxWidth >= TypeWidthThreshold ||
walker.MaxDepth >= TypeDepthThreshold ||
walker.MaxLength >= TypeLengthThreshold);
}
namespace {
/// A helper class used to check whether one type is structurally contained
/// the other type either completely or partially.
class TypeComparator : public TypeMatcher<TypeComparator> {
bool IsContained = false;
public:
bool isEqual(CanType T1, CanType T2) { return T1 == T2; }
/// Check whether the type T1 is different from T2 and contained in the type
/// T2.
bool isStrictlyContainedIn(CanType T1, CanType T2) {
if (isEqual(T1, T2))
return false;
return T2.findIf([&T1, this](Type T) -> bool {
return isEqual(T->getCanonicalType(), T1);
});
}
/// Check whether the type T1 is strictly or partially contained in the type
/// T2.
/// Partially contained means that if you drop the common structural "prefix"
/// of T1 and T2 and get T1' and T2' then T1' is strictly contained in T2'.
bool isPartiallyContainedIn(CanType T1, CanType T2) {
if (isStrictlyContainedIn(T1, T2))
return true;
match(T1, T2);
return IsContained;
}
/// This method is invoked aftre skipping a common prefix of two types,
/// when a structural difference is found.
bool mismatch(TypeBase *firstType, TypeBase *secondType,
Type sugaredFirstType) {
auto firstCanType = firstType->getCanonicalType();
auto secondCanType = secondType->getCanonicalType();
if (isEqual(firstCanType, secondCanType))
return false;
if (isStrictlyContainedIn(firstCanType, secondCanType)) {
IsContained = true;
return false;
}
return false;
}
};
class SpecializedFunction {
private:
SILFunction *fn;
TypeReplacements typeReplacements;
public:
SpecializedFunction() : fn(nullptr) {}
SpecializedFunction(SILFunction *fn) : fn(fn) {}
SILFunction *getFunction() { return fn; }
void setFunction(SILFunction *newFn) { fn = newFn; }
bool hasFunction() { return fn != nullptr; }
TypeReplacements &getTypeReplacements() { return typeReplacements; }
void addParameterTypeReplacement(unsigned index, CanType type) {
typeReplacements.addParameterTypeReplacement(index, type);
}
void addYieldTypeReplacement(unsigned index, CanType type) {
typeReplacements.addYieldTypeReplacement(index, type);
}
bool hasResultType() const { return typeReplacements.hasResultType(); }
void setResultType(SILType type) { typeReplacements.setResultType(type); }
bool hasIndirectResultTypes() const {
return typeReplacements.hasIndirectResultTypes();
}
void addIndirectResultType(unsigned index, CanType type) {
typeReplacements.addIndirectResultType(index, type);
}
bool hasTypeReplacements() const {
return typeReplacements.hasTypeReplacements();
}
SILFunction *operator->() { return fn; }
void computeTypeReplacements(const ApplySite &apply);
operator bool() { return fn != nullptr; }
};
} // anonymous namespace
void SpecializedFunction::computeTypeReplacements(const ApplySite &apply) {
auto fnType = fn->getLoweredFunctionType();
if (fnType != apply.getSubstCalleeType()) {
auto &M = fn->getModule();
auto expansion = fn->getTypeExpansionContext();
auto calleeTy = apply.getSubstCalleeType();
auto substConv = apply.getSubstCalleeConv();
auto resultType =
fn->getConventions().getSILResultType(fn->getTypeExpansionContext());
SmallVector<SILResultInfo, 4> indirectResults(substConv.getIndirectSILResults());
SmallVector<SILResultInfo, 4> targetIndirectResults(
fn->getConventions().getIndirectSILResults());
for (auto pair : llvm::enumerate(apply.getArgumentOperands())) {
if (pair.index() < substConv.getSILArgIndexOfFirstParam()) {
auto formalIndex = substConv.getIndirectFormalResultIndexForSILArg(pair.index());
auto fnResult = indirectResults[formalIndex];
if (fnResult.isFormalIndirect()) {
CanType indirectResultTy;
if (targetIndirectResults.size() > formalIndex) {
indirectResultTy =
targetIndirectResults[formalIndex].getReturnValueType(
M, fnType, expansion);
} else {
indirectResultTy =
fnType->getResults()[formalIndex].getReturnValueType(M, fnType,
expansion);
}
addIndirectResultType(formalIndex, indirectResultTy);
}
continue;
}
unsigned paramIdx =
pair.index() - substConv.getSILArgIndexOfFirstParam();
auto newParamType = fnType->getParameters()[paramIdx].getArgumentType(
M, fnType, expansion);
auto oldParamType = calleeTy->getParameters()[paramIdx].getArgumentType(
M, fnType, expansion);
if (newParamType != oldParamType) {
addParameterTypeReplacement(paramIdx, newParamType);
}
}
auto newConv = fn->getConventions();
for (auto pair : llvm::enumerate(substConv.getYields())) {
auto index = pair.index();
auto newType =
newConv.getYields()[index].getYieldValueType(M, fnType, expansion);
auto oldType = pair.value().getYieldValueType(
M, calleeTy, apply.getCalleeFunction()->getTypeExpansionContext());
if (oldType != newType) {
addYieldTypeReplacement(index, oldType);
}
}
if (resultType != apply.getType().getObjectType()) {
setResultType(apply.getType().getObjectType());
}
}
}
/// Checks if a second substitution map is an expanded version of
/// the first substitution map.
/// This is the case if at least one of the substitution type in Subs2 is
/// "bigger" than the corresponding substitution type in Subs1.
/// Type T2 is "smaller" than type T1 if T2 is structurally contained in T1.
static bool growingSubstitutions(SubstitutionMap Subs1,
SubstitutionMap Subs2) {
auto Replacements1 = Subs1.getReplacementTypes();
auto Replacements2 = Subs2.getReplacementTypes();
assert(Replacements1.size() == Replacements2.size());
TypeComparator TypeCmp;
// Perform component-wise comparisons for substitutions.
for (unsigned idx : indices(Replacements1)) {
auto Type1 = Replacements1[idx]->getCanonicalType();
auto Type2 = Replacements2[idx]->getCanonicalType();
// If types are the same, the substitution type does not grow.
if (TypeCmp.isEqual(Type2, Type1))
continue;
// If the new substitution type is getting smaller, the
// substitution type does not grow.
if (TypeCmp.isPartiallyContainedIn(Type2, Type1))
continue;
if (TypeCmp.isPartiallyContainedIn(Type1, Type2)) {
LLVM_DEBUG(llvm::dbgs() << "Type:\n"; Type1.dump(llvm::dbgs());
llvm::dbgs() << "is (partially) contained in type:\n";
Type2.dump(llvm::dbgs());
llvm::dbgs() << "Replacements[" << idx
<< "] has got bigger since last time.\n");
return true;
}
// None of the types is contained in the other type.
// They are not comparable in this sense.
}
// The substitution list is not growing.
return false;
}
/// Checks whether specializing a given generic apply would create an infinite
/// cycle in the generic specializations graph. This can be the case if there is
/// a loop in the specialization graph and generic parameters at each iteration
/// of such a loop are getting bigger and bigger.
/// The specialization graph is represented by means of SpecializationInformation.
/// We use this meta-information about specializations to detect cycles in this
/// graph.
static bool createsInfiniteSpecializationLoop(ApplySite Apply) {
if (!Apply)
return false;
auto *Callee = Apply.getCalleeFunction();
SILFunction *Caller = nullptr;
Caller = Apply.getFunction();
int numAcceptedCycles = 1;
// Name of the function to be specialized.
auto GenericFunc = Callee;
LLVM_DEBUG(llvm::dbgs() << "\n\n\nChecking for a specialization cycle:\n"
<< "Caller: " << Caller->getName() << "\n"
<< "Callee: " << Callee->getName() << "\n";
llvm::dbgs() << "Substitutions:\n";
Apply.getSubstitutionMap().dump(llvm::dbgs()));
auto *CurSpecializationInfo = Apply.getSpecializationInfo();
if (CurSpecializationInfo) {
LLVM_DEBUG(llvm::dbgs() << "Scan call-site's history\n");
} else if (Caller->isSpecialization()) {
CurSpecializationInfo = Caller->getSpecializationInfo();
LLVM_DEBUG(llvm::dbgs() << "Scan caller's specialization history\n");
}
while (CurSpecializationInfo) {
LLVM_DEBUG(llvm::dbgs() << "Current caller is a specialization:\n"
<< "Caller: "
<< CurSpecializationInfo->getCaller()->getName()
<< "\n"
<< "Parent: "
<< CurSpecializationInfo->getParent()->getName()
<< "\n";
llvm::dbgs() << "Substitutions:\n";
for (auto Replacement :
CurSpecializationInfo->getSubstitutions()
.getReplacementTypes()) {
Replacement->dump(llvm::dbgs());
});
if (CurSpecializationInfo->getParent() == GenericFunc) {
LLVM_DEBUG(llvm::dbgs() << "Found a call graph loop, checking "
"substitutions\n");
// Consider if components of the substitution list gets bigger compared to
// the previously seen specialization of the same generic function.
if (growingSubstitutions(CurSpecializationInfo->getSubstitutions(),
Apply.getSubstitutionMap())) {
LLVM_DEBUG(llvm::dbgs() << "Found a generic specialization loop!\n");
// Accept a cycles up to a limit. This is necessary to generate
// efficient code for some library functions, like compactMap, which
// contain small specialization cycles.
if (numAcceptedCycles == 0)
return true;
--numAcceptedCycles;
}
}
// Get the next element of the specialization history.
auto *CurCaller = CurSpecializationInfo->getCaller();
CurSpecializationInfo = nullptr;
if (!CurCaller)
break;
LLVM_DEBUG(llvm::dbgs() << "\nCurrent caller is: " << CurCaller->getName()
<< "\n");
if (!CurCaller->isSpecialization())
break;
CurSpecializationInfo = CurCaller->getSpecializationInfo();
}
assert(!CurSpecializationInfo);
LLVM_DEBUG(llvm::dbgs() << "Stop the scan: Current caller is not a "
"specialization\n");
return false;
}
// =============================================================================
// ReabstractionInfo
// =============================================================================
static bool shouldNotSpecialize(SILFunction *Callee, SILFunction *Caller,
SubstitutionMap Subs = {}) {
// Ignore "do not specialize" markers in embedded Swift -- specialization is
// mandatory.
if (Callee->getModule().getOptions().EmbeddedSwift)
return false;
if (Callee->hasSemanticsAttr(semantics::OPTIMIZE_SIL_SPECIALIZE_GENERIC_NEVER))
return true;
if (Caller &&
Caller->getEffectiveOptimizationMode() == OptimizationMode::ForSize &&
Callee->hasSemanticsAttr(semantics::OPTIMIZE_SIL_SPECIALIZE_GENERIC_SIZE_NEVER)) {
return true;
}
if (Subs.hasAnySubstitutableParams() &&
Callee->hasSemanticsAttr(semantics::OPTIMIZE_SIL_SPECIALIZE_GENERIC_PARTIAL_NEVER))
return true;
return false;
}
/// Prepares the ReabstractionInfo object for further processing and checks
/// if the current function can be specialized at all.
/// Returns false, if the current function cannot be specialized.
/// Returns true otherwise.
bool ReabstractionInfo::prepareAndCheck(ApplySite Apply, SILFunction *Callee,
SubstitutionMap ParamSubs,
OptRemark::Emitter *ORE) {
assert(ParamSubs.hasAnySubstitutableParams());
if (shouldNotSpecialize(Callee, Apply ? Apply.getFunction() : nullptr))
return false;
SpecializedGenericEnv = nullptr;
SpecializedGenericSig = nullptr;
auto CalleeGenericSig = Callee->getLoweredFunctionType()
->getInvocationGenericSignature();
auto CalleeGenericEnv = Callee->getGenericEnvironment();
this->Callee = Callee;
this->Apply = Apply;
// Get the original substitution map.
CalleeParamSubMap = ParamSubs;
using namespace OptRemark;
// We do not support partial specialization.
if (!EnablePartialSpecialization && CalleeParamSubMap.hasArchetypes()) {
LLVM_DEBUG(llvm::dbgs() <<" Partial specialization is not supported.\n");
LLVM_DEBUG(ParamSubs.dump(llvm::dbgs()));
return false;
}
// Perform some checks to see if we need to bail.
if (CalleeParamSubMap.hasDynamicSelf()) {
REMARK_OR_DEBUG(ORE, [&]() {
return RemarkMissed("DynamicSelf", *Apply.getInstruction())
<< IndentDebug(4) << "Cannot specialize with dynamic self";
});
return false;
}
// Check if the substitution contains any generic types that are too deep.
// If this is the case, bail to avoid the explosion in the number of
// generated specializations.
for (auto Replacement : ParamSubs.getReplacementTypes()) {
if (isTypeTooComplex(Replacement)) {
REMARK_OR_DEBUG(ORE, [&]() {
return RemarkMissed("TypeTooDeep", *Apply.getInstruction())
<< IndentDebug(4)
<< "Cannot specialize because the generic type is too deep";
});
++NumPreventedTooComplexGenericSpecializations;
return false;
}
}
// Check if we have substitutions which replace generic type parameters with
// concrete types or unbound generic types.
bool HasConcreteGenericParams = false;
bool HasNonArchetypeGenericParams = false;
HasUnboundGenericParams = false;
CalleeGenericSig->forEachParam([&](GenericTypeParamType *GP, bool Canonical) {
if (!Canonical)
return;
// Check only the substitutions for the generic parameters.
// Ignore any dependent types, etc.
auto Replacement = Type(GP).subst(CalleeParamSubMap);
if (!Replacement->is<ArchetypeType>())
HasNonArchetypeGenericParams = true;
if (Replacement->hasArchetype()) {
HasUnboundGenericParams = true;
// Check if the replacement is an archetype which is more specific
// than the corresponding archetype in the original generic signature.
// If this is the case, then specialization makes sense, because
// it would produce something more specific.
if (CalleeGenericEnv) {
if (auto Archetype = Replacement->getAs<ArchetypeType>()) {
auto OrigArchetype =
CalleeGenericEnv->mapTypeIntoContext(GP)->castTo<ArchetypeType>();
if (Archetype->requiresClass() && !OrigArchetype->requiresClass())
HasNonArchetypeGenericParams = true;
if (Archetype->getLayoutConstraint() &&
!OrigArchetype->getLayoutConstraint())
HasNonArchetypeGenericParams = true;
}
}
} else {
HasConcreteGenericParams = true;
}
});
if (HasUnboundGenericParams) {
// Bail if we cannot specialize generic substitutions, but all substitutions
// were generic.
if (!HasConcreteGenericParams && !SupportGenericSubstitutions) {
LLVM_DEBUG(llvm::dbgs() << " Partial specialization is not supported "
"if all substitutions are generic.\n");
LLVM_DEBUG(ParamSubs.dump(llvm::dbgs()));
return false;
}
if (!HasNonArchetypeGenericParams && !HasConcreteGenericParams) {
LLVM_DEBUG(llvm::dbgs() << " Partial specialization is not supported "
"if all substitutions are archetypes.\n");
LLVM_DEBUG(ParamSubs.dump(llvm::dbgs()));
return false;
}
// We need a generic environment for the partial specialization.
if (!CalleeGenericEnv)
return false;
// Bail if the callee should not be partially specialized.
if (shouldNotSpecialize(Callee, Apply.getFunction(), ParamSubs))
return false;
}
// Check if specializing this call site would create in an infinite generic
// specialization loop.
if (createsInfiniteSpecializationLoop(Apply)) {
REMARK_OR_DEBUG(ORE, [&]() {
return RemarkMissed("SpecializationLoop", *Apply.getInstruction())
<< IndentDebug(4)
<< "Generic specialization is not supported if it would result in "
"a generic specialization of infinite depth. Callee "
<< NV("Callee", Callee)
<< " occurs multiple times on the call chain";
});
if (PrintGenericSpecializationLoops)
llvm::errs() << "Detected and prevented an infinite "
"generic specialization loop for callee: "
<< Callee->getName() << '\n';
++NumPreventedGenericSpecializationLoops;
return false;
}
return true;
}
bool ReabstractionInfo::canBeSpecialized(ApplySite Apply, SILFunction *Callee,
SubstitutionMap ParamSubs) {
ReabstractionInfo ReInfo(Callee->getModule());
return ReInfo.prepareAndCheck(Apply, Callee, ParamSubs);
}
ReabstractionInfo::ReabstractionInfo(
ModuleDecl *targetModule, bool isWholeModule, ApplySite Apply,
SILFunction *Callee, SubstitutionMap ParamSubs, SerializedKind_t Serialized,
bool ConvertIndirectToDirect, bool dropMetatypeArgs,
OptRemark::Emitter *ORE)
: ConvertIndirectToDirect(ConvertIndirectToDirect),
dropMetatypeArgs(dropMetatypeArgs), M(&Callee->getModule()),
TargetModule(targetModule), isWholeModule(isWholeModule),
Serialized(Serialized) {
if (!prepareAndCheck(Apply, Callee, ParamSubs, ORE))
return;
SILFunction *Caller = nullptr;
if (Apply)
Caller = Apply.getFunction();
if (!EnablePartialSpecialization || !HasUnboundGenericParams) {
// Fast path for full specializations.
performFullSpecializationPreparation(Callee, ParamSubs);
} else {
performPartialSpecializationPreparation(Caller, Callee, ParamSubs);
}
verify();
if (SpecializedGenericSig) {
LLVM_DEBUG(llvm::dbgs() << "\n\nPartially specialized types for function: "
<< Callee->getName() << "\n\n";
llvm::dbgs() << "Original generic function type:\n"
<< Callee->getLoweredFunctionType() << "\n"
<< "Partially specialized generic function type:\n"
<< SpecializedType << "\n\n");
}
// Some correctness checks.
auto SpecializedFnTy = getSpecializedType();
auto SpecializedSubstFnTy = SpecializedFnTy;
if (SpecializedFnTy->isPolymorphic() &&
!getCallerParamSubstitutionMap().empty()) {
auto CalleeFnTy = Callee->getLoweredFunctionType();
assert(CalleeFnTy->isPolymorphic());
auto CalleeSubstFnTy = CalleeFnTy->substGenericArgs(
Callee->getModule(), getCalleeParamSubstitutionMap(),
getResilienceExpansion());
assert(!CalleeSubstFnTy->isPolymorphic() &&
"Substituted callee type should not be polymorphic");
assert(!CalleeSubstFnTy->hasTypeParameter() &&
"Substituted callee type should not have type parameters");
SpecializedSubstFnTy = SpecializedFnTy->substGenericArgs(
Callee->getModule(), getCallerParamSubstitutionMap(),
getResilienceExpansion());
assert(!SpecializedSubstFnTy->isPolymorphic() &&
"Substituted callee type should not be polymorphic");
assert(!SpecializedSubstFnTy->hasTypeParameter() &&
"Substituted callee type should not have type parameters");
auto SpecializedCalleeSubstFnTy =
createSpecializedType(CalleeSubstFnTy, Callee->getModule());
if (SpecializedSubstFnTy != SpecializedCalleeSubstFnTy) {
llvm::dbgs() << "SpecializedFnTy:\n" << SpecializedFnTy << "\n";
llvm::dbgs() << "SpecializedSubstFnTy:\n" << SpecializedSubstFnTy << "\n";
getCallerParamSubstitutionMap().getCanonical().dump(llvm::dbgs());
llvm::dbgs() << "\n\n";
llvm::dbgs() << "CalleeFnTy:\n" << CalleeFnTy << "\n";
llvm::dbgs() << "SpecializedCalleeSubstFnTy:\n" << SpecializedCalleeSubstFnTy << "\n";
ParamSubs.getCanonical().dump(llvm::dbgs());
llvm::dbgs() << "\n\n";
assert(SpecializedSubstFnTy == SpecializedCalleeSubstFnTy &&
"Substituted function types should be the same");
}
}
// If the new type is the same, there is nothing to do and
// no specialization should be performed.
if (getSubstitutedType() == Callee->getLoweredFunctionType()) {
LLVM_DEBUG(llvm::dbgs() << "The new specialized type is the same as "
"the original type. Don't specialize!\n";
llvm::dbgs() << "The type is: " << getSubstitutedType() << "\n");
SpecializedType = CanSILFunctionType();
SubstitutedType = CanSILFunctionType();
SpecializedGenericSig = nullptr;
SpecializedGenericEnv = nullptr;
return;
}
if (SpecializedGenericSig) {
// It is a partial specialization.
LLVM_DEBUG(llvm::dbgs() << "Specializing the call:\n";
Apply.getInstruction()->dumpInContext();
llvm::dbgs() << "\n\nPartially specialized types for function: "
<< Callee->getName() << "\n\n";
llvm::dbgs() << "Callee generic function type:\n"
<< Callee->getLoweredFunctionType() << "\n\n";
llvm::dbgs() << "Callee's call substitution:\n";
getCalleeParamSubstitutionMap().getCanonical().dump(llvm::dbgs());
llvm::dbgs() << "Partially specialized generic function type:\n"
<< getSpecializedType() << "\n\n";
llvm::dbgs() << "\nSpecialization call substitution:\n";
getCallerParamSubstitutionMap().getCanonical().dump(llvm::dbgs());
);
}
}
bool ReabstractionInfo::canBeSpecialized() const {
return getSpecializedType();
}
bool ReabstractionInfo::isFullSpecialization() const {
return !getCalleeParamSubstitutionMap().hasArchetypes();
}
bool ReabstractionInfo::isPartialSpecialization() const {
return getCalleeParamSubstitutionMap().hasArchetypes();
}
void ReabstractionInfo::createSubstitutedAndSpecializedTypes() {
// Find out how the function type looks like after applying the provided
// substitutions.
if (!SubstitutedType) {
SubstitutedType = createSubstitutedType(Callee, CallerInterfaceSubs,
HasUnboundGenericParams);
}
assert(!SubstitutedType->hasArchetype() &&
"Substituted function type should not contain archetypes");
// Check which parameters and results can be converted from
// indirect to direct ones.
NumFormalIndirectResults = SubstitutedType->getNumIndirectFormalResults();
hasIndirectErrorResult = SubstitutedType->hasIndirectErrorResult();
unsigned NumArgs = NumFormalIndirectResults +
(hasIndirectErrorResult ? 1 : 0) +
SubstitutedType->getParameters().size();
Conversions.resize(NumArgs);
TrivialArgs.resize(NumArgs);
droppedMetatypeArgs.resize(NumArgs);
if (SubstitutedType->getNumDirectFormalResults() == 0) {
// The original function has no direct result yet. Try to convert the first
// indirect result to a direct result.
// TODO: We could also convert multiple indirect results by returning a
// tuple type and created tuple_extract instructions at the call site.
unsigned IdxForResult = 0;
for (SILResultInfo RI : SubstitutedType->getIndirectFormalResults()) {
if (handleReturnAndError(RI, IdxForResult) != NotLoadable) {
// We can only convert one indirect result to a direct result.
break;
}
++IdxForResult;
}
}
unsigned IdxForParam = NumFormalIndirectResults;
if (hasIndirectErrorResult) {
assert(SubstitutedType->hasErrorResult());
handleReturnAndError(SubstitutedType->getErrorResult(), IdxForParam);
IdxForParam += 1;
}
// Try to convert indirect incoming parameters to direct parameters.
for (SILParameterInfo PI : SubstitutedType->getParameters()) {
auto IdxToInsert = IdxForParam;
++IdxForParam;
SILFunctionConventions substConv(SubstitutedType, getModule());
TypeCategory tc = getParamTypeCategory(PI, substConv, getResilienceExpansion());
if (tc == NotLoadable)
continue;
switch (PI.getConvention()) {
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_In_Guaranteed: {
Conversions.set(IdxToInsert);
if (tc == LoadableAndTrivial)
TrivialArgs.set(IdxToInsert);
TypeExpansionContext minimalExp(ResilienceExpansion::Minimal,
TargetModule, isWholeModule);
if (getResilienceExpansion() != minimalExp &&
getParamTypeCategory(PI, substConv, minimalExp) == NotLoadable) {
hasConvertedResilientParams = true;
}
break;
}
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Pack_Inout:
case ParameterConvention::Pack_Owned:
case ParameterConvention::Pack_Guaranteed:
break;
case ParameterConvention::Direct_Owned:
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Direct_Guaranteed: {
CanType ty = PI.getInterfaceType();
if (dropMetatypeArgs && isa<MetatypeType>(ty) && !ty->hasArchetype())
droppedMetatypeArgs.set(IdxToInsert);
break;
}
}
}
// Produce a specialized type, which is the substituted type with
// the parameters/results passing conventions adjusted according
// to the conversions selected above.
SpecializedType = createSpecializedType(SubstitutedType, getModule());
}
ReabstractionInfo::TypeCategory ReabstractionInfo::
getReturnTypeCategory(const SILResultInfo &RI,
const SILFunctionConventions &substConv,
TypeExpansionContext typeExpansion) {
auto ResultTy = substConv.getSILType(RI, typeExpansion);
ResultTy = mapTypeIntoContext(ResultTy);
auto &TL = getModule().Types.getTypeLowering(ResultTy, typeExpansion);
if (!TL.isLoadable())
return NotLoadable;
if (RI.getReturnValueType(getModule(), SubstitutedType, typeExpansion)
->isVoid())
return NotLoadable;
if (!shouldExpand(getModule(), ResultTy))
return NotLoadable;
return TL.isTrivial() ? LoadableAndTrivial : Loadable;
}
ReabstractionInfo::TypeCategory ReabstractionInfo::
getParamTypeCategory(const SILParameterInfo &PI,
const SILFunctionConventions &substConv,
TypeExpansionContext typeExpansion) {
auto ParamTy = substConv.getSILType(PI, typeExpansion);
ParamTy = mapTypeIntoContext(ParamTy);
auto &TL = getModule().Types.getTypeLowering(ParamTy, typeExpansion);
if (!TL.isLoadable())
return NotLoadable;
return TL.isTrivial() ? LoadableAndTrivial : Loadable;
}
/// Create a new substituted type with the updated signature.
CanSILFunctionType
ReabstractionInfo::createSubstitutedType(SILFunction *OrigF,
SubstitutionMap SubstMap,
bool HasUnboundGenericParams) {
if ((SpecializedGenericSig &&
SpecializedGenericSig->areAllParamsConcrete()) ||
!HasUnboundGenericParams) {
SpecializedGenericSig = nullptr;
SpecializedGenericEnv = nullptr;
}
auto CanSpecializedGenericSig = SpecializedGenericSig.getCanonicalSignature();
auto lowered = OrigF->getLoweredFunctionType();
auto genSub =
lowered->substGenericArgs(getModule(), SubstMap, getResilienceExpansion());
auto unsub = genSub->getUnsubstitutedType(getModule());
auto specialized = CanSpecializedGenericSig.getReducedType(unsub);
// First substitute concrete types into the existing function type.
CanSILFunctionType FnTy = cast<SILFunctionType>(specialized);
assert(FnTy);
assert((CanSpecializedGenericSig || !FnTy->hasTypeParameter()) &&
"Type parameters outside generic context?");
// Use the new specialized generic signature.
auto NewFnTy = SILFunctionType::get(
CanSpecializedGenericSig, FnTy->getExtInfo(), FnTy->getCoroutineKind(),
FnTy->getCalleeConvention(), FnTy->getParameters(), FnTy->getYields(),
FnTy->getResults(), FnTy->getOptionalErrorResult(),
FnTy->getPatternSubstitutions(), SubstitutionMap(), getModule().getASTContext(),
FnTy->getWitnessMethodConformanceOrInvalid());
// This is an interface type. It should not have any archetypes.
assert(!NewFnTy->hasArchetype());
return NewFnTy;
}
CanSILFunctionType ReabstractionInfo::createThunkType(PartialApplyInst *forPAI) const {
if (!hasDroppedMetatypeArgs())
return SubstitutedType;
llvm::SmallVector<SILParameterInfo, 8> newParams;
auto params = SubstitutedType->getParameters();
unsigned firstAppliedParamIdx = params.size() - forPAI->getArguments().size();
for (unsigned paramIdx = 0; paramIdx < params.size(); ++paramIdx) {
if (paramIdx >= firstAppliedParamIdx && isDroppedMetatypeArg(param2ArgIndex(paramIdx)))
continue;
newParams.push_back(params[paramIdx]);
}
auto newFnTy = SILFunctionType::get(
SubstitutedType->getInvocationGenericSignature(),
SubstitutedType->getExtInfo(), SubstitutedType->getCoroutineKind(),
SubstitutedType->getCalleeConvention(), newParams,
SubstitutedType->getYields(), SubstitutedType->getResults(),
SubstitutedType->getOptionalErrorResult(),
SubstitutedType->getPatternSubstitutions(), SubstitutionMap(),
SubstitutedType->getASTContext(),
SubstitutedType->getWitnessMethodConformanceOrInvalid());
// This is an interface type. It should not have any archetypes.
assert(!newFnTy->hasArchetype());
return newFnTy;
}
SILType ReabstractionInfo::mapTypeIntoContext(SILType type) const {
if (Callee) {
return Callee->mapTypeIntoContext(type);
}
assert(!methodDecl.isNull());
if (auto *genericEnv = M->Types.getConstantGenericEnvironment(methodDecl))
return genericEnv->mapTypeIntoContext(getModule(), type);
return type;
}
/// Convert the substituted function type into a specialized function type based
/// on the ReabstractionInfo.
CanSILFunctionType ReabstractionInfo::
createSpecializedType(CanSILFunctionType SubstFTy, SILModule &M) const {
SmallVector<SILResultInfo, 8> SpecializedResults;
std::optional<SILResultInfo> specializedErrorResult;
SmallVector<SILYieldInfo, 8> SpecializedYields;
SmallVector<SILParameterInfo, 8> SpecializedParams;
auto context = getResilienceExpansion();
unsigned IndirectResultIdx = 0;
for (SILResultInfo RI : SubstFTy->getResults()) {
RI = RI.getUnsubstituted(M, SubstFTy, context);
if (RI.isFormalIndirect()) {
bool isTrivial = TrivialArgs.test(IndirectResultIdx);
if (isFormalResultConverted(IndirectResultIdx++)) {
// Convert the indirect result to a direct result.
// Indirect results are passed as owned, so we also need to pass the
// direct result as owned (except it's a trivial type).
auto C = (isTrivial
? ResultConvention::Unowned
: ResultConvention::Owned);
SpecializedResults.push_back(RI.getWithConvention(C));
continue;
}
}
// No conversion: re-use the original, substituted result info.
SpecializedResults.push_back(RI);
}
if (SubstFTy->hasErrorResult()) {
SILResultInfo RI = SubstFTy->getErrorResult().getUnsubstituted(M, SubstFTy, context);
if (RI.isFormalIndirect() && isErrorResultConverted()) {
specializedErrorResult = RI.getWithConvention(ResultConvention::Owned);
} else {
specializedErrorResult = RI;
}
}
unsigned idx = 0;
bool removedSelfParam = false;
for (SILParameterInfo PI : SubstFTy->getParameters()) {
unsigned paramIdx = idx++;
PI = PI.getUnsubstituted(M, SubstFTy, context);
if (isDroppedMetatypeArg(param2ArgIndex(paramIdx))) {
if (SubstFTy->hasSelfParam() && paramIdx == SubstFTy->getParameters().size() - 1)
removedSelfParam = true;
continue;
}
bool isTrivial = TrivialArgs.test(param2ArgIndex(paramIdx));
if (!isParamConverted(paramIdx)) {
// No conversion: re-use the original, substituted parameter info.
SpecializedParams.push_back(PI);
continue;
}
// Convert the indirect parameter to a direct parameter.
// Indirect parameters are passed as owned/guaranteed, so we also
// need to pass the direct/guaranteed parameter as
// owned/guaranteed (except it's a trivial type).
auto C = ParameterConvention::Direct_Unowned;
if (!isTrivial) {
if (PI.isGuaranteed()) {
C = ParameterConvention::Direct_Guaranteed;
} else {
C = ParameterConvention::Direct_Owned;
}
}
SpecializedParams.push_back(PI.getWithConvention(C));
}
for (SILYieldInfo YI : SubstFTy->getYields()) {
// For now, always re-use the original, substituted yield info.
SpecializedYields.push_back(YI.getUnsubstituted(M, SubstFTy, context));
}
auto Signature = SubstFTy->isPolymorphic()
? SubstFTy->getInvocationGenericSignature()
: CanGenericSignature();
SILFunctionType::ExtInfo extInfo = SubstFTy->getExtInfo();
ProtocolConformanceRef conf = SubstFTy->getWitnessMethodConformanceOrInvalid();
if (extInfo.hasSelfParam() && removedSelfParam) {
extInfo = extInfo.withRepresentation(SILFunctionTypeRepresentation::Thin);
conf = ProtocolConformanceRef();
assert(!extInfo.hasSelfParam());
}
return SILFunctionType::get(
Signature, extInfo,
SubstFTy->getCoroutineKind(), SubstFTy->getCalleeConvention(),
SpecializedParams, SpecializedYields, SpecializedResults,
specializedErrorResult, SubstitutionMap(), SubstitutionMap(),
M.getASTContext(), conf);
}
/// Create a new generic signature from an existing one by adding
/// additional requirements.
static std::pair<GenericEnvironment *, GenericSignature>
getGenericEnvironmentAndSignatureWithRequirements(
GenericSignature OrigGenSig, GenericEnvironment *OrigGenericEnv,
ArrayRef<Requirement> Requirements, SILModule &M) {
SmallVector<Requirement, 2> RequirementsCopy(Requirements.begin(),
Requirements.end());
auto NewGenSig = buildGenericSignature(M.getASTContext(),
OrigGenSig, { },
std::move(RequirementsCopy),
/*allowInverses=*/false);
auto NewGenEnv = NewGenSig.getGenericEnvironment();
return { NewGenEnv, NewGenSig };
}
/// This is a fast path for full specializations.
/// There is no need to form a new generic signature in such cases,
/// because the specialized function will be non-generic.
void ReabstractionInfo::performFullSpecializationPreparation(
SILFunction *Callee, SubstitutionMap ParamSubs) {
assert((!EnablePartialSpecialization || !HasUnboundGenericParams) &&
"Only full specializations are handled here");
this->Callee = Callee;
// Get the original substitution map.
ClonerParamSubMap = ParamSubs;
SubstitutedType = Callee->getLoweredFunctionType()->substGenericArgs(
getModule(), ClonerParamSubMap, getResilienceExpansion());
CallerParamSubMap = {};
createSubstitutedAndSpecializedTypes();
}
/// If the archetype (or any of its dependent types) has requirements
/// depending on other archetypes, return true.
/// Otherwise return false.
static bool hasNonSelfContainedRequirements(ArchetypeType *Archetype,
GenericSignature Sig,
GenericEnvironment *Env) {
auto Reqs = Sig.getRequirements();
auto CurrentGP = Archetype->getInterfaceType()
->getCanonicalType()
->getRootGenericParam();
for (auto Req : Reqs) {
switch(Req.getKind()) {
case RequirementKind::Conformance:
case RequirementKind::Superclass:
case RequirementKind::Layout:
// FIXME: Second type of a superclass requirement may contain
// generic parameters.
continue;
case RequirementKind::SameShape:
case RequirementKind::SameType: {
// Check if this requirement contains more than one generic param.
// If this is the case, then these archetypes are interdependent and
// we should return true.
auto First = Req.getFirstType()->getCanonicalType();
auto Second = Req.getSecondType()->getCanonicalType();
llvm::SmallSetVector<TypeBase *, 2> UsedGenericParams;
First.visit([&](Type Ty) {
if (auto *GP = Ty->getAs<GenericTypeParamType>()) {
UsedGenericParams.insert(GP);
}
});
Second.visit([&](Type Ty) {
if (auto *GP = Ty->getAs<GenericTypeParamType>()) {
UsedGenericParams.insert(GP);
}
});
if (UsedGenericParams.count(CurrentGP) && UsedGenericParams.size() > 1)
return true;
}
}
}
return false;
}
/// Collect all requirements for a generic parameter corresponding to a given
/// archetype.
static void collectRequirements(ArchetypeType *Archetype, GenericSignature Sig,
GenericEnvironment *Env,
SmallVectorImpl<Requirement> &CollectedReqs) {
auto Reqs = Sig.getRequirements();
auto CurrentGP = Archetype->getInterfaceType()
->getCanonicalType()
->getRootGenericParam();
CollectedReqs.clear();
for (auto Req : Reqs) {
switch(Req.getKind()) {
case RequirementKind::Conformance:
case RequirementKind::Superclass:
case RequirementKind::Layout:
// If it is a generic param or something derived from it, add this
// requirement.
// FIXME: Second type of a superclass requirement may contain
// generic parameters.
if (Req.getFirstType()->getCanonicalType()->getRootGenericParam() ==
CurrentGP)
CollectedReqs.push_back(Req);
continue;
case RequirementKind::SameShape:
case RequirementKind::SameType: {
// Check if this requirement contains more than one generic param.
// If this is the case, then these archetypes are interdependent and
// we should return true.
auto First = Req.getFirstType()->getCanonicalType();
auto Second = Req.getSecondType()->getCanonicalType();
llvm::SmallSetVector<GenericTypeParamType *, 2> UsedGenericParams;
First.visit([&](Type Ty) {
if (auto *GP = Ty->getAs<GenericTypeParamType>()) {
UsedGenericParams.insert(GP);
}
});
Second.visit([&](Type Ty) {
if (auto *GP = Ty->getAs<GenericTypeParamType>()) {
UsedGenericParams.insert(GP);
}
});
if (!UsedGenericParams.count(CurrentGP))
continue;
if (UsedGenericParams.size() != 1) {
llvm::dbgs() << "Strange requirement for "
<< CurrentGP->getCanonicalType() << "\n";
Req.dump(llvm::dbgs());
}
assert(UsedGenericParams.size() == 1);
CollectedReqs.push_back(Req);
continue;
}
}
}
}
/// Returns true if a given substitution should participate in the
/// partial specialization.
///
/// TODO:
/// If a replacement is an archetype or a dependent type
/// of an archetype, then it does not make sense to substitute
/// it into the signature of the specialized function, because
/// it does not provide any benefits at runtime and may actually
/// lead to performance degradations.
///
/// If a replacement is a loadable type, it is most likely
/// rather beneficial to specialize using this substitution, because
/// it would allow for more efficient codegen for this type.
///
/// If a substitution simply replaces a generic parameter in the callee
/// by a generic parameter in the caller and this generic parameter
/// in the caller does have more "specific" conformances or requirements,
/// then it does name make any sense to perform this substitutions.
/// In particular, if the generic parameter in the callee is unconstrained
/// (i.e. just T), then providing a more specific generic parameter with some
/// conformances does not help, because the body of the callee does not invoke
/// any methods from any of these new conformances, unless these conformances
/// or requirements influence the layout of the generic type, e.g. "class",
/// "Trivial of size N", "HeapAllocationObject", etc.
/// (NOTE: It could be that additional conformances can still be used due
/// to conditional conformances or something like that, if the caller
/// has an invocation like: "G<T>().method(...)". In this case, G<T>().method()
/// and G<T:P>().method() may be resolved differently).
///
/// We may need to analyze the uses of the generic type inside
/// the function body (recursively). It is ever loaded/stored?
/// Do we create objects of this type? Which conformances are
/// really used?
static bool
shouldBePartiallySpecialized(Type Replacement,
GenericSignature Sig, GenericEnvironment *Env) {
// If replacement is a concrete type, this substitution
// should participate.
if (!Replacement->hasArchetype())
return true;
// We cannot handle opened existentials yet.
if (Replacement->hasOpenedExistential())
return false;
if (!SupportGenericSubstitutions) {
// Don't partially specialize if the replacement contains an archetype.
if (Replacement->hasArchetype())
return false;
}
// If the archetype used (or any of its dependent types) has requirements
// depending on other caller's archetypes, then we don't want to specialize
// on it as it may require introducing more generic parameters, which
// is not beneficial.
// Collect the archetypes used by the replacement type.
llvm::SmallSetVector<ArchetypeType *, 2> UsedArchetypes;
Replacement.visit([&](Type Ty) {
if (auto Archetype = Ty->getAs<ArchetypeType>()) {
if (auto Primary = dyn_cast<PrimaryArchetypeType>(Archetype)) {
UsedArchetypes.insert(Primary);
}
if (auto Pack = dyn_cast<PackArchetypeType>(Archetype)) {
UsedArchetypes.insert(Pack);
}
}
});
// Check if any of the used archetypes are non-self contained when
// it comes to requirements.
for (auto *UsedArchetype : UsedArchetypes) {
if (hasNonSelfContainedRequirements(UsedArchetype, Sig, Env)) {
LLVM_DEBUG(llvm::dbgs() << "Requirements of the archetype depend on "
"other caller's generic parameters! "
"It cannot be partially specialized:\n";
UsedArchetype->dump(llvm::dbgs());
llvm::dbgs() << "This archetype is used in the substitution: "
<< Replacement << "\n");
return false;
}
}
if (OptimizeGenericSubstitutions) {
// Is it an unconstrained generic parameter?
if (auto Archetype = Replacement->getAs<ArchetypeType>()) {
if (Archetype->getConformsTo().empty()) {
// TODO: If Replacement add a new layout constraint, then
// it may be still useful to perform the partial specialization.
return false;
}
}
}
return true;
}
namespace swift {
/// A helper class for creating partially specialized function signatures.
///
/// The following naming convention is used to describe the members and
/// functions:
/// Caller - the function which invokes the callee.
/// Callee - the callee to be specialized.
/// Specialized - the specialized callee which is being created.
class FunctionSignaturePartialSpecializer {
/// Maps caller's generic parameters to generic parameters of the specialized
/// function.
llvm::DenseMap<SubstitutableType *, Type>
CallerInterfaceToSpecializedInterfaceMapping;
/// Maps callee's generic parameters to generic parameters of the specialized
/// function.
llvm::DenseMap<SubstitutableType *, Type>
CalleeInterfaceToSpecializedInterfaceMapping;
/// Maps the generic parameters of the specialized function to the caller's
/// contextual types.
llvm::DenseMap<SubstitutableType *, Type>
SpecializedInterfaceToCallerArchetypeMapping;
/// A SubstitutionMap for re-mapping caller's interface types
/// to interface types of the specialized function.
SubstitutionMap CallerInterfaceToSpecializedInterfaceMap;
/// Maps callee's interface types to caller's contextual types.
/// It is computed from the original substitutions.
SubstitutionMap CalleeInterfaceToCallerArchetypeMap;
/// Maps callee's interface types to specialized functions interface types.
SubstitutionMap CalleeInterfaceToSpecializedInterfaceMap;
/// Maps the generic parameters of the specialized function to the caller's
/// contextual types.
SubstitutionMap SpecializedInterfaceToCallerArchetypeMap;
/// Generic signatures and environments for the caller, callee and
/// the specialized function.
GenericSignature CallerGenericSig;
GenericEnvironment *CallerGenericEnv;
GenericSignature CalleeGenericSig;
GenericEnvironment *CalleeGenericEnv;
GenericSignature SpecializedGenericSig;
GenericEnvironment *SpecializedGenericEnv;
SILModule &M;
ModuleDecl *SM;
ASTContext &Ctx;
/// Set of newly created generic type parameters.
SmallVector<GenericTypeParamType*, 2> AllGenericParams;
/// Set of newly created requirements.
SmallVector<Requirement, 2> AllRequirements;
/// Archetypes used in the substitutions of an apply instructions.
/// These are the contextual archetypes of the caller function, which
/// invokes a generic function that is being specialized.
llvm::SmallSetVector<ArchetypeType *, 2> UsedCallerArchetypes;
/// Number of created generic parameters so far.
unsigned GPIdx = 0;
void createGenericParamsForUsedCallerArchetypes();
void createGenericParamsForCalleeGenericParams();
void addRequirements(ArrayRef<Requirement> Reqs, SubstitutionMap &SubsMap);
void addCallerRequirements();
void addCalleeRequirements();
std::pair<GenericEnvironment *, GenericSignature>
getSpecializedGenericEnvironmentAndSignature();
void computeCallerInterfaceToSpecializedInterfaceMap();
void computeCalleeInterfaceToSpecializedInterfaceMap();
void computeSpecializedInterfaceToCallerArchetypeMap();
/// Collect all used archetypes from all the substitutions.
/// Take into account only those archetypes that occur in the
/// substitutions of generic parameters which will be partially
/// specialized. Ignore all others.
void collectUsedCallerArchetypes(SubstitutionMap ParamSubs);
/// Create a new generic parameter.
GenericTypeParamType *createGenericParam();
public:
FunctionSignaturePartialSpecializer(SILModule &M,
GenericSignature CallerGenericSig,
GenericEnvironment *CallerGenericEnv,
GenericSignature CalleeGenericSig,
GenericEnvironment *CalleeGenericEnv,
SubstitutionMap ParamSubs)
: CallerGenericSig(CallerGenericSig), CallerGenericEnv(CallerGenericEnv),
CalleeGenericSig(CalleeGenericSig), CalleeGenericEnv(CalleeGenericEnv),
M(M), SM(M.getSwiftModule()), Ctx(M.getASTContext()) {
SpecializedGenericSig = nullptr;
SpecializedGenericEnv = nullptr;
CalleeInterfaceToCallerArchetypeMap = ParamSubs;
}
/// This constructor is used by when processing @_specialize.
/// In this case, the caller and the callee are the same function.
FunctionSignaturePartialSpecializer(SILModule &M,
GenericSignature CalleeGenericSig,
GenericEnvironment *CalleeGenericEnv,
GenericSignature SpecializedSig)
: CallerGenericSig(CalleeGenericSig), CallerGenericEnv(CalleeGenericEnv),
CalleeGenericSig(CalleeGenericSig), CalleeGenericEnv(CalleeGenericEnv),
SpecializedGenericSig(SpecializedSig),
M(M), SM(M.getSwiftModule()), Ctx(M.getASTContext()) {
// Create the new generic signature using provided requirements.
SpecializedGenericEnv = SpecializedGenericSig.getGenericEnvironment();
// Compute SubstitutionMaps required for re-mapping.
// Callee's generic signature and specialized generic signature
// use the same set of generic parameters, i.e. each generic
// parameter should be mapped to itself.
for (auto GP : CalleeGenericSig.getGenericParams()) {
CalleeInterfaceToSpecializedInterfaceMapping[GP] = Type(GP);
}
computeCalleeInterfaceToSpecializedInterfaceMap();
// Each generic parameter of the callee is mapped to its own
// archetype.
SpecializedInterfaceToCallerArchetypeMap =
SubstitutionMap::get(
SpecializedGenericSig,
[&](SubstitutableType *type) -> Type {
return CalleeGenericEnv->mapTypeIntoContext(type);
},
LookUpConformanceInSignature(SpecializedGenericSig.getPointer()));
}
GenericSignature getSpecializedGenericSignature() {
return SpecializedGenericSig;
}
GenericEnvironment *getSpecializedGenericEnvironment() {
return SpecializedGenericEnv;
}
void createSpecializedGenericSignature(SubstitutionMap ParamSubs);
void createSpecializedGenericSignatureWithNonGenericSubs();
SubstitutionMap computeClonerParamSubs();
SubstitutionMap getCallerParamSubs();
void computeCallerInterfaceSubs(SubstitutionMap &CallerInterfaceSubs);
};
} // end of namespace
GenericTypeParamType *
FunctionSignaturePartialSpecializer::createGenericParam() {
auto GP = GenericTypeParamType::get(/*isParameterPack*/ false, 0, GPIdx++, Ctx);
AllGenericParams.push_back(GP);
return GP;
}
/// Collect all used caller's archetypes from all the substitutions.
void FunctionSignaturePartialSpecializer::collectUsedCallerArchetypes(
SubstitutionMap ParamSubs) {
for (auto Replacement : ParamSubs.getReplacementTypes()) {
if (!Replacement->hasArchetype())
continue;
// If the substitution will not be performed in the specialized
// function, there is no need to check for any archetypes inside
// the replacement.
if (!shouldBePartiallySpecialized(Replacement,
CallerGenericSig, CallerGenericEnv))
continue;
// Add used generic parameters/archetypes.
Replacement.visit([&](Type Ty) {
if (auto Archetype = Ty->getAs<ArchetypeType>()) {
if (auto Primary = dyn_cast<PrimaryArchetypeType>(Archetype)) {
UsedCallerArchetypes.insert(Primary);
}
if (auto Pack = dyn_cast<PackArchetypeType>(Archetype)) {
UsedCallerArchetypes.insert(Pack);
}
}
});
}
}
void FunctionSignaturePartialSpecializer::
computeCallerInterfaceToSpecializedInterfaceMap() {
if (!CallerGenericSig)
return;
CallerInterfaceToSpecializedInterfaceMap =
SubstitutionMap::get(
CallerGenericSig,
[&](SubstitutableType *type) -> Type {
return CallerInterfaceToSpecializedInterfaceMapping.lookup(type);
},
LookUpConformanceInSignature(CallerGenericSig.getPointer()));
LLVM_DEBUG(llvm::dbgs() << "\n\nCallerInterfaceToSpecializedInterfaceMap "
"map:\n";
CallerInterfaceToSpecializedInterfaceMap.dump(llvm::dbgs()));
}
void FunctionSignaturePartialSpecializer::
computeSpecializedInterfaceToCallerArchetypeMap() {
// Define a substitution map for re-mapping interface types of
// the specialized function to contextual types of the caller.
SpecializedInterfaceToCallerArchetypeMap =
SubstitutionMap::get(
SpecializedGenericSig,
[&](SubstitutableType *type) -> Type {
LLVM_DEBUG(llvm::dbgs() << "Mapping specialized interface type to "
"caller archetype:\n";
llvm::dbgs() << "Interface type: "; type->dump(llvm::dbgs());
llvm::dbgs() << "Archetype: ";
auto Archetype =
SpecializedInterfaceToCallerArchetypeMapping.lookup(type);
if (Archetype) Archetype->dump(llvm::dbgs());
else llvm::dbgs() << "Not found!\n";);
return SpecializedInterfaceToCallerArchetypeMapping.lookup(type);
},
LookUpConformanceInSignature(SpecializedGenericSig.getPointer()));
LLVM_DEBUG(llvm::dbgs() << "\n\nSpecializedInterfaceToCallerArchetypeMap "
"map:\n";
SpecializedInterfaceToCallerArchetypeMap.dump(llvm::dbgs()));
}
void FunctionSignaturePartialSpecializer::
computeCalleeInterfaceToSpecializedInterfaceMap() {
CalleeInterfaceToSpecializedInterfaceMap =
SubstitutionMap::get(
CalleeGenericSig,
[&](SubstitutableType *type) -> Type {
return CalleeInterfaceToSpecializedInterfaceMapping.lookup(type);
},
LookUpConformanceInSignature(CalleeGenericSig.getPointer()));
LLVM_DEBUG(llvm::dbgs() << "\n\nCalleeInterfaceToSpecializedInterfaceMap:\n";
CalleeInterfaceToSpecializedInterfaceMap.dump(llvm::dbgs()));
}
/// Generate a new generic type parameter for each used archetype from
/// the caller.
void FunctionSignaturePartialSpecializer::
createGenericParamsForUsedCallerArchetypes() {
for (auto CallerArchetype : UsedCallerArchetypes) {
auto CallerGenericParam = CallerArchetype->getInterfaceType();
assert(CallerGenericParam->is<GenericTypeParamType>());
LLVM_DEBUG(llvm::dbgs() << "\n\nChecking used caller archetype:\n";
CallerArchetype->dump(llvm::dbgs());
llvm::dbgs() << "It corresponds to the caller generic "
"parameter:\n";
CallerGenericParam->dump(llvm::dbgs()));
// Create an equivalent generic parameter.
auto SubstGenericParam = createGenericParam();
auto SubstGenericParamCanTy = SubstGenericParam->getCanonicalType();
(void)SubstGenericParamCanTy;
CallerInterfaceToSpecializedInterfaceMapping
[CallerGenericParam->getCanonicalType()
->castTo<GenericTypeParamType>()] = SubstGenericParam;
SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam] =
CallerArchetype;
LLVM_DEBUG(llvm::dbgs() << "\nCreated a new specialized generic "
"parameter:\n";
SubstGenericParam->dump(llvm::dbgs());
llvm::dbgs() << "Created a mapping "
"(caller interface -> specialize interface):\n"
<< CallerGenericParam << " -> "
<< SubstGenericParamCanTy << "\n";
llvm::dbgs() << "Created a mapping"
"(specialized interface -> caller archetype):\n"
<< SubstGenericParamCanTy << " -> "
<< CallerArchetype->getCanonicalType() << "\n");
}
}
/// Create a new generic parameter for each of the callee's generic parameters
/// which requires a substitution.
void FunctionSignaturePartialSpecializer::
createGenericParamsForCalleeGenericParams() {
for (auto GP : CalleeGenericSig.getGenericParams()) {
auto CanTy = GP->getCanonicalType();
auto CanTyInContext = CalleeGenericSig.getReducedType(CanTy);
auto Replacement = CanTyInContext.subst(CalleeInterfaceToCallerArchetypeMap);
LLVM_DEBUG(llvm::dbgs() << "\n\nChecking callee generic parameter:\n";
CanTy->dump(llvm::dbgs()));
if (!Replacement) {
LLVM_DEBUG(llvm::dbgs() << "No replacement found. Skipping.\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << "Replacement found:\n";
Replacement->dump(llvm::dbgs()));
bool ShouldSpecializeGP = shouldBePartiallySpecialized(
Replacement, CallerGenericSig, CallerGenericEnv);
if (ShouldSpecializeGP) {
LLVM_DEBUG(llvm::dbgs() << "Should be partially specialized.\n");
} else {
LLVM_DEBUG(llvm::dbgs() << "Should not be partially specialized.\n");
}
// Create an equivalent generic parameter in the specialized
// generic environment.
auto SubstGenericParam = createGenericParam();
auto SubstGenericParamCanTy = SubstGenericParam->getCanonicalType();
// Remember which specialized generic parameter correspond's to callee's
// generic parameter.
CalleeInterfaceToSpecializedInterfaceMapping[GP] = SubstGenericParam;
LLVM_DEBUG(llvm::dbgs() << "\nCreated a new specialized generic "
"parameter:\n";
SubstGenericParam->dump(llvm::dbgs());
llvm::dbgs() << "Created a mapping "
"(callee interface -> specialized interface):\n"
<< CanTy << " -> "
<< SubstGenericParamCanTy << "\n");
if (!ShouldSpecializeGP) {
// Remember the original substitution from the apply instruction.
SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam] =
Replacement;
LLVM_DEBUG(llvm::dbgs() << "Created a mapping (specialized interface -> "
"caller archetype):\n"
<< Type(SubstGenericParam) << " -> "
<< Replacement << "\n");
continue;
}
// Add a same type requirement based on the provided generic parameter
// substitutions.
auto ReplacementCallerInterfaceTy = Replacement->mapTypeOutOfContext();
auto SpecializedReplacementCallerInterfaceTy =
ReplacementCallerInterfaceTy.subst(
CallerInterfaceToSpecializedInterfaceMap);
assert(!SpecializedReplacementCallerInterfaceTy->hasError());
Requirement Req(RequirementKind::SameType, SubstGenericParamCanTy,
SpecializedReplacementCallerInterfaceTy);
AllRequirements.push_back(Req);
LLVM_DEBUG(llvm::dbgs() << "Added a requirement:\n";
Req.dump(llvm::dbgs()));
if (ReplacementCallerInterfaceTy->is<GenericTypeParamType>()) {
// Remember that the new generic parameter corresponds
// to the same caller archetype, which corresponds to
// the ReplacementCallerInterfaceTy.
SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam] =
SpecializedInterfaceToCallerArchetypeMapping.lookup(
ReplacementCallerInterfaceTy
.subst(CallerInterfaceToSpecializedInterfaceMap)
->castTo<SubstitutableType>());
LLVM_DEBUG(llvm::dbgs()
<< "Created a mapping (specialized interface -> "
"caller archetype):\n"
<< Type(SubstGenericParam) << " -> "
<< SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam]
->getCanonicalType()
<< "\n");
continue;
}
SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam] =
Replacement;
LLVM_DEBUG(llvm::dbgs()
<< "Created a mapping (specialized interface -> "
"caller archetype):\n"
<< Type(SubstGenericParam) << " -> "
<< SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam]
->getCanonicalType()
<< "\n");
}
}
/// Add requirements from a given list of requirements re-mapping them using
/// the provided SubstitutionMap.
void FunctionSignaturePartialSpecializer::addRequirements(
ArrayRef<Requirement> Reqs, SubstitutionMap &SubsMap) {
for (auto &reqReq : Reqs) {
LLVM_DEBUG(llvm::dbgs() << "\n\nRe-mapping the requirement:\n";
reqReq.dump(llvm::dbgs()));
AllRequirements.push_back(reqReq.subst(SubsMap));
}
}
/// Add requirements from the caller's signature.
void FunctionSignaturePartialSpecializer::addCallerRequirements() {
for (auto CallerArchetype : UsedCallerArchetypes) {
// Add requirements for this caller generic parameter and its dependent
// types.
SmallVector<Requirement, 4> CollectedReqs;
collectRequirements(CallerArchetype, CallerGenericSig, CallerGenericEnv,
CollectedReqs);
if (!CollectedReqs.empty()) {
LLVM_DEBUG(llvm::dbgs() << "Adding caller archetype requirements:\n";
for (auto Req : CollectedReqs) {
Req.dump(llvm::dbgs());
}
CallerInterfaceToSpecializedInterfaceMap.dump(llvm::dbgs());
);
addRequirements(CollectedReqs, CallerInterfaceToSpecializedInterfaceMap);
}
}
}
/// Add requirements from the callee's signature.
void FunctionSignaturePartialSpecializer::addCalleeRequirements() {
addRequirements(CalleeGenericSig.getRequirements(),
CalleeInterfaceToSpecializedInterfaceMap);
}
std::pair<GenericEnvironment *, GenericSignature>
FunctionSignaturePartialSpecializer::
getSpecializedGenericEnvironmentAndSignature() {
if (AllGenericParams.empty())
return { nullptr, nullptr };
// Finalize the archetype builder.
auto GenSig = buildGenericSignature(Ctx, GenericSignature(),
AllGenericParams, AllRequirements,
/*allowInverses=*/false);
auto *GenEnv = GenSig.getGenericEnvironment();
return { GenEnv, GenSig };
}
SubstitutionMap FunctionSignaturePartialSpecializer::computeClonerParamSubs() {
return SubstitutionMap::get(
CalleeGenericSig,
[&](SubstitutableType *type) -> Type {
LLVM_DEBUG(llvm::dbgs() << "\ngetSubstitution for ClonerParamSubs:\n"
<< Type(type) << "\n"
<< "in generic signature:\n";
CalleeGenericSig->print(llvm::dbgs()));
auto SpecializedInterfaceTy =
Type(type).subst(CalleeInterfaceToSpecializedInterfaceMap);
return SpecializedGenericEnv->mapTypeIntoContext(
SpecializedInterfaceTy);
},
LookUpConformanceInSignature(SpecializedGenericSig.getPointer()));
}
SubstitutionMap FunctionSignaturePartialSpecializer::getCallerParamSubs() {
return SpecializedInterfaceToCallerArchetypeMap;
}
void FunctionSignaturePartialSpecializer::computeCallerInterfaceSubs(
SubstitutionMap &CallerInterfaceSubs) {
CallerInterfaceSubs = SubstitutionMap::get(
CalleeGenericSig,
[&](SubstitutableType *type) -> Type {
// First, map callee's interface type to specialized interface type.
auto Ty = Type(type).subst(CalleeInterfaceToSpecializedInterfaceMap);
Type SpecializedInterfaceTy =
SpecializedGenericEnv->mapTypeIntoContext(Ty)
->mapTypeOutOfContext();
assert(!SpecializedInterfaceTy->hasError());
return SpecializedInterfaceTy;
},
LookUpConformanceInSignature(CalleeGenericSig.getPointer()));
LLVM_DEBUG(llvm::dbgs() << "\n\nCallerInterfaceSubs map:\n";
CallerInterfaceSubs.dump(llvm::dbgs()));
}
/// Fast-path for the case when generic substitutions are not supported.
void FunctionSignaturePartialSpecializer::
createSpecializedGenericSignatureWithNonGenericSubs() {
// Simply create a set of same-type requirements based on concrete
// substitutions.
SmallVector<Requirement, 4> Requirements;
CalleeGenericSig->forEachParam([&](GenericTypeParamType *GP, bool Canonical) {
if (!Canonical)
return;
auto Replacement = Type(GP).subst(CalleeInterfaceToCallerArchetypeMap);
if (Replacement->hasArchetype())
return;
// Replacement is concrete. Add a same type requirement.
Requirement Req(RequirementKind::SameType, GP, Replacement);
Requirements.push_back(Req);
});
// Create a new generic signature by taking the existing one
// and adding new requirements to it. No need to introduce
// any new generic parameters.
auto GenPair = getGenericEnvironmentAndSignatureWithRequirements(
CalleeGenericSig, CalleeGenericEnv, Requirements, M);
if (GenPair.second) {
SpecializedGenericSig = GenPair.second.getCanonicalSignature();
SpecializedGenericEnv = GenPair.first;
}
for (auto GP : CalleeGenericSig.getGenericParams()) {
CalleeInterfaceToSpecializedInterfaceMapping[GP] = Type(GP);
}
computeCalleeInterfaceToSpecializedInterfaceMap();
SpecializedInterfaceToCallerArchetypeMap =
CalleeInterfaceToCallerArchetypeMap;
}
void FunctionSignaturePartialSpecializer::createSpecializedGenericSignature(
SubstitutionMap ParamSubs) {
// Collect all used caller's archetypes from all the substitutions.
collectUsedCallerArchetypes(ParamSubs);
// Generate a new generic type parameter for each used archetype from
// the caller.
createGenericParamsForUsedCallerArchetypes();
// Create a SubstitutionMap for re-mapping caller's interface types
// to interface types of the specialized function.
computeCallerInterfaceToSpecializedInterfaceMap();
// Add generic parameters that will come from the callee.
// Introduce a new generic parameter in the new generic signature
// for each generic parameter from the callee.
createGenericParamsForCalleeGenericParams();
computeCalleeInterfaceToSpecializedInterfaceMap();
// Add requirements from the callee's generic signature.
addCalleeRequirements();
// Add requirements from the caller's generic signature.
addCallerRequirements();
auto GenPair = getSpecializedGenericEnvironmentAndSignature();
if (GenPair.second) {
SpecializedGenericSig = GenPair.second.getCanonicalSignature();
SpecializedGenericEnv = GenPair.first;
computeSpecializedInterfaceToCallerArchetypeMap();
}
}
/// Builds a new generic and function signatures for a partial specialization.
/// Allows for partial specializations even if substitutions contain
/// type parameters.
///
/// The new generic signature has the following generic parameters:
/// - For each substitution with a concrete type CT as a replacement for a
/// generic type T, it introduces a generic parameter T' and a
/// requirement T' == CT
/// - For all other substitutions that are considered for partial specialization,
/// it collects first the archetypes used in the replacements. Then for each such
/// archetype A a new generic parameter T' introduced.
/// - If there is a substitution for type T and this substitution is excluded
/// from partial specialization (e.g. because it is impossible or would result
/// in a less efficient code), then a new generic parameter T' is introduced,
/// which does not get any additional, more specific requirements based on the
/// substitutions.
///
/// After all generic parameters are added according to the rules above,
/// the requirements of the callee's signature are re-mapped by re-formulating
/// them in terms of the newly introduced generic parameters. In case a remapped
/// requirement does not contain any generic types, it can be omitted, because
/// it is fulfilled already.
///
/// If any of the generic parameters were introduced for caller's archetypes,
/// their requirements from the caller's signature are re-mapped by
/// re-formulating them in terms of the newly introduced generic parameters.
void ReabstractionInfo::performPartialSpecializationPreparation(
SILFunction *Caller, SILFunction *Callee,
SubstitutionMap ParamSubs) {
// Caller is the SILFunction containing the apply instruction.
CanGenericSignature CallerGenericSig;
GenericEnvironment *CallerGenericEnv = nullptr;
if (Caller) {
CallerGenericSig = Caller->getLoweredFunctionType()
->getInvocationGenericSignature();
CallerGenericEnv = Caller->getGenericEnvironment();
}
// Callee is the generic function being called by the apply instruction.
auto CalleeFnTy = Callee->getLoweredFunctionType();
auto CalleeGenericSig = CalleeFnTy->getInvocationGenericSignature();
auto CalleeGenericEnv = Callee->getGenericEnvironment();
LLVM_DEBUG(llvm::dbgs() << "\n\nTrying partial specialization for: "
<< Callee->getName() << "\n";
llvm::dbgs() << "Callee generic signature is:\n";
CalleeGenericSig->print(llvm::dbgs()));
FunctionSignaturePartialSpecializer FSPS(getModule(),
CallerGenericSig, CallerGenericEnv,
CalleeGenericSig, CalleeGenericEnv,
ParamSubs);
// Create the partially specialized generic signature and generic environment.
if (SupportGenericSubstitutions)
FSPS.createSpecializedGenericSignature(ParamSubs);
else
FSPS.createSpecializedGenericSignatureWithNonGenericSubs();
// Once the specialized signature is known, compute different
// maps and function types based on it. The specializer will need
// them for cloning and specializing the function body, rewriting
// the original apply instruction, etc.
finishPartialSpecializationPreparation(FSPS);
}
void ReabstractionInfo::finishPartialSpecializationPreparation(
FunctionSignaturePartialSpecializer &FSPS) {
SpecializedGenericSig = FSPS.getSpecializedGenericSignature();
SpecializedGenericEnv = FSPS.getSpecializedGenericEnvironment();
if (SpecializedGenericSig) {
LLVM_DEBUG(llvm::dbgs() << "\nCreated SpecializedGenericSig:\n";
SpecializedGenericSig->print(llvm::dbgs());
SpecializedGenericEnv->dump(llvm::dbgs()));
}
// Create substitution lists for the caller and cloner.
ClonerParamSubMap = FSPS.computeClonerParamSubs();
CallerParamSubMap = FSPS.getCallerParamSubs();
// Create a substitution map for the caller interface substitutions.
FSPS.computeCallerInterfaceSubs(CallerInterfaceSubs);
if (CalleeParamSubMap.empty()) {
// It can happen if there is no caller or it is an eager specialization.
CalleeParamSubMap = CallerParamSubMap;
}
HasUnboundGenericParams =
SpecializedGenericSig && !SpecializedGenericSig->areAllParamsConcrete();
createSubstitutedAndSpecializedTypes();
if (getSubstitutedType() != Callee->getLoweredFunctionType()) {
if (getSubstitutedType()->isPolymorphic())
LLVM_DEBUG(llvm::dbgs() << "Created new specialized type: "
<< SpecializedType << "\n");
}
}
ReabstractionInfo::TypeCategory ReabstractionInfo::handleReturnAndError(SILResultInfo RI, unsigned argIdx) {
assert(RI.isFormalIndirect());
SILFunctionConventions substConv(SubstitutedType, getModule());
TypeCategory tc = getReturnTypeCategory(RI, substConv, getResilienceExpansion());
if (tc != NotLoadable) {
Conversions.set(argIdx);
if (tc == LoadableAndTrivial)
TrivialArgs.set(argIdx);
TypeExpansionContext minimalExp(ResilienceExpansion::Minimal,
TargetModule, isWholeModule);
if (getResilienceExpansion() != minimalExp &&
getReturnTypeCategory(RI, substConv, minimalExp) == NotLoadable) {
hasConvertedResilientParams = true;
}
}
return tc;
}
/// This constructor is used when processing @_specialize.
ReabstractionInfo::ReabstractionInfo(ModuleDecl *targetModule,
bool isWholeModule, SILFunction *Callee,
GenericSignature SpecializedSig,
bool isPrespecialization)
: M(&Callee->getModule()), TargetModule(targetModule), isWholeModule(isWholeModule),
isPrespecialization(isPrespecialization) {
Serialized =
this->isPrespecialization ? IsNotSerialized : Callee->getSerializedKind();
if (shouldNotSpecialize(Callee, nullptr))
return;
this->Callee = Callee;
ConvertIndirectToDirect = true;
auto CalleeGenericSig =
Callee->getLoweredFunctionType()->getInvocationGenericSignature();
auto *CalleeGenericEnv = Callee->getGenericEnvironment();
FunctionSignaturePartialSpecializer FSPS(getModule(),
CalleeGenericSig, CalleeGenericEnv,
SpecializedSig);
finishPartialSpecializationPreparation(FSPS);
}
// =============================================================================
// GenericFuncSpecializer
// =============================================================================
GenericFuncSpecializer::GenericFuncSpecializer(
SILOptFunctionBuilder &FuncBuilder, SILFunction *GenericFunc,
SubstitutionMap ParamSubs,
const ReabstractionInfo &ReInfo,
bool isMandatory)
: FuncBuilder(FuncBuilder), M(GenericFunc->getModule()),
GenericFunc(GenericFunc),
ParamSubs(ParamSubs),
ReInfo(ReInfo), isMandatory(isMandatory) {
assert((GenericFunc->isDefinition() || ReInfo.isPrespecialized()) &&
"Expected definition or pre-specialized entry-point to specialize!");
auto FnTy = ReInfo.getSpecializedType();
if (ReInfo.isPartialSpecialization()) {
Mangle::PartialSpecializationMangler Mangler(
GenericFunc, FnTy, ReInfo.getSerializedKind(), /*isReAbstracted*/ true);
ClonedName = Mangler.mangle();
} else {
Mangle::GenericSpecializationMangler Mangler(
GenericFunc, ReInfo.getSerializedKind());
if (ReInfo.isPrespecialized()) {
ClonedName = Mangler.manglePrespecialized(ParamSubs);
} else {
ClonedName = Mangler.mangleReabstracted(ParamSubs,
ReInfo.needAlternativeMangling(),
ReInfo.hasDroppedMetatypeArgs());
}
}
LLVM_DEBUG(llvm::dbgs() << " Specialized function " << ClonedName << '\n');
}
/// Return an existing specialization if one exists.
SILFunction *GenericFuncSpecializer::lookupSpecialization() {
SILFunction *SpecializedF = M.lookUpFunction(ClonedName);
if (!SpecializedF) {
// In case the specialized function is already serialized in an imported
// module, we need to take that. This can happen in case of cross-module-
// optimization.
// Otherwise we could end up that another de-serialized function from the
// same module would reference the new (non-external) specialization we
// would create here.
SpecializedF = M.loadFunction(ClonedName, SILModule::LinkingMode::LinkAll,
SILLinkage::Shared);
}
if (SpecializedF) {
if (ReInfo.getSpecializedType() != SpecializedF->getLoweredFunctionType()) {
llvm::dbgs() << "Looking for a function: " << ClonedName << "\n"
<< "Expected type: " << ReInfo.getSpecializedType() << "\n"
<< "Found type: "
<< SpecializedF->getLoweredFunctionType() << "\n";
}
assert(ReInfo.getSpecializedType()
== SpecializedF->getLoweredFunctionType() &&
"Previously specialized function does not match expected type.");
LLVM_DEBUG(llvm::dbgs() << "Found an existing specialization for: "
<< ClonedName << "\n");
return SpecializedF;
}
LLVM_DEBUG(llvm::dbgs() << "Could not find an existing specialization for: "
<< ClonedName << "\n");
return nullptr;
}
void ReabstractionInfo::verify() const {
assert((!SpecializedGenericSig && !SpecializedGenericEnv &&
!getSpecializedType()->isPolymorphic()) ||
(SpecializedGenericSig && SpecializedGenericEnv &&
getSpecializedType()->isPolymorphic()));
}
/// Create a new specialized function if possible, and cache it.
SILFunction *
GenericFuncSpecializer::tryCreateSpecialization(bool forcePrespecialization) {
// Do not create any new specializations at Onone.
if (!GenericFunc->shouldOptimize() && !forcePrespecialization && !isMandatory)
return nullptr;
LLVM_DEBUG(llvm::dbgs() << "Creating a specialization: "
<< ClonedName << "\n");
ReInfo.verify();
// Create a new function.
SILFunction *SpecializedF = GenericCloner::cloneFunction(
FuncBuilder, GenericFunc, ReInfo,
// Use these substitutions inside the new specialized function being
// created.
ReInfo.getClonerParamSubstitutionMap(),
ClonedName);
assert((SpecializedF->getLoweredFunctionType()->isPolymorphic() &&
SpecializedF->getGenericEnvironment()) ||
(!SpecializedF->getLoweredFunctionType()->isPolymorphic() &&
!SpecializedF->getGenericEnvironment()));
// Store the meta-information about how this specialization was created.
auto *Caller = ReInfo.getApply() ? ReInfo.getApply().getFunction() : nullptr;
SubstitutionMap Subs = Caller ? ReInfo.getApply().getSubstitutionMap()
: ReInfo.getClonerParamSubstitutionMap();
SpecializedF->setClassSubclassScope(SubclassScope::NotApplicable);
SpecializedF->setSpecializationInfo(
GenericSpecializationInformation::create(Caller, GenericFunc, Subs));
if (VerifyFunctionsAfterSpecialization) {
PrettyStackTraceSILFunction SILFunctionDumper(
llvm::Twine("Generic function: ") + GenericFunc->getName() +
". Specialized Function: " + SpecializedF->getName(),
GenericFunc);
SpecializedF->verify();
}
if (DumpFunctionsAfterSpecialization) {
llvm::dbgs() << llvm::Twine("Generic function: ") + GenericFunc->getName() +
". Specialized Function: " + SpecializedF->getName();
GenericFunc->dump();
SpecializedF->dump();
}
return SpecializedF;
}
// =============================================================================
// Apply substitution
// =============================================================================
/// Fix the case where a void function returns the result of an apply, which is
/// also a call of a void-returning function.
/// We always want a void function returning a tuple _instruction_.
static void fixUsedVoidType(SILValue VoidVal, SILLocation Loc,
SILBuilder &Builder) {
assert(VoidVal->getType().isVoid());
if (VoidVal->use_empty())
return;
auto *NewVoidVal = Builder.createTuple(Loc, VoidVal->getType(), { });
VoidVal->replaceAllUsesWith(NewVoidVal);
}
static SILValue fixSpecializedReturnType(SILValue returnVal, SILType returnType,
SILLocation Loc, SILBuilder &Builder) {
SILValue newReturnVal;
if (returnType.isAddress()) {
newReturnVal = Builder.createUncheckedAddrCast(Loc, returnVal, returnType);
} else if (SILType::canRefCast(returnVal->getType(), returnType,
Builder.getModule())) {
newReturnVal = Builder.createUncheckedRefCast(Loc, returnVal, returnType);
} else {
if (Builder.hasOwnership()) {
newReturnVal =
Builder.createUncheckedValueCast(Loc, returnVal, returnType);
} else {
newReturnVal =
Builder.createUncheckedBitwiseCast(Loc, returnVal, returnType);
}
}
return newReturnVal;
}
/// Prepare call arguments. Perform re-abstraction if required.
///
/// \p ArgAtIndexNeedsEndBorrow after return contains indices of arguments that
/// need end borrow. The reason why we are doing this in a separate array is
/// that we are going to eventually need to pass off Arguments to SILBuilder
/// which will want an ArrayRef<SILValue>() so using a composite type here would
/// force us to do some sort of conversion then.
static void
prepareCallArguments(ApplySite AI, SILBuilder &Builder,
const ReabstractionInfo &ReInfo,
const TypeReplacements &typeReplacements,
SmallVectorImpl<SILValue> &Arguments,
SmallVectorImpl<unsigned> &ArgAtIndexNeedsEndBorrow,
SILValue &StoreResultTo,
SILValue &StoreErrorTo) {
/// SIL function conventions for the original apply site with substitutions.
SILLocation Loc = AI.getLoc();
auto substConv = AI.getSubstCalleeConv();
unsigned ArgIdx = AI.getCalleeArgIndexOfFirstAppliedArg();
auto handleConversion = [&](SILValue InputValue) {
// Rewriting SIL arguments is only for lowered addresses.
if (!substConv.useLoweredAddresses())
return false;
if (ArgIdx < substConv.getNumIndirectSILResults()) {
// Handle result arguments.
unsigned formalIdx =
substConv.getIndirectFormalResultIndexForSILArg(ArgIdx);
bool converted = false;
if (typeReplacements.hasIndirectResultTypes()) {
auto typeReplacementIt = typeReplacements.getIndirectResultTypes().find(formalIdx);
if (typeReplacementIt != typeReplacements.getIndirectResultTypes().end()) {
auto specializedTy = typeReplacementIt->second;
if (InputValue->getType().isAddress()) {
auto argTy = SILType::getPrimitiveAddressType(specializedTy);
InputValue = Builder.createUncheckedAddrCast(Loc, InputValue, argTy);
} else {
auto argTy = SILType::getPrimitiveObjectType(specializedTy);
if (SILType::canRefCast(InputValue->getType(), argTy,
Builder.getModule())) {
InputValue = Builder.createUncheckedRefCast(Loc, InputValue, argTy);
} else {
if (Builder.hasOwnership()) {
InputValue =
Builder.createUncheckedValueCast(Loc, InputValue, argTy);
} else {
InputValue =
Builder.createUncheckedBitwiseCast(Loc, InputValue, argTy);
}
}
}
converted = true;
}
}
if (!ReInfo.isFormalResultConverted(formalIdx)) {
if (converted)
Arguments.push_back(InputValue);
return converted;
}
// The result is converted from indirect to direct. We need to insert
// a store later.
assert(!StoreResultTo);
StoreResultTo = InputValue;
return true;
}
if (ArgIdx < substConv.getNumIndirectSILResults() +
substConv.getNumIndirectSILErrorResults()) {
if (!ReInfo.isErrorResultConverted()) {
// TODO: do we need to check typeReplacements?
return false;
}
// The result is converted from indirect to direct. We need to insert
// a store later.
assert(!StoreErrorTo);
StoreErrorTo = InputValue;
return true;
}
if (ReInfo.isDroppedMetatypeArg(ArgIdx))
return true;
// Handle arguments for formal parameters.
unsigned paramIdx = ArgIdx - substConv.getSILArgIndexOfFirstParam();
// Handle type conversions for shape based specializations, e.g.
// some reference type -> AnyObject
bool converted = false;
if (typeReplacements.hasParamTypeReplacements()) {
auto typeReplacementIt = typeReplacements.getParamTypeReplacements().find(paramIdx);
if (typeReplacementIt != typeReplacements.getParamTypeReplacements().end()) {
auto specializedTy = typeReplacementIt->second;
if (InputValue->getType().isAddress()) {
auto argTy = SILType::getPrimitiveAddressType(specializedTy);
InputValue = Builder.createUncheckedAddrCast(Loc, InputValue, argTy);
} else {
auto argTy = SILType::getPrimitiveObjectType(specializedTy);
if (SILType::canRefCast(InputValue->getType(), argTy,
Builder.getModule())) {
InputValue = Builder.createUncheckedRefCast(Loc, InputValue, argTy);
} else {
if (Builder.hasOwnership()) {
InputValue =
Builder.createUncheckedValueCast(Loc, InputValue, argTy);
} else {
InputValue =
Builder.createUncheckedBitwiseCast(Loc, InputValue, argTy);
}
}
}
converted = true;
}
}
if (!ReInfo.isParamConverted(paramIdx)) {
if (converted) {
Arguments.push_back(InputValue);
}
return converted;
}
// An argument is converted from indirect to direct. Instead of the
// address we pass the loaded value.
SILArgumentConvention argConv(SILArgumentConvention::Direct_Unowned);
if (auto pai = dyn_cast<PartialApplyInst>(AI)) {
// On-stack partial applications borrow their captures, whereas heap
// partial applications take ownership.
argConv = pai->isOnStack() ? SILArgumentConvention::Direct_Guaranteed
: SILArgumentConvention::Direct_Owned;
} else {
argConv = substConv.getSILArgumentConvention(ArgIdx);
}
SILValue Val;
if (!argConv.isGuaranteedConvention()) {
Val = Builder.emitLoadValueOperation(Loc, InputValue,
LoadOwnershipQualifier::Take);
} else {
Val = Builder.emitLoadBorrowOperation(Loc, InputValue);
if (Val->getOwnershipKind() == OwnershipKind::Guaranteed)
ArgAtIndexNeedsEndBorrow.push_back(Arguments.size());
}
Arguments.push_back(Val);
return true;
};
for (auto &Op : AI.getArgumentOperands()) {
if (!handleConversion(Op.get()))
Arguments.push_back(Op.get());
++ArgIdx;
}
}
static void
cleanupCallArguments(SILBuilder &builder, SILLocation loc,
ArrayRef<SILValue> values,
ArrayRef<unsigned> valueIndicesThatNeedEndBorrow) {
for (int index : valueIndicesThatNeedEndBorrow) {
auto *lbi = cast<LoadBorrowInst>(values[index]);
builder.createEndBorrow(loc, lbi);
}
}
/// Create a new apply based on an old one, but with a different
/// function being applied.
ApplySite
swift::replaceWithSpecializedCallee(ApplySite applySite, SILValue callee,
const ReabstractionInfo &reInfo,
const TypeReplacements &typeReplacements) {
SILBuilderWithScope builder(applySite.getInstruction());
SILLocation loc = applySite.getLoc();
SmallVector<SILValue, 4> arguments;
SmallVector<unsigned, 4> argsNeedingEndBorrow;
SILValue resultOut;
SILValue errorOut;
prepareCallArguments(applySite, builder, reInfo,
typeReplacements, arguments,
argsNeedingEndBorrow, resultOut, errorOut);
// Create a substituted callee type.
//
// NOTE: We do not perform this substitution if we are promoting a full apply
// site callee of a partial apply.
auto canFnTy = callee->getType().castTo<SILFunctionType>();
SubstitutionMap subs;
if (reInfo.getSpecializedType()->isPolymorphic() &&
canFnTy->isPolymorphic()) {
subs = reInfo.getCallerParamSubstitutionMap();
subs = SubstitutionMap::get(canFnTy->getSubstGenericSignature(), subs);
}
auto calleeSubstFnTy = canFnTy->substGenericArgs(
*callee->getModule(), subs, reInfo.getResilienceExpansion());
auto calleeSILSubstFnTy = SILType::getPrimitiveObjectType(calleeSubstFnTy);
SILFunctionConventions substConv(calleeSubstFnTy, builder.getModule());
switch (applySite.getKind()) {
case ApplySiteKind::TryApplyInst: {
auto *tai = cast<TryApplyInst>(applySite);
SILBasicBlock *resultBlock = tai->getNormalBB();
SILBasicBlock *errorBlock = tai->getErrorBB();
assert(resultBlock->getSinglePredecessorBlock() == tai->getParent());
// First insert the cleanups for our arguments int he appropriate spot.
FullApplySite(tai).insertAfterApplication(
[&](SILBuilder &argBuilder) {
cleanupCallArguments(argBuilder, loc, arguments,
argsNeedingEndBorrow);
});
auto *newTAI = builder.createTryApply(loc, callee, subs, arguments,
resultBlock, errorBlock,
tai->getApplyOptions());
if (resultOut) {
assert(substConv.useLoweredAddresses());
// The original normal result of the try_apply is an empty tuple.
assert(resultBlock->getNumArguments() == 1);
builder.setInsertionPoint(resultBlock->begin());
fixUsedVoidType(resultBlock->getArgument(0), loc, builder);
SILValue returnValue = resultBlock->replacePhiArgument(
0, resultOut->getType().getObjectType(), OwnershipKind::Owned);
// Store the direct result to the original result address.
builder.emitStoreValueOperation(loc, returnValue, resultOut,
StoreOwnershipQualifier::Init);
}
if (errorOut) {
assert(substConv.useLoweredAddresses());
assert(errorBlock->getNumArguments() == 0);
builder.setInsertionPoint(errorBlock->begin());
SILValue errorValue = errorBlock->createPhiArgument(
errorOut->getType().getObjectType(), OwnershipKind::Owned);
// Store the direct result to the original result address.
builder.emitStoreValueOperation(loc, errorValue, errorOut,
StoreOwnershipQualifier::Init);
}
return newTAI;
}
case ApplySiteKind::ApplyInst: {
auto *ai = cast<ApplyInst>(applySite);
FullApplySite(ai).insertAfterApplication(
[&](SILBuilder &argBuilder) {
cleanupCallArguments(argBuilder, loc, arguments,
argsNeedingEndBorrow);
});
auto *newAI =
builder.createApply(loc, callee, subs, arguments,
ai->getApplyOptions());
SILValue returnValue = newAI;
if (resultOut) {
if (!calleeSILSubstFnTy.isNoReturnFunction(
builder.getModule(), builder.getTypeExpansionContext())) {
// Store the direct result to the original result address.
fixUsedVoidType(ai, loc, builder);
builder.emitStoreValueOperation(loc, returnValue, resultOut,
StoreOwnershipQualifier::Init);
} else {
builder.createUnreachable(loc);
// unreachable should be the terminator instruction.
// So, split the current basic block right after the
// inserted unreachable instruction.
builder.getInsertionPoint()->getParent()->split(
builder.getInsertionPoint());
}
} else if (typeReplacements.hasResultType()) {
returnValue = fixSpecializedReturnType(
newAI, *typeReplacements.getResultType(), loc, builder);
}
ai->replaceAllUsesWith(returnValue);
return newAI;
}
case ApplySiteKind::BeginApplyInst: {
auto *bai = cast<BeginApplyInst>(applySite);
assert(!resultOut);
FullApplySite(bai).insertAfterApplication(
[&](SILBuilder &argBuilder) {
cleanupCallArguments(argBuilder, loc, arguments,
argsNeedingEndBorrow);
});
auto *newBAI = builder.createBeginApply(loc, callee, subs, arguments,
bai->getApplyOptions());
for (auto pair : llvm::enumerate(bai->getYieldedValues())) {
auto index = pair.index();
SILValue oldYield = pair.value();
SILValue newYield = newBAI->getYieldedValues()[index];
auto it = typeReplacements.getYieldTypeReplacements().find(index);
if (it != typeReplacements.getYieldTypeReplacements().end()) {
SILType newType;
if (newYield->getType().isObject()) {
newType = SILType::getPrimitiveObjectType(it->second);
} else {
newType = SILType::getPrimitiveAddressType(it->second);
}
auto converted =
fixSpecializedReturnType(newYield, newType, loc, builder);
oldYield->replaceAllUsesWith(converted);
}
}
bai->replaceAllUsesPairwiseWith(newBAI);
return newBAI;
}
case ApplySiteKind::PartialApplyInst: {
auto *pai = cast<PartialApplyInst>(applySite);
// Let go of borrows introduced for stack closures.
if (pai->isOnStack() && pai->getFunction()->hasOwnership()) {
pai->visitOnStackLifetimeEnds([&](Operand *op) -> bool {
SILBuilderWithScope argBuilder(op->getUser()->getNextInstruction());
cleanupCallArguments(argBuilder, loc, arguments, argsNeedingEndBorrow);
return true;
});
}
auto *newPAI = builder.createPartialApply(
loc, callee, subs, arguments,
pai->getCalleeConvention(), pai->getResultIsolation(),
pai->isOnStack());
pai->replaceAllUsesWith(newPAI);
return newPAI;
}
}
llvm_unreachable("unhandled kind of apply");
}
namespace {
/// local overload of `replaceWithSpecializedFunction` that takes a
/// `SpecializedFunction`
ApplySite replaceWithSpecializedFunction(ApplySite AI,
SpecializedFunction &NewF,
const ReabstractionInfo &ReInfo) {
SILBuilderWithScope Builder(AI.getInstruction());
FunctionRefInst *FRI =
Builder.createFunctionRef(AI.getLoc(), NewF.getFunction());
return replaceWithSpecializedCallee(AI, FRI, ReInfo,
NewF.getTypeReplacements());
}
} // anonymous namespace
/// Create a new apply based on an old one, but with a different
/// function being applied.
ApplySite swift::
replaceWithSpecializedFunction(ApplySite AI, SILFunction *NewF,
const ReabstractionInfo &ReInfo) {
SpecializedFunction SpecializedF(NewF);
return replaceWithSpecializedFunction(AI, SpecializedF, ReInfo);
}
namespace {
class ReabstractionThunkGenerator {
SILOptFunctionBuilder &FunctionBuilder;
SILFunction *OrigF;
SILModule &M;
SILFunction *SpecializedFunc;
const ReabstractionInfo &ReInfo;
PartialApplyInst *OrigPAI;
std::string ThunkName;
RegularLocation Loc;
SmallVector<SILValue, 4> Arguments;
public:
ReabstractionThunkGenerator(SILOptFunctionBuilder &FunctionBuilder,
const ReabstractionInfo &ReInfo,
PartialApplyInst *OrigPAI,
SILFunction *SpecializedFunc)
: FunctionBuilder(FunctionBuilder), OrigF(OrigPAI->getCalleeFunction()), M(OrigF->getModule()),
SpecializedFunc(SpecializedFunc), ReInfo(ReInfo), OrigPAI(OrigPAI),
Loc(RegularLocation::getAutoGeneratedLocation()) {
if (!ReInfo.isPartialSpecialization()) {
Mangle::GenericSpecializationMangler Mangler(OrigF, ReInfo.getSerializedKind());
ThunkName = Mangler.mangleNotReabstracted(
ReInfo.getCalleeParamSubstitutionMap(),
ReInfo.hasDroppedMetatypeArgs());
} else {
Mangle::PartialSpecializationMangler Mangler(
OrigF, ReInfo.getSpecializedType(), ReInfo.getSerializedKind(),
/*isReAbstracted*/ false);
ThunkName = Mangler.mangle();
}
}
SILFunction *createThunk();
protected:
struct ReturnAndResultAddresses {
SILArgument *returnAddress = nullptr;
SILArgument *errorAddress = nullptr;
};
ReturnAndResultAddresses convertReabstractionThunkArguments(
SILBuilder &Builder, SmallVectorImpl<unsigned> &ArgsNeedingEndBorrows,
CanSILFunctionType thunkType);
FullApplySite createApplyAndReturn(SILBuilder &Builder,
ReturnAndResultAddresses resultAddr);
};
} // anonymous namespace
SILFunction *ReabstractionThunkGenerator::createThunk() {
CanSILFunctionType thunkType = ReInfo.createThunkType(OrigPAI);
SILFunction *Thunk = FunctionBuilder.getOrCreateSharedFunction(
Loc, ThunkName, thunkType, IsBare, IsTransparent,
ReInfo.getSerializedKind(), ProfileCounter(), IsThunk, IsNotDynamic,
IsNotDistributed, IsNotRuntimeAccessible);
// Re-use an existing thunk.
if (!Thunk->empty())
return Thunk;
Thunk->setGenericEnvironment(ReInfo.getSpecializedGenericEnvironment());
SILBasicBlock *EntryBB = Thunk->createBasicBlock();
SILBuilder Builder(EntryBB);
// If the original specialized function had unqualified ownership, set the
// thunk to have unqualified ownership as well.
//
// This is a stop gap measure to allow for easy inlining. We could always make
// the Thunk qualified, but then we would need to either fix the inliner to
// inline qualified into unqualified functions /or/ have the
// OwnershipModelEliminator run as part of the normal compilation pipeline
// (which we are not doing yet).
if (!SpecializedFunc->hasOwnership()) {
Thunk->setOwnershipEliminated();
}
if (!SILModuleConventions(M).useLoweredAddresses()) {
for (auto SpecArg : SpecializedFunc->getArguments()) {
auto *NewArg = EntryBB->createFunctionArgument(SpecArg->getType(),
SpecArg->getDecl());
NewArg->copyFlags(cast<SILFunctionArgument>(SpecArg));
Arguments.push_back(NewArg);
}
createApplyAndReturn(Builder, {nullptr, nullptr});
return Thunk;
}
// Handle lowered addresses.
SmallVector<unsigned, 4> ArgsThatNeedEndBorrow;
ReturnAndResultAddresses resultAddr =
convertReabstractionThunkArguments(Builder, ArgsThatNeedEndBorrow, thunkType);
FullApplySite ApplySite = createApplyAndReturn(Builder, resultAddr);
// Now that we have finished constructing our CFG (note the return above),
// insert any compensating end borrows that we need.
ApplySite.insertAfterApplication([&](SILBuilder &argBuilder) {
cleanupCallArguments(argBuilder, Loc, Arguments, ArgsThatNeedEndBorrow);
});
return Thunk;
}
/// Create a call to a reabstraction thunk. Return the call's direct result.
FullApplySite ReabstractionThunkGenerator::createApplyAndReturn(
SILBuilder &Builder, ReturnAndResultAddresses resultAddr) {
SILFunction *Thunk = &Builder.getFunction();
auto *FRI = Builder.createFunctionRef(Loc, SpecializedFunc);
auto Subs = Thunk->getForwardingSubstitutionMap();
auto specConv = SpecializedFunc->getConventions();
FullApplySite as;
SILValue returnValue;
CanSILFunctionType specFnTy = SpecializedFunc->getLoweredFunctionType();
if (!specFnTy->hasErrorResult()) {
auto *apply = Builder.createApply(Loc, FRI, Subs, Arguments);
returnValue = apply;
as = apply;
} else {
// Create the logic for calling a throwing function.
SILBasicBlock *NormalBB = Thunk->createBasicBlock();
SILBasicBlock *ErrorBB = Thunk->createBasicBlock();
as = Builder.createTryApply(Loc, FRI, Subs, Arguments, NormalBB, ErrorBB);
Builder.setInsertionPoint(ErrorBB);
if (specFnTy->getErrorResult().isFormalIndirect()) {
Builder.createThrowAddr(Loc);
} else {
SILValue errorValue = ErrorBB->createPhiArgument(
SpecializedFunc->mapTypeIntoContext(
specConv.getSILErrorType(Builder.getTypeExpansionContext())),
OwnershipKind::Owned);
if (resultAddr.errorAddress) {
// Need to store the direct results to the original indirect address.
Builder.emitStoreValueOperation(Loc, errorValue, resultAddr.errorAddress,
StoreOwnershipQualifier::Init);
Builder.createThrowAddr(Loc);
} else {
Builder.createThrow(Loc, errorValue);
}
}
returnValue = NormalBB->createPhiArgument(
SpecializedFunc->mapTypeIntoContext(
specConv.getSILResultType(Builder.getTypeExpansionContext())),
OwnershipKind::Owned);
Builder.setInsertionPoint(NormalBB);
}
if (resultAddr.returnAddress) {
// Need to store the direct results to the original indirect address.
Builder.emitStoreValueOperation(Loc, returnValue, resultAddr.returnAddress,
StoreOwnershipQualifier::Init);
SILType VoidTy = OrigPAI->getSubstCalleeType()->getDirectFormalResultsType(
M, Builder.getTypeExpansionContext());
assert(VoidTy.isVoid());
returnValue = Builder.createTuple(Loc, VoidTy, {});
}
Builder.createReturn(Loc, returnValue);
return as;
}
static SILFunctionArgument *addFunctionArgument(SILFunction *function,
SILType argType,
SILArgument *copyAttributesFrom) {
SILBasicBlock *entryBB = function->getEntryBlock();
auto *src = cast<SILFunctionArgument>(copyAttributesFrom);
auto *arg = entryBB->createFunctionArgument(argType, src->getDecl());
arg->setNoImplicitCopy(src->isNoImplicitCopy());
arg->setLifetimeAnnotation(src->getLifetimeAnnotation());
arg->setClosureCapture(src->isClosureCapture());
return arg;
}
/// Create SIL arguments for a reabstraction thunk with lowered addresses. This
/// may involve replacing indirect arguments with loads and stores. Return the
/// SILArgument for the address of an indirect result, or nullptr.
///
/// FIXME: Remove this if we don't need to create reabstraction thunks after
/// address lowering.
ReabstractionThunkGenerator::ReturnAndResultAddresses
ReabstractionThunkGenerator::convertReabstractionThunkArguments(
SILBuilder &Builder, SmallVectorImpl<unsigned> &ArgsThatNeedEndBorrow,
CanSILFunctionType thunkType
) {
SILFunction *Thunk = &Builder.getFunction();
CanSILFunctionType SpecType = SpecializedFunc->getLoweredFunctionType();
auto specConv = SpecializedFunc->getConventions();
(void)specConv;
SILFunctionConventions substConv(thunkType, M);
assert(specConv.useLoweredAddresses());
// ReInfo.NumIndirectResults corresponds to SubstTy's formal indirect
// results. SpecTy may have fewer formal indirect results.
assert(thunkType->getNumIndirectFormalResults()
>= SpecType->getNumIndirectFormalResults());
ReturnAndResultAddresses resultAddr;
auto SpecArgIter = SpecializedFunc->getArguments().begin();
// ReInfo.NumIndirectResults corresponds to SubstTy's formal indirect
// results. SpecTy may have fewer formal indirect results.
assert(thunkType->getNumIndirectFormalResults()
>= SpecType->getNumIndirectFormalResults());
unsigned resultIdx = 0;
for (auto substRI : thunkType->getIndirectFormalResults()) {
if (ReInfo.isFormalResultConverted(resultIdx++)) {
// Convert an originally indirect to direct specialized result.
// Store the result later.
// FIXME: This only handles a single result! Partial specialization could
// induce some combination of direct and indirect results.
SILType ResultTy = SpecializedFunc->mapTypeIntoContext(
substConv.getSILType(substRI, Builder.getTypeExpansionContext()));
assert(ResultTy.isAddress());
assert(!resultAddr.returnAddress);
resultAddr.returnAddress = Thunk->getEntryBlock()->createFunctionArgument(ResultTy);
continue;
}
// If the specialized result is already indirect, simply clone the indirect
// result argument.
SILArgument *specArg = *SpecArgIter++;
assert(specArg->getType().isAddress());
Arguments.push_back(addFunctionArgument(Thunk, specArg->getType(), specArg));
}
if (thunkType->hasIndirectErrorResult()) {
if (ReInfo.isErrorResultConverted()) {
SILResultInfo substRI = thunkType->getErrorResult();
SILType errorTy = SpecializedFunc->mapTypeIntoContext(
substConv.getSILType(substRI, Builder.getTypeExpansionContext()));
assert(errorTy.isAddress());
assert(!resultAddr.errorAddress);
resultAddr.errorAddress = Thunk->getEntryBlock()->createFunctionArgument(errorTy);
} else {
SILArgument *specArg = *SpecArgIter++;
assert(specArg->getType().isAddress());
Arguments.push_back(addFunctionArgument(Thunk, specArg->getType(), specArg));
}
}
assert(SpecArgIter
== SpecializedFunc->getArgumentsWithoutIndirectResults().begin());
unsigned numParams = OrigF->getLoweredFunctionType()->getNumParameters();
for (unsigned origParamIdx = 0, specArgIdx = 0; origParamIdx < numParams; ++origParamIdx) {
unsigned origArgIdx = ReInfo.param2ArgIndex(origParamIdx);
if (ReInfo.isDroppedMetatypeArg(origArgIdx)) {
assert(origArgIdx >= ApplySite(OrigPAI).getCalleeArgIndexOfFirstAppliedArg() &&
"cannot drop metatype argument of not applied argument");
continue;
}
SILArgument *specArg = *SpecArgIter++;
if (ReInfo.isParamConverted(origParamIdx)) {
// Convert an originally indirect to direct specialized parameter.
assert(!specConv.isSILIndirect(SpecType->getParameters()[specArgIdx]));
// Instead of passing the address, pass the loaded value.
SILType ParamTy = SpecializedFunc->mapTypeIntoContext(
substConv.getSILType(thunkType->getParameters()[specArgIdx],
Builder.getTypeExpansionContext()));
assert(ParamTy.isAddress());
SILFunctionArgument *NewArg = addFunctionArgument(Thunk, ParamTy, specArg);
if (!NewArg->getArgumentConvention().isGuaranteedConvention()) {
SILValue argVal = Builder.emitLoadValueOperation(
Loc, NewArg, LoadOwnershipQualifier::Take);
Arguments.push_back(argVal);
} else {
SILValue argVal = Builder.emitLoadBorrowOperation(Loc, NewArg);
if (argVal->getOwnershipKind() == OwnershipKind::Guaranteed)
ArgsThatNeedEndBorrow.push_back(Arguments.size());
Arguments.push_back(argVal);
}
} else {
// Simply clone unconverted direct or indirect parameters.
Arguments.push_back(addFunctionArgument(Thunk, specArg->getType(), specArg));
}
++specArgIdx;
}
assert(SpecArgIter == SpecializedFunc->getArguments().end());
return resultAddr;
}
/// Create a pre-specialization of the library function with
/// \p UnspecializedName, using the substitutions from \p Apply.
static bool createPrespecialized(StringRef UnspecializedName,
ApplySite Apply,
SILOptFunctionBuilder &FuncBuilder) {
SILModule &M = FuncBuilder.getModule();
SILFunction *UnspecFunc = M.lookUpFunction(UnspecializedName);
if (UnspecFunc) {
if (!UnspecFunc->isDefinition())
M.loadFunction(UnspecFunc, SILModule::LinkingMode::LinkAll);
} else {
UnspecFunc = M.loadFunction(UnspecializedName,
SILModule::LinkingMode::LinkAll);
}
if (!UnspecFunc || !UnspecFunc->isDefinition())
return false;
ReabstractionInfo ReInfo(M.getSwiftModule(), M.isWholeModule(), ApplySite(),
UnspecFunc, Apply.getSubstitutionMap(),
IsNotSerialized,
/*ConvertIndirectToDirect= */true, /*dropMetatypeArgs=*/ false);
if (!ReInfo.canBeSpecialized())
return false;
GenericFuncSpecializer FuncSpecializer(FuncBuilder,
UnspecFunc, Apply.getSubstitutionMap(),
ReInfo);
SILFunction *SpecializedF = FuncSpecializer.lookupSpecialization();
if (!SpecializedF)
SpecializedF = FuncSpecializer.tryCreateSpecialization();
if (!SpecializedF)
return false;
// Link after prespecializing to pull in everything referenced from another
// module in case some referenced functions have non-public linkage.
M.linkFunction(SpecializedF, SILModule::LinkingMode::LinkAll);
SpecializedF->setLinkage(SILLinkage::Public);
SpecializedF->setSerializedKind(IsNotSerialized);
return true;
}
/// Create pre-specializations of the library function X if \p ProxyFunc has
/// @_semantics("prespecialize.X") attributes.
static bool createPrespecializations(ApplySite Apply, SILFunction *ProxyFunc,
SILOptFunctionBuilder &FuncBuilder) {
if (Apply.getSubstitutionMap().hasArchetypes())
return false;
SILModule &M = FuncBuilder.getModule();
bool prespecializeFound = false;
for (const std::string &semAttrStr : ProxyFunc->getSemanticsAttrs()) {
StringRef semAttr(semAttrStr);
if (semAttr.consume_front("prespecialize.")) {
prespecializeFound = true;
if (!createPrespecialized(semAttr, Apply, FuncBuilder)) {
M.getASTContext().Diags.diagnose(Apply.getLoc().getSourceLoc(),
diag::cannot_prespecialize,
semAttr);
}
}
}
return prespecializeFound;
}
static SILFunction *
lookupOrCreatePrespecialization(SILOptFunctionBuilder &funcBuilder,
SILFunction *origF, std::string clonedName,
ReabstractionInfo &reInfo) {
if (auto *specializedF = funcBuilder.getModule().lookUpFunction(clonedName)) {
assert(reInfo.getSpecializedType() ==
specializedF->getLoweredFunctionType() &&
"Previously specialized function does not match expected type.");
return specializedF;
}
auto *declaration =
GenericCloner::createDeclaration(funcBuilder, origF, reInfo, clonedName);
declaration->setLinkage(SILLinkage::PublicExternal);
ScopeCloner scopeCloner(*declaration);
return declaration;
}
bool usePrespecialized(
SILOptFunctionBuilder &funcBuilder, ApplySite apply, SILFunction *refF,
const ReabstractionInfo &specializedReInfo,
ReabstractionInfo &prespecializedReInfo, SpecializedFunction &result) {
SmallVector<std::tuple<unsigned, ReabstractionInfo, AvailabilityContext>, 4>
layoutMatches;
for (auto *SA : refF->getSpecializeAttrs()) {
if (!SA->isExported())
continue;
// Check whether SPI allows using this function.
auto spiGroup = SA->getSPIGroup();
if (!spiGroup.empty()) {
auto currentModule = funcBuilder.getModule().getSwiftModule();
auto funcModule = SA->getSPIModule();
// Don't use this SPI if the current module does not import the function's
// module with @_spi(<spiGroup>).
if (currentModule != funcModule &&
!currentModule->isImportedAsSPI(spiGroup, funcModule))
continue;
}
// Check whether the availability of the specialization allows for using
// it. We check the deployment target or the current functions availability
// target depending which one is more recent.
auto specializationAvail = SA->getAvailability();
auto &ctxt = funcBuilder.getModule().getSwiftModule()->getASTContext();
auto deploymentAvail = AvailabilityContext::forDeploymentTarget(ctxt);
auto currentFn = apply.getFunction();
auto isInlinableCtxt = (currentFn->getResilienceExpansion()
== ResilienceExpansion::Minimal);
auto currentFnAvailability = currentFn->getAvailabilityForLinkage();
// If we are in an inlineable function we can't use the specialization except
// the inlinable function itself has availability we can use.
if (currentFnAvailability.isAlwaysAvailable() && isInlinableCtxt) {
continue;
}
else if (isInlinableCtxt) {
deploymentAvail = currentFnAvailability;
}
if (!currentFnAvailability.isAlwaysAvailable() &&
!deploymentAvail.isContainedIn(currentFnAvailability))
deploymentAvail = currentFnAvailability;
if (!deploymentAvail.isContainedIn(specializationAvail))
continue;
ReabstractionInfo reInfo(funcBuilder.getModule().getSwiftModule(),
funcBuilder.getModule().isWholeModule(), refF,
SA->getSpecializedSignature(),
/*isPrespecialization*/ true);
if (specializedReInfo.getSpecializedType() != reInfo.getSpecializedType()) {
SmallVector<Type, 4> newSubs;
auto specializedSig =
SA->getUnerasedSpecializedSignature().withoutMarkerProtocols();
auto erasedParams = SA->getTypeErasedParams();
if(!ctxt.LangOpts.hasFeature(Feature::LayoutPrespecialization) || erasedParams.empty()) {
continue;
}
unsigned score = 0;
for (const auto &entry :
llvm::enumerate(apply.getSubstitutionMap().getReplacementTypes())) {
auto genericParam = specializedSig.getGenericParams()[entry.index()];
bool erased = std::any_of(erasedParams.begin(), erasedParams.end(), [&](auto Ty) {
return Ty->isEqual(genericParam);
});
auto layout = specializedSig->getLayoutConstraint(genericParam);
if (!specializedSig->getRequiredProtocols(genericParam).empty()) {
llvm::report_fatal_error("Unexpected protocol requirements");
}
if (!erased || !layout ||
(!layout->isClass() && !layout->isBridgeObject() &&
!layout->isFixedSizeTrivial() && !layout->isTrivialStride())) {
newSubs.push_back(entry.value());
continue;
}
auto lowered = refF->getLoweredType(entry.value());
while (auto singleton = lowered.getSingletonAggregateFieldType(
refF->getModule(), refF->getResilienceExpansion())) {
lowered = singleton;
}
if (lowered.isBuiltinBridgeObject() && layout->isBridgeObject()) {
newSubs.push_back(genericParam->getASTContext().TheBridgeObjectType);
} else if (lowered.hasRetainablePointerRepresentation()) {
if (layout->isNativeClass()) {
newSubs.push_back(
genericParam->getASTContext().TheNativeObjectType);
score += 1;
} else {
newSubs.push_back(genericParam->getASTContext().getAnyObjectType());
}
} else if (layout->isFixedSizeTrivial() && lowered.isTrivial(refF)) {
auto *IGM = funcBuilder.getIRGenModule();
auto &ti = IGM->getTypeInfo(lowered);
auto fixedSize =
ti.buildTypeLayoutEntry(*IGM, lowered, false)->fixedSize(*IGM);
if (fixedSize &&
fixedSize->getValueInBits() == layout->getTrivialSizeInBits()) {
newSubs.push_back(CanType(
BuiltinIntegerType::get(layout->getTrivialSizeInBits(),
genericParam->getASTContext())));
}
} else if (layout->isTrivialStride() && lowered.isTrivial(refF)) {
auto *IGM = funcBuilder.getIRGenModule();
auto &ti = IGM->getTypeInfo(lowered);
auto *typeLayout = ti.buildTypeLayoutEntry(*IGM, lowered, false);
auto fixedSize = typeLayout->fixedSize(*IGM);
if (fixedSize) {
auto stride = fixedSize->roundUpToAlignment(
*typeLayout->fixedAlignment(*IGM));
if (stride.isZero())
stride = irgen::Size(1);
if (stride.getValueInBits() == layout->getTrivialStrideInBits()) {
newSubs.push_back(CanType(BuiltinVectorType::get(
genericParam->getASTContext(),
BuiltinIntegerType::get(8, genericParam->getASTContext()),
layout->getTrivialStride())));
}
}
} else {
// no match
break;
}
}
if (newSubs.size() !=
apply.getSubstitutionMap().getReplacementTypes().size()) {
continue;
}
auto newSubstMap = SubstitutionMap::get(
apply.getSubstitutionMap().getGenericSignature(), newSubs,
apply.getSubstitutionMap().getConformances());
ReabstractionInfo layoutReInfo = ReabstractionInfo(
funcBuilder.getModule().getSwiftModule(),
funcBuilder.getModule().isWholeModule(), apply, refF, newSubstMap,
apply.getFunction()->getSerializedKind(),
/*ConvertIndirectToDirect=*/ true, /*dropMetatypeArgs=*/ false, nullptr);
if (layoutReInfo.getSpecializedType() == reInfo.getSpecializedType()) {
layoutMatches.push_back(
std::make_tuple(score, reInfo, specializationAvail));
}
continue;
}
SubstitutionMap subs = reInfo.getCalleeParamSubstitutionMap();
Mangle::GenericSpecializationMangler mangler(refF, reInfo.getSerializedKind());
std::string name = reInfo.isPrespecialized() ?
mangler.manglePrespecialized(subs) :
mangler.mangleReabstracted(subs, reInfo.needAlternativeMangling());
prespecializedReInfo = reInfo;
auto fn = lookupOrCreatePrespecialization(funcBuilder, refF, name, reInfo);
if (!specializationAvail.isAlwaysAvailable())
fn->setAvailabilityForLinkage(specializationAvail);
result.setFunction(fn);
return true;
}
if (!layoutMatches.empty()) {
std::tuple<unsigned, ReabstractionInfo, AvailabilityContext> res =
layoutMatches[0];
for (auto &tuple : layoutMatches) {
if (std::get<0>(tuple) > std::get<0>(res))
res = tuple;
}
auto reInfo = std::get<1>(res);
auto specializationAvail = std::get<2>(res);
// TODO: Deduplicate
SubstitutionMap subs = reInfo.getCalleeParamSubstitutionMap();
Mangle::GenericSpecializationMangler mangler(refF, reInfo.getSerializedKind());
std::string name = reInfo.isPrespecialized()
? mangler.manglePrespecialized(subs)
: mangler.mangleReabstracted(
subs, reInfo.needAlternativeMangling());
prespecializedReInfo = reInfo;
auto fn = lookupOrCreatePrespecialization(funcBuilder, refF, name, reInfo);
if (!specializationAvail.isAlwaysAvailable())
fn->setAvailabilityForLinkage(specializationAvail);
result.setFunction(fn);
result.computeTypeReplacements(apply);
return true;
}
return false;
}
static bool isUsedAsDynamicSelf(SILArgument *arg) {
for (Operand *use : arg->getUses()) {
if (use->isTypeDependent())
return true;
}
return false;
}
static bool canDropMetatypeArgs(ApplySite apply, SILFunction *callee) {
if (!callee->isDefinition())
return false;
auto calleeArgs = callee->getArguments();
unsigned firstAppliedArgIdx = apply.getCalleeArgIndexOfFirstAppliedArg();
for (unsigned calleeArgIdx = 0; calleeArgIdx < calleeArgs.size(); ++calleeArgIdx) {
SILArgument *calleeArg = calleeArgs[calleeArgIdx];
auto mt = calleeArg->getType().getAs<MetatypeType>();
if (!mt)
continue;
if (isUsedAsDynamicSelf(calleeArg))
return false;
if (calleeArg->getType().getASTType()->hasDynamicSelfType())
return false;
// We don't drop metatype arguments of not applied arguments (in case of `partial_apply`).
if (firstAppliedArgIdx > calleeArgIdx)
return false;
if (mt->hasRepresentation() && mt->getRepresentation() == MetatypeRepresentation::Thin)
continue;
// If the passed thick metatype value is not a `metatype` instruction
// we don't know the real metatype at runtime. It's not necessarily the
// same as the declared metatype. It could e.g. be an upcast of a class
// metatype.
SILValue callerArg = apply.getArguments()[calleeArgIdx - firstAppliedArgIdx];
if (isa<MetatypeInst>(callerArg))
continue;
// But: if the metatype is not used in the callee we don't have to care
// what metatype value is passed. We can just remove it.
if (callee->isDefinition() && onlyHaveDebugUses(calleeArg))
continue;
return false;
}
return true;
}
void swift::trySpecializeApplyOfGeneric(
SILOptFunctionBuilder &FuncBuilder,
ApplySite Apply, DeadInstructionSet &DeadApplies,
SmallVectorImpl<SILFunction *> &NewFunctions,
OptRemark::Emitter &ORE,
bool isMandatory) {
assert(Apply.hasSubstitutions() && "Expected an apply with substitutions!");
auto *F = Apply.getFunction();
auto *RefF =
cast<FunctionRefInst>(Apply.getCallee())->getReferencedFunction();
LLVM_DEBUG(llvm::dbgs() << "\n\n*** ApplyInst in function " << F->getName()
<< ":\n";
Apply.getInstruction()->dumpInContext());
// If the caller is fragile but the callee is not, bail out.
// Specializations have shared linkage, which means they do
// not have an external entry point, Since the callee is not
// fragile we cannot serialize the body of the specialized
// callee either.
bool needSetLinkage = false;
if (isMandatory) {
if (!RefF->canBeInlinedIntoCaller(F->getSerializedKind()))
needSetLinkage = true;
} else {
if (!RefF->canBeInlinedIntoCaller(F->getSerializedKind()))
return;
if (shouldNotSpecialize(RefF, F))
return;
}
// If the caller and callee are both fragile, preserve the fragility when
// cloning the callee. Otherwise, strip it off so that we can optimize
// the body more.
SerializedKind_t serializedKind = F->getSerializedKind();
// If it is OnoneSupport consider all specializations as non-serialized
// as we do not SIL serialize their bodies.
// It is important to set this flag here, because it affects the
// mangling of the specialization's name.
if (Apply.getModule().isOptimizedOnoneSupportModule()) {
if (createPrespecializations(Apply, RefF, FuncBuilder)) {
return;
}
serializedKind = IsNotSerialized;
}
ReabstractionInfo ReInfo(FuncBuilder.getModule().getSwiftModule(),
FuncBuilder.getModule().isWholeModule(), Apply, RefF,
Apply.getSubstitutionMap(), serializedKind,
/*ConvertIndirectToDirect=*/ true,
/*dropMetatypeArgs=*/ canDropMetatypeArgs(Apply, RefF),
&ORE);
if (!ReInfo.canBeSpecialized())
return;
// Check if there is a pre-specialization available in a library.
SpecializedFunction prespecializedF{};
ReabstractionInfo prespecializedReInfo(FuncBuilder.getModule());
bool replacePartialApplyWithoutReabstraction = false;
if (usePrespecialized(FuncBuilder, Apply, RefF, ReInfo, prespecializedReInfo,
prespecializedF)) {
ReInfo = prespecializedReInfo;
}
// If there is not pre-specialization and we don't have a body give up.
if (!prespecializedF.hasFunction() && !RefF->isDefinition())
return;
SILModule &M = F->getModule();
bool needAdaptUsers = false;
auto *PAI = dyn_cast<PartialApplyInst>(Apply);
if (PAI && ReInfo.hasConversions()) {
// If we have a partial_apply and we converted some results/parameters from
// indirect to direct there are 3 cases:
// 1) All uses of the partial_apply are apply sites again. In this case
// we can just adapt all the apply sites which use the partial_apply.
// 2) The result of the partial_apply is re-abstracted anyway (and the
// re-abstracted function type matches with our specialized type). In
// this case we can just skip the existing re-abstraction.
// 3) For all other cases we need to create a new re-abstraction thunk.
needAdaptUsers = true;
SmallVector<Operand *, 4> worklist(PAI->getUses());
while (!worklist.empty()) {
auto *Use = worklist.pop_back_val();
SILInstruction *User = Use->getUser();
// Look through copy_value.
if (auto *cvi = dyn_cast<CopyValueInst>(User)) {
llvm::copy(cvi->getUses(), std::back_inserter(worklist));
continue;
}
// Ignore destroy_value.
if (isa<DestroyValueInst>(User))
continue;
// Ignore older ref count instructions.
if (isa<RefCountingInst>(User))
continue;
if (isIncidentalUse(User))
continue;
auto FAS = FullApplySite::isa(User);
if (FAS && FAS.getCallee() == PAI)
continue;
auto *PAIUser = dyn_cast<PartialApplyInst>(User);
if (PAIUser && isPartialApplyOfReabstractionThunk(PAIUser)) {
CanSILFunctionType NewPAType =
ReInfo.createSpecializedType(PAI->getFunctionType(), M);
if (PAIUser->getFunctionType() == NewPAType)
continue;
}
replacePartialApplyWithoutReabstraction = true;
break;
}
}
GenericFuncSpecializer FuncSpecializer(FuncBuilder,
RefF, Apply.getSubstitutionMap(),
ReInfo, isMandatory);
SpecializedFunction SpecializedF =
prespecializedF.hasFunction() ? prespecializedF
: FuncSpecializer.lookupSpecialization();
if (!SpecializedF.hasFunction()) {
SpecializedF = FuncSpecializer.tryCreateSpecialization();
if (!SpecializedF)
return;
LLVM_DEBUG(llvm::dbgs() << "Created specialized function: "
<< SpecializedF->getName() << "\n"
<< "Specialized function type: "
<< SpecializedF->getLoweredFunctionType() << "\n");
NewFunctions.push_back(SpecializedF.getFunction());
}
if (replacePartialApplyWithoutReabstraction &&
SpecializedF.getFunction()->isExternalDeclaration()) {
// Cannot create a tunk without having the body of the function.
return;
}
if (needSetLinkage) {
assert(F->isAnySerialized() &&
!RefF->canBeInlinedIntoCaller(F->getSerializedKind()));
// If called from a serialized function we cannot make the specialized function
// shared and non-serialized. The only other option is to keep the original
// function's linkage. It's not great, because it can prevent dead code
// elimination - usually the original function is a public function.
SpecializedF->setLinkage(RefF->getLinkage());
SpecializedF->setSerializedKind(IsNotSerialized);
} else if (F->isAnySerialized() &&
!SpecializedF->canBeInlinedIntoCaller(F->getSerializedKind())) {
// If the specialized function already exists as a "IsNotSerialized" function,
// but now it's called from a serialized function, we need to mark it the
// same as its SerializedKind.
SpecializedF->setSerializedKind(F->getSerializedKind());
assert(SpecializedF->canBeInlinedIntoCaller(F->getSerializedKind()));
// ... including all referenced shared functions.
FuncBuilder.getModule().linkFunction(SpecializedF.getFunction(),
SILModule::LinkingMode::LinkAll);
}
ORE.emit([&]() {
std::string Str;
llvm::raw_string_ostream OS(Str);
SpecializedF->getLoweredFunctionType().print(
OS, PrintOptions::printQuickHelpDeclaration());
using namespace OptRemark;
return RemarkPassed("Specialized", *Apply.getInstruction())
<< "Specialized function " << NV("Function", RefF) << " with type "
<< NV("FuncType", OS.str());
});
// Verify our function after we have finished fixing up call sites/etc. Dump
// the generic function if there is an assertion failure (or a crash) to make
// it easier to debug such problems since the original generic function is
// easily at hand.
SWIFT_DEFER {
if (VerifyFunctionsAfterSpecialization) {
PrettyStackTraceSILFunction SILFunctionDumper(
llvm::Twine("Generic function: ") + RefF->getName() +
". Specialized Function: " + SpecializedF->getName(),
RefF);
SpecializedF->verify();
}
};
assert(ReInfo.getSpecializedType()
== SpecializedF->getLoweredFunctionType() &&
"Previously specialized function does not match expected type.");
DeadApplies.insert(Apply.getInstruction());
if (replacePartialApplyWithoutReabstraction) {
// There are some unknown users of the partial_apply. Therefore we need a
// thunk which converts from the re-abstracted function back to the
// original function with indirect parameters/results.
auto *PAI = cast<PartialApplyInst>(Apply.getInstruction());
SILFunction *Thunk = ReabstractionThunkGenerator(FuncBuilder, ReInfo, PAI,
SpecializedF.getFunction())
.createThunk();
if (VerifyFunctionsAfterSpecialization) {
PrettyStackTraceSILFunction SILFunctionDumper(
llvm::Twine("Thunk For Generic function: ") + RefF->getName() +
". Specialized Function: " + SpecializedF->getName(),
RefF);
Thunk->verify();
}
NewFunctions.push_back(Thunk);
SILBuilderWithScope Builder(PAI);
auto *FRI = Builder.createFunctionRef(PAI->getLoc(), Thunk);
SmallVector<SILValue, 4> Arguments;
for (auto &Op : PAI->getArgumentOperands()) {
unsigned calleeArgIdx = ApplySite(PAI).getCalleeArgIndex(Op);
if (ReInfo.isDroppedMetatypeArg(calleeArgIdx))
continue;
Arguments.push_back(Op.get());
}
auto Subs = ReInfo.getCallerParamSubstitutionMap();
auto FnTy = Thunk->getLoweredFunctionType();
Subs = SubstitutionMap::get(FnTy->getSubstGenericSignature(), Subs);
SingleValueInstruction *newPAI = Builder.createPartialApply(
PAI->getLoc(), FRI, Subs, Arguments,
PAI->getCalleeConvention(), PAI->getResultIsolation(),
PAI->isOnStack());
PAI->replaceAllUsesWith(newPAI);
DeadApplies.insert(PAI);
return;
}
// Make the required changes to the call site.
ApplySite newApply =
replaceWithSpecializedFunction(Apply, SpecializedF, ReInfo);
if (needAdaptUsers) {
// Adapt all known users of the partial_apply. This is needed in case we
// converted some indirect parameters/results to direct ones.
auto *NewPAI = cast<PartialApplyInst>(newApply);
ReInfo.prunePartialApplyArgs(NewPAI->getNumArguments());
for (Operand *Use : NewPAI->getUses()) {
SILInstruction *User = Use->getUser();
if (auto FAS = FullApplySite::isa(User)) {
replaceWithSpecializedCallee(FAS, NewPAI, ReInfo);
DeadApplies.insert(FAS.getInstruction());
continue;
}
if (auto *PAI = dyn_cast<PartialApplyInst>(User)) {
SILValue result = NewPAI;
if (SpecializedF.hasTypeReplacements()) {
SILBuilderWithScope builder(Apply.getInstruction());
auto fnType = PAI->getType();
result =
builder.createConvertFunction(Apply.getLoc(), NewPAI, fnType,
/*withoutActuallyEscaping*/ false);
}
// This is a partial_apply of a re-abstraction thunk. Just skip this.
assert(PAI->getType() == result->getType());
PAI->replaceAllUsesWith(result);
DeadApplies.insert(PAI);
}
}
}
}
// =============================================================================
// Prespecialized symbol lookup.
// =============================================================================
#define PRESPEC_SYMBOL(s) MANGLE_AS_STRING(s),
static const char *PrespecSymbols[] = {
#include "OnonePrespecializations.def"
nullptr
};
#undef PRESPEC_SYMBOL
llvm::DenseSet<StringRef> PrespecSet;
bool swift::isKnownPrespecialization(StringRef SpecName) {
if (PrespecSet.empty()) {
const char **Pos = &PrespecSymbols[0];
while (const char *Sym = *Pos++) {
PrespecSet.insert(Sym);
}
assert(!PrespecSet.empty());
}
return PrespecSet.count(SpecName) != 0;
}
void swift::checkCompletenessOfPrespecializations(SILModule &M) {
const char **Pos = &PrespecSymbols[0];
while (const char *Sym = *Pos++) {
StringRef FunctionName(Sym);
SILFunction *F = M.lookUpFunction(FunctionName);
if (!F || F->getLinkage() != SILLinkage::Public) {
M.getASTContext().Diags.diagnose(SourceLoc(),
diag::missing_prespecialization,
FunctionName);
}
}
}
/// Try to look up an existing specialization in the specialization cache.
/// If it is found, it tries to link this specialization.
///
/// For now, it performs a lookup only in the standard library.
/// But in the future, one could think of maintaining a cache
/// of optimized specializations.
static SILFunction *lookupExistingSpecialization(SILModule &M,
StringRef FunctionName) {
// Try to link existing specialization only in -Onone mode.
// All other compilation modes perform specialization themselves.
// TODO: Cache optimized specializations and perform lookup here?
// Only check that this function exists, but don't read
// its body. It can save some compile-time.
if (isKnownPrespecialization(FunctionName)){
return M.loadFunction(FunctionName, SILModule::LinkingMode::LinkAll,
SILLinkage::PublicExternal);
}
return nullptr;
}
SILFunction *swift::lookupPrespecializedSymbol(SILModule &M,
StringRef FunctionName) {
// First check if the module contains a required specialization already.
auto *Specialization = M.lookUpFunction(FunctionName);
if (Specialization) {
if (Specialization->getLinkage() == SILLinkage::PublicExternal)
return Specialization;
}
// Then check if the required specialization can be found elsewhere.
Specialization = lookupExistingSpecialization(M, FunctionName);
if (!Specialization)
return nullptr;
assert(hasPublicVisibility(Specialization->getLinkage()) &&
"Pre-specializations should have public visibility");
Specialization->setLinkage(SILLinkage::PublicExternal);
assert(Specialization->isExternalDeclaration() &&
"Specialization should be a public external declaration");
LLVM_DEBUG(llvm::dbgs() << "Found existing specialization for: "
<< FunctionName << '\n';
llvm::dbgs() << swift::Demangle::demangleSymbolAsString(
Specialization->getName())
<< "\n\n");
return Specialization;
}
|