1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
//===--- ValueLifetime.cpp - ValueLifetimeAnalysis ------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "swift/Basic/STLExtras.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
using namespace swift;
void ValueLifetimeBoundary::visitInsertionPoints(
llvm::function_ref<void(SILBasicBlock::iterator insertPt)> visitor,
DeadEndBlocks *deBlocks) {
for (SILInstruction *user : lastUsers) {
if (!isa<TermInst>(user)) {
visitor(std::next(user->getIterator()));
continue;
}
auto *predBB = user->getParent();
for (SILBasicBlock *succ : predBB->getSuccessors()) {
if (deBlocks && deBlocks->isDeadEnd(succ))
continue;
assert(succ->getSinglePredecessorBlock() == predBB);
visitor(succ->begin());
}
}
for (SILBasicBlock *edge : boundaryEdges) {
if (deBlocks && deBlocks->isDeadEnd(edge))
continue;
visitor(edge->begin());
}
}
void ValueLifetimeAnalysis::propagateLiveness() {
bool defIsInstruction = defValue.is<SILInstruction *>();
assert(liveBlocks.empty() && "frontier computed twice");
assert(
(!defIsInstruction || !userSet.count(defValue.get<SILInstruction *>())) &&
"definition cannot be its own use");
// Compute the def block only if we have a SILInstruction. If we have a
// SILArgument, this will be nullptr.
auto *defBB = getDefValueParentBlock();
int numUsersBeforeDef = 0;
// Find the initial set of blocks where the value is live, because
// it is used in those blocks.
for (SILInstruction *user : userSet) {
SILBasicBlock *userBlock = user->getParent();
if (!inLiveBlocks.testAndSet(userBlock))
liveBlocks.push_back(userBlock);
// A user in the defBB could potentially be located before the defValue. If
// we had a SILArgument, defBB will be nullptr, so we should always have
// numUsersBeforeDef is 0. We assert this at the end of the loop.
if (defIsInstruction && userBlock == defBB)
++numUsersBeforeDef;
}
assert((defValue.is<SILInstruction *>() || (numUsersBeforeDef == 0)) &&
"Non SILInstruction defValue with users before the def?!");
// Don't count any users in the defBB which are actually located _after_ the
// defValue.
if (defIsInstruction) {
auto instIter = defValue.get<SILInstruction *>()->getIterator();
while (numUsersBeforeDef > 0 && ++instIter != defBB->end()) {
if (userSet.count(&*instIter))
--numUsersBeforeDef;
}
}
// Initialize the hasUsersBeforeDef field.
hasUsersBeforeDef = numUsersBeforeDef > 0;
assert(defIsInstruction || !hasUsersBeforeDef);
// Now propagate liveness backwards until we hit the block that defines the
// value.
unsigned workIdx = 0;
while (workIdx < liveBlocks.size()) {
auto *bb = liveBlocks[workIdx++];
// Don't go beyond the definition.
if (bb == defBB && !hasUsersBeforeDef)
continue;
for (auto *predBB : bb->getPredecessorBlocks()) {
// If it's already in the set, then we've already queued and/or
// processed the predecessors.
if (!inLiveBlocks.testAndSet(predBB))
liveBlocks.push_back(predBB);
}
}
}
SILInstruction *ValueLifetimeAnalysis::findLastUserInBlock(SILBasicBlock *bb) {
// Walk backwards in bb looking for last use of the value.
for (auto &inst : llvm::reverse(*bb)) {
assert(defValue.dyn_cast<SILInstruction *>() != &inst &&
"Found def before finding use!");
if (userSet.count(&inst))
return &inst;
}
llvm_unreachable("Expected to find use of value in block!");
}
// FIXME: remove the visitBlock callback once DeadEndBlocks is removed.
void ValueLifetimeAnalysis::computeLifetime(
llvm::function_ref<bool(SILBasicBlock *)> visitBlock,
llvm::function_ref<void(SILInstruction *)> visitLastUser,
llvm::function_ref<void(SILBasicBlock *predBB, SILBasicBlock *succBB)>
visitBoundaryEdge) {
assert(!isAliveAtBeginOfBlock(getFunction()->getEntryBlock()) &&
"Can't compute frontier for def which does not dominate all uses");
/// The lifetime ends if we have a live block and a not-live successor.
for (SILBasicBlock *bb : liveBlocks) {
if (!visitBlock(bb))
continue;
bool liveInSucc = false;
bool usedAndRedefinedInSucc = false;
for (const SILSuccessor &succ : bb->getSuccessors()) {
if (isAliveAtBeginOfBlock(succ)) {
liveInSucc = true;
if (succ == getDefValueParentBlock()) {
// Here, the basic block bb uses the value but also redefines the
// value inside bb. The new value could be used by the successors
// of succ and therefore could be live at the end of succ as well.
//
// This should never happen if we have a SILArgument since the
// SILArgument can not have any uses before it in a block.
assert(defValue.is<SILInstruction *>() &&
"SILArguments dominate all instructions in their defining "
"blocks");
usedAndRedefinedInSucc = true;
}
}
}
if (usedAndRedefinedInSucc) {
// Here, the basic block bb uses the value and later redefines the value.
// Therefore, this value's lifetime ends after its last use preceding the
// re-definition of the value.
auto ii = defValue.get<SILInstruction *>()->getReverseIterator();
for (; ii != bb->rend(); ++ii) {
if (userSet.count(&*ii)) {
visitLastUser(&*ii);
break;
}
}
assert(ii != bb->rend() &&
"There must be a user in bb before definition");
}
if (liveInSucc) {
for (const SILSuccessor &succ : bb->getSuccessors()) {
if (!isAliveAtBeginOfBlock(succ))
visitBoundaryEdge(bb, succ);
}
} else {
// The value is not live in any of the successor blocks. This means the
// block contains a last use of the value.
visitLastUser(findLastUserInBlock(bb));
}
}
}
// Compute a LifetimeBoundary.
//
// Precondition: no critical edges.
void ValueLifetimeAnalysis::computeLifetimeBoundary(
ValueLifetimeBoundary &boundary) {
auto visitBlock = [&](SILBasicBlock *) { return true; };
auto visitLastUser = [&](SILInstruction *lastUser) {
boundary.lastUsers.push_back(lastUser);
};
auto visitBoundaryEdge = [&](SILBasicBlock *, SILBasicBlock *succBB) {
boundary.boundaryEdges.push_back(succBB);
};
computeLifetime(visitBlock, visitLastUser, visitBoundaryEdge);
}
// FIXME: There is no need for a Mode within the algorithm once critical edges
// are universally prohibited.
//
// FIXME: DeadEndBlocks does not affect value lifetime. It
// should be completely removed and handled by the client.
bool ValueLifetimeAnalysis::computeFrontier(FrontierImpl &frontier, Mode mode,
DeadEndBlocks *deBlocks) {
bool noCriticalEdges = true;
// Exit-blocks from the lifetime region. The value is live at the end of
// a predecessor block but not in the frontier block itself.
BasicBlockSetVector frontierBlocks(getFunction());
// Blocks where the value is live at the end of the block and which have
// a frontier block as successor.
BasicBlockSetVector liveOutBlocks(getFunction());
auto visitBlock = [&](SILBasicBlock *bb) {
return !deBlocks || !deBlocks->isDeadEnd(bb);
};
bool foundInvalidLastUser = false;
auto visitLastUser = [&](SILInstruction *lastUser) {
if (!isa<TermInst>(lastUser)) {
// The next instruction after the last use is part of the frontier.
frontier.push_back(&*std::next(lastUser->getIterator()));
return;
}
// FIXME: DeadObjectElimination and StackPromotion don't currently handle
// last use terminators, for no good reason. Fix them, then remove the silly
// UsersMustPostDomDef mode.
if (mode == UsersMustPostDomDef) {
foundInvalidLastUser = true;
return;
}
// The last user is a TermInst, and the value is not live into any successor
// blocks (the usedAndRedefinedInSucc case is never a terminator). Since
// there is no further instruction in the block which can be the
// frontier, add all successor blocks to the frontier.
auto *termBB = lastUser->getParent();
for (const SILSuccessor &succ : termBB->getSuccessors()) {
assert(!isAliveAtBeginOfBlock(succ)
&& "out-of-sync with computeLifetime");
if (deBlocks && deBlocks->isDeadEnd(succ))
continue;
// The successor's first instruction will be added to the frontier. Fake
// this block as live-out so edge splitting works.
liveOutBlocks.insert(termBB);
frontierBlocks.insert(succ);
}
};
auto visitBoundaryEdge = [&](SILBasicBlock *predBB, SILBasicBlock *succBB) {
if (deBlocks && deBlocks->isDeadEnd(succBB))
return;
if (mode == UsersMustPostDomDef) {
foundInvalidLastUser = true;
return;
}
liveOutBlocks.insert(predBB);
frontierBlocks.insert(succBB);
};
// Populate frontierBlocks and call visitLastUser().
computeLifetime(visitBlock, visitLastUser, visitBoundaryEdge);
if (foundInvalidLastUser)
return false;
// Handle "exit" edges from the lifetime region.
BasicBlockSet unhandledFrontierBlocks(getFunction());
bool unhandledFrontierBlocksFound = false;
for (SILBasicBlock *frontierBB : frontierBlocks) {
assert(mode != UsersMustPostDomDef);
bool needSplit = false;
// If the value is live only in part of the predecessor blocks we have to
// split those predecessor edges.
for (SILBasicBlock *Pred : frontierBB->getPredecessorBlocks()) {
if (!liveOutBlocks.contains(Pred)) {
needSplit = true;
break;
}
}
if (needSplit) {
// We need to split the critical edge to create a frontier instruction.
unhandledFrontierBlocks.insert(frontierBB);
unhandledFrontierBlocksFound = true;
} else {
// The first instruction of the exit-block is part of the frontier.
frontier.push_back(&*frontierBB->begin());
}
}
if (!unhandledFrontierBlocksFound) {
return true;
}
// Split critical edges from the lifetime region to not yet handled frontier
// blocks.
for (SILBasicBlock *frontierPred : liveOutBlocks) {
assert(mode != UsersMustPostDomDef);
auto *term = frontierPred->getTerminator();
// Cache the successor blocks because splitting critical edges invalidates
// the successor list iterator of T.
llvm::SmallVector<SILBasicBlock *, 4> succBlocks;
for (const SILSuccessor &succ : term->getSuccessors())
succBlocks.push_back(succ);
for (unsigned i = 0, e = succBlocks.size(); i != e; ++i) {
if (unhandledFrontierBlocks.contains(succBlocks[i])) {
assert((isCriticalEdge(term, i) || userSet.count(term)) &&
"actually not a critical edge?");
noCriticalEdges = false;
if (mode != AllowToModifyCFG) {
// If the CFG need not be modified, just record the critical edge and
// continue.
this->criticalEdges.push_back({term, i});
continue;
}
SILBasicBlock *newBlock = splitEdge(term, i);
// The single terminator instruction is part of the frontier.
frontier.push_back(&*newBlock->begin());
}
}
}
return noCriticalEdges;
}
bool ValueLifetimeAnalysis::isWithinLifetime(SILInstruction *inst) {
SILBasicBlock *bb = inst->getParent();
// Check if the value is not live anywhere in inst's block.
if (!inLiveBlocks.get(bb))
return false;
for (const SILSuccessor &succ : bb->getSuccessors()) {
// If the value is live at the beginning of any successor block it is also
// live at the end of bb and therefore inst is definitely in the lifetime
// region (Note that we don't check in upward direction against the value's
// definition).
if (isAliveAtBeginOfBlock(succ))
return true;
}
// The value is live in the block but not at the end of the block. Check if
// inst is located before (or at) the last use.
for (auto ii = bb->rbegin(); ii != bb->rend(); ++ii) {
if (userSet.count(&*ii)) {
return true;
}
if (inst == &*ii)
return false;
}
llvm_unreachable("Expected to find use of value in block!");
}
// Searches \p bb backwards from the instruction before \p frontierInst
// to the beginning of the list and returns true if we find a dealloc_ref or an
// dealloc_stack_ref /before/ we find \p defValue (the instruction that
// defines our target value).
static bool
blockContainsDeallocRef(SILBasicBlock *bb,
PointerUnion<SILInstruction *, SILArgument *> defValue,
SILInstruction *frontierInst) {
SILBasicBlock::reverse_iterator End = bb->rend();
SILBasicBlock::reverse_iterator iter = frontierInst->getReverseIterator();
for (++iter; iter != End; ++iter) {
SILInstruction *inst = &*iter;
if (isa<DeallocRefInst>(inst) || isa<DeallocStackRefInst>(inst))
return true;
// We know that inst is not a nullptr, so if we have a SILArgument, this
// will always fail as we want.
if (inst == defValue.dyn_cast<SILInstruction *>())
return false;
}
return false;
}
bool ValueLifetimeAnalysis::containsDeallocRef(const FrontierImpl &frontier) {
BasicBlockSet frontierBlocks(getFunction());
// Search in live blocks where the value is not alive until the end of the
// block, i.e. the live range is terminated by a frontier instruction.
for (SILInstruction *frontierInst : frontier) {
SILBasicBlock *bb = frontierInst->getParent();
if (blockContainsDeallocRef(bb, defValue, frontierInst))
return true;
frontierBlocks.insert(bb);
}
// Search in all other live blocks where the value is alive until the end of
// the block.
for (SILBasicBlock *bb : liveBlocks) {
if (frontierBlocks.contains(bb) == 0) {
if (blockContainsDeallocRef(bb, defValue, bb->getTerminator()))
return true;
}
}
return false;
}
void ValueLifetimeAnalysis::dump() const {
llvm::errs() << "lifetime of def: ";
if (auto *ii = defValue.dyn_cast<SILInstruction *>()) {
llvm::errs() << *ii;
} else {
llvm::errs() << *defValue.get<SILArgument *>();
}
for (SILInstruction *use : userSet) {
llvm::errs() << " use: " << *use;
}
llvm::errs() << " live blocks:";
for (SILBasicBlock *bb : liveBlocks) {
llvm::errs() << ' ' << bb->getDebugID();
}
llvm::errs() << '\n';
}
void swift::endLifetimeAtFrontier(
SILValue valueOrStackLoc,
const ValueLifetimeAnalysis::FrontierImpl &frontier,
SILBuilderContext &builderCtxt, InstModCallbacks callbacks) {
for (SILInstruction *endPoint : frontier) {
SILBuilderWithScope builder(endPoint, builderCtxt);
SILLocation loc = RegularLocation(endPoint->getLoc());
emitDestroyOperation(builder, loc, valueOrStackLoc, callbacks);
if (isa<AllocStackInst>(valueOrStackLoc)) {
builder.createDeallocStack(loc, valueOrStackLoc);
}
}
}
|