1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
|
//===--- PartitionUtils.cpp -----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/PartitionUtils.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Expr.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/SILGlobalVariable.h"
#include "swift/SILOptimizer/Utils/VariableNameUtils.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
using namespace swift::PatternMatch;
using namespace swift::PartitionPrimitives;
//===----------------------------------------------------------------------===//
// MARK: Logging
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
bool swift::PartitionPrimitives::REGIONBASEDISOLATION_ENABLE_VERBOSE_LOGGING;
static llvm::cl::opt<bool, true> // The parser
RegionBasedIsolationVerboseLog(
"sil-regionbasedisolation-verbose-log",
llvm::cl::desc("Enable verbose logging for SIL region based isolation "
"diagnostics"),
llvm::cl::Hidden,
llvm::cl::location(swift::PartitionPrimitives::
REGIONBASEDISOLATION_ENABLE_VERBOSE_LOGGING));
#endif
//===----------------------------------------------------------------------===//
// MARK: PartitionOp
//===----------------------------------------------------------------------===//
void PartitionOp::print(llvm::raw_ostream &os, bool extraSpace) const {
switch (opKind) {
case PartitionOpKind::Assign: {
constexpr static char extraSpaceLiteral[10] = " ";
os << "assign ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << opArgs[0] << " = %%" << opArgs[1];
break;
}
case PartitionOpKind::AssignFresh:
os << "assign_fresh %%" << opArgs[0];
break;
case PartitionOpKind::Transfer: {
constexpr static char extraSpaceLiteral[10] = " ";
os << "transfer ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << opArgs[0];
break;
}
case PartitionOpKind::UndoTransfer: {
constexpr static char extraSpaceLiteral[10] = " ";
os << "undo_transfer ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << opArgs[0];
break;
}
case PartitionOpKind::Merge: {
constexpr static char extraSpaceLiteral[10] = " ";
os << "merge ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << opArgs[0] << " with %%" << opArgs[1];
break;
}
case PartitionOpKind::Require: {
constexpr static char extraSpaceLiteral[10] = " ";
os << "require ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << opArgs[0];
break;
}
case PartitionOpKind::UnknownPatternError:
os << "unknown pattern error ";
os << "%%" << opArgs[0];
break;
case PartitionOpKind::RequireInOutSendingAtFunctionExit:
constexpr static char extraSpaceLiteral[10] = " ";
os << "require_inout_sending_at_function_exit ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << opArgs[0];
break;
}
os << ": " << *getSourceInst();
}
//===----------------------------------------------------------------------===//
// MARK: Partition
//===----------------------------------------------------------------------===//
Partition Partition::singleRegion(SILLocation loc, ArrayRef<Element> indices,
IsolationHistory inputHistory) {
Partition p(inputHistory);
if (!indices.empty()) {
// Lowest element is our region representative and the value that our
// region takes.
Element repElement = *std::min_element(indices.begin(), indices.end());
Region repElementRegion = Region(repElement);
p.freshLabel = Region(repElementRegion + 1);
// Place all of the operations until end of scope into one history
// sequence.
p.pushHistorySequenceBoundary(loc);
// First create a region for repElement. We are going to merge all other
// regions into its region.
p.pushNewElementRegion(repElement);
llvm::SmallVector<Element, 32> nonRepElts;
for (Element index : indices) {
p.elementToRegionMap.insert_or_assign(index, repElementRegion);
if (index != repElement) {
p.pushNewElementRegion(index);
nonRepElts.push_back(index);
}
p.pushMergeElementRegions(repElement, nonRepElts);
}
}
assert(p.is_canonical_correct());
return p;
}
Partition Partition::separateRegions(SILLocation loc, ArrayRef<Element> indices,
IsolationHistory inputHistory) {
Partition p(inputHistory);
if (indices.empty())
return p;
// Place all operations in one history sequence.
p.pushHistorySequenceBoundary(loc);
auto maxIndex = Element(0);
for (Element index : indices) {
p.elementToRegionMap.insert_or_assign(index, Region(index));
p.pushNewElementRegion(index);
maxIndex = Element(std::max(maxIndex, index));
}
p.freshLabel = Region(maxIndex + 1);
assert(p.is_canonical_correct());
return p;
}
void Partition::markTransferred(Element val,
TransferringOperandSet *transferredOperandSet) {
// First see if our val is tracked. If it is not tracked, insert it and mark
// its new region as transferred.
if (!isTrackingElement(val)) {
elementToRegionMap.insert_or_assign(val, freshLabel);
pushNewElementRegion(val);
regionToTransferredOpMap.insert({freshLabel, transferredOperandSet});
freshLabel = Region(freshLabel + 1);
canonical = false;
return;
}
// Otherwise, we already have this value in the map. Try to insert it.
auto iter1 = elementToRegionMap.find(val);
assert(iter1 != elementToRegionMap.end());
auto iter2 =
regionToTransferredOpMap.insert({iter1->second, transferredOperandSet});
// If we did insert, just return. We were not tracking any state.
if (iter2.second)
return;
// Otherwise, we need to merge the sets.
iter2.first->second = iter2.first->second->merge(transferredOperandSet);
}
bool Partition::undoTransfer(Element val) {
// First see if our val is tracked. If it is not tracked, insert it.
if (!isTrackingElement(val)) {
elementToRegionMap.insert_or_assign(val, freshLabel);
pushNewElementRegion(val);
freshLabel = Region(freshLabel + 1);
canonical = false;
return true;
}
// Otherwise, we already have this value in the map. Remove it from the
// transferred map.
auto iter1 = elementToRegionMap.find(val);
assert(iter1 != elementToRegionMap.end());
return regionToTransferredOpMap.erase(iter1->second);
}
void Partition::trackNewElement(Element newElt, bool updateHistory) {
SWIFT_DEFER { validateRegionToTransferredOpMapRegions(); };
// First try to emplace newElt with fresh_label.
auto iter = elementToRegionMap.try_emplace(newElt, freshLabel);
// If we did insert, then we know that the value is completely new. We can
// just update the fresh_label, set canonical to false, and return.
if (iter.second) {
// Since the value is completely new, add a completely new history node to
// the history.
if (updateHistory)
pushNewElementRegion(newElt);
// Increment the fresh label so it remains fresh.
freshLabel = Region(freshLabel + 1);
canonical = false;
return;
}
// Otherwise, we have a bit more work that we need to perform:
//
// 1. We of course need to update iter to point at fresh_label.
//
// 2. We need to see if this value was the last element in its current
// region. If so, then we need to remove the region from the transferred op
// map.
//
// This is important to ensure that every region in the transferredOpMap is
// also in elementToRegionMap.
auto oldRegion = iter.first->second;
iter.first->second = freshLabel;
auto getValueFromOtherRegion = [&]() -> std::optional<Element> {
for (auto pair : elementToRegionMap) {
if (pair.second == oldRegion)
return pair.first;
}
return {};
};
if (auto matchingElt = getValueFromOtherRegion()) {
if (updateHistory)
pushRemoveElementFromRegion(*matchingElt, newElt);
} else {
regionToTransferredOpMap.erase(oldRegion);
if (updateHistory)
pushRemoveLastElementFromRegion(newElt);
}
if (updateHistory)
pushNewElementRegion(newElt);
// Increment the fresh label so it remains fresh.
freshLabel = Region(freshLabel + 1);
canonical = false;
}
/// Assigns \p oldElt to the region associated with \p newElt.
void Partition::assignElement(Element oldElt, Element newElt,
bool updateHistory) {
// If the old/new elt at the same, just return.
if (oldElt == newElt)
return;
SWIFT_DEFER { validateRegionToTransferredOpMapRegions(); };
// First try to emplace oldElt with the newRegion.
auto newRegion = elementToRegionMap.at(newElt);
auto iter = elementToRegionMap.try_emplace(oldElt, newRegion);
// If we did an insert, then we know that oldElt was new to this
// partition. This means that we update our history for a completely new
// value in newElt's region. We also set canonical to false to ensure when
// ever we do a merge/etc, we renumber indices as appropriate.
if (iter.second) {
if (updateHistory) {
pushNewElementRegion(oldElt);
pushMergeElementRegions(newElt, oldElt);
}
canonical = false;
return;
}
// Otherwise, we did an assign.
auto oldRegion = iter.first->second;
// First check if oldRegion and newRegion are the same. In such a case, just
// return.
if (oldRegion == newRegion)
return;
// Otherwise, we need to actually assign. In such a case, we need to see if
// oldElt was the last element in oldRegion. If so, we need to erase the
// oldRegion from regionToTransferredOpMap.
iter.first->second = newRegion;
auto getValueFromOtherRegion = [&]() -> std::optional<Element> {
for (auto pair : elementToRegionMap) {
if (pair.second == oldRegion)
return pair.first;
}
return {};
};
if (auto otherElt = getValueFromOtherRegion()) {
if (updateHistory)
pushRemoveElementFromRegion(*otherElt, oldElt);
} else {
regionToTransferredOpMap.erase(oldRegion);
if (updateHistory)
pushRemoveLastElementFromRegion(oldElt);
}
if (updateHistory) {
pushNewElementRegion(oldElt);
pushMergeElementRegions(newElt, oldElt);
}
canonical = false;
}
Partition Partition::join(const Partition &fst, Partition &mutableSnd) {
// READ THIS! Remember, we cannot touch mutableSnd after this point. We just
// use it to canonicalize to avoid having to copy snd. After this point,
// please use the const reference snd to keep each other honest.
mutableSnd.canonicalize();
const auto &snd = mutableSnd;
// First copy fst into result and canonicalize the result.and canonicalize
// fst.
Partition result = fst;
result.canonicalize();
// Push a history join so when processing, we know the next element to
// process.
result.pushCFGHistoryJoin(snd.history);
// For each (sndEltNumber, sndRegionNumber) in snd_reduced...
for (auto pair : snd.elementToRegionMap) {
auto sndEltNumber = pair.first;
auto sndRegionNumber = pair.second;
// Check if result has sndEltNumber already within it...
{
auto resultIter = result.elementToRegionMap.find(sndEltNumber);
if (result.elementToRegionMap.end() != resultIter) {
auto resultRegion = resultIter->second;
// If we do and Element(sndRegionNumber) isn't the same element as
// sndEltNumber, then we know that sndEltNumber isn't the
// representative element of its region in sndReduced. We need to
// ensure that in result, that representative and our current
// value are in the same region. If they are the same value, we can
// just reuse sndEltNumber's region in result for the transferring
// check.
if (sndEltNumber != Element(sndRegionNumber)) {
// NOTE: History is updated by Partition::merge(...).
resultRegion = result.merge(sndEltNumber, Element(sndRegionNumber));
}
// Then if sndRegionNumber is transferred in sndReduced, make sure
// mergedRegion is transferred in result.
auto sndIter = snd.regionToTransferredOpMap.find(sndRegionNumber);
if (sndIter != snd.regionToTransferredOpMap.end()) {
auto resultIter = result.regionToTransferredOpMap.insert(
{resultRegion, sndIter->second});
if (!resultIter.second) {
resultIter.first->second =
resultIter.first->second->merge(sndIter->second);
}
}
continue;
}
}
// At this point, we know that sndEltNumber is not in result.
//
// Check if the representative element number
// (i.e. Element(sndRegionNumber)) for this element in snd is in result. In
// that case, we know that we visited the representative number before we
// visited this elt number (since we are processing in order) so what ever
// is mapped to that number in snd must be the correct region for this
// element as well since this number is guaranteed to be greater than our
// representative and the number mapped to our representative in result must
// be
// <= our representative.
//
// In this case, we do not need to propagate transfer into resultRegion
// since we would have handled that already when we visited our earlier
// representative element number.
{
auto iter = result.elementToRegionMap.find(Element(sndRegionNumber));
if (iter != result.elementToRegionMap.end()) {
result.elementToRegionMap.insert({sndEltNumber, iter->second});
result.pushMergeElementRegions(sndEltNumber, Element(sndRegionNumber));
// We want fresh_label to always be one element larger than our
// maximum element.
if (result.freshLabel <= Region(sndEltNumber))
result.freshLabel = Region(sndEltNumber + 1);
continue;
}
}
// Otherwise, we have an element that is not in result and its
// representative is not in result. This means that we must be our
// representative in snd since we should have visited our representative
// earlier if we were not due to our traversal being in order. Thus just add
// this to result.
assert(sndEltNumber == Element(sndRegionNumber));
result.elementToRegionMap.insert({sndEltNumber, sndRegionNumber});
result.pushNewElementRegion(sndEltNumber);
auto sndIter = snd.regionToTransferredOpMap.find(sndRegionNumber);
if (sndIter != snd.regionToTransferredOpMap.end()) {
auto fstIter = result.regionToTransferredOpMap.insert(
{sndRegionNumber, sndIter->second});
if (!fstIter.second)
fstIter.first->second = fstIter.first->second->merge(sndIter->second);
}
if (result.freshLabel <= sndRegionNumber)
result.freshLabel = Region(sndEltNumber + 1);
}
// We should have preserved canonicality during the computation above. It
// would be wasteful to need to canonicalize twice.
assert(result.is_canonical_correct());
// result is now the join.
return result;
}
bool Partition::popHistory(
SmallVectorImpl<IsolationHistory> &foundJoinedHistories) {
// We only allow for history rewinding if we are not tracking any
// transferring operands. This is because the history rewinding does not
// care about transferring. One can either construct a new Partition from
// the current Partition using Partition::removingTransferringInfo or clear
// the transferring information using Partition::clearTransferringInfo().
assert(regionToTransferredOpMap.empty() &&
"Can only rewind history if not tracking any transferring operands");
if (!history.getHead())
return false;
// Just put in a continue here to ensure that clang-format doesn't do weird
// things with the semicolon.
while (popHistoryOnce(foundJoinedHistories))
continue;
// Return if our history head is non-null so our user knows if there are more
// things to pop.
return history.getHead();
}
void Partition::print(llvm::raw_ostream &os) const {
SmallFrozenMultiMap<Region, Element, 8> multimap;
for (auto [eltNo, regionNo] : elementToRegionMap)
multimap.insert(regionNo, eltNo);
multimap.setFrozen();
os << "[";
for (auto [regionNo, elementNumbers] : multimap.getRange()) {
auto iter = regionToTransferredOpMap.find(regionNo);
bool isTransferred = iter != regionToTransferredOpMap.end();
if (isTransferred) {
os << '{';
} else {
os << '(';
}
int j = 0;
for (Element i : elementNumbers) {
os << (j++ ? " " : "") << i;
}
if (isTransferred) {
os << '}';
} else {
os << ')';
}
}
os << "]\n";
}
void Partition::printVerbose(llvm::raw_ostream &os) const {
SmallFrozenMultiMap<Region, Element, 8> multimap;
for (auto [eltNo, regionNo] : elementToRegionMap)
multimap.insert(regionNo, eltNo);
multimap.setFrozen();
for (auto [regionNo, elementNumbers] : multimap.getRange()) {
auto iter = regionToTransferredOpMap.find(regionNo);
bool isTransferred = iter != regionToTransferredOpMap.end();
os << "Region: " << regionNo << ". ";
if (isTransferred) {
os << '{';
} else {
os << '(';
}
int j = 0;
for (Element i : elementNumbers) {
os << (j++ ? " " : "") << i;
}
if (isTransferred) {
os << '}';
} else {
os << ')';
}
os << "\n";
os << "TransferInsts:\n";
if (isTransferred) {
for (auto op : iter->second->data()) {
os << " ";
op->print(os);
}
} else {
os << "None.\n";
}
}
}
void Partition::printHistory(llvm::raw_ostream &os) const {
llvm::dbgs() << "History Dump!\n";
const auto *head = history.head;
if (!head)
return;
do {
switch (head->getKind()) {
case IsolationHistory::Node::AddNewRegionForElement:
os << "AddNewRegionForElement: " << head->getFirstArgAsElement();
break;
case IsolationHistory::Node::RemoveLastElementFromRegion:
os << "RemoveLastElementFromRegion: " << head->getFirstArgAsElement();
break;
case IsolationHistory::Node::RemoveElementFromRegion: {
os << "RemoveElementFromRegion: " << head->getFirstArgAsElement();
auto extraArgs = head->getAdditionalElementArgs();
if (extraArgs.empty())
break;
llvm::interleave(extraArgs, os, ", ");
break;
}
case IsolationHistory::Node::MergeElementRegions: {
os << "MergeElementRegions: " << head->getFirstArgAsElement();
auto extraArgs = head->getAdditionalElementArgs();
if (extraArgs.empty())
break;
os << ", ";
llvm::interleave(extraArgs, os, ", ");
break;
}
case IsolationHistory::Node::CFGHistoryJoin:
os << "CFGHistoryJoin";
break;
case IsolationHistory::Node::SequenceBoundary:
os << "SequenceBoundary";
break;
}
os << "\n";
} while ((head = head->getParent()));
}
bool Partition::is_canonical_correct() const {
#ifdef NDEBUG
return true;
#else
if (!canonical)
return true; // vacuously correct
auto fail = [&](Element i, int type) {
llvm::errs() << "FAIL(i=" << i << "; type=" << type << "): ";
print(llvm::errs());
return false;
};
for (auto &[eltNo, regionNo] : elementToRegionMap) {
// Labels should not exceed fresh_label.
if (regionNo >= freshLabel)
return fail(eltNo, 0);
// The label of a region should be at most as large as each index in it.
if ((unsigned)regionNo > eltNo)
return fail(eltNo, 1);
// Each region label should also be an element of the partition.
if (!elementToRegionMap.count(Element(regionNo)))
return fail(eltNo, 2);
// Each element that is also a region label should be mapped to itself.
if (elementToRegionMap.at(Element(regionNo)) != regionNo)
return fail(eltNo, 3);
}
// Before we do anything, validate region to transferred op map.
validateRegionToTransferredOpMapRegions();
return true;
#endif
}
Region Partition::merge(Element fst, Element snd, bool updateHistory) {
assert(elementToRegionMap.count(fst) && elementToRegionMap.count(snd));
// Remember: fstRegion and sndRegion are actually elements in
// elementToRegionMap... they are just the representative of the region
// (which is the smallest element number).
auto fstRegion = elementToRegionMap.at(fst);
auto sndRegion = elementToRegionMap.at(snd);
// Our value reps are the same... we can return either. Just return fstRegion.
if (fstRegion == sndRegion)
return fstRegion;
// To maintain canonicality, we require that fstRegion is always less than
// sndRegion. If we do not have that, swap first and second state.
if (fstRegion > sndRegion) {
std::swap(fst, snd);
std::swap(fstRegion, sndRegion);
}
Region result = fstRegion;
// Rename snd and snd's entire region to fst's region.
SmallVector<Element, 32> mergedElements;
horizontalUpdate(snd, fstRegion, mergedElements);
auto iter = regionToTransferredOpMap.find(sndRegion);
if (iter != regionToTransferredOpMap.end()) {
auto operand = iter->second;
regionToTransferredOpMap.erase(iter);
regionToTransferredOpMap.insert({fstRegion, operand});
}
assert(is_canonical_correct());
assert(elementToRegionMap.at(fst) == elementToRegionMap.at(snd));
// Now that we are correct/canonicalized, add the merge to our history.
if (updateHistory)
pushMergeElementRegions(fst, mergedElements);
return result;
}
void Partition::canonicalize() {
if (canonical)
return;
canonical = true;
validateRegionToTransferredOpMapRegions();
std::map<Region, Region> oldRegionToRelabeledMap;
// We rely on in-order traversal of labels to ensure that we always take the
// lowest eltNumber.
for (auto &[eltNo, regionNo] : elementToRegionMap) {
if (!oldRegionToRelabeledMap.count(regionNo)) {
// if this is the first time encountering this region label,
// then this region label should be relabelled to this index,
// so enter that into the map
oldRegionToRelabeledMap.insert_or_assign(regionNo, Region(eltNo));
}
// Update this label with either its own index, or a prior index that
// shared a region with it.
regionNo = oldRegionToRelabeledMap.at(regionNo);
// The maximum index iterated over will be used here to appropriately
// set fresh_label.
freshLabel = Region(eltNo + 1);
}
// Then relabel our regionToTransferredInst map if we need to by swapping
// out the old map and updating.
//
// TODO: If we just used an array for this, we could just rewrite and
// re-sort and not have to deal with potential allocations.
decltype(regionToTransferredOpMap) oldMap =
std::move(regionToTransferredOpMap);
for (auto &[oldReg, op] : oldMap) {
auto iter = oldRegionToRelabeledMap.find(oldReg);
assert(iter != oldRegionToRelabeledMap.end());
regionToTransferredOpMap[iter->second] = op;
}
assert(is_canonical_correct());
}
void Partition::horizontalUpdate(
Element targetElement, Region newRegion,
llvm::SmallVectorImpl<Element> &mergedElements) {
// It is on our caller to make sure a value is in elementToRegionMap.
Region oldRegion = elementToRegionMap.at(targetElement);
// If our old region is the same as our new region, we do not have anything
// to do.
if (oldRegion == newRegion)
return;
for (auto [element, region] : elementToRegionMap) {
if (region == oldRegion) {
elementToRegionMap.insert_or_assign(element, newRegion);
mergedElements.push_back(element);
}
}
}
bool Partition::popHistoryOnce(
SmallVectorImpl<IsolationHistory> &foundJoinedHistoryNodes) {
const auto *head = history.pop();
if (!head)
return false;
// When popping, we /always/ want to canonicalize.
canonicalize();
switch (head->getKind()) {
case IsolationHistory::Node::SequenceBoundary:
return false;
case IsolationHistory::Node::AddNewRegionForElement: {
// We added an element to its own region... so we should remove it and it
// should be the last element in the region.
auto iter = elementToRegionMap.find(head->getFirstArgAsElement());
assert(iter != elementToRegionMap.end());
Region oldRegion = iter->second;
regionToTransferredOpMap.erase(oldRegion);
elementToRegionMap.erase(iter);
assert(llvm::none_of(elementToRegionMap,
[&](std::pair<Element, Region> pair) {
return pair.second == oldRegion;
}) &&
"Should have been last element?!");
return true;
}
case IsolationHistory::Node::RemoveLastElementFromRegion:
// We removed an element from a region and it was the last element. Just
// add new.
trackNewElement(head->getFirstArgAsElement(), false /*update history*/);
return true;
case IsolationHistory::Node::RemoveElementFromRegion:
// We removed an element from a specific region. So, we need to add it
// back.
assignElement(head->getFirstArgAsElement(),
head->getAdditionalElementArgs()[1],
false /*update history*/);
return true;
case IsolationHistory::Node::MergeElementRegions: {
// We merged two regions together. We need to remove all elements from the
// previous region into their own new region.
auto elementsToExtract = head->getAdditionalElementArgs();
assert(elementsToExtract.size());
removeElement(elementsToExtract[0]);
trackNewElement(elementsToExtract[0], false /*update history*/);
for (auto e : elementsToExtract.drop_front()) {
assert(head->getFirstArgAsElement() != e &&
"We assume that we are never removing all values when undoing "
"merging");
removeElement(e);
trackNewElement(e, false /*update history*/);
merge(e, elementsToExtract[0], false /*update history*/);
}
return true;
}
case IsolationHistory::Node::CFGHistoryJoin:
// When we have a CFG History Merge, we cannot simply pop. Instead, we need
// to signal to the user that they need to visit each history node in turn
// by returning it in the out parameter.
auto newHistory = IsolationHistory(history.factory);
newHistory.head = head->getFirstArgAsNode();
foundJoinedHistoryNodes.push_back(newHistory);
return true;
}
}
//===----------------------------------------------------------------------===//
// MARK: IsolationHistory
//===----------------------------------------------------------------------===//
// Push onto the history list that \p value should be added into its own
// independent region.
IsolationHistory::Node *
IsolationHistory::pushNewElementRegion(Element element) {
unsigned size = Node::totalSizeToAlloc<Element>(0);
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem) Node(Node::AddNewRegionForElement, head, element);
return getHead();
}
IsolationHistory::Node *
IsolationHistory::pushHistorySequenceBoundary(SILLocation loc) {
unsigned size = Node::totalSizeToAlloc<Element>(0);
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem) Node(Node::SequenceBoundary, head, loc);
return getHead();
}
// Push onto the history that \p value should be removed from any region that it
// is apart of and placed within its own separate region.
void IsolationHistory::pushRemoveLastElementFromRegion(Element element) {
unsigned size = Node::totalSizeToAlloc<Element>(0);
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem) Node(Node::RemoveLastElementFromRegion, head, element);
}
void IsolationHistory::pushRemoveElementFromRegion(
Element otherElementInOldRegion, Element element) {
unsigned size = Node::totalSizeToAlloc<Element>(1);
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem) Node(Node::RemoveElementFromRegion, head, element,
{otherElementInOldRegion});
}
void IsolationHistory::pushMergeElementRegions(Element elementToMergeInto,
ArrayRef<Element> eltsToMerge) {
assert(llvm::none_of(eltsToMerge,
[&](Element elt) { return elt == elementToMergeInto; }));
unsigned size = Node::totalSizeToAlloc<Element>(eltsToMerge.size());
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem)
Node(Node::MergeElementRegions, head, elementToMergeInto, eltsToMerge);
}
// Push that \p other should be merged into this region.
void IsolationHistory::pushCFGHistoryJoin(Node *otherNode) {
// If otherNode is nullptr or represents our same history, do not merge.
if (!otherNode || otherNode == head)
return;
// If we do not have any history, just take on the history of otherNode. We
// are going to merge our contents.
if (!head) {
head = otherNode;
return;
}
// Otherwise, create a node that joins our true head and other node as a side
// path we can follow.
unsigned size = Node::totalSizeToAlloc<Element>(0);
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem) Node(Node(Node::CFGHistoryJoin, head, otherNode));
}
IsolationHistory::Node *IsolationHistory::pop() {
if (!head)
return nullptr;
auto *result = head;
head = head->parent;
return result;
}
|