1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
//===--- LoopUtils.cpp ----------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-loop-utils"
#include "swift/SILOptimizer/Utils/LoopUtils.h"
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/LoopInfo.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILModule.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "llvm/Support/Debug.h"
using namespace swift;
static SILBasicBlock *createInitialPreheader(SILBasicBlock *Header) {
auto *Preheader =
Header->getParent()->createBasicBlockBefore(Header);
// Clone the arguments from header into the pre-header.
llvm::SmallVector<SILValue, 8> Args;
for (auto *HeaderArg : Header->getArguments()) {
Args.push_back(Preheader->createPhiArgument(HeaderArg->getType(),
HeaderArg->getOwnershipKind()));
}
// Create the branch to the header.
SILBuilder(Preheader).createBranch(
RegularLocation::getAutoGeneratedLocation(), Header, Args);
return Preheader;
}
/// Create a unique loop preheader.
static SILBasicBlock *insertPreheader(SILLoop *L, DominanceInfo *DT,
SILLoopInfo *LI) {
assert(!L->getLoopPreheader() && "Expect multiple preheaders");
SILBasicBlock *Header = L->getHeader();
// Before we create the preheader, gather all of the original preds of header.
llvm::SmallVector<SILBasicBlock *, 8> Preds;
for (auto *Pred : Header->getPredecessorBlocks()) {
if (!L->contains(Pred)) {
Preds.push_back(Pred);
}
}
// Then create the pre-header and connect it to header.
SILBasicBlock *Preheader = createInitialPreheader(Header);
// Then change all of the original predecessors to target Preheader instead of
// header.
for (auto *Pred : Preds) {
Pred->getTerminator()->replaceBranchTarget(Header, Preheader);
}
// Update dominance info.
if (DT) {
// Get the dominance node of the header.
auto *HeaderBBDTNode = DT->getNode(Header);
if (HeaderBBDTNode) {
// Make a DTNode for the preheader and make the header's immediate
// dominator, the immediate dominator of the pre-header.
auto *PreheaderDTNode =
DT->addNewBlock(Preheader, HeaderBBDTNode->getIDom()->getBlock());
// Then change the immediate dominator of the header to be the pre-header.
HeaderBBDTNode->setIDom(PreheaderDTNode);
}
}
// Make the pre-header a part of the parent loop of L if L has a parent loop.
if (LI) {
if (auto *PLoop = L->getParentLoop())
PLoop->addBasicBlockToLoop(Preheader, LI->getBase());
}
return Preheader;
}
/// Convert a loop with multiple backedges to a single backedge loop.
///
/// Create a new block as a common target for all the current loop backedges.
static SILBasicBlock *insertBackedgeBlock(SILLoop *L, DominanceInfo *DT,
SILLoopInfo *LI) {
assert(!L->getLoopLatch() && "Must have > 1 backedge.");
// For simplicity, assume a single preheader
SILBasicBlock *Preheader = L->getLoopPreheader();
assert(Preheader && "A preheader should have been created before calling"
"this function");
SILBasicBlock *Header = L->getHeader();
SILFunction *F = Header->getParent();
// Figure out which basic blocks contain back-edges to the loop header.
SmallVector<SILBasicBlock*, 4> BackedgeBlocks;
for (auto *Pred : Header->getPredecessorBlocks()) {
if (Pred == Preheader)
continue;
// Branches can be handled trivially and CondBranch edges can be split.
if (!isa<BranchInst>(Pred->getTerminator())
&& !isa<CondBranchInst>(Pred->getTerminator())) {
return nullptr;
}
BackedgeBlocks.push_back(Pred);
}
// Create and insert the new backedge block...
SILBasicBlock *BEBlock = F->createBasicBlockAfter(BackedgeBlocks.back());
LLVM_DEBUG(llvm::dbgs() << " Inserting unique backedge block " << *BEBlock
<< "\n");
// Now that the block has been inserted into the function, create PHI nodes in
// the backedge block which correspond to any PHI nodes in the header block.
SmallVector<SILValue, 6> BBArgs;
for (auto *BBArg : Header->getArguments()) {
BBArgs.push_back(BEBlock->createPhiArgument(
BBArg->getType(), BBArg->getOwnershipKind(), /* decl */ nullptr,
BBArg->isReborrow(), BBArg->hasPointerEscape()));
}
// Arbitrarily pick one of the predecessor's branch locations.
SILLocation BranchLoc = BackedgeBlocks.back()->getTerminator()->getLoc();
// Create an unconditional branch that propagates the newly created BBArgs.
SILBuilder(BEBlock).createBranch(BranchLoc, Header, BBArgs);
// Redirect the backedge blocks to BEBlock instead of Header.
for (auto *Pred : BackedgeBlocks) {
auto *Terminator = Pred->getTerminator();
if (auto *Branch = dyn_cast<BranchInst>(Terminator))
changeBranchTarget(Branch, 0, BEBlock, /*PreserveArgs=*/true);
else if (auto *CondBranch = dyn_cast<CondBranchInst>(Terminator)) {
unsigned EdgeIdx = (CondBranch->getTrueBB() == Header)
? CondBranchInst::TrueIdx : CondBranchInst::FalseIdx;
changeBranchTarget(CondBranch, EdgeIdx, BEBlock, /*PreserveArgs=*/true);
}
else {
llvm_unreachable("Expected a branch terminator.");
}
}
// Update Loop Information - we know that this block is now in the current
// loop and all parent loops.
L->addBasicBlockToLoop(BEBlock, LI->getBase());
// Update dominator information
SILBasicBlock *DomBB = BackedgeBlocks.back();
for (auto BBIter = BackedgeBlocks.begin(),
BBEnd = std::prev(BackedgeBlocks.end());
BBIter != BBEnd; ++BBIter) {
DomBB = DT->findNearestCommonDominator(DomBB, *BBIter);
}
DT->addNewBlock(BEBlock, DomBB);
return BEBlock;
}
/// Canonicalize the loop for rotation and downstream passes.
///
/// Create a single preheader and single latch block.
///
/// FIXME: We should identify nested loops with a common header and separate
/// them before merging the latch. See LLVM's separateNestedLoop.
bool swift::canonicalizeLoop(SILLoop *L, DominanceInfo *DT, SILLoopInfo *LI) {
bool ChangedCFG = false;
if (!L->getLoopPreheader()) {
insertPreheader(L, DT, LI);
assert(L->getLoopPreheader() && "L should have a pre-header now");
ChangedCFG = true;
}
if (!L->getLoopLatch())
ChangedCFG |= (insertBackedgeBlock(L, DT, LI) != nullptr);
return ChangedCFG;
}
bool swift::canonicalizeAllLoops(DominanceInfo *DT, SILLoopInfo *LI) {
// Visit the loop nest hierarchy bottom up.
bool MadeChange = false;
llvm::SmallVector<std::pair<SILLoop *, bool>, 16> Worklist;
for (auto *L : LI->getTopLevelLoops())
Worklist.push_back({L, L->isInnermost()});
while (Worklist.size()) {
SILLoop *L;
bool VisitedAlready;
std::tie(L, VisitedAlready) = Worklist.pop_back_val();
if (!VisitedAlready) {
Worklist.push_back({L, true});
for (auto *Subloop : L->getSubLoopRange()) {
Worklist.push_back({Subloop, Subloop->isInnermost()});
}
continue;
}
MadeChange |= canonicalizeLoop(L, DT, LI);
}
return MadeChange;
}
bool swift::canDuplicateLoopInstruction(SILLoop *L, SILInstruction *I) {
SinkAddressProjections sinkProj;
for (auto res : I->getResults()) {
if (!res->getType().isAddress()) {
continue;
}
auto canSink = sinkProj.analyzeAddressProjections(I);
if (!canSink) {
return false;
}
}
// The deallocation of a stack allocation must be in the loop, otherwise the
// deallocation will be fed by a phi node of two allocations.
if (I->isAllocatingStack()) {
for (auto *UI : cast<SingleValueInstruction>(I)->getUses()) {
if (UI->getUser()->isDeallocatingStack()) {
if (!L->contains(UI->getUser()->getParent()))
return false;
}
}
return true;
}
if (I->isDeallocatingStack()) {
SILInstruction *alloc = nullptr;
if (auto *dealloc = dyn_cast<DeallocStackInst>(I)) {
SILValue address = dealloc->getOperand();
if (isa<AllocStackInst>(address) || isa<PartialApplyInst>(address))
alloc = cast<SingleValueInstruction>(address);
}
if (auto *dealloc = dyn_cast<DeallocStackRefInst>(I))
alloc = dealloc->getAllocRef();
return alloc && L->contains(alloc);
}
// In OSSA, partial_apply is not considered stack allocating. Nonetheless,
// prevent it from being cloned so OSSA lowering can directly convert it to a
// single allocation.
if (auto *PA = dyn_cast<PartialApplyInst>(I)) {
if (PA->isOnStack()) {
assert(PA->getFunction()->hasOwnership());
return false;
}
}
// Like partial_apply [onstack], mark_dependence [nonescaping] creates a
// borrow scope. We currently assume that a set of dominated scope-ending uses
// can be found.
if (auto *MD = dyn_cast<MarkDependenceInst>(I)) {
return !MD->isNonEscaping();
}
// CodeGen can't build ssa for objc methods.
if (auto *Method = dyn_cast<MethodInst>(I)) {
if (Method->getMember().isForeign) {
for (auto *UI : Method->getUses()) {
if (!L->contains(UI->getUser()))
return false;
}
}
return true;
}
// We can't have a phi of two openexistential instructions of different UUID.
if (isa<OpenExistentialAddrInst>(I) || isa<OpenExistentialRefInst>(I) ||
isa<OpenExistentialMetatypeInst>(I) || isa<OpenExistentialValueInst>(I) ||
isa<OpenExistentialBoxInst>(I) || isa<OpenExistentialBoxValueInst>(I) ||
isa<OpenPackElementInst>(I)) {
SingleValueInstruction *OI = cast<SingleValueInstruction>(I);
for (auto *UI : OI->getUses())
if (!L->contains(UI->getUser()))
return false;
return true;
}
if (isa<ThrowInst>(I) || isa<ThrowAddrInst>(I))
return false;
// The entire access must be within the loop.
if (auto BAI = dyn_cast<BeginAccessInst>(I)) {
for (auto *UI : BAI->getUses()) {
if (!L->contains(UI->getUser()))
return false;
}
return true;
}
// The entire coroutine execution must be within the loop.
// Note that we don't have to worry about the reverse --- a loop which
// contains an end_apply or abort_apply of an external begin_apply ---
// because that wouldn't be structurally valid in the first place.
if (auto BAI = dyn_cast<BeginApplyInst>(I)) {
for (auto UI : BAI->getTokenResult()->getUses()) {
auto User = UI->getUser();
assert(isa<EndApplyInst>(User) || isa<AbortApplyInst>(User));
if (!L->contains(User))
return false;
}
return true;
}
if (auto *bi = dyn_cast<BuiltinInst>(I)) {
if (bi->getBuiltinInfo().ID == BuiltinValueKind::Once)
return false;
}
if (isa<DynamicMethodBranchInst>(I))
return false;
// Can't duplicate get/await_async_continuation.
if (isa<AwaitAsyncContinuationInst>(I) ||
isa<GetAsyncContinuationAddrInst>(I) || isa<GetAsyncContinuationInst>(I))
return false;
// Some special cases above that aren't considered isTriviallyDuplicatable
// return true early.
assert(I->isTriviallyDuplicatable() &&
"Code here must match isTriviallyDuplicatable in SILInstruction");
return true;
}
//===----------------------------------------------------------------------===//
// Loop Visitor
//===----------------------------------------------------------------------===//
void SILLoopVisitor::run() {
// We visit the loop nest inside out via a depth first, post order using
// this
// worklist.
llvm::SmallVector<std::pair<SILLoop *, bool>, 32> Worklist;
for (auto *L : LI->getTopLevelLoops()) {
Worklist.push_back({L, L->isInnermost()});
}
while (Worklist.size()) {
SILLoop *L;
bool Visited;
std::tie(L, Visited) = Worklist.pop_back_val();
if (!Visited) {
Worklist.push_back({L, true});
for (auto *SubLoop : L->getSubLoops()) {
Worklist.push_back({SubLoop, SubLoop->isInnermost()});
}
continue;
}
runOnLoop(L);
}
runOnFunction(F);
}
|