1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
|
//===--- OwnershipOptUtils.cpp --------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// Ownership Utilities that rely on SILOptimizer functionality.
///
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
#include "swift/Basic/Defer.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/LinearLifetimeChecker.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/ScopedAddressUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Basic scope and lifetime extension API
//===----------------------------------------------------------------------===//
void swift::extendOwnedLifetime(SILValue ownedValue,
PrunedLivenessBoundary &lifetimeBoundary,
InstructionDeleter &deleter) {
// Gather the current set of destroy_values, which may die.
llvm::SmallSetVector<Operand *, 4> extraConsumes;
SmallPtrSet<SILInstruction *, 4> extraConsumers;
for (Operand *use : ownedValue->getUses()) {
if (use->isConsuming()) {
extraConsumes.insert(use);
extraConsumers.insert(use->getUser());
}
}
// Insert or reuse a destroy_value at all last users.
auto createDestroy = [&](SILBuilder &builder) {
auto loc = RegularLocation::getAutoGeneratedLocation(
builder.getInsertionPointLoc());
auto *destroy = builder.createDestroyValue(loc, ownedValue);
deleter.getCallbacks().createdNewInst(destroy);
};
for (SILInstruction *lastUser : lifetimeBoundary.lastUsers) {
if (extraConsumers.erase(lastUser))
continue;
SILBuilderWithScope::insertAfter(lastUser, createDestroy);
}
// Insert a destroy_value at all boundary edges.
for (SILBasicBlock *edge : lifetimeBoundary.boundaryEdges) {
SILBuilderWithScope builder(edge->begin());
createDestroy(builder);
}
// Delete or copy extra consumes.
for (auto *consume : extraConsumes) {
auto *consumer = consume->getUser();
if (!extraConsumers.count(consumer))
continue;
if (isa<DestroyValueInst>(consumer)) {
deleter.forceDelete(consumer);
continue;
}
auto loc = RegularLocation::getAutoGeneratedLocation(consumer->getLoc());
auto *copy = SILBuilderWithScope(consumer).createCopyValue(loc, ownedValue);
consume->set(copy);
deleter.getCallbacks().createdNewInst(copy);
}
}
void swift::extendLocalBorrow(BeginBorrowInst *beginBorrow,
PrunedLivenessBoundary &guaranteedBoundary,
InstructionDeleter &deleter) {
// Gather the current set of end_borrows, which may die.
SmallVector<EndBorrowInst *, 4> endBorrows;
SmallPtrSet<EndBorrowInst *, 4> deadEndBorrows;
for (Operand *use : beginBorrow->getUses()) {
if (auto *endBorrow = dyn_cast<EndBorrowInst>(use->getUser())) {
endBorrows.push_back(endBorrow);
deadEndBorrows.insert(endBorrow);
continue;
}
assert(use->getOperandOwnership() != OperandOwnership::EndBorrow
&& use->getOperandOwnership() != OperandOwnership::Reborrow
&& "expecting a purely local borrow scope");
}
// Insert or reuse an end_borrow at all last users.
auto createEndBorrow = [&](SILBuilder &builder) {
auto loc = RegularLocation::getAutoGeneratedLocation(
builder.getInsertionPointLoc());
auto *endBorrow = builder.createEndBorrow(loc, beginBorrow);
deleter.getCallbacks().createdNewInst(endBorrow);
};
for (SILInstruction *lastUser : guaranteedBoundary.lastUsers) {
if (auto *endBorrow = dyn_cast<EndBorrowInst>(lastUser)) {
if (deadEndBorrows.erase(endBorrow))
continue;
}
SILBuilderWithScope::insertAfter(lastUser, createEndBorrow);
}
// Insert an end_borrow at all boundary edges.
for (SILBasicBlock *edge : guaranteedBoundary.boundaryEdges) {
SILBuilderWithScope builder(edge->begin());
createEndBorrow(builder);
}
// Delete dead end_borrows.
for (auto *endBorrow : endBorrows) {
if (deadEndBorrows.count(endBorrow))
deleter.forceDelete(endBorrow);
}
}
bool swift::computeGuaranteedBoundary(SILValue value,
PrunedLivenessBoundary &boundary) {
assert(value->getOwnershipKind() == OwnershipKind::Guaranteed);
// Place end_borrows that cover the load_borrow uses. It is not necessary to
// cover the outer borrow scope of the extract's operand. If a lexical
// borrow scope exists for the outer value, which is now in memory, then
// its alloc_stack will be marked lexical, and the in-memory values will be
// kept alive until the end of the outer scope.
SmallVector<Operand *, 4> usePoints;
bool noEscape = findInnerTransitiveGuaranteedUses(value, &usePoints);
SmallVector<SILBasicBlock *, 4> discoveredBlocks;
SSAPrunedLiveness liveness(value->getFunction(), &discoveredBlocks);
liveness.initializeDef(value);
for (auto *use : usePoints) {
assert(!use->isLifetimeEnding());
liveness.updateForUse(use->getUser(), /*lifetimeEnding*/ false);
}
liveness.computeBoundary(boundary);
return noEscape;
}
//===----------------------------------------------------------------------===//
// GuaranteedOwnershipExtension
//===----------------------------------------------------------------------===//
// Can the OSSA ownership of the \p parentAddress cover all uses of the \p
// childAddress?
GuaranteedOwnershipExtension::Status
GuaranteedOwnershipExtension::checkAddressOwnership(SILValue parentAddress,
SILValue childAddress) {
AddressOwnership addressOwnership(parentAddress);
if (!addressOwnership.hasLocalOwnershipLifetime()) {
// Indirect Arg, Stack, Global, Unidentified, Yield
// (these have no reference lifetime to extend).
return Valid;
}
SmallVector<Operand *, 8> childUses;
if (findTransitiveUsesForAddress(childAddress, &childUses)
!= AddressUseKind::NonEscaping) {
return Invalid; // pointer escape, so we don't know required lifetime
}
SILValue referenceRoot = addressOwnership.getOwnershipReferenceRoot();
assert(referenceRoot && "expect to find a reference to Box/Class/Tail");
if (referenceRoot->getOwnershipKind() != OwnershipKind::Guaranteed) {
// Note: Addresses are normally guarded by a borrow scope. But eventually,
// an address base can be considered an implicit borrow. This current
// handles project_box, which is not in a borrow scope (it is sadly modeled
// as a PointerEscape). But we can treat project_box like an implicit borrow
// in this context.
return checkLifetimeExtension(referenceRoot, childUses);
}
BorrowedValue parentBorrow(referenceRoot);
if (!parentBorrow)
return Invalid; // unexpected borrow introducer
return checkBorrowExtension(parentBorrow, childUses);
}
// Can the OSSA scope of \p borrow cover all \p newUses?
GuaranteedOwnershipExtension::Status
GuaranteedOwnershipExtension::checkBorrowExtension(
BorrowedValue borrow, ArrayRef<Operand *> newUses) {
if (!borrow.isLocalScope())
return Valid; // arguments have whole-function ownership
assert(guaranteedLiveness.empty());
borrow.computeTransitiveLiveness(guaranteedLiveness);
if (guaranteedLiveness.areUsesWithinBoundary(newUses, &deBlocks))
return Valid; // reuse the borrow scope as-is
beginBorrow = dyn_cast<BeginBorrowInst>(borrow.value);
if (!beginBorrow)
return Invalid; // cannot extend load_borrow without memory lifetime
// Extend liveness to the new uses before returning any status that leads to
// transformation.
for (Operand *use : newUses) {
guaranteedLiveness.updateForUse(use->getUser(), /*lifetimeEnding*/ false);
}
// It is unusual to have a borrow scope that (a) dominates the new uses, (b)
// does not already cover the new uses, but (c) already has a reborrow for
// some other reason.
if (borrow.hasReborrow())
return Invalid; // Can only extend a local scope up to dominated uses
auto status = checkLifetimeExtension(beginBorrow->getOperand(), newUses);
if (status == Valid) {
// The owned lifetime is adequate, but the borrow scope must be extended.
return ExtendBorrow;
}
return status;
}
GuaranteedOwnershipExtension::Status
GuaranteedOwnershipExtension::checkLifetimeExtension(
SILValue ownedValue, ArrayRef<Operand *> newUses) {
assert(ownedLifetime.empty());
auto ownershipKind = ownedValue->getOwnershipKind();
if (ownershipKind == OwnershipKind::None)
return Valid;
// If the ownedValue is not owned, give up for simplicity. We expect nested
// borrows to be removed.
if (ownershipKind != OwnershipKind::Owned)
return Invalid;
ownedLifetime.initializeDef(ownedValue);
for (Operand *use : ownedValue->getUses()) {
auto *user = use->getUser();
if (use->isConsuming()) {
ownedLifetime.updateForUse(user, true);
ownedConsumeBlocks.push_back(user->getParent());
}
}
if (ownedLifetime.areUsesWithinBoundary(newUses, &deBlocks))
return Valid;
return ExtendLifetime; // Can't cover newUses without destroy sinking.
}
void GuaranteedOwnershipExtension::transform(Status status) {
switch (status) {
case Invalid:
case Valid:
return;
case ExtendBorrow: {
PrunedLivenessBoundary guaranteedBoundary;
guaranteedLiveness.computeBoundary(guaranteedBoundary, ownedConsumeBlocks);
extendLocalBorrow(beginBorrow, guaranteedBoundary, deleter);
break;
}
case ExtendLifetime: {
ownedLifetime.extendAcrossLiveness(guaranteedLiveness);
PrunedLivenessBoundary ownedBoundary;
ownedLifetime.computeBoundary(ownedBoundary, ownedConsumeBlocks);
extendOwnedLifetime(beginBorrow->getOperand(), ownedBoundary, deleter);
PrunedLivenessBoundary guaranteedBoundary;
guaranteedLiveness.computeBoundary(guaranteedBoundary, ownedConsumeBlocks);
extendLocalBorrow(beginBorrow, guaranteedBoundary, deleter);
break;
}
}
}
//===----------------------------------------------------------------------===//
// Utility Helper Functions
//===----------------------------------------------------------------------===//
static void cleanupOperandsBeforeDeletion(SILInstruction *oldValue,
InstModCallbacks &callbacks) {
SILBuilderWithScope builder(oldValue);
for (auto &op : oldValue->getAllOperands()) {
if (!op.isLifetimeEnding()) {
continue;
}
switch (op.get()->getOwnershipKind()) {
case OwnershipKind::Any:
llvm_unreachable("Invalid ownership for value");
case OwnershipKind::Owned: {
auto *dvi = builder.createDestroyValue(oldValue->getLoc(), op.get());
callbacks.createdNewInst(dvi);
continue;
}
case OwnershipKind::Guaranteed: {
// Should only happen once we model destructures as true reborrows.
auto *ebi = builder.createEndBorrow(oldValue->getLoc(), op.get());
callbacks.createdNewInst(ebi);
continue;
}
case OwnershipKind::None:
continue;
case OwnershipKind::Unowned:
llvm_unreachable("Unowned object can never be consumed?!");
}
llvm_unreachable("Covered switch isn't covered");
}
}
//===----------------------------------------------------------------------===//
// Ownership RAUW Helper Functions
//===----------------------------------------------------------------------===//
// Determine whether it is valid to replace \p oldValue with \p newValue by
// directly checking ownership requirements. This does not determine whether the
// scope of the newValue can be fully extended.
bool OwnershipRAUWHelper::hasValidRAUWOwnership(SILValue oldValue,
SILValue newValue,
ArrayRef<Operand *> oldUses) {
auto newOwnershipKind = newValue->getOwnershipKind();
// If the either value is lexical, replacing its uses may result in
// shortening or lengthening its lifetime in ways that don't respect lexical
// scope and deinit barriers.
//
// Specifically, we have the following cases:
//
// +--------+--------+
// |oldValue|newValue|
// +--------+--------+
// | not | not | legal
// +--------+--------+
// |lexical | not | illegal
// +--------+--------+
// | * |lexical | legal so long as it doesn't extend newValue's lifetime
// +--------+--------+
if ((oldValue->isLexical() && !newValue->isLexical()) ||
(newValue->isLexical() &&
!areUsesWithinLexicalValueLifetime(newValue, oldUses)))
return false;
// If our new kind is ValueOwnershipKind::None, then we are fine. We
// trivially support that. This check also ensures that we can always
// replace any value with a ValueOwnershipKind::None value.
if (newOwnershipKind == OwnershipKind::None)
return true;
// If our old ownership kind is ValueOwnershipKind::None and our new kind is
// not, we may need to do more work that has not been implemented yet. So
// bail.
//
// Due to our requirement that types line up, this can only occur given a
// non-trivial typed value with None ownership. This can only happen when
// oldValue is a trivial payloaded or no-payload non-trivially typed
// enum. That doesn't occur that often so we just bail on it today until we
// implement this functionality.
if (oldValue->getOwnershipKind() == OwnershipKind::None)
return false;
// First check if oldValue is SILUndef. If it is, then we know that:
//
// 1. SILUndef (and thus oldValue) must have OwnershipKind::None.
// 2. newValue is not OwnershipKind::None due to our check above.
//
// Thus we know that we would be replacing a value with OwnershipKind::None
// with a value with non-None ownership. This is a case we don't support, so
// we can bail now.
if (isa<SILUndef>(oldValue))
return false;
// Ok, we now know that we do not have SILUndef implying that we must be able
// to get a module from our value since we must have an argument or an
// instruction.
auto *m = oldValue->getModule();
assert(m);
// If we are in Raw SIL, just bail at this point. We do not support
// ownership fixups.
if (m->getStage() == SILStage::Raw)
return false;
// OSSA rauw can create copies. Bail out if we have move only values.
if (newValue->getType().isMoveOnly()) {
return false;
}
return true;
}
// Determine whether it is valid to replace \p oldValue with \p newValue and
// extend the lifetime of \p oldValue to cover the new uses.
static bool canFixUpOwnershipForRAUW(SILValue oldValue, SILValue newValue,
OwnershipFixupContext &context) {
switch (oldValue->getOwnershipKind()) {
case OwnershipKind::Guaranteed: {
// Check that the old lifetime can be extended and record the necessary
// book-keeping in the OwnershipFixupContext.
context.clear();
// Check that no transitive uses have a PointerEscape, and record the leaf
// uses for liveness extension.
//
// FIXME: Use findExtendedTransitiveGuaranteedUses and switch the
// implementation of borrowCopyOverGuaranteedUses to
// GuaranteedOwnershipExtension. Utils then, reborrows are considered
// pointer escapes, causing findTransitiveGuaranteedUses to return false. So
// they can be ignored.
auto visitReborrow = [&](Operand *reborrow) {};
if (!findTransitiveGuaranteedUses(oldValue, context.guaranteedUsePoints,
visitReborrow)) {
return false;
}
return OwnershipRAUWHelper::hasValidRAUWOwnership(
oldValue, newValue, context.guaranteedUsePoints);
}
default: {
SmallVector<Operand *, 8> ownedUsePoints;
// If newValue is lexical, find the uses of oldValue so that it can be
// determined whether the replacement would illegally extend the lifetime
// of newValue.
if (newValue->isLexical() &&
!findUsesOfSimpleValue(oldValue, &ownedUsePoints))
return false;
return OwnershipRAUWHelper::hasValidRAUWOwnership(oldValue, newValue,
ownedUsePoints);
}
}
}
bool swift::areUsesWithinLexicalValueLifetime(SILValue value,
ArrayRef<Operand *> uses) {
assert(value->isLexical());
// The lexical lifetime of a function argument is the whole body of the
// function.
if (isa<SILFunctionArgument>(value))
return true;
if (auto borrowedValue = BorrowedValue(value)) {
auto *function = value->getFunction();
MultiDefPrunedLiveness liveness(function);
borrowedValue.computeTransitiveLiveness(liveness);
DeadEndBlocks deadEndBlocks(function);
return liveness.areUsesWithinBoundary(uses, &deadEndBlocks);
}
return false;
}
//===----------------------------------------------------------------------===//
// BorrowedLifetimeExtender
//===----------------------------------------------------------------------===//
/// Model an extended borrow scope, including transitive reborrows. This applies
/// to "local" borrow scopes (begin_borrow, load_borrow, & phi).
///
/// Allow extending the lifetime of an owned value that dominates this borrowed
/// value across that extended borrow scope. This handles uses of reborrows that
/// are not dominated by the owned value by generating phis and copying the
/// borrowed values the reach this borrow scope from non-dominated paths.
///
/// This produces somewhat canonical owned phis, although that isn't a
/// requirement for valid SIL. Given an owned value, a dominated borrowed value,
/// and a reborrow:
///
/// %ownedValue = ...
/// %borrowedValue = ...
/// %reborrow = phi(%borrowedValue, %otherBorrowedValue)
///
/// %otherBorrowedValue will always be copied even if %ownedValue also dominates
/// %otherBorrowedValue, as such:
///
/// %otherCopy = copy_value %borrowedValue
/// %newPhi = phi(%ownedValue, %otherCopy)
///
/// The immediate effect is to produce an unnecessary copy, but it avoids
/// extending %ownedValue's liveness to new paths and hopefully simplifies
/// downstream optimization and debugging. Unnecessary copies could be
/// avoided with simple dominance check if it becomes desirable to do so.
class BorrowedLifetimeExtender {
BorrowedValue borrowedValue;
// Owned value currently being extended over borrowedValue.
SILValue currentOwnedValue;
InstModCallbacks &callbacks;
llvm::SmallVector<PhiValue, 4> reborrowedPhis;
llvm::SmallDenseMap<PhiValue, PhiValue, 4> reborrowedToOwnedPhis;
/// Check that all reaching operands are handled. This can be removed once the
/// utility and OSSA representation are stable.
SWIFT_ASSERT_ONLY_DECL(llvm::SmallDenseSet<PhiOperand, 4> reborrowedOperands);
public:
/// Precondition: \p borrowedValue must introduce a local borrow scope
/// (begin_borrow, load_borrow, & phi).
BorrowedLifetimeExtender(BorrowedValue borrowedValue,
InstModCallbacks &callbacks)
: borrowedValue(borrowedValue), callbacks(callbacks) {
assert(borrowedValue.isLocalScope() && "expect a valid borrowed value");
}
/// Extend \p ownedValue over this extended borrow scope.
///
/// Precondition: \p ownedValue dominates this borrowed value.
void extendOverBorrowScopeAndConsume(SILValue ownedValue);
protected:
/// Initially map the reborrowed phi to an invalid value prior to creating the
/// owned phi.
void discoverReborrow(PhiValue reborrowedPhi) {
if (reborrowedToOwnedPhis.try_emplace(reborrowedPhi, PhiValue()).second) {
reborrowedPhis.push_back(reborrowedPhi);
}
}
/// Remap the reborrowed phi to an valid owned phi after creating it.
void mapOwnedPhi(PhiValue reborrowedPhi, PhiValue ownedPhi) {
reborrowedToOwnedPhis[reborrowedPhi] = ownedPhi;
}
/// Get the owned value associated with this reborrowed operand, or return an
/// invalid SILValue indicating that the borrowed lifetime does not reach this
/// operand.
SILValue getExtendedOwnedValue(PhiOperand reborrowedOper) {
// If this operand reborrows the original borrow, then the currentOwned phi
// reaches it directly.
SILValue borrowSource = reborrowedOper.getSource();
if (borrowSource == borrowedValue.value)
return currentOwnedValue;
// Check if the borrowed operand's source is already mapped to an owned phi.
auto reborrowedAndOwnedPhi = reborrowedToOwnedPhis.find(borrowSource);
if (reborrowedAndOwnedPhi != reborrowedToOwnedPhis.end()) {
// Return the already-mapped owned phi.
assert(reborrowedOperands.erase(reborrowedOper));
return reborrowedAndOwnedPhi->second;
}
// The owned value does not reach this reborrowed operand.
assert(
!reborrowedOperands.count(reborrowedOper)
&& "reachable borrowed phi operand must be mapped to an owned value");
return SILValue();
}
void analyzeExtendedScope();
SILValue createCopyAtEdge(PhiOperand reborrowOper);
void destroyAtScopeEnd(SILValue ownedValue, BorrowedValue pairedBorrow);
};
// Gather all transitive phi-reborrows and check that all the borrowed uses can
// be found with no escapes.
//
// Calls discoverReborrow to populate reborrowedPhis.
void BorrowedLifetimeExtender::analyzeExtendedScope() {
auto visitReborrow = [&](Operand *endScope) {
if (auto borrowingOper = BorrowingOperand(endScope)) {
assert(borrowingOper.isReborrow());
SWIFT_ASSERT_ONLY(reborrowedOperands.insert(endScope));
// TODO: if non-phi reborrows are added, handle multiple results.
discoverReborrow(borrowingOper.getBorrowIntroducingUserResult().value);
}
return true;
};
bool result = borrowedValue.visitLocalScopeEndingUses(visitReborrow);
assert(result && "visitReborrow always succeeds, escapes are irrelevant");
// Note: Iterate in the same manner as findExtendedTransitiveGuaranteedUses(),
// but using BorrowedLifetimeExtender's own reborrowedPhis.
for (unsigned idx = 0; idx < reborrowedPhis.size(); ++idx) {
auto borrowedValue = BorrowedValue(reborrowedPhis[idx]);
result = borrowedValue.visitLocalScopeEndingUses(visitReborrow);
assert(result && "visitReborrow always succeeds, escapes are irrelevant");
}
}
// Insert a copy on this edge. This might not be necessary if the owned
// value dominates this path, but this avoids forcing the owned value to be
// live across new paths.
//
// TODO: consider copying the base of the borrowed value instead of the
// borrowed value directly. It's likely that the copy is used outside of the
// borrow scope, in which case, canonicalizeOSSA will create a copy outside
// the borrow scope anyway. However, we can't be sure that the base is the
// same type.
//
// TODO: consider reusing copies that dominate multiple reborrowed
// operands. However, this requires copying in an earlier block and inserting
// post-dominating destroys, which may be better handled in an ownership phi
// canonicalization pass.
SILValue BorrowedLifetimeExtender::createCopyAtEdge(PhiOperand reborrowOper) {
auto *branch = reborrowOper.getBranch();
auto loc = RegularLocation::getAutoGeneratedLocation(branch->getLoc());
auto *copy = SILBuilderWithScope(branch).createCopyValue(
loc, reborrowOper.getSource());
callbacks.createdNewInst(copy);
return copy;
}
// Destroy \p ownedValue at \p pairedBorrow's scope-ending uses, excluding
// reborrows.
//
// Precondition: ownedValue takes ownership of its value at the same point as
// pairedBorrow. e.g. an owned and guaranteed pair of phis.
void BorrowedLifetimeExtender::destroyAtScopeEnd(SILValue ownedValue,
BorrowedValue pairedBorrow) {
pairedBorrow.visitLocalScopeEndingUses([&](Operand *scopeEnd) {
if (scopeEnd->getOperandOwnership() == OperandOwnership::Reborrow)
return true;
auto *endInst = scopeEnd->getUser();
assert(!isa<TermInst>(endInst) && "branch must be a reborrow");
auto *destroyPt = &*std::next(endInst->getIterator());
auto *destroy = SILBuilderWithScope(destroyPt).createDestroyValue(
destroyPt->getLoc(), ownedValue);
callbacks.createdNewInst(destroy);
return true;
});
}
// Insert and map an owned phi for each reborrowed phi.
//
// For each reborrowed phi, insert a copy on each edge that does not originate
// from the extended borrowedValue.
//
// TODO: If non-phi reborrows are added, they would also need to be
// mapped to their owned counterpart. This means generating new owned
// struct/destructure instructions.
void BorrowedLifetimeExtender::
extendOverBorrowScopeAndConsume(SILValue ownedValue) {
currentOwnedValue = ownedValue;
// Populate the reborrowedPhis vector.
analyzeExtendedScope();
// Warning: don't use the original callbacks in this function after creating a
// deleter.
InstModCallbacks tempCallbacks = callbacks;
InstructionDeleter deleter(std::move(tempCallbacks));
// Generate and map the phis with undef operands first, in case of recursion.
auto undef = SILUndef::get(ownedValue);
for (PhiValue reborrowedPhi : reborrowedPhis) {
auto *phiBlock = reborrowedPhi.phiBlock;
auto *ownedPhi = phiBlock->createPhiArgument(ownedValue->getType(),
OwnershipKind::Owned);
for (auto *predBlock : phiBlock->getPredecessorBlocks()) {
TermInst *ti = predBlock->getTerminator();
addNewEdgeValueToBranch(ti, phiBlock, undef, deleter);
}
mapOwnedPhi(reborrowedPhi, PhiValue(ownedPhi));
}
// Generate copies and set the phi operands.
for (PhiValue reborrowedPhi : reborrowedPhis) {
PhiValue ownedPhi = reborrowedToOwnedPhis[reborrowedPhi];
reborrowedPhi.getValue()->visitIncomingPhiOperands(
// For each reborrowed operand, get the owned value for that edge,
// and set the owned phi's operand.
[&](Operand *reborrowedOper) {
SILValue ownedVal = getExtendedOwnedValue(reborrowedOper);
if (!ownedVal) {
ownedVal = createCopyAtEdge(reborrowedOper);
}
TermInst *branch = PhiOperand(reborrowedOper).getBranch();
branch->getOperandRef(ownedPhi.argIndex).set(ownedVal);
return true;
});
}
assert(reborrowedOperands.empty() && "not all phi operands are handled");
// Create destroys at the last uses.
destroyAtScopeEnd(ownedValue, borrowedValue);
for (PhiValue reborrowedPhi : reborrowedPhis) {
PhiValue ownedPhi = reborrowedToOwnedPhis[reborrowedPhi];
destroyAtScopeEnd(ownedPhi, BorrowedValue(reborrowedPhi));
}
}
//===----------------------------------------------------------------------===//
// Ownership Lifetime Extender
//===----------------------------------------------------------------------===//
namespace {
struct OwnershipLifetimeExtender {
OwnershipFixupContext &ctx;
/// Create a new copy of \p value assuming that our caller will clean up the
/// copy along all paths that go through consuming point. Operationally this
/// means that the API will insert compensating destroy_value on the copy
/// along all paths that do not go through consuming point.
///
/// DISCUSSION: If \p consumingPoint is an instruction that forwards \p value,
/// calling this and then RAUWing with \p value guarantee that \p value will
/// be consumed by the forwarding instruction's results consuming uses.
CopyValueInst *createPlusOneCopy(SILValue value,
SILInstruction *consumingPoint);
/// Create a copy of \p value that covers all of \p range and insert all
/// needed destroy_values. We assume that no uses in \p range consume \p
/// value.
CopyValueInst *createPlusZeroCopy(SILValue value, ArrayRef<Operand *> range) {
return createPlusZeroCopy<ArrayRef<Operand *>>(value, range);
}
/// Create a copy of \p value that covers all of \p range and insert all
/// needed destroy_values. We assume that all uses in \p range do not consume
/// \p value.
///
/// We return our copy_value to the user at +0 to show that they do not need
/// to insert cleanup destroys.
template <typename RangeTy>
CopyValueInst *createPlusZeroCopy(SILValue value, const RangeTy &range);
/// Borrow \p newValue over the extended lifetime of \p borrowedValue.
BeginBorrowInst *borrowCopyOverScope(SILValue newValue,
BorrowedValue borrowedValue);
/// Borrow-copy \p newValue over \p guaranteedUses. Copy newValue, borrow the
/// copy, and extend the lifetime of the borrow-copy over guaranteedUsePoints.
///
/// \p borrowPoint is a value whose definition will be the location of
/// the new borrow.
template <typename RangeTy>
BeginBorrowInst *
borrowCopyOverGuaranteedUses(SILValue newValue,
SILBasicBlock::iterator borrowPoint,
RangeTy guaranteedUsePoints);
template <typename RangeTy>
BeginBorrowInst *
borrowCopyOverGuaranteedUsers(SILValue newValue,
SILBasicBlock::iterator borrowPoint,
RangeTy guaranteedUsers);
/// Borrow \p newValue over the lifetime of \p guaranteedValue. Return the
/// new guaranteed value.
SILValue borrowOverValue(SILValue newValue, SILValue guaranteedValue);
/// Borrow \p newValue over \p singleGuaranteedUse. Return the
/// new guaranteed value.
///
/// Precondition: if \p use ends a borrow scope, then \p newValue dominates
/// the BorrowedValue that begins the scope.
SILValue borrowOverSingleUse(SILValue newValue,
Operand *singleGuaranteedUse);
SILValue
borrowOverSingleNonLifetimeEndingUser(SILValue newValue,
SILInstruction *nonLifetimeEndingUser);
};
} // end anonymous namespace
/// Lifetime extend \p value over \p consumingPoint, assuming that \p
/// consumingPoint will consume \p value after the client performs replacement
/// (this implicit destruction on the caller-side makes it a "plus-one"
/// copy). Destroy \p copy on all paths that don't reach \p consumingPoint.
///
/// Precondition: \p value is owned
///
/// Precondition: \p consumingPoint is dominated by \p value
CopyValueInst *
OwnershipLifetimeExtender::createPlusOneCopy(SILValue value,
SILInstruction *consumingPoint) {
auto *copyPoint = value->getNextInstruction();
auto loc = copyPoint->getLoc();
auto *copy = SILBuilderWithScope(copyPoint).createCopyValue(loc, value);
auto &callbacks = ctx.callbacks;
callbacks.createdNewInst(copy);
auto *result = copy;
findJointPostDominatingSet(
copy->getParent(), consumingPoint->getParent(),
// inputBlocksFoundDuringWalk.
[&](SILBasicBlock *loopBlock) {
// Since copy dominates consumingPoint, it must be outside the
// loop. Otherwise backward traversal would have stopped at copyPoint.
//
// Create an extra copy when the consumingPoint is inside a loop and the
// original copy is outside the loop. The new copy will be consumed
// within the loop in the same block as the consume. The original copy
// will be destroyed on all paths exiting the loop.
assert(loopBlock == consumingPoint->getParent());
auto front = loopBlock->begin();
SILBuilderWithScope newBuilder(front);
result = newBuilder.createCopyValue(front->getLoc(), copy);
callbacks.createdNewInst(result);
},
// Leaky blocks that never reach consumingPoint.
[&](SILBasicBlock *postDomBlock) {
auto front = postDomBlock->begin();
SILBuilderWithScope newBuilder(front);
auto loc = RegularLocation::getAutoGeneratedLocation(front->getLoc());
auto *dvi = newBuilder.createDestroyValue(loc, copy);
callbacks.createdNewInst(dvi);
});
return result;
}
// A copy_value that we lifetime extend with destroy_value over range. We assume
// all instructions passed into range do not consume value.
template <typename RangeTy>
CopyValueInst *
OwnershipLifetimeExtender::createPlusZeroCopy(SILValue value,
const RangeTy &range) {
auto *newValInsertPt = value->getDefiningInsertionPoint();
assert(newValInsertPt);
CopyValueInst *copy;
if (!isa<SILArgument>(value)) {
SILBuilderWithScope::insertAfter(newValInsertPt, [&](SILBuilder &builder) {
copy = builder.createCopyValue(builder.getInsertionPointLoc(), value);
});
} else {
SILBuilderWithScope builder(newValInsertPt);
copy = builder.createCopyValue(newValInsertPt->getLoc(), value);
}
auto &callbacks = ctx.callbacks;
callbacks.createdNewInst(copy);
auto opRange = makeUserRange(range);
ValueLifetimeAnalysis lifetimeAnalysis(copy, opRange);
ValueLifetimeBoundary boundary;
lifetimeAnalysis.computeLifetimeBoundary(boundary);
boundary.visitInsertionPoints(
[&](SILBasicBlock::iterator insertPt) {
SILBuilderWithScope builder(insertPt);
auto *dvi = builder.createDestroyValue(insertPt->getLoc(), copy);
callbacks.createdNewInst(dvi);
},
&ctx.deBlocks);
return copy;
}
/// Borrow \p newValue over the extended lifetime of \p borrowedValue.
///
/// Precondition: \p newValue dominates borrowedValue.
BeginBorrowInst *
OwnershipLifetimeExtender::borrowCopyOverScope(SILValue newValue,
BorrowedValue borrowedValue) {
assert(borrowedValue.isLocalScope() && "SILFunctionArg is already handled");
SILInstruction *borrowPoint = borrowedValue.value->getNextInstruction();
auto loc = RegularLocation::getAutoGeneratedLocation(borrowPoint->getLoc());
SILBuilderWithScope builder(borrowPoint);
auto *copy = builder.createCopyValue(loc, newValue);
ctx.callbacks.createdNewInst(copy);
// Extend the new copy's lifetime over borrowedValue's scope and destroy it on
// all paths through borrowedValue. Since copy is in the same block as
// borrowedValue, no extra destroys are needed.
BorrowedLifetimeExtender(borrowedValue, ctx.callbacks)
.extendOverBorrowScopeAndConsume(copy);
auto *borrow = builder.createBeginBorrow(loc, copy);
ctx.callbacks.createdNewInst(borrow);
return borrow;
}
/// Borrow-copy \p newValue over \p guaranteedUses. Copy newValue, borrow the
/// copy, and extend the lifetime of the borrow-copy over guaranteedUses.
///
/// \p borrowPoint is a the insertion point of the new borrow.
///
/// Precondition: \p newValue dominates \p borrowPoint which dominates \p
/// guaranteedUses
///
/// Precondition: \p guaranteedUses is not empty.
///
/// Precondition: None of \p guaranteedUses are lifetime ending.
template <typename RangeTy>
BeginBorrowInst *OwnershipLifetimeExtender::borrowCopyOverGuaranteedUsers(
SILValue newValue, SILBasicBlock::iterator borrowPoint,
RangeTy guaranteedUsers) {
auto loc = RegularLocation::getAutoGeneratedLocation(borrowPoint->getLoc());
auto *copy = SILBuilderWithScope(newValue->getNextInstruction())
.createCopyValue(loc, newValue);
auto *borrow = SILBuilderWithScope(borrowPoint).createBeginBorrow(loc, copy);
ctx.callbacks.createdNewInst(copy);
ctx.callbacks.createdNewInst(borrow);
// Create end_borrows at the end of the borrow's lifetime.
{
// We don't expect an empty guaranteedUsers. If it happens, then the
// newly created copy will never be destroyed.
assert(!guaranteedUsers.empty());
ValueLifetimeAnalysis lifetimeAnalysis(borrow, guaranteedUsers);
ValueLifetimeBoundary borrowBoundary;
lifetimeAnalysis.computeLifetimeBoundary(borrowBoundary);
borrowBoundary.visitInsertionPoints(
[&](SILBasicBlock::iterator insertPt) {
SILBuilderWithScope builder(insertPt);
// Use an auto-generated location here, because insertPt may have an
// incompatible LocationKind
auto loc =
RegularLocation::getAutoGeneratedLocation(insertPt->getLoc());
auto *endBorrow = builder.createEndBorrow(loc, borrow);
ctx.callbacks.createdNewInst(endBorrow);
},
&ctx.deBlocks);
}
// Create destroys at the end of copy's lifetime. This only needs to consider
// uses that end the borrow scope.
{
ValueLifetimeAnalysis lifetimeAnalysis(copy, borrow->getEndBorrows());
ValueLifetimeBoundary copyBoundary;
lifetimeAnalysis.computeLifetimeBoundary(copyBoundary);
copyBoundary.visitInsertionPoints(
[&](SILBasicBlock::iterator insertPt) {
SILBuilderWithScope builder(insertPt);
auto *destroy = builder.createDestroyValue(loc, copy);
ctx.callbacks.createdNewInst(destroy);
},
&ctx.deBlocks);
}
return borrow;
}
template <typename RangeTy>
BeginBorrowInst *OwnershipLifetimeExtender::borrowCopyOverGuaranteedUses(
SILValue newValue, SILBasicBlock::iterator borrowPoint,
RangeTy guaranteedUsePoints) {
return borrowCopyOverGuaranteedUsers(newValue, borrowPoint,
makeUserRange(guaranteedUsePoints));
}
// Return the borrow position when replacing oldValue.
static SILBasicBlock::iterator getBorrowPoint(SILValue oldValue) {
return oldValue->getDefiningInsertionPoint()->getIterator();
}
/// Borrow \p newValue over the lifetime of \p guaranteedValue. Return the
/// new guaranteed value or an empty SILValue when there are no uses.
///
/// TODO: determine whether \p newValue's borrow scope already encompasses all
/// uses of \p guaranteedValue and avoid the copy-borrow. Handle the case where
/// \p newValue is a chain of guaranteed ownership-forwarding operations.
///
/// TODO: Consider replacing all of newValue's uses with the new copy of
/// newValue. This may allow newValue's original borrow scope to be removed,
/// which then allows the copy to be removed. The result would be a single
/// borrow scope over all newValue's and guaranteedValue's uses, which is
/// usually preferable to a new copy and separate borrow scope. When doing
/// this, we can use newValue as the borrow point instead of getBorrowPoint.
SILValue
OwnershipLifetimeExtender::borrowOverValue(SILValue newValue,
SILValue guaranteedValue) {
// Avoid borrowing guaranteed function arguments.
if (isa<SILFunctionArgument>(newValue) &&
newValue->getOwnershipKind() == OwnershipKind::Guaranteed) {
return newValue;
}
auto borrowedValue = BorrowedValue(guaranteedValue);
if (borrowedValue && borrowedValue.isLocalScope()) {
return borrowCopyOverScope(newValue, borrowedValue);
}
if (ctx.guaranteedUsePoints.empty())
return newValue;
// FIXME: use GuaranteedOwnershipExtension
auto borrowPt = getBorrowPoint(guaranteedValue);
return borrowCopyOverGuaranteedUses(
newValue, borrowPt, ArrayRef<Operand *>(ctx.guaranteedUsePoints));
}
// Borrow \p newValue over \p singleGuaranteedUse. Return the new guaranteed
// value.
//
// Precondition: \p newValue dominates \p singleGuaranteedUse.
//
// Precondition: If \p singleGuaranteedUse ends a borrowed lifetime, the \p
// newValue also dominates the beginning of the borrow scope.
//
// If \p singleGuaranteedUse is lifetime-ending, then two forms
// of cleanup are performed, anticipating that singleGuaranteedUse will be
// replaced with the returned value.
//
// 1. Insert an end_borrow for the original borrow at the point of the replaced
// use.
//
// 2. Insert end_borrows for the new borrow at all the original borrow's
// scope-ending uses that aren't being replaced.
SILValue
OwnershipLifetimeExtender::borrowOverSingleUse(SILValue newValue,
Operand *singleGuaranteedUse) {
// Avoid borrowing guaranteed function arguments.
if (isa<SILFunctionArgument>(newValue) &&
newValue->getOwnershipKind() == OwnershipKind::Guaranteed) {
return newValue;
}
if (!singleGuaranteedUse->isLifetimeEnding()) {
auto borrowPt = newValue->getNextInstruction()->getIterator();
return borrowCopyOverGuaranteedUses(
newValue, borrowPt, ArrayRef<Operand *>(singleGuaranteedUse));
}
// A guaranteed lifetime-ending use is always defined by a BorrowedValue.
auto oldBorrowedVal = BorrowedValue(singleGuaranteedUse->get());
BeginBorrowInst *newBeginBorrow =
borrowCopyOverScope(newValue, oldBorrowedVal);
// Cleanup the original scope, anticipating that it will lose an end-point.
SILInstruction *usePoint = singleGuaranteedUse->getUser();
auto *endOldBorrow = SILBuilderWithScope(usePoint).createEndBorrow(
usePoint->getLoc(), oldBorrowedVal.value);
ctx.callbacks.createdNewInst(endOldBorrow);
// Cleanup the new scope since it only inherits one end-point.
oldBorrowedVal.visitLocalScopeEndingUses([&](Operand *endScope) {
auto borrowingOper = BorrowingOperand(endScope);
if (borrowingOper.isReborrow())
return true;
auto *oldEndBorrow = endScope->getUser();
auto *endNewBorrow =
SILBuilderWithScope(oldEndBorrow)
.createEndBorrow(oldEndBorrow->getLoc(), newBeginBorrow);
ctx.callbacks.createdNewInst(endNewBorrow);
return true;
});
return newBeginBorrow;
}
SILValue OwnershipLifetimeExtender::borrowOverSingleNonLifetimeEndingUser(
SILValue newValue, SILInstruction *nonLifetimeEndingUser) {
// Avoid borrowing guaranteed function arguments.
if (isa<SILFunctionArgument>(newValue) &&
newValue->getOwnershipKind() == OwnershipKind::Guaranteed) {
return newValue;
}
auto borrowPt = newValue->getNextInstruction()->getIterator();
return borrowCopyOverGuaranteedUsers(
newValue, borrowPt, ArrayRef<SILInstruction *>(nonLifetimeEndingUser));
}
SILValue swift::makeGuaranteedValueAvailable(SILValue value,
SILInstruction *user,
DeadEndBlocks &deBlocks,
InstModCallbacks callbacks) {
OwnershipFixupContext ctx{callbacks, deBlocks};
OwnershipLifetimeExtender extender{ctx};
return extender.borrowOverSingleNonLifetimeEndingUser(value, user);
}
//===----------------------------------------------------------------------===//
// OwnershipRAUWUtility - RAUW + fix ownership
//===----------------------------------------------------------------------===//
/// Given an old value and a new value, lifetime extend new value as appropriate
/// so we can RAUW new value with old value and preserve ownership
/// invariants. We leave fixing up the lifetime of old value to our caller.
namespace {
struct OwnershipRAUWPrepare {
SILValue oldValue;
OwnershipFixupContext &ctx;
OwnershipLifetimeExtender getLifetimeExtender() { return {ctx}; }
const InstModCallbacks &getCallbacks() const { return ctx.callbacks; }
// For terminator results, the consuming point is the predecessor's
// terminator. This avoids destroys on unused paths. It is also the
// instruction which will be deleted, thus needs operand cleanup.
SILInstruction *getConsumingPoint() const {
if (auto *blockArg = dyn_cast<SILPhiArgument>(oldValue))
return blockArg->getTerminatorForResult();
return cast<SingleValueInstruction>(oldValue);
}
SILValue prepareReplacement(SILValue newValue);
private:
SILValue prepareUnowned(SILValue newValue);
};
} // anonymous namespace
SILValue OwnershipRAUWPrepare::prepareUnowned(SILValue newValue) {
auto &callbacks = ctx.callbacks;
switch (newValue->getOwnershipKind()) {
case OwnershipKind::None:
llvm_unreachable("Should have been handled elsewhere");
case OwnershipKind::Any:
llvm_unreachable("Invalid for values");
case OwnershipKind::Unowned:
// An unowned value can always be RAUWed with another unowned value.
return newValue;
case OwnershipKind::Guaranteed: {
// If we have an unowned value that we want to replace with a guaranteed
// value, we need to ensure that the guaranteed value is live at all use
// points of the unowned value. If so, just replace and continue.
//
// TODO: Implement this for more interesting cases.
if (isa<SILFunctionArgument>(newValue))
return newValue;
// Otherwise, we need to lifetime extend the borrow over all of the use
// points. To do so, we copy the value, borrow it, and insert an unchecked
// ownership conversion to unowned at all uses that are terminator uses.
//
// We need to insert the conversion since if we have a non-argument
// guaranteed value since its scope will end before the terminator so we
// need to convert the value to unowned early.
//
// TODO: Do we need a separate array here?
SmallVector<Operand *, 8> oldValueUses(oldValue->getUses());
for (auto *use : oldValueUses) {
if (auto *ti = dyn_cast<TermInst>(use->getUser())) {
if (ti->isFunctionExiting()) {
SILBuilderWithScope builder(ti);
auto *newInst = builder.createUncheckedOwnershipConversion(
ti->getLoc(), use->get(), OwnershipKind::Unowned);
callbacks.createdNewInst(newInst);
callbacks.setUseValue(use, newInst);
}
}
}
auto extender = getLifetimeExtender();
auto borrowPt = getBorrowPoint(oldValue);
SILValue borrow = extender.borrowCopyOverGuaranteedUses(
newValue, borrowPt, oldValue->getUses());
return borrow;
}
case OwnershipKind::Owned: {
// If we have an unowned value that we want to replace with an owned value,
// we first check if the owned value is live over all use points of the old
// value. If so, just RAUW and continue.
//
// TODO: Implement this.
// Otherwise, insert a copy of the owned value and lifetime extend that over
// all uses of the value and then RAUW.
//
// NOTE: For terminator uses, we funnel the use through an
// unchecked_ownership_conversion to ensure that we can end the lifetime of
// our owned/guaranteed value before the terminator.
SmallVector<Operand *, 8> oldValueUses(oldValue->getUses());
for (auto *use : oldValueUses) {
if (auto *ti = dyn_cast<TermInst>(use->getUser())) {
if (ti->isFunctionExiting()) {
SILBuilderWithScope builder(ti);
auto *newInst = builder.createUncheckedOwnershipConversion(
ti->getLoc(), use->get(), OwnershipKind::Unowned);
callbacks.createdNewInst(newInst);
callbacks.setUseValue(use, newInst);
}
}
}
auto extender = getLifetimeExtender();
SILValue copy = extender.createPlusZeroCopy(newValue, oldValue->getUses());
return copy;
}
}
llvm_unreachable("covered switch isn't covered?!");
}
SILValue OwnershipRAUWPrepare::prepareReplacement(SILValue newValue) {
assert(oldValue->getFunction()->hasOwnership());
// A value with no uses can be "replaced" without fixup.
// (e.g. a dead no-ownership value can be replaced by an owned value even
// though hasValidRAUWOwnership will be false).
if (oldValue->use_empty())
return newValue;
assert(
OwnershipRAUWHelper::hasValidRAUWOwnership(oldValue, newValue,
ctx.guaranteedUsePoints) &&
"Should have checked if can perform this operation before calling it?!");
// If our new value is just none, we can pass anything to it so just RAUW
// and return.
//
// NOTE: This handles RAUWing with undef.
if (newValue->getOwnershipKind() == OwnershipKind::None)
return newValue;
assert(oldValue->getOwnershipKind() != OwnershipKind::None);
switch (oldValue->getOwnershipKind()) {
case OwnershipKind::None:
// If our old value was none and our new value is not, we need to do
// something more complex that we do not support yet, so bail. We should
// have not called this function in such a case.
llvm_unreachable("Should have been handled elsewhere");
case OwnershipKind::Any:
llvm_unreachable("Invalid for values");
case OwnershipKind::Guaranteed: {
return getLifetimeExtender().borrowOverValue(newValue, oldValue);
}
case OwnershipKind::Owned: {
// If we have an owned value that we want to replace with a value with any
// other non-None ownership, we need to copy the other value for a
// lifetimeEnding RAUW, RAUW the value, and insert a destroy_value of
// the original value.
auto extender = getLifetimeExtender();
auto *consumingPoint = getConsumingPoint();
SILValue copy = extender.createPlusOneCopy(newValue, consumingPoint);
cleanupOperandsBeforeDeletion(consumingPoint, ctx.callbacks);
return copy;
}
case OwnershipKind::Unowned: {
return prepareUnowned(newValue);
}
}
llvm_unreachable("Covered switch isn't covered?!");
}
//===----------------------------------------------------------------------===//
// Interior Pointer Operand Rebasing
//===----------------------------------------------------------------------===//
/// Return an address equivalent to \p newValue that can be used to replace all
/// uses of \p oldValue.
///
/// Precondition: RAUW of two addresses
SILValue
OwnershipRAUWHelper::getReplacementAddress() {
assert(oldValue->getType().isAddress() && newValue->getType().isAddress());
// If newValue was not generated by an interior pointer, then it cannot
// be within a borrow scope, so direct replacement works.
if (!requiresCopyBorrowAndClone())
return newValue;
// newValue may be within a borrow scope, and oldValue may have uses that are
// outside of newValue's borrow scope.
//
// So, we need to copy/borrow the base value of the interior pointer to
// lifetime extend the base value over the new uses. Then we clone the
// interior pointer instruction and change the clone to use our new borrowed
// value. Then we RAUW as appropriate.
OwnershipLifetimeExtender extender{*ctx};
auto base = ctx->extraAddressFixupInfo.base;
auto borrowPt = getBorrowPoint(oldValue);
// FIXME: why does this use allAddressUsesFromOldValue instead of
// guaranteedUsePoints?
BeginBorrowInst *bbi = extender.borrowCopyOverGuaranteedUses(
base.getReference(), borrowPt,
llvm::ArrayRef(ctx->extraAddressFixupInfo.allAddressUsesFromOldValue));
auto bbiNext = &*std::next(bbi->getIterator());
auto *refProjection = cast<SingleValueInstruction>(base.getBaseAddress());
auto *newBase = refProjection->clone(bbiNext);
ctx->callbacks.createdNewInst(newBase);
newBase->setOperand(0, bbi);
// Now that we have extended our lifetime as appropriate, we need to recreate
// the access path from newValue to refProjection but upon newBase.
//
// This cloner invocation must match the canCloneUseDefChain check in the
// constructor.
auto checkBase = [&](SILValue srcAddr) {
return (srcAddr == refProjection) ? SILValue(newBase) : SILValue();
};
SILValue clonedAddr = cloneUseDefChain(newValue, bbiNext, checkBase);
assert(clonedAddr != newValue && "expect at least the base to be replaced");
return clonedAddr;
}
//===----------------------------------------------------------------------===//
// OwnershipRAUWHelper
//===----------------------------------------------------------------------===//
OwnershipRAUWHelper::OwnershipRAUWHelper(OwnershipFixupContext &inputCtx,
SILValue inputOldValue,
SILValue inputNewValue)
: ctx(&inputCtx), oldValue(inputOldValue), newValue(inputNewValue) {
// If we are already not valid, just bail.
if (!isValid())
return;
// If we are not in ownership, we can always RAUW successfully so just bail
// and leave the object valid.
if (!oldValue->getFunction()->hasOwnership())
return;
// This utility currently only handles erasing SingleValueInstructions and
// terminator results.
assert(isa<SingleValueInstruction>(inputOldValue)
|| cast<SILPhiArgument>(inputOldValue)->isTerminatorResult());
// Precondition: If \p oldValue is a BorrowedValue that introduces a local
// borrow scope, then \p newValue must either be defined in the same block as
// \p oldValue, or it must dominate \p oldValue (rather than merely
// dominating its uses).
//
// Handling cases where the new value does not dominate the old borrow scope
// would require signficant complexity and such cases are currently impossible
// to test. Consideration would be required for handling a new value within an
// inner loop, while the old borrow scope is introduced outside that
// loop. Since it generally makes no sense to do this kind of replacement,
// we simply rule it out as an RAUW precondition.
//
// TODO: this could be converted to a bailout if we don't want the client code
// to explicitly check this case. But then we may want DominanceInfo to be
// available, which could cheaper in extreme cases because it caches results.
SWIFT_ASSERT_ONLY_DECL(auto borrowedVal = BorrowedValue(inputOldValue));
assert((!borrowedVal || !borrowedVal.isLocalScope()
|| checkDominates(inputNewValue->getParentBlock(),
inputOldValue->getParentBlock()))
&& "OSSA RAUW requires reachability and dominance");
// Clear the context before populating it anew.
ctx->clear();
// A value with no uses can be "replaced" regardless of its uses. Bypass all
// the use-checking logic, which assumes a non-empty use list.
if (oldValue->use_empty()) {
return;
}
// Otherwise, lets check if we can perform this RAUW operation. If we can't,
// set ctx to nullptr to invalidate the helper and return.
if (!canFixUpOwnershipForRAUW(oldValue, newValue, inputCtx)) {
invalidate();
return;
}
// If we have an object, at this point we are good to go so we can just
// return.
if (newValue->getType().isObject())
return;
// But if we have an address, we need to check if new value is from an
// interior pointer or not in a way that the pass understands. What we do is:
//
// 1. Early exit some cases that we know can never have interior pointers.
//
// 2. Compute the AccessPathWithBase of newValue. If we do not get back a
// valid such object, invalidate and then bail.
//
// 3. Then we check if the base address is the result of an interior pointer
// instruction. If we do not find one we bail.
//
// 4. Then grab the base value of the interior pointer operand. We only
// support cases where we have a single BorrowedValue as our base. This is
// a safe future proof assumption since one reborrows are on
// structs/tuple/destructures, a guaranteed value will always be associated
// with a single BorrowedValue, so this will never fail (and the code will
// probably be DCEed).
//
// 5. Then we compute an AccessPathWithBase for oldValue and then find its
// derived uses. If we fail, we bail.
//
// 6. At this point, we know that we can perform this RAUW. The only question
// is if we need to when we RAUW copy the interior pointer base value. We
// perform this check by making sure all of the old value's derived uses
// are within our BorrowedValue's scope. If so, we clear the extra state we
// were tracking (the interior pointer/oldValue's transitive uses), so we
// perform just a normal RAUW (without inserting the copy) when we RAUW.
//
// We can always RAUW an address with a pointer_to_address since if there
// were any interior pointer constraints on whatever address pointer came
// from, the address_to_pointer producing that value erases that
// information, so we can RAUW without worrying.
//
// NOTE: We also need to handle this here since a pointer_to_address is not a
// valid base value for an access path since it doesn't refer to any storage.
AddressOwnership addressOwnership(newValue);
if (!addressOwnership.hasLocalOwnershipLifetime())
return;
ctx->extraAddressFixupInfo.base = addressOwnership.base;
SILValue baseAddress = ctx->extraAddressFixupInfo.base.getBaseAddress();
// For now, just gather up uses
//
// FIXME: get rid of allAddressUsesFromOldValue. Shouldn't this already be
// included in guaranteedUsePoints?
auto &oldValueUses = ctx->extraAddressFixupInfo.allAddressUsesFromOldValue;
if (findTransitiveUsesForAddress(oldValue, &oldValueUses)
!= AddressUseKind::NonEscaping) {
invalidate();
return;
}
if (addressOwnership.areUsesWithinLifetime(oldValueUses, ctx->deBlocks)) {
// We do not need to copy the base value! Clear the extra info we have.
ctx->extraAddressFixupInfo.clear();
return;
}
// This cloner check must match the later cloner invocation in
// getReplacementAddress()
auto *baseInst = cast<SingleValueInstruction>(baseAddress);
auto checkBase = [&](SILValue srcAddr) {
return (srcAddr == baseInst) ? SILValue(baseInst) : SILValue();
};
if (!canCloneUseDefChain(newValue, checkBase)) {
invalidate();
return;
}
}
SILValue OwnershipRAUWHelper::prepareReplacement(SILValue rewrittenNewValue) {
assert(isValid() && "OwnershipRAUWHelper invalid?!");
if (rewrittenNewValue) {
// Everything about \n newValue that the constructor checks should also be
// true for rewrittenNewValue.
// FIXME: enable these...
// assert(rewrittenNewValue->getType() == newValue->getType());
// assert(rewrittenNewValue->getOwnershipKind()
// == newValue->getOwnershipKind());
// assert(rewrittenNewValue->getParentBlock() == newValue->getParentBlock());
assert(!newValue->getType().isAddress() ||
AddressOwnership(rewrittenNewValue) == AddressOwnership(newValue));
newValue = rewrittenNewValue;
}
assert(newValue && "prepareReplacement can only be called once");
SWIFT_DEFER { newValue = SILValue(); };
if (!oldValue->getFunction()->hasOwnership())
return newValue;
if (oldValue->getType().isAddress()) {
return getReplacementAddress();
}
OwnershipRAUWPrepare rauwPrepare{oldValue, *ctx};
return rauwPrepare.prepareReplacement(newValue);
}
SILBasicBlock::iterator
OwnershipRAUWHelper::perform(SILValue replacementValue) {
if (!replacementValue)
replacementValue = prepareReplacement();
assert(!newValue && "prepareReplacement() must be called");
// Make sure to always clear our context after we transform.
SWIFT_DEFER { ctx->clear(); };
if (auto *svi = dyn_cast<SingleValueInstruction>(oldValue))
return replaceAllUsesAndErase(svi, replacementValue, ctx->callbacks);
// The caller must rewrite the terminator after RAUW.
auto *term = cast<SILPhiArgument>(oldValue)->getTerminatorForResult();
auto nextII = term->getParent()->end();
return replaceAllUses(oldValue, replacementValue, nextII, ctx->callbacks);
}
//===----------------------------------------------------------------------===//
// Single Use Replacement
//===----------------------------------------------------------------------===//
namespace {
/// Given a use and a new value, lifetime extend new value as appropriate so we
/// can replace use->get() with newValue and preserve ownership invariants. We
/// assume that old value will be left alone and not deleted so we insert
/// compensating cleanups.
struct SingleUseReplacementUtility {
Operand *use;
SILValue newValue;
OwnershipFixupContext &ctx;
SILBasicBlock::iterator handleUnowned();
SILBasicBlock::iterator handleOwned();
SILBasicBlock::iterator handleGuaranteed();
SILBasicBlock::iterator perform();
OwnershipLifetimeExtender getLifetimeExtender() { return {ctx}; }
const InstModCallbacks &getCallbacks() const { return ctx.callbacks; }
};
} // anonymous namespace
SILBasicBlock::iterator SingleUseReplacementUtility::handleUnowned() {
auto &callbacks = ctx.callbacks;
switch (newValue->getOwnershipKind()) {
case OwnershipKind::None:
llvm_unreachable("Should have been handled elsewhere");
case OwnershipKind::Any:
llvm_unreachable("Invalid for values");
case OwnershipKind::Unowned:
// An unowned value can always be RAUWed with another unowned value.
return replaceSingleUse(use, newValue, callbacks);
case OwnershipKind::Guaranteed: {
// If we have an unowned value use that we want to replace with a guaranteed
// value, we need to ensure that the guaranteed value is live at that use
// point. If we know that is always true, just perform the replace.
//
// FIXME: Expand the cases here.
if (isa<SILFunctionArgument>(newValue))
return replaceSingleUse(use, newValue, callbacks);
// Otherwise, we need to lifetime extend newValue to the use. If the actual
// use is a terminator, we need to insert an unchecked_ownership_conversion
// since our value can not be live at the terminator itself.
if (auto *ti = dyn_cast<TermInst>(use->getUser())) {
if (ti->isFunctionExiting()) {
SILBuilderWithScope builder(ti);
auto *newInst = builder.createUncheckedOwnershipConversion(
ti->getLoc(), use->get(), OwnershipKind::Unowned);
callbacks.createdNewInst(newInst);
callbacks.setUseValue(use, newInst);
}
}
auto extender = getLifetimeExtender();
SILValue borrow = extender.borrowOverSingleUse(newValue, use);
assert(!use->isLifetimeEnding()
&& "Test single-use replacement of a scope-ending instruction");
return replaceSingleUse(use, borrow, callbacks);
}
case OwnershipKind::Owned: {
// If we have an unowned value use that we want to replace with an owned
// value use. we first check if the owned value is live over all use points
// of the old value. If so, just RAUW and continue.
//
// TODO: Implement this.
// Otherwise, insert a copy of the owned value and lifetime extend that over
// the use.
//
// NOTE: For terminator uses, we funnel the use through an
// unchecked_ownership_conversion to ensure that we can end the lifetime of
// our owned/guaranteed value before the terminator.
if (auto *ti = dyn_cast<TermInst>(use->getUser())) {
if (ti->isFunctionExiting()) {
SILBuilderWithScope builder(ti);
auto *newInst = builder.createUncheckedOwnershipConversion(
ti->getLoc(), use->get(), OwnershipKind::Unowned);
callbacks.createdNewInst(newInst);
callbacks.setUseValue(use, newInst);
}
}
auto extender = getLifetimeExtender();
SILValue copy = extender.createPlusZeroCopy(newValue, {use});
return replaceSingleUse(use, copy, callbacks);
}
}
llvm_unreachable("covered switch isn't covered?!");
}
SILBasicBlock::iterator SingleUseReplacementUtility::handleGuaranteed() {
// Ok, our use is guaranteed and our new value may not be guaranteed.
auto extender = getLifetimeExtender();
// If we don't have a lifetime ending use, just create the borrow.
SILValue copy = extender.borrowOverSingleUse(newValue, use);
// Then replace use->get() with this copy. We will insert compensating end
// scope instructions on use->get() if we need to.
return replaceSingleUse(use, copy, ctx.callbacks);
}
SILBasicBlock::iterator SingleUseReplacementUtility::handleOwned() {
// Ok, our old value is owned and our new value may not be owned. First
// lifetime extend newValue to use->getUser() inserting destroy_values along
// any paths that do not go through use->getUser().
auto extender = getLifetimeExtender();
if (use->isLifetimeEnding()) {
// If our use is a lifetime ending use, then create a plus one copy and
// RAUW.
SILValue copy = extender.createPlusOneCopy(newValue, use->getUser());
// Then replace use->get() with this copy. We will insert compensating end
// scope instructions on use->get() if we need to.
return replaceSingleUse(use, copy, ctx.callbacks);
}
// If we don't have a lifetime ending use, just create a +0 copy and set the
// use. All destroys will be placed for us.
SILValue copy =
extender.createPlusZeroCopy<ArrayRef<Operand *>>(newValue, {use});
// Then replace use->get() with this copy. We will insert compensating end
// scope instructions on use->get() if we need to.
return replaceSingleUse(use, copy, ctx.callbacks);
}
SILBasicBlock::iterator SingleUseReplacementUtility::perform() {
auto oldValue = use->get();
assert(oldValue->getFunction()->hasOwnership());
// If our new value is just none, we can pass anything to do it so just RAUW
// and return.
//
// NOTE: This handles RAUWing with undef.
if (newValue->getOwnershipKind() == OwnershipKind::None)
return replaceSingleUse(use, newValue, ctx.callbacks);
assert(SILValue(oldValue)->getOwnershipKind() != OwnershipKind::None);
switch (SILValue(oldValue)->getOwnershipKind()) {
case OwnershipKind::None:
// If our old value was none and our new value is not, we need to do
// something more complex that we do not support yet, so bail. We should
// have not called this function in such a case.
llvm_unreachable("Should have been handled elsewhere");
case OwnershipKind::Any:
llvm_unreachable("Invalid for values");
case OwnershipKind::Guaranteed:
return handleGuaranteed();
case OwnershipKind::Owned:
return handleOwned();
case OwnershipKind::Unowned:
return handleUnowned();
}
llvm_unreachable("Covered switch isn't covered?!");
}
//===----------------------------------------------------------------------===//
// OwnershipReplaceSingleUseHelper
//===----------------------------------------------------------------------===//
OwnershipReplaceSingleUseHelper::OwnershipReplaceSingleUseHelper(
OwnershipFixupContext &inputCtx, Operand *inputUse, SILValue inputNewValue)
: ctx(&inputCtx), use(inputUse), newValue(inputNewValue) {
// If we are already not valid, just bail.
if (!isValid())
return;
// If we do not have ownership, we are already done.
if (!inputUse->getUser()->getFunction()->hasOwnership())
return;
// If we have an address, bail. We don't support this.
if (newValue->getType().isAddress()) {
invalidate();
return;
}
// Otherwise, lets check if we can perform this RAUW operation. If we can't,
// set ctx to nullptr to invalidate the helper and return.
SmallVector<Operand *, 1> oldUses;
oldUses.push_back(use);
if (!OwnershipRAUWHelper::hasValidRAUWOwnership(use->get(), newValue,
oldUses)) {
invalidate();
return;
}
if (inputUse->getOperandOwnership() == OperandOwnership::Reborrow) {
// FIXME: Use GuaranteedPhiBorrowFixup to handle this case during perform().
invalidate();
return;
}
}
SILBasicBlock::iterator OwnershipReplaceSingleUseHelper::perform() {
assert(isValid() && "OwnershipReplaceSingleUseHelper invalid?!");
if (!use->getUser()->getFunction()->hasOwnership())
return replaceSingleUse(use, newValue, ctx->callbacks);
// Make sure to always clear our context after we transform.
SWIFT_DEFER { ctx->clear(); };
SingleUseReplacementUtility utility{use, newValue, *ctx};
return utility.perform();
}
//===----------------------------------------------------------------------===//
// createBorrowScopeForPhiOperands
//===----------------------------------------------------------------------===//
/// Given a phi that has been newly created or converted from terminator
/// results, check if any of the phi's operands are inner guaranteed values.
/// This is invalid OSSA because the phi is a reborrow. Like all
/// borrow-scope-ending instructions a phi must directly use the BorrowedValue
/// that introduces the scope.
///
/// Create nested borrow scopes for its operands.
///
/// Transitively follow its phi uses.
///
/// Create end_borrows at all points that cover the inner uses.
///
/// The client must check canCloneTerminator() first to make sure that the
/// search for transitive uses does not encounter a PointerEscape.
class GuaranteedPhiBorrowFixup {
// A phi in mustConvertPhis has already been determined to be part of this
// new nested borrow scope.
llvm::SmallSetVector<SILPhiArgument *, 8> mustConvertPhis;
// Phi operands that are already within the new nested borrow scope.
llvm::SmallDenseSet<PhiOperand, 8> nestedPhiOperands;
public:
/// Return true if an extended nested borrow scope was created.
bool createExtendedNestedBorrowScope(SILPhiArgument *newPhi);
protected:
bool phiOperandNeedsBorrow(Operand *operand) {
SILValue inVal = operand->get();
if (inVal->getOwnershipKind() != OwnershipKind::Guaranteed) {
assert(inVal->getOwnershipKind() == OwnershipKind::None);
return false;
}
// This operand needs a nested borrow if inVal is not a BorrowedValue.
return !bool(BorrowedValue(inVal));
}
void borrowPhiOperand(Operand *oper) {
// Begin the borrow just before the branch.
SILInstruction *borrowPoint = oper->getUser();
auto loc = RegularLocation::getAutoGeneratedLocation(borrowPoint->getLoc());
auto *borrow =
SILBuilderWithScope(borrowPoint).createBeginBorrow(loc, oper->get());
oper->set(borrow);
}
EndBorrowInst *createEndBorrow(SILValue guaranteedValue,
SILBasicBlock::iterator borrowPoint) {
auto loc = borrowPoint->getLoc();
return SILBuilderWithScope(borrowPoint)
.createEndBorrow(loc, guaranteedValue);
}
void insertEndBorrowsAndFindPhis(SILPhiArgument *phi);
};
void GuaranteedPhiBorrowFixup::insertEndBorrowsAndFindPhis(
SILPhiArgument *phi) {
// Scope ending instructions are only needed for nontrivial results.
if (phi->getOwnershipKind() != OwnershipKind::Guaranteed) {
assert(phi->getOwnershipKind() == OwnershipKind::None);
return;
}
SmallVector<Operand *, 16> usePoints;
bool result = findInnerTransitiveGuaranteedUses(phi, &usePoints);
assert(result && "should be checked by canCloneTerminator");
(void)result;
// Add usePoints to a set for phi membership checking.
//
// FIXME: consider integrating with ValueLifetimeBoundary instead.
SmallPtrSet<Operand *, 16> useSet(usePoints.begin(), usePoints.end());
auto phiUsers = llvm::map_range(usePoints, ValueBase::UseToUser());
ValueLifetimeAnalysis lifetimeAnalysis(phi, phiUsers);
ValueLifetimeBoundary boundary;
lifetimeAnalysis.computeLifetimeBoundary(boundary);
for (auto *boundaryEdge : boundary.boundaryEdges) {
createEndBorrow(phi, boundaryEdge->begin());
}
for (SILInstruction *lastUser : boundary.lastUsers) {
// If the last use is a branch, transitively process the phi.
if (isa<BranchInst>(lastUser)) {
for (Operand &oper : lastUser->getAllOperands()) {
if (!useSet.count(&oper))
continue;
PhiOperand phiOper(&oper);
nestedPhiOperands.insert(phiOper);
mustConvertPhis.insert(phiOper.getValue());
continue;
}
}
// If the last user is a terminator, add the successors as boundary edges.
if (isa<TermInst>(lastUser)) {
for (auto *succBB : lastUser->getParent()->getSuccessorBlocks()) {
// succBB cannot already be in boundaryEdges. It has a
// single predecessor with liveness ending at the terminator, which
// means it was not live into any successor blocks.
createEndBorrow(phi, succBB->begin());
}
continue;
}
// Otherwise, just plop down an end_borrow after the last use.
createEndBorrow(phi, std::next(lastUser->getIterator()));
}
}
// For each phi that transitively uses an inner guaranteed value, create nested
// borrow scopes so that it is a well-formed reborrow.
bool GuaranteedPhiBorrowFixup::
createExtendedNestedBorrowScope(SILPhiArgument *newPhi) {
// Determine if this new phi needs a nested borrow scope. If so, seed the
// Visit phi operands, returning false as soon as one needs a borrow.
if (!newPhi->visitIncomingPhiOperands(
[&](Operand *op) { return !phiOperandNeedsBorrow(op); })) {
mustConvertPhis.insert(newPhi);
}
if (mustConvertPhis.empty())
return false;
// mustConvertPhis grows in this loop.
for (unsigned mustConvertIdx = 0; mustConvertIdx < mustConvertPhis.size();
++mustConvertIdx) {
SILPhiArgument *phi = mustConvertPhis[mustConvertIdx];
insertEndBorrowsAndFindPhis(phi);
}
// To handle recursive phis, first discover all phis before attempting to
// borrow any phi operands.
for (SILPhiArgument *phi : mustConvertPhis) {
phi->visitIncomingPhiOperands([&](Operand *op) {
if (!nestedPhiOperands.count(op))
borrowPhiOperand(op);
return true;
});
}
return true;
}
// Note: \p newPhi itself might not have Guaranteed ownership. A phi that
// converts Guaranteed to None ownership still needs nested borrows.
//
// Note: This may be called on partially invalid OSSA form, where multiple
// newly created phis do not yet have a borrow scope. The implementation
// assumes that this API will eventually be called for all such new phis until
// OSSA is fully valid.
bool swift::createBorrowScopeForPhiOperands(SILPhiArgument *newPhi) {
if (newPhi->getOwnershipKind() != OwnershipKind::Guaranteed
&& newPhi->getOwnershipKind() != OwnershipKind::None) {
return false;
}
return GuaranteedPhiBorrowFixup().createExtendedNestedBorrowScope(newPhi);
}
bool swift::extendStoreBorrow(StoreBorrowInst *sbi,
SmallVectorImpl<Operand *> &newUses,
DeadEndBlocks *deadEndBlocks,
InstModCallbacks callbacks) {
ScopedAddressValue scopedAddress(sbi);
SmallVector<SILBasicBlock *, 4> discoveredBlocks;
SSAPrunedLiveness storeBorrowLiveness(sbi->getFunction(), &discoveredBlocks);
// FIXME: if OSSA lifetimes are complete, then we don't need transitive
// liveness here.
AddressUseKind useKind =
scopedAddress.computeTransitiveLiveness(storeBorrowLiveness);
// If all new uses are within store_borrow boundary, no need for extension.
if (storeBorrowLiveness.areUsesWithinBoundary(newUses, deadEndBlocks)) {
return true;
}
if (useKind != AddressUseKind::NonEscaping) {
return false;
}
// store_borrow extension is possible only when there are no other
// store_borrows to the same destination within the store_borrow's lifetime
// built from newUsers.
if (hasOtherStoreBorrowsInLifetime(sbi, &storeBorrowLiveness,
deadEndBlocks)) {
return false;
}
InstModCallbacks tempCallbacks = callbacks;
InstructionDeleter deleter(std::move(tempCallbacks));
GuaranteedOwnershipExtension borrowExtension(deleter, *deadEndBlocks,
sbi->getFunction());
auto status = borrowExtension.checkBorrowExtension(
BorrowedValue(sbi->getSrc()), newUses);
if (status == GuaranteedOwnershipExtension::Invalid) {
return false;
}
borrowExtension.transform(status);
SmallVector<Operand *, 4> endBorrowUses;
// Collect old scope-ending instructions.
scopedAddress.visitScopeEndingUses([&](Operand *op) {
endBorrowUses.push_back(op);
return true;
});
for (auto *use : newUses) {
// Update newUsers as non-lifetime ending.
storeBorrowLiveness.updateForUse(use->getUser(),
/* lifetimeEnding */ false);
}
// Add new scope-ending instructions.
scopedAddress.endScopeAtLivenessBoundary(&storeBorrowLiveness);
// Remove old scope-ending instructions.
for (auto *endBorrowUse : endBorrowUses) {
callbacks.deleteInst(endBorrowUse->getUser());
}
return true;
}
|