1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
//===--- SILSSAUpdater.cpp - Unstructured SSA Update Tool -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "swift/Basic/Malloc.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
using namespace swift;
void *SILSSAUpdater::allocate(unsigned size, unsigned align) const {
return AlignedAlloc(size, align);
}
void SILSSAUpdater::deallocateSentinel(SILUndef *undef) {
AlignedFree(undef);
}
SILSSAUpdater::SILSSAUpdater(SmallVectorImpl<SILPhiArgument *> *phis)
: blockToAvailableValueMap(nullptr), ownershipKind(OwnershipKind::None),
phiSentinel(nullptr, deallocateSentinel), insertedPhis(phis) {}
SILSSAUpdater::~SILSSAUpdater() = default;
void SILSSAUpdater::initialize(SILFunction *fn, SILType inputType,
ValueOwnershipKind kind) {
type = inputType;
ownershipKind = kind;
phiSentinel = std::unique_ptr<SILUndef, void (*)(SILUndef *)>(
SILUndef::getSentinelValue(fn, this, inputType),
SILSSAUpdater::deallocateSentinel);
if (!blockToAvailableValueMap)
blockToAvailableValueMap.reset(new AvailableValsTy());
else
blockToAvailableValueMap->clear();
}
bool SILSSAUpdater::hasValueForBlock(SILBasicBlock *block) const {
return blockToAvailableValueMap->count(block);
}
/// Indicate that a rewritten value is available in the specified block with the
/// specified value.
void SILSSAUpdater::addAvailableValue(SILBasicBlock *block, SILValue value) {
assert(value->getOwnershipKind().isCompatibleWith(ownershipKind));
(*blockToAvailableValueMap)[block] = value;
}
/// Construct SSA form, materializing a value that is live at the end of the
/// specified block.
SILValue SILSSAUpdater::getValueAtEndOfBlock(SILBasicBlock *block) {
return getValueAtEndOfBlockInternal(block);
}
/// Are all available values identicalTo each other.
static bool
areIdentical(llvm::DenseMap<SILBasicBlock *, SILValue> &availableValues) {
if (auto *firstInst =
dyn_cast<SingleValueInstruction>(availableValues.begin()->second)) {
for (auto value : availableValues) {
auto *svi = dyn_cast<SingleValueInstruction>(value.second);
if (!svi)
return false;
if (!svi->isIdenticalTo(firstInst))
return false;
}
return true;
}
if (auto *mvir = dyn_cast<MultipleValueInstructionResult>(
availableValues.begin()->second)) {
for (auto value : availableValues) {
auto *result = dyn_cast<MultipleValueInstructionResult>(value.second);
if (!result)
return false;
if (!result->getParent()->isIdenticalTo(mvir->getParent()) ||
result->getIndex() != mvir->getIndex()) {
return false;
}
}
return true;
}
auto *firstArg = cast<SILArgument>(availableValues.begin()->second);
for (auto value : availableValues) {
auto *arg = dyn_cast<SILArgument>(value.second);
if (!arg)
return false;
if (arg != firstArg) {
return false;
}
}
return true;
}
/// This should be called in top-down order of each def that needs its uses
/// rewritten. The order that we visit uses for a given def is irrelevant.
void SILSSAUpdater::rewriteUse(Operand &use) {
// Replicate function_refs to their uses. SILGen can't build phi nodes for
// them and it would not make much sense anyways.
if (auto *fri = dyn_cast<FunctionRefInst>(use.get())) {
assert(areIdentical(*blockToAvailableValueMap) &&
"The function_refs need to have the same value");
SILInstruction *user = use.getUser();
use.set(cast<FunctionRefInst>(fri->clone(user)));
return;
} else if (auto *pdfri =
dyn_cast<PreviousDynamicFunctionRefInst>(use.get())) {
assert(areIdentical(*blockToAvailableValueMap) &&
"The function_refs need to have the same value");
SILInstruction *user = use.getUser();
use.set(cast<PreviousDynamicFunctionRefInst>(pdfri->clone(user)));
return;
} else if (auto *dfri = dyn_cast<DynamicFunctionRefInst>(use.get())) {
assert(areIdentical(*blockToAvailableValueMap) &&
"The function_refs need to have the same value");
SILInstruction *user = use.getUser();
use.set(cast<DynamicFunctionRefInst>(dfri->clone(user)));
return;
} else if (auto *ili = dyn_cast<IntegerLiteralInst>(use.get()))
if (areIdentical(*blockToAvailableValueMap)) {
// Some llvm intrinsics don't like phi nodes as their constant inputs (e.g
// ctlz).
SILInstruction *user = use.getUser();
use.set(cast<IntegerLiteralInst>(ili->clone(user)));
return;
}
// Again we need to be careful here, because ssa construction (with the
// existing representation) can change the operand from under us.
UseWrapper useWrapper(&use);
SILInstruction *user = use.getUser();
SILValue newVal = getValueInMiddleOfBlock(user->getParent());
assert(newVal && "Need a valid value");
static_cast<Operand *>(useWrapper)->set(newVal);
}
/// Get the edge values from the terminator to the destination basic block.
static OperandValueArrayRef getEdgeValuesForTerminator(TermInst *ti,
SILBasicBlock *toBlock) {
if (auto *br = dyn_cast<BranchInst>(ti)) {
assert(br->getDestBB() == toBlock &&
"Incoming edge block and phi block mismatch");
return br->getArgs();
}
if (auto *cbi = dyn_cast<CondBranchInst>(ti)) {
bool isTrueEdge = cbi->getTrueBB() == toBlock;
assert(((isTrueEdge && cbi->getTrueBB() == toBlock) ||
cbi->getFalseBB() == toBlock) &&
"Incoming edge block and phi block mismatch");
return isTrueEdge ? cbi->getTrueArgs() : cbi->getFalseArgs();
}
// We need a predecessor who is capable of holding outgoing branch
// arguments.
llvm_unreachable("Unrecognized terminator leading to phi block");
}
/// Check that the argument has the same incoming edge values as the value
/// map.
static bool
isEquivalentPHI(SILPhiArgument *phi,
llvm::SmallDenseMap<SILBasicBlock *, SILValue, 8> &valueMap) {
SILBasicBlock *phiBlock = phi->getParent();
size_t phiArgEdgeIndex = phi->getIndex();
for (auto *predBlock : phiBlock->getPredecessorBlocks()) {
auto desiredVal = valueMap[predBlock];
OperandValueArrayRef edgeValues =
getEdgeValuesForTerminator(predBlock->getTerminator(), phiBlock);
if (edgeValues[phiArgEdgeIndex] != desiredVal)
return false;
}
return true;
}
SILValue SILSSAUpdater::getValueInMiddleOfBlock(SILBasicBlock *block) {
// If this basic block does not define a value we can just use the value
// live at the end of the block.
if (!hasValueForBlock(block))
return getValueAtEndOfBlock(block);
/// Otherwise, we have to build SSA for the value defined in this block and
/// this block's predecessors.
SILValue singularValue;
SmallVector<std::pair<SILBasicBlock *, SILValue>, 4> predVals;
bool firstPred = true;
// SSAUpdater can modify TerminatorInst and therefore invalidate the
// predecessor iterator. Find all the predecessors before the SSA update.
SmallVector<SILBasicBlock *, 4> preds;
for (auto *predBlock : block->getPredecessorBlocks()) {
preds.push_back(predBlock);
}
for (auto *predBlock : preds) {
SILValue predVal = getValueAtEndOfBlock(predBlock);
predVals.push_back(std::make_pair(predBlock, predVal));
if (firstPred) {
singularValue = predVal;
firstPred = false;
} else if (singularValue != predVal)
singularValue = SILValue();
}
// Return undef for blocks without predecessor.
if (predVals.empty())
return SILUndef::get(block->getParent(), type);
if (singularValue)
return singularValue;
// Check if we already have an equivalent phi.
if (!block->getArguments().empty()) {
llvm::SmallDenseMap<SILBasicBlock *, SILValue, 8> valueMap(predVals.begin(),
predVals.end());
for (auto *arg : block->getSILPhiArguments())
if (isEquivalentPHI(arg, valueMap))
return arg;
}
// Create a new phi node.
SILPhiArgument *phiArg = block->createPhiArgument(type, ownershipKind);
for (auto &pair : predVals) {
addNewEdgeValueToBranch(pair.first->getTerminator(), block, pair.second,
deleter);
}
// Set the reborrow flag on the newly created phi.
phiArg->setReborrow(computeIsReborrow(phiArg));
if (insertedPhis)
insertedPhis->push_back(phiArg);
return phiArg;
}
namespace llvm {
/// Traits for the SSAUpdaterImpl specialized for SIL and the SILSSAUpdater.
template <>
class SSAUpdaterTraits<SILSSAUpdater> {
public:
using BlkT = SILBasicBlock;
using ValT = SILValue;
using PhiT = SILPhiArgument;
using BlkSucc_iterator = SILBasicBlock::succ_iterator;
static BlkSucc_iterator BlkSucc_begin(BlkT *block) {
return block->succ_begin();
}
static BlkSucc_iterator BlkSucc_end(BlkT *block) { return block->succ_end(); }
/// Iterator for PHI operands.
class PHI_iterator {
private:
SILBasicBlock::pred_iterator predBlockIter;
SILBasicBlock *phiBlock;
size_t phiArgEdgeIndex;
public:
explicit PHI_iterator(SILPhiArgument *phiArg) // begin iterator
: predBlockIter(phiArg->getParent()->pred_begin()),
phiBlock(phiArg->getParent()), phiArgEdgeIndex(phiArg->getIndex()) {}
PHI_iterator(SILPhiArgument *phiArg, bool) // end iterator
: predBlockIter(phiArg->getParent()->pred_end()),
phiBlock(phiArg->getParent()), phiArgEdgeIndex(phiArg->getIndex()) {}
PHI_iterator &operator++() {
++predBlockIter;
return *this;
}
bool operator==(const PHI_iterator &x) const {
return predBlockIter == x.predBlockIter;
}
bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
SILValue getValueForBlock(size_t inputArgIndex, SILBasicBlock *block,
TermInst *ti) {
OperandValueArrayRef args = getEdgeValuesForTerminator(ti, block);
assert(inputArgIndex < args.size() &&
"Not enough values on incoming edge");
return args[inputArgIndex];
}
SILValue getIncomingValue() {
return getValueForBlock(phiArgEdgeIndex, phiBlock,
(*predBlockIter)->getTerminator());
}
SILBasicBlock *getIncomingBlock() { return *predBlockIter; }
};
static inline PHI_iterator PHI_begin(PhiT *phi) { return PHI_iterator(phi); }
static inline PHI_iterator PHI_end(PhiT *phi) {
return PHI_iterator(phi, true);
}
/// Put the predecessors of BB into the Preds vector.
static void
FindPredecessorBlocks(SILBasicBlock *block,
SmallVectorImpl<SILBasicBlock *> *predBlocks) {
llvm::copy(block->getPredecessorBlocks(), std::back_inserter(*predBlocks));
}
static SILValue GetUndefVal(SILBasicBlock *block, SILSSAUpdater *ssaUpdater) {
return SILUndef::get(block->getParent(), ssaUpdater->type);
}
/// Add an Argument to the basic block.
static SILValue CreateEmptyPHI(SILBasicBlock *block, unsigned numPreds,
SILSSAUpdater *ssaUpdater) {
// Add the argument to the block.
SILValue phi(
block->createPhiArgument(ssaUpdater->type, ssaUpdater->ownershipKind));
// Mark all predecessor blocks with the sentinel undef value.
SmallVector<SILBasicBlock *, 4> predBlockList(
block->getPredecessorBlocks());
for (auto *predBlock : predBlockList) {
TermInst *ti = predBlock->getTerminator();
addNewEdgeValueToBranch(ti, block, ssaUpdater->phiSentinel.get(),
ssaUpdater->deleter);
}
return phi;
}
/// Add \p value as an operand of the phi argument \p phi for the specified
/// predecessor block \p predBlock.
static void AddPHIOperand(SILPhiArgument *phi, SILValue value,
SILBasicBlock *predBlock) {
auto *phiBlock = phi->getParent();
size_t phiArgIndex = phi->getIndex();
auto *ti = predBlock->getTerminator();
changeEdgeValue(ti, phiBlock, phiArgIndex, value);
// Set the reborrow flag.
phi->setReborrow(computeIsReborrow(phi));
}
/// Check if an instruction is a PHI.
static SILPhiArgument *InstrIsPHI(ValueBase *valueBase) {
return dyn_cast<SILPhiArgument>(valueBase);
}
/// Check if the instruction that defines the specified SILValue is a PHI
/// instruction.
static SILPhiArgument *ValueIsPHI(SILValue value, SILSSAUpdater *) {
return InstrIsPHI(value);
}
/// Like ValueIsPHI but also check if the PHI has no source
/// operands, i.e., it was just added.
static SILPhiArgument *ValueIsNewPHI(SILValue value,
SILSSAUpdater *ssaUpdater) {
SILPhiArgument *phiArg = ValueIsPHI(value, ssaUpdater);
if (!phiArg) {
return nullptr;
}
auto *phiBlock = phiArg->getParent();
size_t phiArgEdgeIndex = phiArg->getIndex();
// If all predecessor edges are 'not set' this is a new phi.
for (auto *predBlock : phiBlock->getPredecessorBlocks()) {
OperandValueArrayRef edgeValues =
getEdgeValuesForTerminator(predBlock->getTerminator(), phiBlock);
assert(phiArgEdgeIndex < edgeValues.size() && "Not enough edges!");
SILValue edgeValue = edgeValues[phiArgEdgeIndex];
// Check for the 'not set' sentinel.
if (edgeValue != ssaUpdater->phiSentinel.get())
return nullptr;
}
return phiArg;
}
static SILValue GetPHIValue(SILPhiArgument *phi) { return phi; }
};
} // namespace llvm
/// Check to see if AvailableVals has an entry for the specified BB and if so,
/// return it. If not, construct SSA form by first calculating the required
/// placement of PHIs and then inserting new PHIs where needed.
SILValue SILSSAUpdater::getValueAtEndOfBlockInternal(SILBasicBlock *block) {
AvailableValsTy &availableValues = *blockToAvailableValueMap;
auto iter = availableValues.find(block);
if (iter != availableValues.end())
return iter->second;
llvm::SSAUpdaterImpl<SILSSAUpdater> impl(this, &availableValues,
insertedPhis);
return impl.GetValue(block);
}
/// Construct a use wrapper. For branches we store information so that we
/// can reconstruct the use after the branch has been modified.
///
/// When a branch is modified existing pointers to the operand
/// (ValueUseIterator) become invalid as they point to freed operands. Instead
/// we store the branch's parent and the idx so that we can reconstruct the use.
UseWrapper::UseWrapper(Operand *inputUse) {
wrappedUse = nullptr;
type = kRegularUse;
SILInstruction *user = inputUse->getUser();
// Direct branch user.
if (auto *br = dyn_cast<BranchInst>(user)) {
for (auto pair : llvm::enumerate(user->getAllOperands())) {
if (inputUse == &pair.value()) {
index = pair.index();
type = kBranchUse;
parent = br->getParent();
return;
}
}
}
// Conditional branch user.
if (auto *cbi = dyn_cast<CondBranchInst>(user)) {
auto operands = user->getAllOperands();
auto numTrueArgs = cbi->getTrueArgs().size();
for (auto pair : llvm::enumerate(operands)) {
if (inputUse == &pair.value()) {
unsigned i = pair.index();
// We treat the condition as part of the true args.
if (i < numTrueArgs + 1) {
index = i;
type = kCondBranchUseTrue;
} else {
index = i - numTrueArgs - 1;
type = kCondBranchUseFalse;
}
parent = cbi->getParent();
return;
}
}
}
wrappedUse = inputUse;
}
/// Return the operand we wrap. Reconstructing branch operands.
Operand *UseWrapper::getOperand() {
switch (type) {
case kRegularUse:
return wrappedUse;
case kBranchUse: {
auto *br = cast<BranchInst>(parent->getTerminator());
assert(index < br->getNumArgs());
return &br->getAllOperands()[index];
}
case kCondBranchUseTrue:
case kCondBranchUseFalse: {
auto *cbi = cast<CondBranchInst>(parent->getTerminator());
auto indexToUse = [&]() -> unsigned {
if (type == kCondBranchUseTrue)
return index;
return cbi->getTrueArgs().size() + 1 + index;
}();
assert(indexToUse < cbi->getAllOperands().size());
return &cbi->getAllOperands()[indexToUse];
}
}
llvm_unreachable("uninitialize use type");
}
/// At least one value feeding the specified SILArgument is a Struct. Attempt to
/// replace the Argument with a new Struct in the same block.
///
/// When we handle more types of casts, this can become a template.
///
/// ArgValues are the values feeding the specified Argument from each
/// predecessor. They must be listed in order of Arg->getParent()->getPreds().
static StructInst *
replaceBBArgWithStruct(SILPhiArgument *phiArg,
SmallVectorImpl<SILValue> &argValues) {
SILBasicBlock *phiBlock = phiArg->getParent();
auto *firstSI = dyn_cast<StructInst>(argValues[0]);
if (!firstSI)
return nullptr;
// Collect the BBArg index of each struct oper.
// e.g.
// struct(A, B)
// br (B, A)
// : ArgIdxForOper => {1, 0}
SmallVector<unsigned, 4> argIdxForOper;
for (unsigned operIdx : indices(firstSI->getElements())) {
bool foundMatchingArgIdx = false;
for (unsigned argIdx : indices(phiBlock->getArguments())) {
auto avIter = argValues.begin();
bool tryNextArgIdx = false;
for (SILBasicBlock *predBlock : phiBlock->getPredecessorBlocks()) {
// All argument values must be StructInst.
auto *predSI = dyn_cast<StructInst>(*avIter++);
if (!predSI)
return nullptr;
OperandValueArrayRef edgeValues =
getEdgeValuesForTerminator(predBlock->getTerminator(), phiBlock);
if (edgeValues[argIdx] != predSI->getElements()[operIdx]) {
tryNextArgIdx = true;
break;
}
}
if (!tryNextArgIdx) {
assert(avIter == argValues.end() &&
"# ArgValues does not match # BB preds");
foundMatchingArgIdx = true;
argIdxForOper.push_back(argIdx);
break;
}
}
if (!foundMatchingArgIdx)
return nullptr;
}
SmallVector<SILValue, 4> structArgs;
for (auto argIdx : argIdxForOper)
structArgs.push_back(phiBlock->getArgument(argIdx));
// TODO: We probably want to use a SILBuilderWithScope here. What should we
// use?
SILBuilder builder(phiBlock, phiBlock->begin());
return builder.createStruct(cast<StructInst>(argValues[0])->getLoc(),
phiArg->getType(), structArgs);
}
/// Canonicalize BB arguments, replacing argument-of-casts with
/// cast-of-arguments. This only eliminates existing arguments, replacing them
/// with casts. No new arguments are created. This allows downstream pattern
/// detection like induction variable analysis to succeed.
///
/// If Arg is replaced, return the cast instruction. Otherwise return nullptr.
SILValue swift::replaceBBArgWithCast(SILPhiArgument *arg) {
SmallVector<SILValue, 4> argValues;
arg->getIncomingPhiValues(argValues);
if (isa<StructInst>(argValues[0]))
return replaceBBArgWithStruct(arg, argValues);
return nullptr;
}
|