1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
//===--- InstructionDeleter.cpp - InstructionDeleter utility --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/Test.h"
#include "swift/SILOptimizer/Utils/ConstExpr.h"
#include "swift/SILOptimizer/Utils/DebugOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
using namespace swift;
static bool hasOnlyIncidentalUses(SILInstruction *inst,
bool preserveDebugInfo = false) {
for (SILValue result : inst->getResults()) {
for (Operand *use : result->getUses()) {
SILInstruction *user = use->getUser();
if (!isIncidentalUse(user))
return false;
if (preserveDebugInfo && user->isDebugInstruction())
return false;
}
}
return true;
}
/// A scope-affecting instruction is an instruction which may end the scope of
/// its operand or may produce scoped results that require cleaning up. E.g.
/// begin_borrow, begin_access, copy_value, a call that produces a owned value
/// are scoped instructions. The scope of the results of the first two
/// instructions end with an end_borrow/access instruction, while those of the
/// latter two end with a consuming operation like destroy_value instruction.
/// These instruction may also end the scope of its operand e.g. a call could
/// consume owned arguments thereby ending its scope. Dead-code eliminating a
/// scope-affecting instruction requires fixing the lifetime of the non-trivial
/// operands of the instruction and requires cleaning up the end-of-scope uses
/// of non-trivial results.
///
/// \param inst instruction that checked for liveness.
///
/// TODO: Handle partial_apply [stack] which has a dealloc_stack user.
static bool isScopeAffectingInstructionDead(SILInstruction *inst,
bool fixLifetime) {
SILFunction *fun = inst->getFunction();
assert(fun && "Instruction has no function.");
// Only support ownership SIL for scoped instructions.
if (!fun->hasOwnership()) {
return false;
}
// If the instruction has any use other than end of scope use or destroy_value
// use, bail out.
if (!hasOnlyEndOfScopeOrEndOfLifetimeUses(inst)) {
return false;
}
for (auto result : inst->getResults()) {
// If inst has any owned move-only value as a result, deleting it may
// shorten that value's lifetime which is illegal according to language
// rules.
//
// In particular, this check is needed before returning true when
// getSingleValueCopyOrCast returns true. That function returns true for
// move_value instructions. And `move_value %moveOnlyValue` must not be
// deleted.
if (result->getType().isMoveOnly() &&
result->getOwnershipKind() == OwnershipKind::Owned) {
return false;
}
// If result was lexical, lifetime shortening maybe observed, return.
if (result->isLexical()) {
auto resultTy = result->getType().getAs<SILFunctionType>();
// Allow deleted dead lexical values when they are trivial no escape types.
if (!resultTy || !resultTy->isTrivialNoEscape()) {
return false;
}
}
}
// If inst is a copy or beginning of scope, inst is dead, since we know that
// it is used only in a destroy_value or end-of-scope instruction.
if (getSingleValueCopyOrCast(inst))
return true;
switch (inst->getKind()) {
case SILInstructionKind::AllocStackInst: {
// An alloc_stack only used by dealloc_stack is dead.
return
fun->getEffectiveOptimizationMode() > OptimizationMode::NoOptimization
|| !cast<AllocStackInst>(inst)->getVarInfo();
}
case SILInstructionKind::LoadBorrowInst: {
// A load_borrow only used in an end_borrow is dead.
return true;
}
case SILInstructionKind::LoadInst: {
LoadOwnershipQualifier loadOwnershipQual =
cast<LoadInst>(inst)->getOwnershipQualifier();
// If the load creates a copy, it is dead, since we know that if at all it
// is used, it is only in a destroy_value instruction.
return (loadOwnershipQual == LoadOwnershipQualifier::Take ||
loadOwnershipQual == LoadOwnershipQualifier::Copy ||
loadOwnershipQual == LoadOwnershipQualifier::Trivial);
}
case SILInstructionKind::PartialApplyInst: {
bool onlyTrivialArgs = true;
for (auto &arg : cast<PartialApplyInst>(inst)->getArgumentOperands()) {
auto argTy = arg.get()->getType();
// Non-stack partial apply captures that are passed by address are always
// captured at +1 by the closure contrext, regardless of the calling
// convention.
//
// TODO: When on-stack partial applies are also handled, then their +0
// address arguments can be ignored.
//
// FIXME: Even with fixLifetimes enabled, InstructionDeleter does not know
// how to cleanup arguments captured by address. This should be as simple
// as inserting a destroy_addr. But the analagous code in
// tryDeleteDeadClosure() and keepArgsOfPartialApplyAlive() mysteriously
// creates new alloc_stack's and invalidates stack nesting. So we
// conservatively bail-out until we understand why that hack exists.
if (argTy.isAddress())
return false;
onlyTrivialArgs &= argTy.isTrivial(*fun);
}
// Partial applies that are only used in destroys cannot have any effect on
// the program state, provided the values they capture are explicitly
// destroyed, which only happens when fixLifetime is true.
return onlyTrivialArgs || fixLifetime;
}
case SILInstructionKind::StructInst:
case SILInstructionKind::EnumInst:
case SILInstructionKind::TupleInst:
case SILInstructionKind::ConvertFunctionInst:
case SILInstructionKind::DestructureStructInst:
case SILInstructionKind::DestructureTupleInst: {
// All these ownership forwarding instructions that are only used in
// destroys are dead provided the values they consume are destroyed
// explicitly.
return true;
}
case SILInstructionKind::ApplyInst: {
// The following property holds for constant-evaluable functions that do
// not take arguments of generic type:
// 1. they do not create objects having deinitializers with global
// side effects, as they can only create objects consisting of trivial
// values, (non-generic) arrays and strings.
// 2. they do not use global variables or call arbitrary functions with
// side effects.
// The above two properties imply that a value returned by a constant
// evaluable function does not have a deinitializer with global side
// effects. Therefore, the deinitializer can be sinked.
//
// A generic, read-only constant evaluable call only reads and/or
// destroys its (non-generic) parameters. It therefore cannot have any
// side effects (note that parameters being non-generic have value
// semantics). Therefore, the constant evaluable call can be removed
// provided the parameter lifetimes are handled correctly, which is taken
// care of by the function: \c deleteInstruction.
FullApplySite applySite(cast<ApplyInst>(inst));
return isReadOnlyConstantEvaluableCall(applySite);
}
default: {
return false;
}
}
}
bool InstructionDeleter::trackIfDead(SILInstruction *inst) {
bool fixLifetime = inst->getFunction()->hasOwnership();
if (isInstructionTriviallyDead(inst)
|| isScopeAffectingInstructionDead(inst, fixLifetime)) {
assert(!isIncidentalUse(inst) &&
(!isa<DestroyValueInst>(inst) ||
canTriviallyDeleteOSSAEndScopeInst(inst)) &&
"Incidental uses cannot be removed in isolation. "
"They would be removed iff the operand is dead");
getCallbacks().notifyWillBeDeleted(inst);
deadInstructions.insert(inst);
return true;
}
return false;
}
void InstructionDeleter::forceTrackAsDead(SILInstruction *inst) {
bool preserveDebugInfo = inst->getFunction()->getEffectiveOptimizationMode()
<= OptimizationMode::NoOptimization;
assert(hasOnlyIncidentalUses(inst, preserveDebugInfo));
getCallbacks().notifyWillBeDeleted(inst);
deadInstructions.insert(inst);
}
/// Force-delete \p inst and all its uses.
///
/// \p fixLifetimes causes new destroys to be inserted after dropping
/// operands.
///
/// \p forceDeleteUsers allows deleting an instruction with non-incidental,
/// non-destroy uses, such as a store.
///
/// Does not call callbacks.notifyWillBeDeleted for \p inst. But does
/// for any other instructions that become dead as a result.
///
/// Carefully orchestrated steps for deleting an instruction with its uses:
///
/// Recursively gather the instruction's uses into the toDeleteInsts set and
/// dropping the operand for each use traversed.
///
/// For the remaining operands, insert destroys for consuming operands and track
/// newly dead operand definitions.
///
/// Finally, erase the instruction.
void InstructionDeleter::deleteWithUses(SILInstruction *inst, bool fixLifetimes,
bool forceDeleteUsers) {
// Cannot fix operand lifetimes in non-ownership SIL.
assert(!fixLifetimes || inst->getFunction()->hasOwnership());
// Recursively visit all uses while growing toDeleteInsts in def-use order and
// dropping dead operands.
SmallVector<SILInstruction *, 4> toDeleteInsts;
SmallVector<Operand *, 4> toDropUses;
toDeleteInsts.push_back(inst);
swift::salvageDebugInfo(inst);
for (unsigned idx = 0; idx < toDeleteInsts.size(); ++idx) {
for (SILValue result : toDeleteInsts[idx]->getResults()) {
// Temporary use vector to avoid iterator invalidation.
auto uses = llvm::to_vector<4>(result->getUses());
for (Operand *use : uses) {
SILInstruction *user = use->getUser();
assert(forceDeleteUsers || isIncidentalUse(user)
|| isa<DestroyValueInst>(user) || isa<DeallocStackInst>(user));
assert(!isa<BranchInst>(user) && "can't delete phis");
toDeleteInsts.push_back(user);
toDropUses.push_back(use);
swift::salvageDebugInfo(user);
}
}
}
// Drop all after salvage debug info has been run.
for (auto *use : toDropUses)
use->drop();
// Process the remaining operands. Insert destroys for consuming
// operands. Track newly dead operand values. Instructions with multiple dead
// operands may occur in toDeleteInsts multiple times.
for (auto *inst : toDeleteInsts) {
if (inst->isDeleted())
continue;
for (Operand &operand : inst->getAllOperands()) {
SILValue operandValue = operand.get();
// Check for dead operands, which are dropped above.
if (!operandValue)
continue;
if (fixLifetimes) {
LoadInst *li = nullptr;
if (operand.isConsuming()) {
SILBuilderWithScope builder(inst);
auto *dvi = builder.createDestroyValue(inst->getLoc(), operandValue);
getCallbacks().createdNewInst(dvi);
} else if ((li = dyn_cast<LoadInst>(inst)) &&
li->getOwnershipQualifier() ==
LoadOwnershipQualifier::Take) {
SILBuilderWithScope builder(inst);
auto *dai = builder.createDestroyAddr(inst->getLoc(), operandValue);
getCallbacks().createdNewInst(dai);
}
}
auto *operDef = operandValue->getDefiningInstruction();
operand.drop();
if (operDef) {
trackIfDead(operDef);
}
}
inst->dropNonOperandReferences();
deadInstructions.remove(inst);
getCallbacks().deleteInst(inst, false /*notify when deleting*/);
}
}
void InstructionDeleter::cleanupDeadInstructions() {
while (!deadInstructions.empty()) {
SmallVector<SILInstruction *, 8> currentDeadInsts(deadInstructions.begin(),
deadInstructions.end());
// Though deadInstructions is cleared here, calls to deleteInstruction may
// append to deadInstructions. So we need to iterate until this it is empty.
deadInstructions.clear();
for (SILInstruction *deadInst : currentDeadInsts) {
if (deadInst->isDeleted())
continue;
// deadInst will not have been deleted in the previous iterations,
// because, by definition, deleteInstruction will only delete an earlier
// instruction and its incidental/destroy uses. The former cannot be
// deadInst as deadInstructions is a set vector, and the latter cannot be
// in deadInstructions as they are incidental uses which are never added
// to deadInstructions.
deleteWithUses(deadInst,
/*fixLifetimes*/ deadInst->getFunction()->hasOwnership());
}
}
}
bool InstructionDeleter::deleteIfDead(SILInstruction *inst) {
bool fixLifetime = inst->getFunction()->hasOwnership();
return deleteIfDead(inst, fixLifetime);
}
bool InstructionDeleter::deleteIfDead(SILInstruction *inst, bool fixLifetime) {
if (isInstructionTriviallyDead(inst)
|| isScopeAffectingInstructionDead(inst, fixLifetime)) {
getCallbacks().notifyWillBeDeleted(inst);
deleteWithUses(inst, fixLifetime);
return true;
}
return false;
}
namespace swift::test {
// Arguments:
// - instruction: the instruction to delete
// Dumps:
// - the function
static FunctionTest DeleterDeleteIfDeadTest(
"deleter-delete-if-dead", [](auto &function, auto &arguments, auto &test) {
auto *inst = arguments.takeInstruction();
InstructionDeleter deleter;
llvm::outs() << "Deleting-if-dead " << *inst;
auto deleted = deleter.deleteIfDead(inst);
llvm::outs() << "deleteIfDead returned " << deleted << "\n";
function.print(llvm::outs());
});
} // namespace swift::test
void InstructionDeleter::forceDeleteAndFixLifetimes(SILInstruction *inst) {
SILFunction *fun = inst->getFunction();
bool preserveDebugInfo =
fun->getEffectiveOptimizationMode() <= OptimizationMode::NoOptimization;
assert(hasOnlyIncidentalUses(inst, preserveDebugInfo));
deleteWithUses(inst, /*fixLifetimes*/ fun->hasOwnership());
}
void InstructionDeleter::forceDelete(SILInstruction *inst) {
bool preserveDebugInfo = inst->getFunction()->getEffectiveOptimizationMode()
<= OptimizationMode::NoOptimization;
assert(hasOnlyIncidentalUses(inst, preserveDebugInfo));
deleteWithUses(inst, /*fixLifetimes*/ false);
}
void InstructionDeleter::recursivelyDeleteUsersIfDead(SILInstruction *inst) {
SmallVector<SILInstruction *, 8> users;
for (SILValue result : inst->getResults())
for (Operand *use : result->getUses())
users.push_back(use->getUser());
for (SILInstruction *user : users)
recursivelyDeleteUsersIfDead(user);
deleteIfDead(inst);
}
void InstructionDeleter::recursivelyForceDeleteUsersAndFixLifetimes(
SILInstruction *inst) {
for (SILValue result : inst->getResults()) {
while (!result->use_empty()) {
SILInstruction *user = result->use_begin()->getUser();
recursivelyForceDeleteUsersAndFixLifetimes(user);
}
}
if (isIncidentalUse(inst) || isa<DestroyValueInst>(inst)) {
forceDelete(inst);
return;
}
forceDeleteAndFixLifetimes(inst);
}
void swift::eliminateDeadInstruction(SILInstruction *inst,
InstModCallbacks callbacks) {
InstructionDeleter deleter(std::move(callbacks));
deleter.trackIfDead(inst);
deleter.cleanupDeadInstructions();
}
void swift::recursivelyDeleteTriviallyDeadInstructions(
ArrayRef<SILInstruction *> ia, bool force, InstModCallbacks callbacks) {
// Delete these instruction and others that become dead after it's deleted.
llvm::SmallPtrSet<SILInstruction *, 8> deadInsts;
for (auto *inst : ia) {
// If the instruction is not dead and force is false, do nothing.
if (force || isInstructionTriviallyDead(inst))
deadInsts.insert(inst);
}
llvm::SmallPtrSet<SILInstruction *, 8> nextInsts;
while (!deadInsts.empty()) {
for (auto inst : deadInsts) {
// Call the callback before we mutate the to be deleted instruction in any
// way.
callbacks.notifyWillBeDeleted(inst);
// Check if any of the operands will become dead as well.
MutableArrayRef<Operand> operands = inst->getAllOperands();
for (Operand &operand : operands) {
SILValue operandVal = operand.get();
if (!operandVal)
continue;
// Remove the reference from the instruction being deleted to this
// operand.
operand.drop();
// If the operand is an instruction that is only used by the instruction
// being deleted, delete it.
if (auto *operandValInst = operandVal->getDefiningInstruction())
if (!deadInsts.count(operandValInst) &&
isInstructionTriviallyDead(operandValInst))
nextInsts.insert(operandValInst);
}
// If we have a function ref inst, we need to especially drop its function
// argument so that it gets a proper ref decrement.
if (auto *fri = dyn_cast<FunctionRefBaseInst>(inst))
fri->dropReferencedFunction();
}
for (auto inst : deadInsts) {
// This will remove this instruction and all its uses.
eraseFromParentWithDebugInsts(inst, callbacks);
}
nextInsts.swap(deadInsts);
nextInsts.clear();
}
}
|