1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
|
//===--- AssociatedTypeInference.cpp - Associated Type Inference ---000----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements type witness lookup and associated type inference.
//
// There are three entry points into the code here, all via request evaluation:
//
// - TypeWitnessRequest resolves a type witness in a normal conformance.
// - First, we perform a qualified lookup into the conforming type to find a
// member type with the same name as the associated type.
// - If the lookup succeeds, we record the type witness.
// - If the lookup fails, we attempt to resolve all type witnesses.
//
// - ResolveTypeWitnessesRequest resolves all type witnesses of a normal
// conformance.
// - First, we attempt to resolve each associated type via lookup.
// - For any witnesses still unresolved, we perform associated type inference.
//
// - AssociatedConformanceRequest resolves an associated conformance of a
// normal conformance. This computes the substituted subject type and performs
// a global conformance lookup.
//
//===----------------------------------------------------------------------===//
#include "TypeCheckProtocol.h"
#include "DerivedConformances.h"
#include "TypeAccessScopeChecker.h"
#include "TypeChecker.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/TypeMatcher.h"
#include "swift/AST/Types.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Statistic.h"
#include "swift/ClangImporter/ClangModule.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#define DEBUG_TYPE "Associated type inference"
#include "llvm/Support/Debug.h"
STATISTIC(NumSolutionStates, "# of solution states visited");
STATISTIC(NumSolutionStatesFailedCheck,
"# of solution states that failed constraints check");
STATISTIC(NumConstrainedExtensionChecks,
"# of constrained extension checks");
STATISTIC(NumConstrainedExtensionChecksFailed,
"# of constrained extension checks failed");
STATISTIC(NumDuplicateSolutionStates,
"# of duplicate solution states ");
using namespace swift;
namespace {
/// Describes the result of checking a type witness.
///
/// This class evaluates true if an error occurred.
class CheckTypeWitnessResult {
public:
enum Kind {
Success,
/// Type witness contains an error type.
Error,
/// Type witness does not satisfy a conformance requirement on
/// the associated type.
Conformance,
/// Type witness does not satisfy a superclass requirement on
/// the associated type.
Superclass,
/// Type witness does not satisfy a layout requirement on
/// the associated type.
Layout
} kind;
private:
Type reqt;
CheckTypeWitnessResult() : kind(Success) {}
CheckTypeWitnessResult(Kind kind, Type reqt)
: kind(kind), reqt(reqt) {}
public:
static CheckTypeWitnessResult forSuccess() {
return CheckTypeWitnessResult(Success, Type());
}
static CheckTypeWitnessResult forError() {
return CheckTypeWitnessResult(Error, Type());
}
static CheckTypeWitnessResult forConformance(ProtocolDecl *proto) {
auto reqt = proto->getDeclaredInterfaceType();
return CheckTypeWitnessResult(Conformance, reqt);
}
static CheckTypeWitnessResult forSuperclass(Type reqt) {
assert(reqt->getClassOrBoundGenericClass());
return CheckTypeWitnessResult(Superclass, reqt);
}
static CheckTypeWitnessResult forLayout(Type reqt) {
return CheckTypeWitnessResult(Layout, reqt);
}
Kind getKind() const { return kind; }
Type getRequirement() const { return reqt; }
explicit operator bool() const { return kind != Success; }
};
/// Checks a potential witness for an associated type A against the "local"
/// requirements of the type parameter Self.[P]A. We call this to check
/// type witnesses found by name lookup, as well as candidate witnesses during
/// inference.
///
/// This does not completely check the witness; we check the entire requirement
/// signature at the end. However, rejecting witnesses that are definitely
/// invalid here can cut down the search space.
static CheckTypeWitnessResult
checkTypeWitness(Type type, AssociatedTypeDecl *assocType,
const NormalProtocolConformance *Conf) {
auto &ctx = assocType->getASTContext();
if (type->hasError())
return CheckTypeWitnessResult::forError();
if (type->isTypeParameter())
return CheckTypeWitnessResult::forSuccess();
const auto proto = Conf->getProtocol();
const auto dc = Conf->getDeclContext();
const auto sig = proto->getGenericSignature();
// FIXME: The RequirementMachine will assert on re-entrant construction.
// We should find a more principled way of breaking this cycle.
if (ctx.isRecursivelyConstructingRequirementMachine(sig.getCanonicalSignature()) ||
ctx.isRecursivelyConstructingRequirementMachine(proto) ||
proto->isComputingRequirementSignature())
return CheckTypeWitnessResult::forError();
const auto depTy = DependentMemberType::get(proto->getSelfInterfaceType(),
assocType);
if (auto superclass = sig->getSuperclassBound(depTy)) {
// We only check that the type's superclass declaration is correct.
// If the superclass bound is generic, we may not have resolved all of
// the type witnesses that appear in generic arguments yet, and doing so
// here might run into a request cycle.
auto superclassDecl = superclass->getClassOrBoundGenericClass();
assert(superclassDecl);
// Fish a class declaration out of the type witness.
ClassDecl *classDecl = nullptr;
if (auto archetype = type->getAs<ArchetypeType>()) {
if (auto superclassType = archetype->getSuperclass())
classDecl = superclassType->getClassOrBoundGenericClass();
} else if (type->isObjCExistentialType()) {
// For self-conforming Objective-C existentials, the exact check is
// implemented in TypeBase::isExactSuperclassOf(). Here, we just always
// look through into a superclass of a composition.
if (auto superclassType = type->getSuperclass())
classDecl = superclassType->getClassOrBoundGenericClass();
} else {
classDecl = type->getClassOrBoundGenericClass();
}
if (!classDecl || !superclassDecl->isSuperclassOf(classDecl))
return CheckTypeWitnessResult::forSuperclass(superclass);
}
auto *module = dc->getParentModule();
// Check protocol conformances. We don't check conditional requirements here.
for (const auto reqProto : sig->getRequiredProtocols(depTy)) {
if (module->lookupConformance(
type, reqProto,
/*allowMissing=*/reqProto->isSpecificProtocol(
KnownProtocolKind::Sendable))
.isInvalid())
return CheckTypeWitnessResult::forConformance(reqProto);
}
// We can completely check an AnyObject layout constraint.
if (sig->requiresClass(depTy) &&
!type->satisfiesClassConstraint()) {
return CheckTypeWitnessResult::forLayout(ctx.getAnyObjectType());
}
// Success!
return CheckTypeWitnessResult::forSuccess();
}
}
static bool containsConcreteDependentMemberType(Type ty) {
return ty.findIf([](Type t) -> bool {
if (auto *dmt = t->getAs<DependentMemberType>())
return !dmt->isTypeParameter();
return false;
});
}
/// Determine whether this is the AsyncIteratorProtocol.Failure or
/// AsyncSequence.Failure associated type.
static bool isAsyncIteratorOrSequenceFailure(AssociatedTypeDecl *assocType) {
auto proto = assocType->getProtocol();
if (!proto->isSpecificProtocol(KnownProtocolKind::AsyncIteratorProtocol) &&
!proto->isSpecificProtocol(KnownProtocolKind::AsyncSequence))
return false;
return assocType->getName() == assocType->getASTContext().Id_Failure;
}
static void recordTypeWitness(NormalProtocolConformance *conformance,
AssociatedTypeDecl *assocType,
Type type,
TypeDecl *typeDecl) {
assert(!containsConcreteDependentMemberType(type));
// If we already recoded this type witness, there's nothing to do.
if (conformance->hasTypeWitness(assocType)) {
assert(conformance->getTypeWitnessUncached(assocType)
.getWitnessType()
->isEqual(type) &&
"Conflicting type witness deductions");
return;
}
assert(!type->hasArchetype() && "Got a contextual type here?");
auto *dc = conformance->getDeclContext();
auto *proto = conformance->getProtocol();
auto &ctx = dc->getASTContext();
// If there was no type declaration, synthesize one.
if (typeDecl == nullptr) {
Identifier name;
bool needsImplementsAttr;
if (isAsyncIteratorOrSequenceFailure(assocType)) {
// Use __<protocol>_<assocType> as the name, to keep it out of the
// way of other names.
llvm::SmallString<32> nameBuffer;
nameBuffer += "__";
nameBuffer += assocType->getProtocol()->getName().str();
nameBuffer += "_";
nameBuffer += assocType->getName().str();
name = ctx.getIdentifier(nameBuffer);
needsImplementsAttr = true;
} else {
// Declare a typealias with the same name as the associated type.
name = assocType->getName();
needsImplementsAttr = false;
}
auto aliasDecl = new (ctx) TypeAliasDecl(
SourceLoc(), SourceLoc(), name, SourceLoc(),
/*genericparams*/ nullptr, dc);
aliasDecl->setUnderlyingType(type);
aliasDecl->setImplicit();
aliasDecl->setSynthesized();
// If needed, add an @_implements(Protocol, Name) attribute.
if (needsImplementsAttr) {
auto attr = ImplementsAttr::create(
dc, assocType->getProtocol(), assocType->getName());
aliasDecl->getAttrs().add(attr);
}
// Inject the typealias into the nominal decl that conforms to the protocol.
auto nominal = dc->getSelfNominalTypeDecl();
auto requiredAccessScope = evaluateOrDefault(
ctx.evaluator, ConformanceAccessScopeRequest{dc, proto},
std::make_pair(AccessScope::getPublic(), false));
if (!ctx.isSwiftVersionAtLeast(5) &&
!dc->getParentModule()->isResilient()) {
// HACK: In pre-Swift-5, these typealiases were synthesized with the
// same access level as the conforming type, which might be more
// visible than the associated type witness. Preserve that behavior
// when the underlying type has sufficient access, but only in
// non-resilient modules.
std::optional<AccessScope> underlyingTypeScope =
TypeAccessScopeChecker::getAccessScope(type, dc,
/*usableFromInline*/ false);
assert(underlyingTypeScope.has_value() &&
"the type is already invalid and we shouldn't have gotten here");
AccessScope nominalAccessScope = nominal->getFormalAccessScope(dc);
std::optional<AccessScope> widestPossibleScope =
underlyingTypeScope->intersectWith(nominalAccessScope);
assert(widestPossibleScope.has_value() &&
"we found the nominal and the type witness, didn't we?");
requiredAccessScope.first = widestPossibleScope.value();
}
// An associated type witness can never be less than fileprivate, since
// it must always be at least as visible as the enclosing type.
AccessLevel requiredAccess =
std::max(requiredAccessScope.first.accessLevelForDiagnostics(),
AccessLevel::FilePrivate);
aliasDecl->setAccess(requiredAccess);
if (requiredAccessScope.second) {
auto *attr = new (ctx) UsableFromInlineAttr(/*implicit=*/true);
aliasDecl->getAttrs().add(attr);
}
// Construct the availability of the type witnesses based on the
// availability of the enclosing type and the associated type.
llvm::SmallVector<Decl *, 2> availabilitySources = {dc->getAsDecl()};
// Only constrain the availability of the typealias by the availability of
// the associated type if the associated type is less available than its
// protocol. This is required for source compatibility.
auto protoAvailability = AvailabilityInference::availableRange(proto, ctx);
auto assocTypeAvailability =
AvailabilityInference::availableRange(assocType, ctx);
if (protoAvailability.isSupersetOf(assocTypeAvailability)) {
availabilitySources.push_back(assocType);
}
AvailabilityInference::applyInferredAvailableAttrs(
aliasDecl, availabilitySources, ctx);
if (nominal == dc) {
nominal->addMember(aliasDecl);
} else {
auto ext = cast<ExtensionDecl>(dc);
ext->addMember(aliasDecl);
}
typeDecl = aliasDecl;
}
// Record the type witness.
conformance->setTypeWitness(assocType, type, typeDecl);
// Record type witnesses for any "overridden" associated types.
llvm::SetVector<AssociatedTypeDecl *> overriddenAssocTypes;
auto assocOverriddenDecls = assocType->getOverriddenDecls();
overriddenAssocTypes.insert(assocOverriddenDecls.begin(),
assocOverriddenDecls.end());
for (unsigned idx = 0; idx < overriddenAssocTypes.size(); ++idx) {
auto overridden = overriddenAssocTypes[idx];
// Note all of the newly-discovered overridden associated types.
auto overriddenDecls = overridden->getOverriddenDecls();
overriddenAssocTypes.insert(overriddenDecls.begin(), overriddenDecls.end());
// Find the conformance for this overridden protocol.
auto overriddenConformance =
dc->getParentModule()->lookupConformance(dc->getSelfInterfaceType(),
overridden->getProtocol(),
/*allowMissing=*/true);
if (overriddenConformance.isInvalid() ||
!overriddenConformance.isConcrete())
continue;
auto *overriddenRootConformance =
overriddenConformance.getConcrete()->getRootNormalConformance();
auto *overriddenRootConformanceDC =
overriddenRootConformance->getDeclContext();
// Don't record a type witness for an overridden associated type if the
// conformance to the corresponding inherited protocol
// - originates in a superclass
// - originates in a different module
// - and the current conformance have mismatching conditional requirements
// This can turn out badly in two ways:
// - Foremost, we must not *alter* conformances originating in superclasses
// or other modules. In other cases, we may hit an assertion in an attempt
// to overwrite an already recorded type witness with a different one.
// For example, the recorded type witness may be invalid, whereas the
// other one---valid, and vice versa.
// - If the current conformance is more restrictive, this type witness may
// not be a viable candidate for the overridden associated type.
if (overriddenRootConformanceDC->getSelfNominalTypeDecl() !=
dc->getSelfNominalTypeDecl())
continue;
if (overriddenRootConformanceDC->getParentModule() != dc->getParentModule())
continue;
auto currConformanceSig = dc->getGenericSignatureOfContext();
auto overriddenConformanceSig =
overriddenRootConformanceDC->getGenericSignatureOfContext();
if (currConformanceSig.getCanonicalSignature() !=
overriddenConformanceSig.getCanonicalSignature())
continue;
recordTypeWitness(overriddenRootConformance, overridden, type, typeDecl);
}
}
/// Determine whether this is the AsyncIteratorProtocol.Failure associated type.
static bool isAsyncIteratorProtocolFailure(AssociatedTypeDecl *assocType) {
auto proto = assocType->getProtocol();
if (!proto->isSpecificProtocol(KnownProtocolKind::AsyncIteratorProtocol))
return false;
return assocType->getName() == assocType->getASTContext().Id_Failure;
}
/// Determine whether this is the AsyncSequence.Failure associated type.
static bool isAsyncSequenceFailure(AssociatedTypeDecl *assocType) {
auto proto = assocType->getProtocol();
if (!proto->isSpecificProtocol(KnownProtocolKind::AsyncSequence))
return false;
return assocType->getName() == assocType->getASTContext().Id_Failure;
}
/// Attempt to resolve a type witness via member name lookup.
static ResolveWitnessResult resolveTypeWitnessViaLookup(
NormalProtocolConformance *conformance,
AssociatedTypeDecl *assocType) {
auto *dc = conformance->getDeclContext();
auto &ctx = dc->getASTContext();
// Conformances constructed by the ClangImporter should have explicit type
// witnesses already.
if (isa<ClangModuleUnit>(dc->getModuleScopeContext())) {
llvm::errs() << "Cannot look up associated type for imported conformance:\n";
conformance->getType().dump(llvm::errs());
assocType->dump(llvm::errs());
abort();
}
NLOptions subOptions = (NL_QualifiedDefault | NL_OnlyTypes |
NL_ProtocolMembers | NL_IncludeAttributeImplements);
// Look for a member type with the same name as the associated type.
SmallVector<ValueDecl *, 4> candidates;
dc->lookupQualified(dc->getSelfNominalTypeDecl(), assocType->createNameRef(),
dc->getSelfNominalTypeDecl()->getLoc(), subOptions,
candidates);
// If there aren't any candidates, we're done.
if (candidates.empty()) {
return ResolveWitnessResult::Missing;
}
// Determine which of the candidates is viable.
SmallVector<LookupTypeResultEntry, 2> viable;
SmallVector<std::pair<TypeDecl *, CheckTypeWitnessResult>, 2> nonViable;
SmallPtrSet<CanType, 4> viableTypes;
for (auto candidate : candidates) {
auto *typeDecl = cast<TypeDecl>(candidate);
// Skip other associated types.
if (isa<AssociatedTypeDecl>(typeDecl))
continue;
// If the name doesn't match and there's no appropriate @_implements
// attribute, skip this candidate.
//
// Also skip candidates in protocol extensions, because they tend to cause
// request cycles. We'll look at those during associated type inference.
if (assocType->getName() != typeDecl->getName() &&
!(witnessHasImplementsAttrForExactRequirement(typeDecl, assocType) &&
!typeDecl->getDeclContext()->getSelfProtocolDecl()))
continue;
// Prior to Swift 6, ignore a member named Failure when matching
// AsyncSequence.Failure. We'll infer it from the AsyncIterator.Failure
// instead.
if (isAsyncSequenceFailure(assocType) &&
!ctx.LangOpts.isSwiftVersionAtLeast(6) &&
assocType->getName() == typeDecl->getName())
continue;;
auto *genericDecl = cast<GenericTypeDecl>(typeDecl);
// If the declaration has generic parameters, it cannot witness an
// associated type.
if (genericDecl->isGeneric())
continue;
// Skip typealiases with an unbound generic type as their underlying type.
if (auto *typeAliasDecl = dyn_cast<TypeAliasDecl>(typeDecl))
if (typeAliasDecl->getDeclaredInterfaceType()->is<UnboundGenericType>())
continue;
// Skip dependent protocol typealiases.
//
// FIXME: This should not be necessary.
if (auto *typeAliasDecl = dyn_cast<TypeAliasDecl>(typeDecl)) {
if (isa<ProtocolDecl>(typeAliasDecl->getDeclContext()) &&
typeAliasDecl->getUnderlyingType()->getCanonicalType()
->hasTypeParameter()) {
continue;
}
}
// If the type comes from a constrained extension or has a 'where'
// clause, check those requirements now.
if (!TypeChecker::checkContextualRequirements(
genericDecl, dc->getSelfInterfaceType(), SourceLoc(),
dc->getParentModule(), dc->getGenericSignatureOfContext())) {
continue;
}
auto memberType = TypeChecker::substMemberTypeWithBase(
dc->getParentModule(), typeDecl, dc->getSelfInterfaceType());
// Type witnesses that resolve to constraint types are always
// existential types. This can only happen when the type witness
// is explicitly written with a type alias. The type alias itself
// is still a constraint type because it can be used as both a
// type witness and as a generic constraint.
//
// With SE-0335, using a type alias as both a type witness and a generic
// constraint will be disallowed in Swift 6, because existential types
// must be explicit, and a generic constraint isn't a valid type witness.
if (memberType->isConstraintType()) {
memberType = ExistentialType::get(memberType);
}
if (!viableTypes.insert(memberType->getCanonicalType()).second)
continue;
auto memberTypeInContext = dc->mapTypeIntoContext(memberType);
// Check this type against the protocol requirements.
if (auto checkResult =
checkTypeWitness(memberTypeInContext, assocType, conformance)) {
nonViable.push_back({typeDecl, checkResult});
} else {
viable.push_back({typeDecl, memberType, nullptr});
}
}
// If there are no viable witnesses, and all nonviable candidates came from
// protocol extensions, treat this as "missing".
if (viable.empty() &&
std::find_if(nonViable.begin(), nonViable.end(),
[](const std::pair<TypeDecl *, CheckTypeWitnessResult> &x) {
return x.first->getDeclContext()
->getSelfProtocolDecl() == nullptr;
}) == nonViable.end())
return ResolveWitnessResult::Missing;
// If there is a single viable candidate, form a substitution for it.
if (viable.size() == 1) {
auto interfaceType = viable.front().MemberType;
recordTypeWitness(conformance, assocType, interfaceType,
viable.front().Member);
return ResolveWitnessResult::Success;
}
// Record an error.
recordTypeWitness(conformance, assocType,
ErrorType::get(ctx), nullptr);
// If we had multiple viable types, diagnose the ambiguity.
if (!viable.empty()) {
ctx.addDelayedConformanceDiag(conformance, true,
[assocType, viable](NormalProtocolConformance *conformance) {
auto &diags = assocType->getASTContext().Diags;
diags.diagnose(assocType, diag::ambiguous_witnesses_type,
assocType->getName());
for (auto candidate : viable)
diags.diagnose(candidate.Member, diag::protocol_witness_type);
});
return ResolveWitnessResult::ExplicitFailed;
}
// Save the missing type witness for later diagnosis.
ctx.addDelayedMissingWitness(conformance, {assocType, {}});
// None of the candidates were viable.
ctx.addDelayedConformanceDiag(conformance, true,
[nonViable](NormalProtocolConformance *conformance) {
auto &diags = conformance->getDeclContext()->getASTContext().Diags;
for (auto candidate : nonViable) {
if (candidate.first->getDeclaredInterfaceType()->hasError() ||
candidate.second.getKind() == CheckTypeWitnessResult::Error)
continue;
switch (candidate.second.getKind()) {
case CheckTypeWitnessResult::Success:
case CheckTypeWitnessResult::Error:
llvm_unreachable("Should not end up here");
case CheckTypeWitnessResult::Conformance:
case CheckTypeWitnessResult::Layout:
diags.diagnose(
candidate.first,
diag::protocol_type_witness_unsatisfied_conformance,
candidate.first->getDeclaredInterfaceType(),
candidate.second.getRequirement());
break;
case CheckTypeWitnessResult::Superclass:
diags.diagnose(
candidate.first,
diag::protocol_type_witness_unsatisfied_superclass,
candidate.first->getDeclaredInterfaceType(),
candidate.second.getRequirement());
break;
}
}
});
return ResolveWitnessResult::ExplicitFailed;
}
namespace {
/// The set of associated types that have been inferred by matching
/// the given value witness to its corresponding requirement.
struct InferredAssociatedTypesByWitness {
/// The witness we matched.
ValueDecl *Witness = nullptr;
/// The associated types inferred from matching this witness.
SmallVector<std::pair<AssociatedTypeDecl *, Type>, 4> Inferred;
/// Inferred associated types that don't meet the associated type
/// requirements.
SmallVector<std::tuple<AssociatedTypeDecl *, Type, CheckTypeWitnessResult>,
2> NonViable;
void dump(llvm::raw_ostream &out, unsigned indent) const;
bool operator==(const InferredAssociatedTypesByWitness &other) const {
if (Inferred.size() != other.Inferred.size())
return false;
for (unsigned i = 0, e = Inferred.size(); i < e; ++i) {
if (Inferred[i].first != other.Inferred[i].first)
return false;
if (!Inferred[i].second->isEqual(other.Inferred[i].second))
return false;
}
return true;
}
bool operator!=(const InferredAssociatedTypesByWitness &other) const {
return !(*this == other);
}
SWIFT_DEBUG_DUMP;
};
}
void InferredAssociatedTypesByWitness::dump() const {
dump(llvm::errs(), 0);
}
void InferredAssociatedTypesByWitness::dump(llvm::raw_ostream &out,
unsigned indent) const {
out << "\n";
out.indent(indent) << "(";
if (Witness) {
Witness->dumpRef(out);
} else {
out << "Tautological";
}
for (const auto &inferred : Inferred) {
out << "\n";
out.indent(indent + 2);
out << inferred.first->getName() << " := "
<< inferred.second.getString();
}
for (const auto &inferred : NonViable) {
out << "\n";
out.indent(indent + 2);
out << std::get<0>(inferred)->getName() << " := "
<< std::get<1>(inferred).getString();
auto type = std::get<2>(inferred).getRequirement();
out << " [failed constraint " << type.getString() << "]";
}
out << ")";
}
/// The set of witnesses that were considered when attempting to
/// infer associated types.
using InferredAssociatedTypesByWitnesses =
SmallVector<InferredAssociatedTypesByWitness, 2>;
/// A mapping from requirements to the set of matches with witnesses.
using InferredAssociatedTypes =
SmallVector<std::pair<ValueDecl *, InferredAssociatedTypesByWitnesses>, 4>;
namespace {
void dumpInferredAssociatedTypesByWitnesses(
const InferredAssociatedTypesByWitnesses &inferred,
llvm::raw_ostream &out,
unsigned indent) {
for (const auto &value : inferred) {
value.dump(out, indent);
}
}
void dumpInferredAssociatedTypesByWitnesses(
const InferredAssociatedTypesByWitnesses &inferred) LLVM_ATTRIBUTE_USED;
void dumpInferredAssociatedTypesByWitnesses(
const InferredAssociatedTypesByWitnesses &inferred) {
dumpInferredAssociatedTypesByWitnesses(inferred, llvm::errs(), 0);
}
void dumpInferredAssociatedTypes(const InferredAssociatedTypes &inferred,
llvm::raw_ostream &out,
unsigned indent) {
for (const auto &value : inferred) {
out << "\n";
out.indent(indent) << "(";
value.first->dumpRef(out);
dumpInferredAssociatedTypesByWitnesses(value.second, out, indent + 2);
out << ")";
}
out << "\n";
}
void dumpInferredAssociatedTypes(
const InferredAssociatedTypes &inferred) LLVM_ATTRIBUTE_USED;
void dumpInferredAssociatedTypes(const InferredAssociatedTypes &inferred) {
dumpInferredAssociatedTypes(inferred, llvm::errs(), 0);
}
/// A conflict between two inferred type witnesses for the same
/// associated type.
struct TypeWitnessConflict {
/// The associated type.
AssociatedTypeDecl *AssocType;
/// The first type.
Type FirstType;
/// The requirement to which the first witness was matched.
ValueDecl *FirstRequirement;
/// The witness from which the first type witness was inferred.
ValueDecl *FirstWitness;
/// The second type.
Type SecondType;
/// The requirement to which the second witness was matched.
ValueDecl *SecondRequirement;
/// The witness from which the second type witness was inferred.
ValueDecl *SecondWitness;
};
/// A type witness inferred without the aid of a specific potential
/// value witness.
class AbstractTypeWitness {
AssociatedTypeDecl *AssocType;
Type TheType;
/// The defaulted associated type that was used to infer this type witness.
/// Need not necessarily match \c AssocType, but their names must.
AssociatedTypeDecl *DefaultedAssocType;
public:
AbstractTypeWitness(AssociatedTypeDecl *AssocType, Type TheType,
AssociatedTypeDecl *DefaultedAssocType = nullptr)
: AssocType(AssocType), TheType(TheType),
DefaultedAssocType(DefaultedAssocType) {
assert(AssocType && TheType);
assert(!DefaultedAssocType ||
(AssocType->getName() == DefaultedAssocType->getName()));
}
AssociatedTypeDecl *getAssocType() const { return AssocType; }
Type getType() const { return TheType; }
AssociatedTypeDecl *getDefaultedAssocType() const {
return DefaultedAssocType;
}
};
/// A potential solution to the set of inferred type witnesses.
struct InferredTypeWitnessesSolution {
/// The set of type witnesses inferred by this solution, along
/// with the index into the value witnesses where the type was
/// inferred.
llvm::SmallDenseMap<AssociatedTypeDecl *, std::pair<Type, unsigned>, 4>
TypeWitnesses;
/// The value witnesses selected by this step of the solution.
SmallVector<std::pair<ValueDecl *, ValueDecl *>, 4> ValueWitnesses;
/// The number of value witnesses that occur in protocol
/// extensions.
unsigned NumValueWitnessesInProtocolExtensions;
#ifndef NDEBUG
LLVM_ATTRIBUTE_USED
#endif
void dump(llvm::raw_ostream &out) const;
bool operator==(const InferredTypeWitnessesSolution &other) const {
for (const auto &otherTypeWitness : other.TypeWitnesses) {
auto typeWitness = TypeWitnesses.find(otherTypeWitness.first);
if (!typeWitness->second.first->isEqual(otherTypeWitness.second.first))
return false;
}
return true;
}
};
void InferredTypeWitnessesSolution::dump(llvm::raw_ostream &out) const {
out << "Value witnesses in protocol extensions: "
<< NumValueWitnessesInProtocolExtensions << "\n";
const auto numValueWitnesses = ValueWitnesses.size();
out << "Type Witnesses:\n";
for (auto &typeWitness : TypeWitnesses) {
out << " " << typeWitness.first->getName() << " := ";
typeWitness.second.first->print(out);
if (typeWitness.second.second == numValueWitnesses) {
out << ", abstract";
} else {
out << ", inferred from $" << typeWitness.second.second;
}
out << '\n';
}
out << "Value Witnesses:\n";
for (unsigned i : indices(ValueWitnesses)) {
const auto &valueWitness = ValueWitnesses[i];
out << '$' << i << ":\n ";
valueWitness.first->dumpRef(out);
out << " ->\n ";
if (valueWitness.second)
valueWitness.second->dumpRef(out);
else
out << "<skipped>";
out << '\n';
}
}
/// A system for recording and probing the integrity of a type witness solution
/// for a set of unresolved associated type declarations.
///
/// Right now can reason only about abstract type witnesses, i.e., same-type
/// constraints, default type definitions, and bindings to generic parameters.
class TypeWitnessSystem final {
/// Equivalence classes are used on demand to express equivalences between
/// witness candidates and reflect changes to resolved types across their
/// members.
class EquivalenceClass final {
/// The pointer:
/// - The resolved type for witness candidates belonging to this equivalence
/// class. The resolved type may be a type parameter, but cannot directly
/// pertain to a name variable in the owning system; instead, witness
/// candidates that should resolve to the same type share an equivalence
/// class.
/// The int:
/// - A flag indicating whether the resolved type is ambiguous. When set,
/// the resolved type is null.
/// - A flag indicating whether the resolved type is 'preferred', meaning
/// it came from the exact protocol we're checking conformance to.
/// A preferred type takes precedence over a non-preferred type.
llvm::PointerIntPair<Type, 2, unsigned> ResolvedTyAndFlags;
public:
EquivalenceClass(Type ty, bool preferred)
: ResolvedTyAndFlags(ty, preferred ? 2 : 0) {}
EquivalenceClass(const EquivalenceClass &) = delete;
EquivalenceClass(EquivalenceClass &&) = delete;
EquivalenceClass &operator=(const EquivalenceClass &) = delete;
EquivalenceClass &operator=(EquivalenceClass &&) = delete;
Type getResolvedType() const {
return ResolvedTyAndFlags.getPointer();
}
void setResolvedType(Type ty, bool preferred);
bool isAmbiguous() const {
return (ResolvedTyAndFlags.getInt() & 1) != 0;
}
void setAmbiguous() {
ResolvedTyAndFlags.setPointerAndInt(nullptr, 1);
}
bool isPreferred() const {
return (ResolvedTyAndFlags.getInt() & 2) != 0;
}
void setPreferred() {
assert(!isAmbiguous());
ResolvedTyAndFlags.setInt(ResolvedTyAndFlags.getInt() | 2);
}
void dump(llvm::raw_ostream &out) const;
};
/// A type witness candidate for a name variable.
struct TypeWitnessCandidate final {
/// The defaulted associated type declaration correlating with this
/// candidate, if present.
AssociatedTypeDecl *DefaultedAssocType;
/// The equivalence class of this candidate.
EquivalenceClass *EquivClass;
};
/// The set of equivalence classes in the system.
llvm::SmallPtrSet<EquivalenceClass *, 4> EquivalenceClasses;
/// The mapping from name variables (the names of unresolved associated
/// type declarations) to their corresponding type witness candidates.
llvm::SmallDenseMap<Identifier, TypeWitnessCandidate, 4> TypeWitnesses;
public:
TypeWitnessSystem(ArrayRef<AssociatedTypeDecl *> assocTypes);
~TypeWitnessSystem();
TypeWitnessSystem(const TypeWitnessSystem &) = delete;
TypeWitnessSystem(TypeWitnessSystem &&) = delete;
TypeWitnessSystem &operator=(const TypeWitnessSystem &) = delete;
TypeWitnessSystem &operator=(TypeWitnessSystem &&) = delete;
/// Get the resolved type witness for the associated type with the given name.
Type getResolvedTypeWitness(Identifier name) const;
bool hasResolvedTypeWitness(Identifier name) const;
/// Get the defaulted associated type relating to the resolved type witness
/// for the associated type with the given name, if present.
AssociatedTypeDecl *getDefaultedAssocType(Identifier name) const;
/// Record a type witness for the given associated type name.
///
/// \note This need not lead to the resolution of a type witness, e.g.
/// an associated type may be defaulted to another.
void addTypeWitness(Identifier name, Type type, bool preferred);
/// Record a default type witness.
///
/// \param defaultedAssocType The specific associated type declaration that
/// defines the given default type.
///
/// \note This need not lead to the resolution of a type witness.
void addDefaultTypeWitness(Type type, AssociatedTypeDecl *defaultedAssocType,
bool preferred);
/// Record the given same-type requirement, if regarded of interest to
/// the system.
///
/// \note This need not lead to the resolution of a type witness.
void addSameTypeRequirement(const Requirement &req, bool preferred);
void dump(llvm::raw_ostream &out,
const NormalProtocolConformance *conformance) const;
private:
/// Form an equivalence between the given name variables.
void addEquivalence(Identifier name1, Identifier name2);
/// Merge \p equivClass2 into \p equivClass1.
///
/// \note This will delete \p equivClass2 after migrating its members to
/// \p equivClass1.
void mergeEquivalenceClasses(EquivalenceClass *equivClass1,
const EquivalenceClass *equivClass2);
/// The result of comparing two resolved types targeting a single equivalence
/// class, in terms of their relative impact on solving the system.
enum class ResolvedTypeComparisonResult {
/// The first resolved type is a better choice than the second one.
Better,
/// The first resolved type is an equivalent or worse choice than the
/// second one.
EquivalentOrWorse,
/// Both resolved types are concrete and mutually exclusive.
Ambiguity
};
/// Compare the given resolved types as targeting a single equivalence class,
/// in terms of the their relative impact on solving the system.
static ResolvedTypeComparisonResult compareResolvedTypes(
Type ty1, bool preferred1, Type ty2, bool preferred2);
};
/// Captures the state needed to infer associated types.
class AssociatedTypeInference {
/// The type checker we'll need to validate declarations etc.
ASTContext &ctx;
/// The conformance for which we are inferring associated types.
NormalProtocolConformance *conformance;
/// The protocol for which we are inferring associated types.
ProtocolDecl *proto;
/// The declaration context in which conformance to the protocol is
/// declared.
DeclContext *dc;
/// The type that is adopting the protocol.
Type adoptee;
/// The set of type witnesses inferred from value witnesses.
InferredAssociatedTypes inferred;
/// Hash table containing the type witnesses that we've inferred for
/// each associated type, as well as an indication of how we inferred them.
llvm::ScopedHashTable<AssociatedTypeDecl *, std::pair<Type, unsigned>>
typeWitnesses;
/// Information about a failed, defaulted associated type.
const AssociatedTypeDecl *failedDefaultedAssocType = nullptr;
Type failedDefaultedWitness;
CheckTypeWitnessResult failedDefaultedResult = CheckTypeWitnessResult::forSuccess();
// Which type witness was missing?
AssociatedTypeDecl *missingTypeWitness = nullptr;
// Was there a conflict in type witness deduction?
std::optional<TypeWitnessConflict> typeWitnessConflict;
unsigned numTypeWitnessesBeforeConflict = 0;
public:
AssociatedTypeInference(ASTContext &ctx,
NormalProtocolConformance *conformance);
private:
/// Retrieve the AST context.
ASTContext &getASTContext() const { return ctx; }
/// Infer associated type witnesses for the given tentative
/// requirement/witness match.
InferredAssociatedTypesByWitness getPotentialTypeWitnessesByMatchingTypes(
ValueDecl *req,
ValueDecl *witness);
/// Infer associated type witnesses for the given value requirement.
InferredAssociatedTypesByWitnesses getPotentialTypeWitnessesFromRequirement(
const llvm::SetVector<AssociatedTypeDecl *> &allUnresolved,
ValueDecl *req);
/// Infer associated type witnesses for the given associated type.
InferredAssociatedTypesByWitnesses inferTypeWitnessesViaAssociatedType(
AssociatedTypeDecl *assocType);
/// Infer associated type witnesses for all relevant value requirements.
///
/// \param assocTypes The set of associated types we're interested in.
InferredAssociatedTypes
inferTypeWitnessesViaValueWitnesses(
const llvm::SetVector<AssociatedTypeDecl *> &assocTypes);
/// Compute a "fixed" type witness for an associated type, e.g.,
/// if the refined protocol requires it to be equivalent to some other type.
Type computeFixedTypeWitness(AssociatedTypeDecl *assocType);
/// Compute the default type witness from an associated type default,
/// if there is one.
std::optional<AbstractTypeWitness>
computeDefaultTypeWitness(AssociatedTypeDecl *assocType) const;
/// Compute type witnesses for the Failure type from the
/// AsyncSequence or AsyncIteratorProtocol
std::optional<AbstractTypeWitness> computeFailureTypeWitness(
AssociatedTypeDecl *assocType,
ArrayRef<std::pair<ValueDecl *, ValueDecl *>> valueWitnesses) const;
/// Compute the "derived" type witness for an associated type that is
/// known to the compiler.
std::pair<Type, TypeDecl *>
computeDerivedTypeWitness(AssociatedTypeDecl *assocType);
/// See if we have a generic parameter named the same as this associated
/// type.
Type computeGenericParamWitness(AssociatedTypeDecl *assocType) const;
/// Collect abstract type witnesses and feed them to the given system.
void collectAbstractTypeWitnesses(
TypeWitnessSystem &system,
ArrayRef<AssociatedTypeDecl *> unresolvedAssocTypes) const;
/// Simplify all tentative type witnesses until fixed point. Returns if
/// any remain unsubstituted.
bool simplifyCurrentTypeWitnesses();
/// Retrieve substitution options with a tentative type witness
/// operation that queries the current set of type witnesses.
SubstOptions getSubstOptionsWithCurrentTypeWitnesses();
/// Check whether the current set of type witnesses meets the
/// requirements of the protocol.
bool checkCurrentTypeWitnesses(
const SmallVectorImpl<std::pair<ValueDecl *, ValueDecl *>>
&valueWitnesses);
/// Check the current type witnesses against the
/// requirements of the given constrained extension.
bool checkConstrainedExtension(ExtensionDecl *ext);
/// Attempt to infer abstract type witnesses for the given set of associated
/// types.
///
/// \returns \c nullptr, or the associated type that failed.
AssociatedTypeDecl *inferAbstractTypeWitnesses(
ArrayRef<AssociatedTypeDecl *> unresolvedAssocTypes, unsigned reqDepth);
/// Top-level operation to find solutions for the given unresolved
/// associated types.
void findSolutions(
ArrayRef<AssociatedTypeDecl *> unresolvedAssocTypes,
SmallVectorImpl<InferredTypeWitnessesSolution> &solutions);
/// Explore the solution space to find both viable and non-viable solutions.
void findSolutionsRec(
ArrayRef<AssociatedTypeDecl *> unresolvedAssocTypes,
SmallVectorImpl<InferredTypeWitnessesSolution> &solutions,
SmallVectorImpl<InferredTypeWitnessesSolution> &nonViableSolutions,
SmallVector<std::pair<ValueDecl *, ValueDecl *>, 4> &valueWitnesses,
unsigned numTypeWitnesses,
unsigned numValueWitnessesInProtocolExtensions,
unsigned reqDepth);
/// Determine whether the first solution is better than the second
/// solution.
bool isBetterSolution(const InferredTypeWitnessesSolution &first,
const InferredTypeWitnessesSolution &second);
/// Find the best solution.
///
/// \param solutions All of the solutions to consider. On success,
/// this will contain only the best solution.
///
/// \returns \c false if there was a single best solution,
/// \c true if no single best solution exists.
bool findBestSolution(
SmallVectorImpl<InferredTypeWitnessesSolution> &solutions);
/// Emit a diagnostic for the case where there are no solutions at all
/// to consider.
///
/// \returns true if a diagnostic was emitted, false otherwise.
bool diagnoseNoSolutions(
ArrayRef<AssociatedTypeDecl *> unresolvedAssocTypes);
/// Emit a diagnostic when there are multiple solutions.
///
/// \returns true if a diagnostic was emitted, false otherwise.
bool diagnoseAmbiguousSolutions(
ArrayRef<AssociatedTypeDecl *> unresolvedAssocTypes,
SmallVectorImpl<InferredTypeWitnessesSolution> &solutions);
/// We may need to determine a type witness, regardless of the existence of a
/// default value for it, e.g. when a 'distributed actor' is looking up its
/// 'ID', the default defined in an extension for 'Identifiable' would be
/// located using the lookup resolve. This would not be correct, since the
/// type actually must be based on the associated 'ActorSystem'.
///
/// TODO(distributed): perhaps there is a better way to avoid this mixup?
/// Note though that this issue seems to only manifest in "real" builds
/// involving multiple files/modules, and not in tests within the Swift
/// project itself.
bool canAttemptEagerTypeWitnessDerivation(
DeclContext *DC, AssociatedTypeDecl *assocType);
public:
/// Describes a mapping from associated type declarations to their
/// type witnesses (as interface types).
using InferredTypeWitnesses =
std::vector<std::pair<AssociatedTypeDecl *, Type>>;
/// Perform associated type inference.
///
/// \returns \c true if an error occurred, \c false otherwise
std::optional<InferredTypeWitnesses> solve();
};
}
AssociatedTypeInference::AssociatedTypeInference(
ASTContext &ctx, NormalProtocolConformance *conformance)
: ctx(ctx), conformance(conformance), proto(conformance->getProtocol()),
dc(conformance->getDeclContext()), adoptee(conformance->getType()) {}
namespace {
/// Try to avoid situations where resolving the type of a witness calls back
/// into associated type inference.
class TypeReprCycleCheckWalker : private ASTWalker {
ASTContext &ctx;
llvm::SmallDenseSet<Identifier, 2> circularNames;
ValueDecl *witness;
bool found;
public:
TypeReprCycleCheckWalker(
ASTContext &ctx,
const llvm::SetVector<AssociatedTypeDecl *> &allUnresolved)
: ctx(ctx), witness(nullptr), found(false) {
for (auto *assocType : allUnresolved) {
circularNames.insert(assocType->getName());
}
}
private:
PreWalkAction walkToTypeReprPre(TypeRepr *T) override {
auto *declRefTyR = dyn_cast<DeclRefTypeRepr>(T);
if (!declRefTyR || declRefTyR->hasGenericArgList()) {
return Action::Continue();
}
auto *qualIdentTR = dyn_cast<QualifiedIdentTypeRepr>(T);
// If we're inferring `Foo`, don't look at a witness mentioning `Foo`.
if (!qualIdentTR) {
if (circularNames.count(declRefTyR->getNameRef().getBaseIdentifier()) >
0) {
// If unqualified lookup can find a type with this name without looking
// into protocol members, don't skip the witness, since this type might
// be a candidate witness.
auto desc = UnqualifiedLookupDescriptor(
declRefTyR->getNameRef(), witness->getDeclContext(),
declRefTyR->getLoc(), UnqualifiedLookupOptions());
auto results =
evaluateOrDefault(ctx.evaluator, UnqualifiedLookupRequest{desc}, {});
// Ok, resolving this name would trigger associated type inference
// recursively. We're going to skip this witness.
if (results.allResults().empty()) {
found = true;
return Action::Stop();
}
}
return Action::Continue();
}
// If we're inferring `Foo`, don't look at a witness mentioning `Self.Foo`.
if (!qualIdentTR->getBase()->isSimpleUnqualifiedIdentifier(ctx.Id_Self)) {
return Action::Continue();
}
if (circularNames.count(declRefTyR->getNameRef().getBaseIdentifier()) > 0) {
// But if qualified lookup can find a type with this name without looking
// into protocol members, don't skip the witness, since this type might
// be a candidate witness.
SmallVector<ValueDecl *, 2> results;
witness->getInnermostDeclContext()->lookupQualified(
witness->getDeclContext()->getSelfTypeInContext(),
declRefTyR->getNameRef(), SourceLoc(), NLOptions(), results);
// Ok, resolving this member type would trigger associated type
// inference recursively. We're going to skip this witness.
if (results.empty()) {
found = true;
return Action::Stop();
}
}
return Action::SkipNode();
}
public:
bool checkForPotentialCycle(ValueDecl *witness) {
// Don't do this for protocol extension members, because we have a
// mini "solver" that avoids similar issues instead.
assert(!witness->getDeclContext()->getExtendedProtocolDecl());
// If we already have an interface type, don't bother trying to
// avoid a cycle.
if (witness->hasInterfaceType())
return false;
// We call checkForPotentailCycle() multiple times with
// different witnesses.
found = false;
this->witness = witness;
auto walkInto = [&](TypeRepr *tyR) {
if (tyR)
tyR->walk(*this);
return found;
};
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(witness)) {
for (auto *param : *AFD->getParameters()) {
if (walkInto(param->getTypeRepr()))
return true;
}
if (auto *FD = dyn_cast<FuncDecl>(witness)) {
if (walkInto(FD->getResultTypeRepr()))
return true;
}
return false;
}
if (auto *SD = dyn_cast<SubscriptDecl>(witness)) {
for (auto *param : *SD->getIndices()) {
if (walkInto(param->getTypeRepr()))
return true;
}
if (walkInto(SD->getElementTypeRepr()))
return true;
return false;
}
if (auto *VD = dyn_cast<VarDecl>(witness)) {
if (walkInto(VD->getTypeReprOrParentPatternTypeRepr()))
return true;
return false;
}
if (auto *EED = dyn_cast<EnumElementDecl>(witness)) {
for (auto *param : *EED->getParameterList()) {
if (walkInto(param->getTypeRepr()))
return true;
}
return false;
}
assert(false && "Should be exhaustive");
return false;
}
};
} // end anonymous namespace
static bool isExtensionUsableForInference(const ExtensionDecl *extension,
NormalProtocolConformance *conformance) {
// The context the conformance being checked is declared on.
const auto conformanceDC = conformance->getDeclContext();
if (extension == conformanceDC)
return true;
// Invalid case.
const auto extendedNominal = extension->getExtendedNominal();
if (extendedNominal == nullptr)
return true;
auto *proto = dyn_cast<ProtocolDecl>(extendedNominal);
// If the extension is bound to the nominal the conformance is
// declared on, it is viable for inference when its conditional
// requirements are satisfied by those of the conformance context.
if (!proto) {
// Retrieve the generic signature of the extension.
const auto extensionSig = extension->getGenericSignature();
return extensionSig
.requirementsNotSatisfiedBy(
conformanceDC->getGenericSignatureOfContext())
.empty();
}
// The condition here is a bit more fickle than
// `isExtensionApplied`. That check would prematurely reject
// extensions like `P where AssocType == T` if we're relying on a
// default implementation inside the extension to infer `AssocType == T`
// in the first place. Only check conformances on the `Self` type,
// because those have to be explicitly declared on the type somewhere
// so won't be affected by whatever answer inference comes up with.
auto *module = conformanceDC->getParentModule();
auto checkConformance = [&](ProtocolDecl *proto) {
auto typeInContext = conformanceDC->mapTypeIntoContext(conformance->getType());
auto otherConf = module->checkConformance(typeInContext, proto);
return !otherConf.isInvalid();
};
// First check the extended protocol itself.
if (!checkConformance(proto))
return false;
// In a source file, we perform a syntactic check which avoids computing a
// generic signature. In a binary module, we have a generic signature so we
// can query it directly.
SelfBounds bounds;
if (extension->getParentSourceFile() != nullptr)
bounds = getSelfBoundsFromWhereClause(extension);
else {
LLVM_DEBUG(llvm::dbgs() << "-- extension generic signature: "
<< extension->getGenericSignature() << "\n");
bounds = getSelfBoundsFromGenericSignature(extension);
}
for (auto *decl : bounds.decls) {
if (auto *proto = dyn_cast<ProtocolDecl>(decl)) {
if (!checkConformance(proto)) {
LLVM_DEBUG(llvm::dbgs() << "-- " << conformance->getType()
<< " does not conform to " << proto->getName()
<< "\n");
return false;
}
}
}
return true;
}
namespace {
enum class InferenceCandidateKind {
/// Nothing weird going on.
Good,
/// T := T. Always satisfied.
Tautological,
/// T := G<T>. Cannot be satisfied.
Infinite
};
}
static InferenceCandidateKind checkInferenceCandidate(
std::pair<AssociatedTypeDecl *, Type> *result,
NormalProtocolConformance *conformance,
ValueDecl *witness,
Type selfTy) {
// The unbound form of `Self.A`.
auto selfAssocTy = DependentMemberType::get(selfTy, result->first->getName());
auto genericSig = witness->getInnermostDeclContext()
->getGenericSignatureOfContext();
// If the witness is in a protocol extension for a completely unrelated
// protocol that doesn't declare an associated type with the same name as
// the one we are trying to infer, then it will never be tautological.
if (!genericSig->isValidTypeParameter(selfAssocTy))
return InferenceCandidateKind::Good;
// A tautological binding is one where the left-hand side has the same
// reduced type as the right-hand side in the generic signature of the
// witness.
auto isTautological = [&](Type t) -> bool {
auto dmt = t->getAs<DependentMemberType>();
if (!dmt)
return false;
return genericSig->areReducedTypeParametersEqual(dmt, selfAssocTy);
};
// Self.X == Self.X doesn't give us any new information, nor does it
// immediately fail.
if (isTautological(result->second)) {
// FIXME: This should be getInnermostDeclContext()->getGenericSignature(),
// but that might introduce new ambiguities in existing code so we need
// to be careful.
auto genericSig = witness->getDeclContext()->getGenericSignatureOfContext();
// If we have a same-type requirement `Self.X == Self.Y`,
// introduce a binding `Self.X := Self.Y`.
for (auto &reqt : genericSig.getRequirements()) {
switch (reqt.getKind()) {
case RequirementKind::SameShape:
llvm_unreachable("Same-shape requirement not supported here");
case RequirementKind::Conformance:
case RequirementKind::Superclass:
case RequirementKind::Layout:
break;
case RequirementKind::SameType:
auto matches = [&](Type t) {
if (auto *dmt = t->getAs<DependentMemberType>()) {
return (dmt->getName() == result->first->getName() &&
dmt->getBase()->isEqual(selfTy));
}
return false;
};
// If we have a tautological binding, check if the witness generic
// signature has a same-type requirement `Self.A == Self.X` or
// `Self.X == Self.A`, where `A` is an associated type with the same
// name as the one we're trying to infer, and `X` is some other type
// parameter.
Type other;
if (matches(reqt.getFirstType())) {
other = reqt.getSecondType();
} else if (matches(reqt.getSecondType())) {
other = reqt.getFirstType();
} else {
break;
}
if (other->isTypeParameter() &&
other->getRootGenericParam()->isEqual(selfTy)) {
result->second = other;
LLVM_DEBUG(llvm::dbgs() << "++ we can same-type to:\n";
result->second->dump(llvm::dbgs()));
return InferenceCandidateKind::Good;
}
break;
}
}
return InferenceCandidateKind::Tautological;
}
// If we have something like `Self.X := G<Self.X>` on the other hand,
// the binding can never be satisfied.
if (result->second.findIf(isTautological))
return InferenceCandidateKind::Infinite;
return InferenceCandidateKind::Good;
}
/// If all terms introduce identical bindings and none come from a protocol
/// extension, no choice between them can change the chosen solution, so
/// collapse down to one.
///
/// WARNING: This does not readily generalize to disjunctions that have
/// multiple duplicated terms, eg A \/ A \/ B \/ B, because the relative
/// order of the value witnesses binding each A and each B might be weird.
static void tryOptimizeDisjunction(InferredAssociatedTypesByWitnesses &result) {
// We assume there is at least one term.
if (result.empty())
return;
for (unsigned i = 0, e = result.size(); i < e; ++i) {
// Skip the optimization if we have non-viable bindings anywhere.
if (!result[i].NonViable.empty())
return;
// Skip the optimization if anything came from a default type alias
// or protocol extension; the ranking is hairier in that case.
if (!result[i].Witness ||
result[i].Witness->getDeclContext()->getExtendedProtocolDecl())
return;
// Skip the optimization if any two consecutive terms contain distinct
// bindings.
if (i > 0 && result[i - 1] != result[i])
return;
}
// This disjunction is trivial.
result.resize(1);
}
/// Create an initial constraint system for the associated type inference solver.
///
/// Each protocol requirement defines a disjunction, where each disjunction
/// element is a potential value witness for the requirement.
///
/// Each value witness binds some set of type witness candidates, which we
/// compute by matching the witness type against the requirement.
///
/// The solver must pick exactly one value witness for each requirement while
/// ensuring that the potential type bindings from each value witness are
/// compatible with each other.
///
/// A value witness may be tautological, meaning it does not introduce any
/// potential type witness bindings, for example, a protocol extension default
/// `func f(_: Self.A) {}` for a protocol requirement `func f(_: Self.A)` with
/// associated type A.
///
/// We collapse all tautological witnesses into one, since the solver only needs
/// to explore that part of the solution space at most once. It is also true
/// that it needs to explore it *at least* once, and we must take care when
/// skipping potential bindings to distinguish between scenarios where a single
/// binding is skipped, or the entire value witness must be thrown out because
/// a binding is unsatisfiable.
InferredAssociatedTypesByWitnesses
AssociatedTypeInference::getPotentialTypeWitnessesFromRequirement(
const llvm::SetVector<AssociatedTypeDecl *> &allUnresolved,
ValueDecl *req) {
// Conformances constructed by the ClangImporter should have explicit type
// witnesses already.
if (isa<ClangModuleUnit>(conformance->getDeclContext()->getModuleScopeContext())) {
llvm::errs() << "Cannot infer associated types for imported conformance:\n";
conformance->getType().dump(llvm::errs());
for (auto assocTypeDecl : allUnresolved)
assocTypeDecl->dump(llvm::errs());
abort();
}
TypeReprCycleCheckWalker cycleCheck(dc->getASTContext(), allUnresolved);
InferredAssociatedTypesByWitnesses result;
// Was there at least one witness that does not introduce new bindings?
bool hadTautologicalWitness = false;
LLVM_DEBUG(llvm::dbgs() << "Considering requirement:\n";
req->dump(llvm::dbgs()));
for (auto witness :
lookupValueWitnesses(dc, req, /*ignoringNames=*/nullptr)) {
LLVM_DEBUG(llvm::dbgs() << "Inferring associated types from decl:\n";
witness->dump(llvm::dbgs()));
// This is the protocol `Self` type if the witness is declared in a protocol
// extension, or nullptr.
Type selfTy;
// If the potential witness came from an extension, and our `Self`
// type can't use it regardless of what associated types we end up
// inferring, skip the witness.
if (auto extension = dyn_cast<ExtensionDecl>(witness->getDeclContext())) {
if (!isExtensionUsableForInference(extension, conformance)) {
LLVM_DEBUG(llvm::dbgs() << "Extension not usable for inference\n");
continue;
}
if (auto *proto = dyn_cast<ProtocolDecl>(extension->getExtendedNominal()))
selfTy = proto->getSelfInterfaceType();
}
if (!selfTy) {
if (cycleCheck.checkForPotentialCycle(witness)) {
LLVM_DEBUG(llvm::dbgs() << "Skipping witness to avoid request cycle\n");
// We must consider the possibility that none of the witnesses for this
// requirement can be chosen.
hadTautologicalWitness = true;
continue;
}
}
// Match the type of the requirement against the type of the witness to
// produce a list of bindings. The left-hand side of each binding is an
// associated type of our protocol, and the right-hand side is either
// a concrete type (possibly containing archetypes of the conforming type)
// or a type parameter rooted in the protocol 'Self' type, representing
// an unresolved type witness.
auto witnessResult = getPotentialTypeWitnessesByMatchingTypes(req, witness);
// Filter out duplicated inferred types as well as inferred types
// that don't meet the requirements placed on the associated type.
llvm::DenseSet<std::pair<AssociatedTypeDecl *, CanType>> known;
for (unsigned i = 0; i < witnessResult.Inferred.size(); /*nothing*/) {
#define REJECT {\
witnessResult.Inferred.erase(witnessResult.Inferred.begin() + i); \
continue; \
}
auto &result = witnessResult.Inferred[i];
LLVM_DEBUG(llvm::dbgs() << "Considering whether "
<< result.first->getName()
<< " can infer to:\n";
result.second->dump(llvm::dbgs()));
assert(!result.second->hasTypeParameter() || selfTy &&
"We should only see unresolved type witnesses on the "
"right-hand side of a binding when the value witness came from a "
"protocol extension");
// Filter out errors.
if (result.second->hasError()) {
LLVM_DEBUG(llvm::dbgs() << "-- has error type\n");
// Skip this binding, but consider others from the same witness.
// This might not be strictly correct, but once we have error types
// we're diagnosing something anyway.
REJECT;
}
// Filter out duplicates.
if (!known.insert({result.first, result.second->getCanonicalType()})
.second) {
// Skip this binding, but consider others from the same witness.
LLVM_DEBUG(llvm::dbgs() << "-- duplicate\n");
REJECT;
}
// The type of a potential value witness in a protocol extensions may
// itself involve unresolved type witnesses.
if (selfTy) {
// Handle Self.X := Self.X and Self.X := G<Self.X>.
switch (checkInferenceCandidate(&result, conformance, witness, selfTy)) {
case InferenceCandidateKind::Good:
// The "good" case is something like `Self.X := Self.Y`.
break;
case InferenceCandidateKind::Tautological: {
LLVM_DEBUG(llvm::dbgs() << "-- tautological\n");
// A tautology is the `Self.X := Self.X` case.
//
// Skip this binding because it is immediately satisfied.
REJECT;
}
case InferenceCandidateKind::Infinite: {
LLVM_DEBUG(llvm::dbgs() << "-- infinite\n");
// The infinite case is `Self.X := G<Self.X>`.
//
// Discard this witness altogether, because it has an unsatisfiable
// binding.
goto next_witness;
}
}
}
// Check that the binding doesn't contradict a type witness previously
// resolved via name lookup.
//
// If it does contradict, throw out the witness entirely.
if (!allUnresolved.count(result.first)) {
auto existingWitness =
conformance->getTypeWitness(result.first);
existingWitness = dc->mapTypeIntoContext(existingWitness);
// For now, only a fully-concrete binding can contradict an existing
// type witness.
//
// FIXME: Generate new constraints by matching the two types.
auto newWitness = result.second->getCanonicalType();
if (!newWitness->hasTypeParameter() &&
!existingWitness->isEqual(newWitness)) {
LLVM_DEBUG(llvm::dbgs() << "** contradicts explicit type witness, "
"rejecting inference from this decl\n");
goto next_witness;
}
}
// Check that the potential type witness satisfies the local requirements
// imposed upon the associated type.
if (auto failed =
checkTypeWitness(result.second, result.first, conformance)) {
witnessResult.NonViable.push_back(
std::make_tuple(result.first,result.second,failed));
LLVM_DEBUG(llvm::dbgs() << "-- doesn't fulfill requirements\n");
// By adding an element to NonViable we ensure the witness is rejected
// below, so we continue to consider other bindings to generate better
// diagnostics later.
REJECT;
}
LLVM_DEBUG(llvm::dbgs() << "++ seems legit\n");
++i;
}
#undef REJECT
// If no viable or non-viable bindings remain, the witness does not
// give us anything new or contradict any existing bindings. We collapse
// all tautological witnesses into a single disjunction term.
if (witnessResult.Inferred.empty() && witnessResult.NonViable.empty()) {
hadTautologicalWitness = true;
continue;
}
// If we had at least one non-viable binding, drop the viable bindings;
// we cannot infer anything from this witness.
if (!witnessResult.NonViable.empty())
witnessResult.Inferred.clear();
result.push_back(std::move(witnessResult));
next_witness:;
}
tryOptimizeDisjunction(result);
if (hadTautologicalWitness && !result.empty()) {
// Create a dummy entry, but only if there was at least one other witness;
// otherwise, we return an empty disjunction. See the remark in
// inferTypeWitnessesViaValueWitnesses() for explanation.
result.push_back(InferredAssociatedTypesByWitness());
}
return result;
}
/// Determine whether this is AsyncIteratorProtocol.next() function.
static bool isAsyncIteratorProtocolNext(ValueDecl *req) {
auto proto = dyn_cast<ProtocolDecl>(req->getDeclContext());
if (!proto ||
!proto->isSpecificProtocol(KnownProtocolKind::AsyncIteratorProtocol))
return false;
return req->getName().getBaseName() == req->getASTContext().Id_next &&
req->getName().getArgumentNames().empty();
}
InferredAssociatedTypes
AssociatedTypeInference::inferTypeWitnessesViaValueWitnesses(
const llvm::SetVector<AssociatedTypeDecl *> &assocTypes) {
InferredAssociatedTypes result;
for (auto member : proto->getMembers()) {
auto req = dyn_cast<ValueDecl>(member);
if (!req || !req->isProtocolRequirement())
continue;
// Infer type witnesses for associated types.
if (auto assocType = dyn_cast<AssociatedTypeDecl>(req)) {
// If this is not one of the associated types we are trying to infer,
// just continue.
if (assocTypes.count(assocType) == 0)
continue;
auto reqInferred = inferTypeWitnessesViaAssociatedType(assocType);
if (!reqInferred.empty())
result.push_back({req, std::move(reqInferred)});
continue;
}
// Skip operator requirements, because they match globally and
// therefore tend to cause deduction mismatches.
// FIXME: If we had some basic soundness checking of Self, we might be able to
// use these.
if (auto func = dyn_cast<FuncDecl>(req)) {
if (func->isOperator() || isa<AccessorDecl>(func))
continue;
}
// Validate the requirement.
if (req->isInvalid())
continue;
// Check whether any of the associated types we care about are
// referenced in this value requirement.
{
auto referenced = evaluateOrDefault(ctx.evaluator,
ReferencedAssociatedTypesRequest{req},
TinyPtrVector<AssociatedTypeDecl *>());
if (llvm::find_if(referenced, [&](AssociatedTypeDecl *const assocType) {
return assocTypes.count(assocType);
}) == referenced.end() &&
!isAsyncIteratorProtocolNext(req))
continue;
}
// Collect this requirement's value witnesses and their potential
// type witness bindings.
auto reqInferred =
getPotentialTypeWitnessesFromRequirement(assocTypes, req);
// An empty disjunction is silently discarded, instead of immediately
// refuting the entirely system as it would in a real solver.
//
// If we find a solution and it so happens that this requirement cannot be
// witnessed, we'll diagnose the failure later in value witness checking.
if (reqInferred.empty())
continue;
result.push_back({req, std::move(reqInferred)});
}
return result;
}
/// Desugar protocol type aliases, since they can cause request cycles in
/// type resolution if printed in a module interface and parsed back in.
static Type getWithoutProtocolTypeAliases(Type type) {
return type.transformRec([](TypeBase *t) -> std::optional<Type> {
if (auto *aliasTy = dyn_cast<TypeAliasType>(t)) {
if (aliasTy->getDecl()->getDeclContext()->getExtendedProtocolDecl())
return getWithoutProtocolTypeAliases(aliasTy->getSinglyDesugaredType());
}
return std::nullopt;
});
}
/// Produce the type when matching a witness.
///
/// If the witness is a member of the type itself or a superclass, we
/// replace any type parameters in its type with archetypes from the generic
/// environment of the conforming type. This always succeeds.
///
/// If the witness is in a protocol extension, we attempt to replace those
/// Self-rooted type parameters for which we have type witnesses, leaving
/// the rest intact. This produces a type containing a mix of archetypes and
/// type parameters, which is normally a no-no; but in our case, the archetypes
/// belong to the generic environment of the conforming type, and the type
/// parameters represent unresolved type witnesses rooted in the protocol
/// 'Self' type.
///
/// Also see simplifyCurrentTypeWitnesses().
static Type getWitnessTypeForMatching(NormalProtocolConformance *conformance,
ValueDecl *witness) {
if (witness->isRecursiveValidation())
return Type();
if (witness->isInvalid())
return Type();
if (!witness->getDeclContext()->isTypeContext()) {
// FIXME: Could we infer from 'Self' to make these work?
return witness->getInterfaceType();
}
// Retrieve the set of substitutions to be applied to the witness.
Type model =
conformance->getDeclContext()->mapTypeIntoContext(conformance->getType());
TypeSubstitutionMap substitutions = model->getMemberSubstitutions(witness);
Type type = witness->getInterfaceType()->getReferenceStorageReferent();
type = getWithoutProtocolTypeAliases(type);
LLVM_DEBUG(llvm::dbgs() << "Witness interface type is " << type << "\n";);
if (substitutions.empty())
return type;
// Strip off the requirements of a generic function type.
// FIXME: This doesn't actually break recursion when substitution
// looks for an inferred type witness, but it makes it far less
// common, because most of the recursion involves the requirements
// of the generic type.
if (auto genericFn = type->getAs<GenericFunctionType>()) {
type = FunctionType::get(genericFn->getParams(),
genericFn->getResult(),
genericFn->getExtInfo());
}
ModuleDecl *module = conformance->getDeclContext()->getParentModule();
if (!witness->getDeclContext()->getExtendedProtocolDecl()) {
return type.subst(QueryTypeSubstitutionMap{substitutions},
LookUpConformanceInModule(module));
}
auto proto = conformance->getProtocol();
auto selfTy = proto->getSelfInterfaceType();
return type.transformRec([&](TypeBase *type) -> std::optional<Type> {
// Skip.
if (!type->hasTypeParameter())
return type;
// Visit children.
if (!type->isTypeParameter())
return std::nullopt;
auto *rootParam = type->getRootGenericParam();
// Leave inner generic parameters alone.
if (!rootParam->isEqual(selfTy))
return type;
// Remap associated types that reference other protocols into this
// protocol.
auto substType = Type(type).transformRec([proto](TypeBase *type)
-> std::optional<Type> {
if (auto depMemTy = dyn_cast<DependentMemberType>(type)) {
if (depMemTy->getAssocType() &&
depMemTy->getAssocType()->getProtocol() != proto) {
if (auto *assocType = proto->getAssociatedType(depMemTy->getName())) {
auto origProto = depMemTy->getAssocType()->getProtocol();
if (proto->inheritsFrom(origProto))
return Type(DependentMemberType::get(depMemTy->getBase(),
assocType));
}
}
}
return std::nullopt;
});
// Replace Self with the concrete conforming type.
substType = substType.subst(QueryTypeSubstitutionMap{substitutions},
LookUpConformanceInModule(module));
// If we don't have enough type witnesses, leave it abstract.
if (substType->hasError())
return type;
return substType;
});
}
/// Remove the 'self' type from the given type, if it's a method type.
static Type removeSelfParam(ValueDecl *value, Type type) {
if (value->hasCurriedSelf()) {
return type->castTo<AnyFunctionType>()->getResult();
}
return type;
}
InferredAssociatedTypesByWitnesses
AssociatedTypeInference::inferTypeWitnessesViaAssociatedType(
AssociatedTypeDecl *assocType) {
InferredAssociatedTypesByWitnesses result;
// Check if this associated type is actually fixed to a fully concrete type by
// a same-type requirement in a protocol that our conforming type conforms to.
//
// A more general form of this analysis that also handles same-type
// requirements between type parameters is performed later in
// inferAbstractTypeWitnesses().
//
// We handle the fully concrete case here, which completely rules out
// certain invalid solutions.
if (auto fixedType = computeFixedTypeWitness(assocType)) {
if (!fixedType->hasTypeParameter()) {
InferredAssociatedTypesByWitness inferred;
inferred.Witness = assocType;
inferred.Inferred.push_back({assocType, fixedType});
result.push_back(std::move(inferred));
// That's it; we're forced into this binding, so we're not adding another
// tautology below.
return result;
}
}
// Form the default name _Default_Foo.
DeclNameRef defaultName;
{
SmallString<32> defaultNameStr;
{
llvm::raw_svector_ostream out(defaultNameStr);
out << "_Default_";
out << assocType->getName().str();
}
defaultName = DeclNameRef(getASTContext().getIdentifier(defaultNameStr));
}
NLOptions subOptions = (NL_QualifiedDefault |
NL_OnlyTypes |
NL_ProtocolMembers |
NL_IncludeAttributeImplements);
// Look for types with the given default name that have appropriate
// @_implements attributes.
SmallVector<ValueDecl *, 4> lookupResults;
dc->lookupQualified(dc->getSelfNominalTypeDecl(), defaultName,
isa<ExtensionDecl>(dc)
? cast<ExtensionDecl>(dc)->getStartLoc()
: cast<NominalTypeDecl>(dc)->getStartLoc(),
subOptions, lookupResults);
for (auto decl : lookupResults) {
// We want type declarations.
auto typeDecl = dyn_cast<TypeDecl>(decl);
if (!typeDecl || isa<AssociatedTypeDecl>(typeDecl))
continue;
// We only find these within a protocol extension.
auto defaultProto = typeDecl->getDeclContext()->getSelfProtocolDecl();
if (!defaultProto)
continue;
// If the name doesn't match and there's no appropriate @_implements
// attribute, skip this candidate.
if (defaultName.getBaseName() != typeDecl->getName() &&
!witnessHasImplementsAttrForRequiredName(typeDecl, assocType))
continue;
// Determine the witness type.
Type witnessType = getWitnessTypeForMatching(conformance, typeDecl);
if (!witnessType) continue;
if (auto witnessMetaType = witnessType->getAs<AnyMetatypeType>())
witnessType = witnessMetaType->getInstanceType();
else
continue;
if (result.empty()) {
// If we found at least one default candidate, we must allow for the
// possibility that no default is chosen by adding a tautological witness
// to our disjunction.
result.push_back(InferredAssociatedTypesByWitness());
}
// Add this result.
InferredAssociatedTypesByWitness inferred;
inferred.Witness = typeDecl;
inferred.Inferred.push_back({assocType, witnessType});
result.push_back(std::move(inferred));
}
return result;
}
Type swift::adjustInferredAssociatedType(TypeAdjustment adjustment, Type type,
bool &performed) {
// If we have an optional type, adjust its wrapped type.
if (auto optionalObjectType = type->getOptionalObjectType()) {
auto newOptionalObjectType =
adjustInferredAssociatedType(adjustment, optionalObjectType, performed);
if (newOptionalObjectType.getPointer() == optionalObjectType.getPointer())
return type;
return OptionalType::get(newOptionalObjectType);
}
auto needsAdjustment = [=](FunctionType *funcType) -> bool {
if (adjustment == TypeAdjustment::NoescapeToEscaping)
return funcType->isNoEscape();
else
return !funcType->isSendable();
};
auto adjust = [=](const ASTExtInfo &info) -> ASTExtInfo {
if (adjustment == TypeAdjustment::NoescapeToEscaping)
return info.withNoEscape(false);
else
return info.withSendable(true);
};
// If we have a noescape function type, make it escaping.
if (auto funcType = type->getAs<FunctionType>()) {
performed = needsAdjustment(funcType);
if (performed)
return FunctionType::get(funcType->getParams(), funcType->getResult(),
adjust(funcType->getExtInfo()));
}
return type;
}
static AssociatedTypeDecl *
getReferencedAssocTypeOfProtocol(Type type, ProtocolDecl *proto) {
if (auto dependentMember = type->getAs<DependentMemberType>()) {
if (auto assocType = dependentMember->getAssocType()) {
if (dependentMember->getBase()->isEqual(proto->getSelfInterfaceType())) {
// Exact match: this is our associated type.
if (assocType->getProtocol() == proto)
return assocType;
// Check whether there is an associated type of the same name in
// this protocol.
if (auto *found = proto->getAssociatedType(assocType->getName()))
return found;
}
}
}
return nullptr;
}
/// Find a set of potential type witness bindings by matching the interface type
/// of the requirement against the partially-substituted type of a witness.
///
/// The partially-substituted type might contain archetypes of the conforming
/// type, as well as 'Self'-rooted type parameters corresponding to unresolved
/// type witnesses. Thus, we produce a set of bindings, which fix the associated
/// types appearing in the requirement to concrete types, or other unresolved
/// type witnesses.
InferredAssociatedTypesByWitness
AssociatedTypeInference::getPotentialTypeWitnessesByMatchingTypes(ValueDecl *req,
ValueDecl *witness) {
InferredAssociatedTypesByWitness inferred;
inferred.Witness = witness;
// Compute the requirement and witness types we'll use for matching.
Type fullWitnessType = getWitnessTypeForMatching(conformance, witness);
if (!fullWitnessType) {
return inferred;
}
LLVM_DEBUG(llvm::dbgs() << "Witness type for matching is "
<< fullWitnessType << "\n";);
auto setup =
[&]() -> std::tuple<std::optional<RequirementMatch>, Type, Type> {
fullWitnessType = removeSelfParam(witness, fullWitnessType);
return std::make_tuple(std::nullopt,
removeSelfParam(req, req->getInterfaceType()),
fullWitnessType);
};
/// Visits a requirement type to match it to a potential witness for
/// the purpose of deducing associated types.
///
/// The visitor argument is the witness type. If there are any
/// obvious conflicts between the structure of the two types,
/// returns true. The conflict checking is fairly conservative, only
/// considering rough structure.
class MatchVisitor : public TypeMatcher<MatchVisitor> {
NormalProtocolConformance *Conformance;
/// This is the protocol Self type if the witness is in a protocol extension.
Type SelfTy;
InferredAssociatedTypesByWitness &Inferred;
public:
MatchVisitor(NormalProtocolConformance *conformance, Type selfTy,
InferredAssociatedTypesByWitness &inferred)
: Conformance(conformance), SelfTy(selfTy), Inferred(inferred) { }
/// Structural mismatches imply that the witness cannot match.
bool mismatch(TypeBase *firstType, TypeBase *secondType,
Type sugaredFirstType) {
// If either type hit an error, don't stop yet.
if (firstType->hasError() || secondType->hasError())
return true;
// FIXME: Check whether one of the types is dependent?
return false;
}
/// Deduce associated types from dependent member types in the witness.
bool mismatch(DependentMemberType *firstDepMember,
TypeBase *secondType, Type sugaredFirstType) {
// If the second type is an error, don't look at it further, but proceed
// to find other matches.
if (secondType->hasError())
return true;
// If the second type is a generic parameter of the witness, the match
// succeeds without giving us any new inferences.
if (secondType->is<GenericTypeParamType>())
return true;
// If the second type contains innermost generic parameters of the
// witness, it cannot ever be a type witness.
if (Type(secondType).findIf([&](Type t) {
if (auto *paramTy = t->getAs<GenericTypeParamType>()) {
// But if the witness is in a protocol extension, an unsimplified
// Self-rooted type parameter is OK.
return !(SelfTy && paramTy->isEqual(SelfTy));
}
return false;
})) {
return false;
}
// Adjust the type to a type that can be written explicitly.
bool noescapeToEscaping = false;
Type inferredType =
adjustInferredAssociatedType(TypeAdjustment::NoescapeToEscaping,
secondType, noescapeToEscaping);
if (!inferredType->isMaterializable())
return false;
auto proto = Conformance->getProtocol();
if (auto assocType = getReferencedAssocTypeOfProtocol(firstDepMember,
proto)) {
Inferred.Inferred.push_back({assocType, inferredType});
}
// Always allow mismatches here.
return true;
}
bool mismatch(GenericTypeParamType *selfParamType,
TypeBase *secondType, Type sugaredFirstType) {
if (selfParamType->isEqual(Conformance->getProtocol()->getSelfInterfaceType())) {
// A DynamicSelfType always matches the Self parameter.
if (secondType->is<DynamicSelfType>())
return true;
// Otherwise, 'Self' should at least have a matching nominal type.
if (secondType->getAnyNominal() == Conformance->getType()->getAnyNominal())
return true;
return false;
}
// Any other generic parameter type is an inner generic parameter type
// of the requirement. If we're matching it with something that is not a
// generic parameter type, we cannot hope to succeed.
if (!secondType->is<GenericTypeParamType>())
return false;
return true;
}
// We still want to visit the mismatch for eg, `Self.A := Self.A`, because
// checkInferenceCandidate() will introduce a binding `Self.A := Self.B`
// if we had a same-type requirement `Self.A == Self.B`.
bool alwaysMismatchTypeParameters() const { return true; }
};
// Match a requirement and witness type.
Type selfTy;
if (auto *proto = witness->getDeclContext()->getExtendedProtocolDecl())
selfTy = proto->getSelfInterfaceType();
MatchVisitor matchVisitor(conformance, selfTy, inferred);
auto matchTypes = [&](Type reqType,
Type witnessType) -> std::optional<RequirementMatch> {
if (!matchVisitor.match(reqType, witnessType)) {
return RequirementMatch(witness, MatchKind::TypeConflict,
fullWitnessType);
}
return std::nullopt;
};
// Finalization of the checking is pretty trivial; just bundle up a
// result we can look at.
auto finalize = [&](bool anyRenaming, ArrayRef<OptionalAdjustment>)
-> RequirementMatch {
return RequirementMatch(witness,
anyRenaming ? MatchKind::RenamedMatch
: MatchKind::ExactMatch,
fullWitnessType);
};
// Match the witness. If we don't succeed, throw away the inference
// information.
// FIXME: A renamed match might be useful to retain for the failure case.
if (!matchWitness(dc, req, witness, setup, matchTypes, finalize)
.isWellFormed()) {
inferred.Inferred.clear();
}
return inferred;
}
AssociatedTypeDecl *swift::findDefaultedAssociatedType(
DeclContext *dc,
NominalTypeDecl *adoptee,
AssociatedTypeDecl *assocType) {
// If this associated type has a default, we're done.
if (assocType->hasDefaultDefinitionType())
return assocType;
// Otherwise, look for all associated types with the same name along all the
// protocols that the adoptee conforms to.
SmallVector<ValueDecl *, 4> decls;
auto options = NL_ProtocolMembers | NL_OnlyTypes;
dc->lookupQualified(adoptee, DeclNameRef(assocType->getName()),
SourceLoc(), options, decls);
SmallPtrSet<CanType, 4> canonicalTypes;
SmallVector<AssociatedTypeDecl *, 2> results;
for (auto *decl : decls) {
if (auto *assocDecl = dyn_cast<AssociatedTypeDecl>(decl)) {
auto defaultType = assocDecl->getDefaultDefinitionType();
if (!defaultType) continue;
CanType key = defaultType->getCanonicalType();
if (canonicalTypes.insert(key).second)
results.push_back(assocDecl);
}
}
// If there was a single result, return it.
// FIXME: We could find *all* of the non-covered, defaulted associated types.
return results.size() == 1 ? results.front() : nullptr;
}
static SmallVector<ProtocolConformance *, 2>
getPeerConformances(NormalProtocolConformance *conformance) {
auto *dc = conformance->getDeclContext();
IterableDeclContext *idc = dyn_cast<ExtensionDecl>(dc);
if (!idc)
idc = cast<NominalTypeDecl>(dc);
// NonStructural skips the Sendable synthesis which can cycle, and Sendable
// doesn't have associated types anyway.
return idc->getLocalConformances(ConformanceLookupKind::NonStructural);
}
Type AssociatedTypeInference::computeFixedTypeWitness(
AssociatedTypeDecl *assocType) {
Type resultType;
auto selfTy = assocType->getProtocol()->getSelfInterfaceType();
// Look through other local conformances of our declaration context to see if
// any fix this associated type to a concrete type.
for (auto conformance : getPeerConformances(conformance)) {
auto *conformedProto = conformance->getProtocol();
auto sig = conformedProto->getGenericSignature();
// FIXME: The RequirementMachine will assert on re-entrant construction.
// We should find a more principled way of breaking this cycle.
if (ctx.isRecursivelyConstructingRequirementMachine(sig.getCanonicalSignature()) ||
ctx.isRecursivelyConstructingRequirementMachine(conformedProto) ||
conformedProto->isComputingRequirementSignature())
continue;
auto structuralTy = DependentMemberType::get(selfTy, assocType->getName());
if (!sig->isValidTypeParameter(structuralTy))
continue;
const auto ty = sig.getReducedType(structuralTy);
// A dependent member type with an identical base and name indicates that
// the protocol does not same-type constrain it in any way; move on to
// the next protocol.
if (auto *const memberTy = ty->getAs<DependentMemberType>()) {
if (memberTy->getBase()->isEqual(selfTy) &&
memberTy->getName() == assocType->getName())
continue;
}
if (!resultType) {
resultType = ty;
continue;
}
// FIXME: Bailing out on ambiguity.
if (!resultType->isEqual(ty))
return Type();
}
return resultType;
}
std::optional<AbstractTypeWitness>
AssociatedTypeInference::computeFailureTypeWitness(
AssociatedTypeDecl *assocType,
ArrayRef<std::pair<ValueDecl *, ValueDecl *>> valueWitnesses) const {
// Inference only applies to AsyncIteratorProtocol.Failure.
if (!isAsyncIteratorProtocolFailure(assocType))
return std::nullopt;
// Look for AsyncIteratorProtocol.next() and infer the Failure type from
// it.
for (const auto &witness : valueWitnesses) {
if (isAsyncIteratorProtocolNext(witness.first)) {
// We use a dyn_cast_or_null since we can get a nullptr here if we fail to
// match a witness. In such a case, we should just fail here.
if (auto witnessFunc = dyn_cast_or_null<AbstractFunctionDecl>(witness.second)) {
auto thrownError = witnessFunc->getEffectiveThrownErrorType();
// If it doesn't throw, Failure == Never.
if (!thrownError)
return AbstractTypeWitness(assocType, ctx.getNeverType());
// If it isn't 'rethrows', use the thrown error type;.
if (!witnessFunc->getAttrs().hasAttribute<RethrowsAttr>()) {
return AbstractTypeWitness(assocType,
dc->mapTypeIntoContext(*thrownError));
}
for (auto req : witnessFunc->getGenericSignature().getRequirements()) {
if (req.getKind() == RequirementKind::Conformance) {
auto proto = req.getProtocolDecl();
if (proto->isSpecificProtocol(KnownProtocolKind::AsyncIteratorProtocol) ||
proto->isSpecificProtocol(KnownProtocolKind::AsyncSequence)) {
auto failureAssocType = proto->getAssociatedType(ctx.Id_Failure);
auto failureType = DependentMemberType::get(req.getFirstType(), failureAssocType);
return AbstractTypeWitness(assocType, dc->mapTypeIntoContext(failureType));
}
}
}
return AbstractTypeWitness(assocType, ctx.getErrorExistentialType());
}
break;
}
}
return std::nullopt;
}
std::optional<AbstractTypeWitness>
AssociatedTypeInference::computeDefaultTypeWitness(
AssociatedTypeDecl *assocType) const {
// Ignore the default for AsyncIteratorProtocol.Failure and
// AsyncSequence.Failure.
if (isAsyncIteratorOrSequenceFailure(assocType))
return std::nullopt;
// Go find a default definition.
auto *const defaultedAssocType = findDefaultedAssociatedType(
dc, dc->getSelfNominalTypeDecl(), assocType);
if (!defaultedAssocType)
return std::nullopt;
const Type defaultType = defaultedAssocType->getDefaultDefinitionType();
// FIXME: Circularity
if (!defaultType)
return std::nullopt;
if (defaultType->hasError())
return std::nullopt;
return AbstractTypeWitness(assocType, defaultType, defaultedAssocType);
}
static std::pair<Type, TypeDecl *>
deriveTypeWitness(const NormalProtocolConformance *Conformance,
NominalTypeDecl *TypeDecl, AssociatedTypeDecl *AssocType) {
auto *protocol = cast<ProtocolDecl>(AssocType->getDeclContext());
auto knownKind = protocol->getKnownProtocolKind();
if (!knownKind)
return std::make_pair(nullptr, nullptr);
DerivedConformance derived(Conformance, TypeDecl, protocol);
switch (*knownKind) {
case KnownProtocolKind::RawRepresentable:
return std::make_pair(derived.deriveRawRepresentable(AssocType), nullptr);
case KnownProtocolKind::CaseIterable:
return std::make_pair(derived.deriveCaseIterable(AssocType), nullptr);
case KnownProtocolKind::Differentiable:
return derived.deriveDifferentiable(AssocType);
case KnownProtocolKind::DistributedActor:
return derived.deriveDistributedActor(AssocType);
case KnownProtocolKind::Identifiable:
// Identifiable only has derivation logic for distributed actors,
// because how it depends on the ActorSystem the actor is associated with.
// If the nominal wasn't a distributed actor, we should not end up here,
// but either way, then we'd return null (fail derivation).
return derived.deriveDistributedActor(AssocType);
default:
return std::make_pair(nullptr, nullptr);
}
}
std::pair<Type, TypeDecl *>
AssociatedTypeInference::computeDerivedTypeWitness(
AssociatedTypeDecl *assocType) {
if (adoptee->hasError())
return std::make_pair(Type(), nullptr);
// Can we derive conformances for this protocol and adoptee?
NominalTypeDecl *derivingTypeDecl = dc->getSelfNominalTypeDecl();
if (!DerivedConformance::derivesProtocolConformance(dc, derivingTypeDecl,
proto))
return std::make_pair(Type(), nullptr);
// Try to derive the type witness.
auto result = deriveTypeWitness(conformance, derivingTypeDecl, assocType);
if (!result.first)
return std::make_pair(Type(), nullptr);
assert(!containsConcreteDependentMemberType(result.first));
// Make sure that the derived type satisfies requirements.
if (checkTypeWitness(result.first, assocType, conformance)) {
/// FIXME: Diagnose based on this.
return std::make_pair(Type(), nullptr);
}
return result;
}
/// Look for a generic parameter that matches the name of the
/// associated type.
Type AssociatedTypeInference::computeGenericParamWitness(
AssociatedTypeDecl *assocType) const {
if (auto genericSig = dc->getGenericSignatureOfContext()) {
// Ignore the generic parameters for AsyncIteratorProtocol.Failure and
// AsyncSequence.Failure.
if (!isAsyncIteratorOrSequenceFailure(assocType)) {
for (auto *gp : genericSig.getInnermostGenericParams()) {
// Packs cannot witness associated type requirements.
if (gp->isParameterPack())
continue;
if (gp->getName() == assocType->getName())
return dc->mapTypeIntoContext(gp);
}
}
}
return Type();
}
void AssociatedTypeInference::collectAbstractTypeWitnesses(
TypeWitnessSystem &system,
ArrayRef<AssociatedTypeDecl *> unresolvedAssocTypes) const {
auto considerProtocolRequirements = [&](ProtocolDecl *conformedProto) {
// FIXME: The RequirementMachine will assert on re-entrant construction.
// We should find a more principled way of breaking this cycle.
if (ctx.isRecursivelyConstructingRequirementMachine(
conformedProto->getGenericSignature().getCanonicalSignature()) ||
ctx.isRecursivelyConstructingRequirementMachine(conformedProto) ||
conformedProto->isComputingRequirementSignature()) {
LLVM_DEBUG(llvm::dbgs() << "Skipping circular protocol "
<< conformedProto->getName() << "\n");
return;
}
LLVM_DEBUG(llvm::dbgs() << "Collecting same-type requirements from "
<< conformedProto->getName() << "\n");
// Prefer abstract witnesses from the protocol of the current conformance;
// these are less likely to lead to request cycles.
bool preferred = (conformedProto == conformance->getProtocol());
for (const auto &req :
conformedProto->getRequirementSignature().getRequirements()) {
if (req.getKind() == RequirementKind::SameType)
system.addSameTypeRequirement(req, preferred);
}
};
// First, look at the conformed protocol for same-type requirements. These
// are less likely to cause request cycles.
considerProtocolRequirements(conformance->getProtocol());
// Look through all conformances in the same DeclContext as ours.
for (auto *otherConformance : getPeerConformances(conformance)) {
// Don't visit this one twice.
if (otherConformance->getProtocol() == conformance->getProtocol())
continue;
considerProtocolRequirements(otherConformance->getProtocol());
}
// If the same-type constraints weren't enough to resolve an associated type,
// look for default type witnesses.
for (auto *const assocType : unresolvedAssocTypes) {
if (system.hasResolvedTypeWitness(assocType->getName()))
continue;
if (auto gpType = computeGenericParamWitness(assocType)) {
system.addTypeWitness(assocType->getName(), gpType, /*preferred=*/true);
} else if (const auto &typeWitness = computeDefaultTypeWitness(assocType)) {
bool preferred = (typeWitness->getDefaultedAssocType()->getDeclContext()
== conformance->getProtocol());
system.addDefaultTypeWitness(typeWitness->getType(),
typeWitness->getDefaultedAssocType(),
preferred);
}
}
}
/// Simplify all tentative type witnesses until fixed point. Returns if
/// any remain unsubstituted.
bool AssociatedTypeInference::simplifyCurrentTypeWitnesses() {
SubstOptions options = getSubstOptionsWithCurrentTypeWitnesses();
LLVM_DEBUG(llvm::dbgs() << "Simplifying type witnesses\n");
bool anyChanged;
bool anyUnsubstituted;
unsigned iterations = 0;
do {
anyChanged = false;
anyUnsubstituted = false;
LLVM_DEBUG(llvm::dbgs() << "Simplifying type witnesses -- iteration " << iterations << "\n");
if (++iterations > 100) {
llvm::errs() << "Too many iterations in simplifyCurrentTypeWitnesses()\n";
for (auto assocType : proto->getAssociatedTypeMembers()) {
if (conformance->hasTypeWitness(assocType))
continue;
auto known = typeWitnesses.begin(assocType);
assert(known != typeWitnesses.end());
llvm::errs() << assocType->getName() << ": " << known->first << "\n";
}
abort();
}
TypeSubstitutionMap substitutions;
auto selfTy = cast<SubstitutableType>(
proto->getSelfInterfaceType()->getCanonicalType());
substitutions[selfTy] = dc->mapTypeIntoContext(conformance->getType());
auto *module = dc->getParentModule();
for (auto assocType : proto->getAssociatedTypeMembers()) {
if (conformance->hasTypeWitness(assocType))
continue;
// If the type binding does not have a type parameter, there's nothing
// to do.
auto known = typeWitnesses.begin(assocType);
assert(known != typeWitnesses.end());
auto typeWitness = known->first;
if (!typeWitness->hasTypeParameter())
continue;
LLVM_DEBUG(llvm::dbgs() << "Attempting to simplify witness for "
<< assocType->getName()
<< ": " << typeWitness << "\n";);
auto simplified = typeWitness.transformRec(
[&](TypeBase *type) -> std::optional<Type> {
// Skip.
if (!type->hasTypeParameter())
return type;
// Visit children.
if (!type->isTypeParameter())
return std::nullopt;
auto *rootParam = type->getRootGenericParam();
assert(rootParam->isEqual(selfTy));
// Replace Self with the concrete conforming type.
auto substType = Type(type).subst(QueryTypeSubstitutionMap{substitutions},
LookUpConformanceInModule(module),
options);
// If we don't have enough type witnesses to substitute fully,
// leave the original type parameter in place.
if (substType->hasError())
return type;
// Otherwise, we should have a fully-concrete type.
assert(!substType->hasTypeParameter());
return substType;
});
if (!simplified->isEqual(typeWitness)) {
known->first = simplified;
LLVM_DEBUG(llvm::dbgs() << "Simplified witness for "
<< assocType->getName()
<< ": " << typeWitness << " => "
<< simplified << "\n";);
anyChanged = true;
}
if (simplified->hasTypeParameter())
anyUnsubstituted = true;
}
} while (anyChanged);
LLVM_DEBUG(llvm::dbgs() << "Simplifying type witnesses done\n");
return anyUnsubstituted;
}
/// "Sanitize" requirements for conformance checking, removing any requirements
/// that unnecessarily refer to associated types of other protocols.
static void sanitizeProtocolRequirements(
ProtocolDecl *proto,
ArrayRef<Requirement> requirements,
SmallVectorImpl<Requirement> &sanitized) {
std::function<Type(Type)> sanitizeType;
sanitizeType = [&](Type outerType) {
return outerType.transformRec([&](TypeBase *type) -> std::optional<Type> {
if (auto depMemTy = dyn_cast<DependentMemberType>(type)) {
if ((!depMemTy->getAssocType() ||
depMemTy->getAssocType()->getProtocol() != proto) &&
proto->getGenericSignature()->requiresProtocol(depMemTy->getBase(), proto)) {
if (auto *assocType = proto->getAssociatedType(depMemTy->getName())) {
Type sanitizedBase = sanitizeType(depMemTy->getBase());
if (!sanitizedBase)
return Type();
return Type(DependentMemberType::get(sanitizedBase, assocType));
}
if (depMemTy->getBase()->is<GenericTypeParamType>())
return Type();
}
}
return std::nullopt;
});
};
for (const auto &req : requirements) {
switch (req.getKind()) {
case RequirementKind::SameShape:
llvm_unreachable("Same-shape requirement not supported here");
case RequirementKind::Conformance:
case RequirementKind::SameType:
case RequirementKind::Superclass: {
Type firstType = sanitizeType(req.getFirstType());
Type secondType = sanitizeType(req.getSecondType());
if (firstType && secondType) {
sanitized.push_back({req.getKind(), firstType, secondType});
}
break;
}
case RequirementKind::Layout: {
Type firstType = sanitizeType(req.getFirstType());
if (firstType) {
sanitized.push_back({req.getKind(), firstType,
req.getLayoutConstraint()});
}
break;
}
}
}
}
SubstOptions
AssociatedTypeInference::getSubstOptionsWithCurrentTypeWitnesses() {
SubstOptions options(std::nullopt);
AssociatedTypeInference *self = this;
options.getTentativeTypeWitness =
[self](const NormalProtocolConformance *conformance,
AssociatedTypeDecl *assocType) -> TypeBase * {
auto thisProto = self->conformance->getProtocol();
if (conformance == self->conformance) {
// Okay: we have the associated type we need.
} else if (conformance->getType()->isEqual(
self->conformance->getType()) &&
thisProto->inheritsFrom(conformance->getProtocol())) {
// Find an associated type with the same name in the given
// protocol.
auto *foundAssocType = thisProto->getAssociatedType(
assocType->getName());
if (!foundAssocType) return nullptr;
assocType = foundAssocType;
} else {
return nullptr;
}
auto found = self->typeWitnesses.begin(assocType);
if (found == self->typeWitnesses.end()) {
// Invalid code.
return ErrorType::get(thisProto->getASTContext()).getPointer();
}
Type type = found->first;
if (type->hasTypeParameter()) {
// Not fully substituted yet.
return ErrorType::get(thisProto->getASTContext()).getPointer();
}
return type->mapTypeOutOfContext().getPointer();
};
return options;
}
bool AssociatedTypeInference::checkCurrentTypeWitnesses(
const SmallVectorImpl<std::pair<ValueDecl *, ValueDecl *>>
&valueWitnesses) {
// Check any same-type requirements in the protocol's requirement signature.
SubstOptions options = getSubstOptionsWithCurrentTypeWitnesses();
auto typeInContext = dc->mapTypeIntoContext(adoptee);
auto substitutions =
SubstitutionMap::getProtocolSubstitutions(
proto, typeInContext,
ProtocolConformanceRef(conformance));
SmallVector<Requirement, 4> sanitizedRequirements;
auto requirements = proto->getRequirementSignature().getRequirements();
sanitizeProtocolRequirements(proto, requirements,
sanitizedRequirements);
switch (checkRequirements(
dc->getParentModule(), sanitizedRequirements,
QuerySubstitutionMap{substitutions}, options)) {
case CheckRequirementsResult::RequirementFailure:
++NumSolutionStatesFailedCheck;
LLVM_DEBUG(llvm::dbgs() << std::string(valueWitnesses.size(), '+')
<< "+ Requirement failure\n";);
return true;
case CheckRequirementsResult::Success:
case CheckRequirementsResult::SubstitutionFailure:
break;
}
// Check for extra requirements in the constrained extensions that supply
// defaults.
SmallPtrSet<ExtensionDecl *, 4> checkedExtensions;
for (const auto &valueWitness : valueWitnesses) {
// We only perform this additional checking for default associated types.
if (!isa<TypeDecl>(valueWitness.first)) continue;
auto witness = valueWitness.second;
if (!witness) continue;
auto ext = dyn_cast<ExtensionDecl>(witness->getDeclContext());
if (!ext) continue;
if (!ext->isConstrainedExtension()) continue;
if (!checkedExtensions.insert(ext).second) continue;
++NumConstrainedExtensionChecks;
if (checkConstrainedExtension(ext)) {
LLVM_DEBUG(llvm::dbgs() << std::string(valueWitnesses.size(), '+')
<< "+ Constrained extension failed: " <<
ext->getExtendedType() << "\n";);
++NumConstrainedExtensionChecksFailed;
return true;
}
}
return false;
}
bool AssociatedTypeInference::checkConstrainedExtension(ExtensionDecl *ext) {
auto typeInContext = dc->mapTypeIntoContext(adoptee);
auto subs = typeInContext->getContextSubstitutions(ext);
SubstOptions options = getSubstOptionsWithCurrentTypeWitnesses();
switch (checkRequirements(
dc->getParentModule(), ext->getGenericSignature().getRequirements(),
QueryTypeSubstitutionMap{subs}, options)) {
case CheckRequirementsResult::Success:
case CheckRequirementsResult::SubstitutionFailure:
return false;
case CheckRequirementsResult::RequirementFailure:
return true;
}
llvm_unreachable("unhandled result");
}
AssociatedTypeDecl *AssociatedTypeInference::inferAbstractTypeWitnesses(
ArrayRef<AssociatedTypeDecl *> unresolvedAssocTypes, unsigned reqDepth) {
if (unresolvedAssocTypes.empty()) {
return nullptr;
}
LLVM_DEBUG(llvm::dbgs() << "Inferring abstract type witnesses for "
<< "associated types of " << conformance->getProtocol()->getName()
<< ":\n";);
for (auto *assocType : unresolvedAssocTypes) {
LLVM_DEBUG(llvm::dbgs() << "- " << assocType->getName() << "\n";);
}
// Attempt to compute abstract type witnesses for associated types that could
// not resolve otherwise.
llvm::SmallVector<AbstractTypeWitness, 2> abstractTypeWitnesses;
TypeWitnessSystem system(unresolvedAssocTypes);
collectAbstractTypeWitnesses(system, unresolvedAssocTypes);
if (ctx.LangOpts.DumpTypeWitnessSystems) {
system.dump(llvm::dbgs(), conformance);
}
// Record the tentative type witnesses to make them available during
// substitutions.
for (auto *assocType : unresolvedAssocTypes) {
// If we couldn't resolve an associated type, bail out.
if (!system.hasResolvedTypeWitness(assocType->getName())) {
return assocType;
}
auto resolvedTy = system.getResolvedTypeWitness(assocType->getName());
LLVM_DEBUG(llvm::dbgs() << "Inserting tentative witness for "
<< assocType->getName() << ": "; resolvedTy.dump(llvm::dbgs()););
typeWitnesses.insert(assocType, {resolvedTy, reqDepth});
if (auto *defaultedAssocType =
system.getDefaultedAssocType(assocType->getName())) {
abstractTypeWitnesses.emplace_back(assocType, resolvedTy,
defaultedAssocType);
} else {
abstractTypeWitnesses.emplace_back(assocType, resolvedTy);
}
}
simplifyCurrentTypeWitnesses();
// Check each abstract type witness against the generic requirements on the
// corresponding associated type.
for (const auto &witness : abstractTypeWitnesses) {
auto *const assocType = witness.getAssocType();
auto known = typeWitnesses.begin(assocType);
assert(known != typeWitnesses.end());
auto type = known->first;
// If simplification failed, give up.
if (type->hasTypeParameter()) {
if (auto gpType = computeGenericParamWitness(assocType)) {
LLVM_DEBUG(llvm::dbgs() << "-- Found generic parameter as last resort: "
<< gpType << "\n");
type = gpType;
typeWitnesses.insert(assocType, {type, reqDepth});
} else {
LLVM_DEBUG(llvm::dbgs() << "-- Simplification failed: " << type << "\n");
return assocType;
}
}
if (const auto failed =
checkTypeWitness(type, assocType, conformance)) {
LLVM_DEBUG(llvm::dbgs() << "- Type witness does not satisfy requirements\n";);
// We failed to satisfy a requirement. If this is a default type
// witness failure and we haven't seen one already, write it down.
auto *defaultedAssocType = witness.getDefaultedAssocType();
if (defaultedAssocType && !failedDefaultedAssocType &&
failed.getKind() != CheckTypeWitnessResult::Error) {
failedDefaultedAssocType = defaultedAssocType;
failedDefaultedWitness = type;
failedDefaultedResult = failed;
}
return assocType;
}
}
return nullptr;
}
void AssociatedTypeInference::findSolutions(
ArrayRef<AssociatedTypeDecl *> unresolvedAssocTypes,
SmallVectorImpl<InferredTypeWitnessesSolution> &solutions) {
FrontendStatsTracer StatsTracer(getASTContext().Stats,
"associated-type-inference", conformance);
SmallVector<InferredTypeWitnessesSolution, 4> nonViableSolutions;
SmallVector<std::pair<ValueDecl *, ValueDecl *>, 4> valueWitnesses;
findSolutionsRec(unresolvedAssocTypes, solutions, nonViableSolutions,
valueWitnesses, 0, 0, 0);
for (auto solution : solutions) {
LLVM_DEBUG(llvm::dbgs() << "=== Valid solution:\n";);
LLVM_DEBUG(solution.dump(llvm::dbgs()));
}
for (auto solution : nonViableSolutions) {
LLVM_DEBUG(llvm::dbgs() << "=== Invalid solution:\n";);
LLVM_DEBUG(solution.dump(llvm::dbgs()));
}
}
void AssociatedTypeInference::findSolutionsRec(
ArrayRef<AssociatedTypeDecl *> unresolvedAssocTypes,
SmallVectorImpl<InferredTypeWitnessesSolution> &solutions,
SmallVectorImpl<InferredTypeWitnessesSolution> &nonViableSolutions,
SmallVector<std::pair<ValueDecl *, ValueDecl *>, 4> &valueWitnesses,
unsigned numTypeWitnesses,
unsigned numValueWitnessesInProtocolExtensions,
unsigned reqDepth) {
// If this solution is going to be worse than what we've already recorded,
// give up now.
if (!solutions.empty() &&
solutions.front().NumValueWitnessesInProtocolExtensions
< numValueWitnessesInProtocolExtensions) {
return;
}
using TypeWitnessesScope = decltype(typeWitnesses)::ScopeTy;
// If we hit the last requirement, record and check this solution.
if (reqDepth == inferred.size()) {
// Introduce a hash table scope; we may add type witnesses here.
TypeWitnessesScope typeWitnessesScope(typeWitnesses);
// Filter out the associated types that remain unresolved.
SmallVector<AssociatedTypeDecl *, 4> stillUnresolved;
for (auto *const assocType : unresolvedAssocTypes) {
auto typeWitness = typeWitnesses.begin(assocType);
// If we do not have a witness for AsyncIteratorProtocol.Failure,
// look for the witness to AsyncIteratorProtocol.next(). If it throws,
// use 'any Error'. Otherwise, use 'Never'.
if (typeWitness == typeWitnesses.end()) {
if (auto failureTypeWitness =
computeFailureTypeWitness(assocType, valueWitnesses)) {
typeWitnesses.insert(assocType,
{failureTypeWitness->getType(), reqDepth});
typeWitness = typeWitnesses.begin(assocType);
}
}
if (typeWitness == typeWitnesses.end()) {
stillUnresolved.push_back(assocType);
} else {
// If an erroneous type witness has already been recorded for one of
// the associated types, give up.
if (typeWitness->first->hasError()) {
if (!missingTypeWitness)
missingTypeWitness = assocType;
LLVM_DEBUG(llvm::dbgs() << std::string(valueWitnesses.size(), '+')
<< "+ Recorded an erroneous type witness\n";);
return;
}
}
}
// Attempt to infer abstract type witnesses for associated types that
// could not be resolved otherwise.
if (auto *const assocType =
inferAbstractTypeWitnesses(stillUnresolved, reqDepth)) {
// The solution is decisively incomplete; record the associated type
// we failed on and bail out.
if (!missingTypeWitness)
missingTypeWitness = assocType;
LLVM_DEBUG(llvm::dbgs() << std::string(valueWitnesses.size(), '+')
<< "+ Failed to infer abstract witnesses\n";);
return;
}
++NumSolutionStates;
if (simplifyCurrentTypeWitnesses()) {
LLVM_DEBUG(llvm::dbgs() << std::string(valueWitnesses.size(), '+')
<< "+ Unsubstituted witnesses remain\n";);
return;
}
/// Check the current set of type witnesses.
bool invalid = checkCurrentTypeWitnesses(valueWitnesses);
if (invalid) {
LLVM_DEBUG(llvm::dbgs() << std::string(valueWitnesses.size(), '+')
<< "+ Invalid solution found\n";);
} else {
LLVM_DEBUG(llvm::dbgs() << std::string(valueWitnesses.size(), '+')
<< "+ Valid solution found\n";);
}
// Build the solution.
InferredTypeWitnessesSolution solution;
// Copy the type witnesses.
for (auto assocType : unresolvedAssocTypes) {
auto typeWitness = typeWitnesses.begin(assocType);
solution.TypeWitnesses.insert({assocType, *typeWitness});
}
// Copy the value witnesses.
solution.ValueWitnesses = valueWitnesses;
solution.NumValueWitnessesInProtocolExtensions
= numValueWitnessesInProtocolExtensions;
// We fold away non-viable solutions that have the same type witnesses.
if (invalid) {
if (llvm::find(nonViableSolutions, solution) != nonViableSolutions.end()) {
LLVM_DEBUG(llvm::dbgs() << std::string(valueWitnesses.size(), '+')
<< "+ Duplicate invalid solution found\n";);
++NumDuplicateSolutionStates;
return;
}
nonViableSolutions.push_back(std::move(solution));
return;
}
// For valid solutions, we want to find the best solution if one exists.
// We maintain the invariant that no viable solution is clearly worse than
// any other viable solution. If multiple viable solutions remain after
// we're considered the entire search space, we have an ambiguous situation.
// If this solution is clearly worse than some existing solution, give up.
if (llvm::any_of(solutions, [&](const InferredTypeWitnessesSolution &other) {
return isBetterSolution(other, solution);
})) {
LLVM_DEBUG(llvm::dbgs() << std::string(valueWitnesses.size(), '+')
<< "+ Solution is worse than some existing solution\n";);
++NumDuplicateSolutionStates;
return;
}
// If any existing solutions are clearly worse than this solution,
// remove them.
llvm::erase_if(solutions, [&](const InferredTypeWitnessesSolution &other) {
if (isBetterSolution(solution, other)) {
LLVM_DEBUG(llvm::dbgs() << std::string(valueWitnesses.size(), '+')
<< "+ Solution is better than some existing solution\n";);
++NumDuplicateSolutionStates;
return true;
}
return false;
});
solutions.push_back(std::move(solution));
return;
}
// Iterate over the potential witnesses for this requirement,
// looking for solutions involving each one.
const auto &inferredReq = inferred[reqDepth];
for (const auto &witnessReq : inferredReq.second) {
// If this witness had invalid bindings, don't consider it since it can
// never lead to a valid solution.
if (!witnessReq.NonViable.empty())
continue;
llvm::SaveAndRestore<unsigned> savedNumTypeWitnesses(numTypeWitnesses);
// If we had at least one tautological witness, we must consider the
// possibility that none of the remaining witnesses are chosen.
if (witnessReq.Witness == nullptr) {
// Count tautological witnesses as if they come from protocol extensions,
// which ranks the solution lower than a more constrained one.
if (!isa<TypeDecl>(inferredReq.first))
++numValueWitnessesInProtocolExtensions;
valueWitnesses.push_back({inferredReq.first, nullptr});
findSolutionsRec(unresolvedAssocTypes, solutions, nonViableSolutions,
valueWitnesses, numTypeWitnesses,
numValueWitnessesInProtocolExtensions, reqDepth + 1);
valueWitnesses.pop_back();
if (!isa<TypeDecl>(inferredReq.first))
--numValueWitnessesInProtocolExtensions;
continue;
}
// If we inferred a type witness via a default, we do a slightly simpler
// thing.
//
// FIXME: Why can't we just fold this with the below?
if (isa<TypeDecl>(inferredReq.first)) {
++numTypeWitnesses;
for (const auto &typeWitness : witnessReq.Inferred) {
auto known = typeWitnesses.begin(typeWitness.first);
if (known != typeWitnesses.end()) continue;
// Enter a new scope for the type witnesses hash table.
TypeWitnessesScope typeWitnessesScope(typeWitnesses);
LLVM_DEBUG(llvm::dbgs() << "Inserting tentative witness for "
<< typeWitness.first->getName() << ": ";
typeWitness.second.dump(llvm::dbgs()););
typeWitnesses.insert(typeWitness.first, {typeWitness.second, reqDepth});
valueWitnesses.push_back({inferredReq.first, witnessReq.Witness});
findSolutionsRec(unresolvedAssocTypes, solutions, nonViableSolutions,
valueWitnesses, numTypeWitnesses,
numValueWitnessesInProtocolExtensions, reqDepth + 1);
valueWitnesses.pop_back();
}
continue;
}
// Enter a new scope for the type witnesses hash table.
TypeWitnessesScope typeWitnessesScope(typeWitnesses);
// Record this value witness, popping it when we exit the current scope.
LLVM_DEBUG(llvm::dbgs() << std::string(valueWitnesses.size(), '+')
<< "+ Pushing ";
inferredReq.first->dumpRef(llvm::dbgs());
llvm::dbgs() << " := ";
witnessReq.Witness->dumpRef(llvm::dbgs());
llvm::dbgs() << "\n";);
valueWitnesses.push_back({inferredReq.first, witnessReq.Witness});
if (!isa<TypeDecl>(inferredReq.first) &&
witnessReq.Witness->getDeclContext()->getExtendedProtocolDecl())
++numValueWitnessesInProtocolExtensions;
SWIFT_DEFER {
if (!isa<TypeDecl>(inferredReq.first) &&
witnessReq.Witness->getDeclContext()->getExtendedProtocolDecl())
--numValueWitnessesInProtocolExtensions;
valueWitnesses.pop_back();
LLVM_DEBUG(llvm::dbgs() << std::string(valueWitnesses.size(), '+')
<< "+ Popping ";
inferredReq.first->dumpRef(llvm::dbgs());
llvm::dbgs() << " := ";
witnessReq.Witness->dumpRef(llvm::dbgs());
llvm::dbgs() << "\n";);
};
// Introduce each of the type witnesses into the hash table.
bool failed = false;
for (const auto &typeWitness : witnessReq.Inferred) {
// If we've seen a type witness for this associated type that
// conflicts, there is no solution.
auto known = typeWitnesses.begin(typeWitness.first);
if (known != typeWitnesses.end()) {
// Don't overwrite a defaulted associated type witness.
if (isa<TypeDecl>(valueWitnesses[known->second].second))
continue;
// If witnesses for two different requirements inferred the same
// type, we're okay.
if (known->first->isEqual(typeWitness.second))
continue;
// If one has a type parameter remaining but the other does not,
// drop the one with the type parameter.
//
// FIXME: This is too ad-hoc. Generate new constraints instead.
if (known->first->hasTypeParameter()
!= typeWitness.second->hasTypeParameter()) {
if (typeWitness.second->hasTypeParameter())
continue;
known->first = typeWitness.second;
continue;
}
if (!typeWitnessConflict ||
numTypeWitnesses > numTypeWitnessesBeforeConflict) {
typeWitnessConflict = {typeWitness.first,
typeWitness.second,
inferredReq.first,
witnessReq.Witness,
known->first,
valueWitnesses[known->second].first,
valueWitnesses[known->second].second};
numTypeWitnessesBeforeConflict = numTypeWitnesses;
}
LLVM_DEBUG(llvm::dbgs() << std::string(valueWitnesses.size(), '+')
<< "+ Failed " << typeWitness.first->getName() << ": ";
typeWitness.second->dump(llvm::dbgs()););
failed = true;
break;
}
LLVM_DEBUG(llvm::dbgs() << "Inserting tentative witness for "
<< typeWitness.first->getName() << ": ";
typeWitness.second.dump(llvm::dbgs()););
// Record the type witness.
++numTypeWitnesses;
typeWitnesses.insert(typeWitness.first, {typeWitness.second, reqDepth});
}
if (failed)
continue;
// Recurse
findSolutionsRec(unresolvedAssocTypes, solutions, nonViableSolutions,
valueWitnesses, numTypeWitnesses,
numValueWitnessesInProtocolExtensions, reqDepth + 1);
}
}
static Comparison compareDeclsForInference(DeclContext *DC, ValueDecl *decl1,
ValueDecl *decl2) {
// TypeChecker::compareDeclarations assumes that it's comparing two decls that
// apply equally well to a call site. We haven't yet inferred the
// associated types for a type, so the ranking algorithm used by
// compareDeclarations to score protocol extensions is inappropriate,
// since we may have potential witnesses from extensions with mutually
// exclusive associated type constraints, and compareDeclarations will
// consider these unordered since neither extension's generic signature
// is a superset of the other.
// If one of the declarations is null, it implies that we're working with
// a skipped associated type default. Prefer that default to something
// that came from a protocol extension.
if (!decl1 || !decl2) {
if (!decl1 &&
decl2 && decl2->getDeclContext()->getExtendedProtocolDecl())
return Comparison::Worse;
if (!decl2 &&
decl1 && decl1->getDeclContext()->getExtendedProtocolDecl())
return Comparison::Better;
return Comparison::Unordered;
}
// If the witnesses come from the same decl context, score normally.
auto dc1 = decl1->getDeclContext();
auto dc2 = decl2->getDeclContext();
if (dc1 == dc2)
return TypeChecker::compareDeclarations(DC, decl1, decl2);
auto isProtocolExt1 = (bool)dc1->getExtendedProtocolDecl();
auto isProtocolExt2 = (bool)dc2->getExtendedProtocolDecl();
// If one witness comes from a protocol extension, favor the one
// from a concrete context.
if (isProtocolExt1 != isProtocolExt2) {
return isProtocolExt1 ? Comparison::Worse : Comparison::Better;
}
// If both witnesses came from concrete contexts, score normally.
// Associated type inference shouldn't impact the result.
// FIXME: It could, if someone constrained to ConcreteType.AssocType...
if (!isProtocolExt1)
return TypeChecker::compareDeclarations(DC, decl1, decl2);
// Compare protocol extensions by which protocols they require Self to
// conform to. If one extension requires a superset of the other's
// constraints, it wins.
auto sig1 = dc1->getGenericSignatureOfContext();
auto sig2 = dc2->getGenericSignatureOfContext();
// FIXME: Extensions sometimes have null generic signatures while
// checking the standard library...
if (!sig1 || !sig2)
return TypeChecker::compareDeclarations(DC, decl1, decl2);
auto selfParam = GenericTypeParamType::get(/*isParameterPack*/ false,
/*depth*/ 0, /*index*/ 0,
decl1->getASTContext());
// Collect the protocols required by extension 1.
Type class1;
SmallPtrSet<ProtocolDecl*, 4> protos1;
std::function<void (ProtocolDecl*)> insertProtocol;
insertProtocol = [&](ProtocolDecl *p) {
if (!protos1.insert(p).second)
return;
for (auto parent : p->getInheritedProtocols())
insertProtocol(parent);
};
for (auto &reqt : sig1.getRequirements()) {
if (!reqt.getFirstType()->isEqual(selfParam))
continue;
switch (reqt.getKind()) {
case RequirementKind::Conformance: {
insertProtocol(reqt.getProtocolDecl());
break;
}
case RequirementKind::Superclass:
class1 = reqt.getSecondType();
break;
case RequirementKind::SameShape:
case RequirementKind::SameType:
case RequirementKind::Layout:
break;
}
}
// Compare with the protocols required by extension 2.
Type class2;
SmallPtrSet<ProtocolDecl*, 4> protos2;
bool protos2AreSubsetOf1 = true;
std::function<void (ProtocolDecl*)> removeProtocol;
removeProtocol = [&](ProtocolDecl *p) {
if (!protos2.insert(p).second)
return;
protos2AreSubsetOf1 &= protos1.erase(p);
for (auto parent : p->getInheritedProtocols())
removeProtocol(parent);
};
for (auto &reqt : sig2.getRequirements()) {
if (!reqt.getFirstType()->isEqual(selfParam))
continue;
switch (reqt.getKind()) {
case RequirementKind::Conformance: {
removeProtocol(reqt.getProtocolDecl());
break;
}
case RequirementKind::Superclass:
class2 = reqt.getSecondType();
break;
case RequirementKind::SameShape:
case RequirementKind::SameType:
case RequirementKind::Layout:
break;
}
}
auto isClassConstraintAsStrict = [&](Type t1, Type t2) -> bool {
if (!t1)
return !t2;
if (!t2)
return true;
return t2->isExactSuperclassOf(t1);
};
bool protos1AreSubsetOf2 = protos1.empty();
// If the second extension requires strictly more protocols than the
// first, it's better.
if (protos1AreSubsetOf2 > protos2AreSubsetOf1
&& isClassConstraintAsStrict(class2, class1)) {
return Comparison::Worse;
// If the first extension requires strictly more protocols than the
// second, it's better.
} else if (protos2AreSubsetOf1 > protos1AreSubsetOf2
&& isClassConstraintAsStrict(class1, class2)) {
return Comparison::Better;
}
// If they require the same set of protocols, or non-overlapping
// sets, judge them normally.
return TypeChecker::compareDeclarations(DC, decl1, decl2);
}
bool AssociatedTypeInference::isBetterSolution(
const InferredTypeWitnessesSolution &first,
const InferredTypeWitnessesSolution &second) {
assert(first.ValueWitnesses.size() == second.ValueWitnesses.size());
if (first.NumValueWitnessesInProtocolExtensions <
second.NumValueWitnessesInProtocolExtensions)
return true;
if (first.NumValueWitnessesInProtocolExtensions >
second.NumValueWitnessesInProtocolExtensions)
return false;
// Dear reader: this is not a lexicographic order on tuple of value witnesses;
// rather, (x_1, ..., x_n) < (y_1, ..., y_n) if and only if:
//
// - there exists at least one index i such that x_i < y_i.
// - there does not exist any i such that y_i < x_i.
//
// that is, the order relation is independent of the order in which value
// witnesses were pushed onto the stack.
bool firstBetter = false;
bool secondBetter = false;
for (unsigned i = 0, n = first.ValueWitnesses.size(); i != n; ++i) {
assert(first.ValueWitnesses[i].first == second.ValueWitnesses[i].first);
auto firstWitness = first.ValueWitnesses[i].second;
auto secondWitness = second.ValueWitnesses[i].second;
if (firstWitness == secondWitness)
continue;
switch (compareDeclsForInference(dc, firstWitness, secondWitness)) {
case Comparison::Better:
if (secondBetter)
return false;
firstBetter = true;
break;
case Comparison::Worse:
if (firstBetter)
return false;
secondBetter = true;
break;
case Comparison::Unordered:
break;
}
}
return firstBetter;
}
bool AssociatedTypeInference::findBestSolution(
SmallVectorImpl<InferredTypeWitnessesSolution> &solutions) {
if (solutions.empty()) return true;
if (solutions.size() == 1) return false;
// The solution at the front has the smallest number of value witnesses found
// in protocol extensions, by construction.
unsigned bestNumValueWitnessesInProtocolExtensions
= solutions.front().NumValueWitnessesInProtocolExtensions;
// Erase any solutions with more value witnesses in protocol
// extensions than the best.
solutions.erase(
std::remove_if(solutions.begin(), solutions.end(),
[&](const InferredTypeWitnessesSolution &solution) {
return solution.NumValueWitnessesInProtocolExtensions >
bestNumValueWitnessesInProtocolExtensions;
}),
solutions.end());
// If we're down to one solution, success!
if (solutions.size() == 1) return false;
// Find a solution that's at least as good as the solutions that follow it.
unsigned bestIdx = 0;
for (unsigned i = 1, n = solutions.size(); i != n; ++i) {
if (isBetterSolution(solutions[i], solutions[bestIdx]))
bestIdx = i;
}
// Make sure that solution is better than any of the other solutions.
bool ambiguous = false;
for (unsigned i = 1, n = solutions.size(); i != n; ++i) {
if (i != bestIdx && !isBetterSolution(solutions[bestIdx], solutions[i])) {
ambiguous = true;
break;
}
}
// If the result was ambiguous, fail.
if (ambiguous) {
assert(solutions.size() != 1 && "should have succeeded somewhere above?");
return true;
}
// Keep the best solution, erasing all others.
if (bestIdx != 0)
solutions[0] = std::move(solutions[bestIdx]);
solutions.erase(solutions.begin() + 1, solutions.end());
return false;
}
namespace {
/// A failed type witness binding.
struct FailedTypeWitness {
/// The value requirement that triggered inference.
ValueDecl *Requirement;
/// The corresponding value witness from which the type witness
/// was inferred.
ValueDecl *Witness;
/// The actual type witness that was inferred.
Type TypeWitness;
/// The failed type witness result.
CheckTypeWitnessResult Result;
};
} // end anonymous namespace
bool AssociatedTypeInference::diagnoseNoSolutions(
ArrayRef<AssociatedTypeDecl *> unresolvedAssocTypes) {
// If a defaulted type witness failed, diagnose it.
if (failedDefaultedAssocType) {
auto failedDefaultedAssocType = this->failedDefaultedAssocType;
auto failedDefaultedWitness = this->failedDefaultedWitness;
auto failedDefaultedResult = this->failedDefaultedResult;
ctx.addDelayedConformanceDiag(conformance, true,
[failedDefaultedAssocType, failedDefaultedWitness,
failedDefaultedResult](NormalProtocolConformance *conformance) {
auto proto = conformance->getProtocol();
auto &diags = proto->getASTContext().Diags;
switch (failedDefaultedResult.getKind()) {
case CheckTypeWitnessResult::Success:
case CheckTypeWitnessResult::Error:
llvm_unreachable("Should not end up here");
case CheckTypeWitnessResult::Conformance:
case CheckTypeWitnessResult::Layout:
diags.diagnose(
failedDefaultedAssocType,
diag::default_associated_type_unsatisfied_conformance,
failedDefaultedWitness,
failedDefaultedAssocType,
proto->getDeclaredInterfaceType(),
failedDefaultedResult.getRequirement());
break;
case CheckTypeWitnessResult::Superclass:
diags.diagnose(
failedDefaultedAssocType,
diag::default_associated_type_unsatisfied_superclass,
failedDefaultedWitness,
failedDefaultedAssocType,
proto->getDeclaredInterfaceType(),
failedDefaultedResult.getRequirement());
break;
}
});
return true;
}
// Form a mapping from associated type declarations to failed type
// witnesses.
llvm::DenseMap<AssociatedTypeDecl *, SmallVector<FailedTypeWitness, 2>>
failedTypeWitnesses;
for (const auto &inferredReq : inferred) {
for (const auto &inferredWitness : inferredReq.second) {
for (const auto &nonViable : inferredWitness.NonViable) {
failedTypeWitnesses[std::get<0>(nonViable)]
.push_back({inferredReq.first, inferredWitness.Witness,
std::get<1>(nonViable), std::get<2>(nonViable)});
}
}
}
// Local function to attempt to diagnose potential type witnesses
// that failed requirements.
auto tryDiagnoseTypeWitness = [&](AssociatedTypeDecl *assocType) -> bool {
auto known = failedTypeWitnesses.find(assocType);
if (known == failedTypeWitnesses.end())
return false;
auto failedSet = std::move(known->second);
ctx.addDelayedConformanceDiag(conformance, true,
[assocType, failedSet](NormalProtocolConformance *conformance) {
auto proto = conformance->getProtocol();
auto &diags = proto->getASTContext().Diags;
diags.diagnose(assocType, diag::bad_associated_type_deduction,
assocType, proto);
for (const auto &failed : failedSet) {
if (failed.Result.getKind() == CheckTypeWitnessResult::Error)
continue;
if ((!failed.TypeWitness->getAnyNominal() ||
failed.TypeWitness->isExistentialType()) &&
failed.Result.getKind() != CheckTypeWitnessResult::Superclass) {
Type resultType;
SourceRange typeRange;
if (auto *var = dyn_cast<VarDecl>(failed.Witness)) {
resultType = var->getValueInterfaceType();
typeRange = var->getTypeSourceRangeForDiagnostics();
} else if (auto *func = dyn_cast<FuncDecl>(failed.Witness)) {
resultType = func->getResultInterfaceType();
typeRange = func->getResultTypeSourceRange();
} else if (auto *subscript = dyn_cast<SubscriptDecl>(failed.Witness)) {
resultType = subscript->getElementInterfaceType();
typeRange = subscript->getElementTypeSourceRange();
}
// If the type witness was inferred from an existential
// result type, suggest an opaque result type instead,
// which can conform to protocols.
if (failed.TypeWitness->isExistentialType() &&
resultType && resultType->isEqual(failed.TypeWitness) &&
typeRange.isValid()) {
diags.diagnose(typeRange.Start,
diag::suggest_opaque_type_witness,
assocType, failed.TypeWitness,
failed.Result.getRequirement())
.highlight(typeRange)
.fixItInsert(typeRange.Start, "some ");
continue;
}
diags.diagnose(failed.Witness,
diag::associated_type_witness_conform_impossible,
assocType, failed.TypeWitness,
failed.Result.getRequirement());
continue;
}
if (!failed.TypeWitness->getClassOrBoundGenericClass() &&
failed.Result.getKind() == CheckTypeWitnessResult::Superclass) {
diags.diagnose(failed.Witness,
diag::associated_type_witness_inherit_impossible,
assocType, failed.TypeWitness,
failed.Result.getRequirement());
continue;
}
switch (failed.Result.getKind()) {
case CheckTypeWitnessResult::Success:
case CheckTypeWitnessResult::Error:
llvm_unreachable("Should not end up here");
case CheckTypeWitnessResult::Conformance:
case CheckTypeWitnessResult::Layout:
diags.diagnose(
failed.Witness,
diag::associated_type_deduction_unsatisfied_conformance,
assocType, failed.TypeWitness,
failed.Result.getRequirement());
break;
case CheckTypeWitnessResult::Superclass:
diags.diagnose(
failed.Witness,
diag::associated_type_deduction_unsatisfied_superclass,
assocType, failed.TypeWitness,
failed.Result.getRequirement());
break;
}
}
});
return true;
};
// Try to diagnose the first missing type witness we encountered.
if (missingTypeWitness && tryDiagnoseTypeWitness(missingTypeWitness))
return true;
// Failing that, try to diagnose any type witness that failed a
// requirement.
for (auto assocType : unresolvedAssocTypes) {
if (tryDiagnoseTypeWitness(assocType))
return true;
}
// If we saw a conflict, complain about it.
if (typeWitnessConflict) {
auto typeWitnessConflict = this->typeWitnessConflict;
ctx.addDelayedConformanceDiag(conformance, true,
[typeWitnessConflict](NormalProtocolConformance *conformance) {
auto &diags = conformance->getDeclContext()->getASTContext().Diags;
diags.diagnose(typeWitnessConflict->AssocType,
diag::ambiguous_associated_type_deduction,
typeWitnessConflict->AssocType,
typeWitnessConflict->FirstType,
typeWitnessConflict->SecondType);
diags.diagnose(typeWitnessConflict->FirstWitness,
diag::associated_type_deduction_witness,
typeWitnessConflict->FirstRequirement,
typeWitnessConflict->FirstType);
diags.diagnose(typeWitnessConflict->SecondWitness,
diag::associated_type_deduction_witness,
typeWitnessConflict->SecondRequirement,
typeWitnessConflict->SecondType);
});
return true;
}
return false;
}
bool AssociatedTypeInference::diagnoseAmbiguousSolutions(
ArrayRef<AssociatedTypeDecl *> unresolvedAssocTypes,
SmallVectorImpl<InferredTypeWitnessesSolution> &solutions) {
for (auto assocType : unresolvedAssocTypes) {
// Find two types that conflict.
auto &firstSolution = solutions.front();
// Local function to retrieve the value witness for the current associated
// type within the given solution.
auto getValueWitness = [&](InferredTypeWitnessesSolution &solution) {
unsigned witnessIdx = solution.TypeWitnesses[assocType].second;
if (witnessIdx < solution.ValueWitnesses.size())
return solution.ValueWitnesses[witnessIdx];
return std::pair<ValueDecl *, ValueDecl *>(nullptr, nullptr);
};
Type firstType = firstSolution.TypeWitnesses[assocType].first;
// Extract the value witness used to deduce this associated type, if any.
auto firstMatch = getValueWitness(firstSolution);
Type secondType;
std::pair<ValueDecl *, ValueDecl *> secondMatch;
for (auto &solution : solutions) {
Type typeWitness = solution.TypeWitnesses[assocType].first;
if (!typeWitness->isEqual(firstType)) {
secondType = typeWitness;
secondMatch = getValueWitness(solution);
break;
}
}
if (!secondType)
continue;
// We found an ambiguity. diagnose it.
ctx.addDelayedConformanceDiag(conformance, true,
[assocType, firstType, firstMatch, secondType, secondMatch](
NormalProtocolConformance *conformance) {
auto &diags = assocType->getASTContext().Diags;
diags.diagnose(assocType, diag::ambiguous_associated_type_deduction,
assocType, firstType, secondType);
auto diagnoseWitness = [&](std::pair<ValueDecl *, ValueDecl *> match,
Type type){
// If we have a requirement/witness pair, diagnose it.
if (match.first && match.second) {
diags.diagnose(match.second,
diag::associated_type_deduction_witness,
match.first, type);
return;
}
// Otherwise, we have a default.
auto defaultDiag =
diags.diagnose(assocType, diag::associated_type_deduction_default,
type);
if (auto defaultTypeRepr = assocType->getDefaultDefinitionTypeRepr())
defaultDiag.highlight(defaultTypeRepr->getSourceRange());
};
diagnoseWitness(firstMatch, firstType);
diagnoseWitness(secondMatch, secondType);
});
return true;
}
return false;
}
bool AssociatedTypeInference::canAttemptEagerTypeWitnessDerivation(
DeclContext *DC, AssociatedTypeDecl *assocType) {
/// Rather than locating the TypeID via the default implementation of
/// Identifiable, we need to find the type based on the associated ActorSystem
if (auto *nominal = DC->getSelfNominalTypeDecl())
if (nominal->isDistributedActor() &&
assocType->getProtocol()->isSpecificProtocol(KnownProtocolKind::Identifiable)) {
return true;
}
return false;
}
auto AssociatedTypeInference::solve() -> std::optional<InferredTypeWitnesses> {
LLVM_DEBUG(llvm::dbgs() << "============ Start " << conformance->getType()
<< ": " << conformance->getProtocol()->getName()
<< " ============\n";);
SWIFT_DEFER {
LLVM_DEBUG(llvm::dbgs() << "============ Finish " << conformance->getType()
<< ": " << conformance->getProtocol()->getName()
<< " ============\n";);
};
// Try to resolve type witnesses via name lookup.
llvm::SetVector<AssociatedTypeDecl *> unresolvedAssocTypes;
for (auto assocType : proto->getAssociatedTypeMembers()) {
// If we already have a type witness, do nothing.
if (conformance->hasTypeWitness(assocType))
continue;
if (canAttemptEagerTypeWitnessDerivation(dc, assocType)) {
auto derivedType = computeDerivedTypeWitness(assocType);
if (derivedType.first) {
recordTypeWitness(conformance, assocType,
derivedType.first->mapTypeOutOfContext(),
derivedType.second);
continue;
}
}
// Try to resolve this type witness via name lookup, which is the
// most direct mechanism, overriding all others.
switch (resolveTypeWitnessViaLookup(conformance, assocType)) {
case ResolveWitnessResult::Success:
// Success. Move on to the next.
LLVM_DEBUG(llvm::dbgs() << "Associated type " << assocType->getName()
<< " has a valid witness\n";);
continue;
case ResolveWitnessResult::ExplicitFailed:
LLVM_DEBUG(llvm::dbgs() << "Associated type " << assocType->getName()
<< " has an invalid witness\n";);
continue;
case ResolveWitnessResult::Missing:
// We did not find the witness via name lookup. Try to derive
// it below.
break;
}
// Finally, try to derive the witness if we know how.
auto derivedType = computeDerivedTypeWitness(assocType);
if (derivedType.first) {
recordTypeWitness(conformance, assocType,
derivedType.first->mapTypeOutOfContext(),
derivedType.second);
continue;
}
// We failed to derive the witness. We're going to go on to try
// to infer it from potential value witnesses next.
unresolvedAssocTypes.insert(assocType);
}
// Result variable to use for returns so that we get NRVO.
std::optional<InferredTypeWitnesses> result = InferredTypeWitnesses();
// If we resolved everything, we're done.
if (unresolvedAssocTypes.empty())
return result;
// Infer potential type witnesses from value witnesses.
inferred = inferTypeWitnessesViaValueWitnesses(unresolvedAssocTypes);
LLVM_DEBUG(llvm::dbgs() << "Candidates for inference:\n";
dumpInferredAssociatedTypes(inferred));
// Compute the set of solutions.
SmallVector<InferredTypeWitnessesSolution, 4> solutions;
findSolutions(unresolvedAssocTypes.getArrayRef(), solutions);
// Go make sure that type declarations that would act as witnesses
// did not get injected while we were performing checks above. This
// can happen when two associated types in different protocols have
// the same name, and validating a declaration (above) triggers the
// type-witness generation for that second protocol, introducing a
// new type declaration.
// FIXME: This is ridiculous.
for (auto assocType : unresolvedAssocTypes) {
switch (resolveTypeWitnessViaLookup(conformance, assocType)) {
case ResolveWitnessResult::Success:
case ResolveWitnessResult::ExplicitFailed:
// A declaration that can become a witness has shown up. Go
// perform the resolution again now that we have more
// information.
LLVM_DEBUG(llvm::dbgs() << "Associated type " << assocType->getName()
<< " now has a valid witness\n";);
return solve();
case ResolveWitnessResult::Missing:
// The type witness is still missing. Keep going.
break;
}
}
// If we still have multiple solutions, they might have identical
// type witnesses.
while (solutions.size() > 1 && solutions.front() == solutions.back()) {
solutions.pop_back();
}
// Happy case: we found exactly one unique viable solution.
if (!findBestSolution(solutions)) {
assert(solutions.size() == 1 && "Not a unique best solution?");
// Form the resulting solution.
auto &typeWitnesses = solutions.front().TypeWitnesses;
for (auto assocType : unresolvedAssocTypes) {
assert(typeWitnesses.count(assocType) == 1 && "missing witness");
auto replacement = typeWitnesses[assocType].first;
assert(!replacement->hasTypeParameter());
if (replacement->hasArchetype()) {
replacement = replacement->mapTypeOutOfContext();
}
LLVM_DEBUG(llvm::dbgs() << "Best witness for " << assocType->getName()
<< " is " << replacement->getCanonicalType()
<< "\n";);
result->push_back({assocType, replacement});
}
return result;
}
// Diagnose the complete lack of solutions.
if (solutions.empty() &&
diagnoseNoSolutions(unresolvedAssocTypes.getArrayRef()))
return std::nullopt;
// Diagnose ambiguous solutions.
if (!solutions.empty() &&
diagnoseAmbiguousSolutions(unresolvedAssocTypes.getArrayRef(),
solutions))
return std::nullopt;
// Save the missing type witnesses for later diagnosis.
for (auto assocType : unresolvedAssocTypes) {
ctx.addDelayedMissingWitness(conformance, {assocType, {}});
}
return std::nullopt;
}
void TypeWitnessSystem::EquivalenceClass::setResolvedType(Type ty, bool preferred) {
assert(ty && "cannot resolve to a null type");
assert(!isAmbiguous() && "must not set resolved type when ambiguous");
ResolvedTyAndFlags.setPointer(ty);
if (preferred)
setPreferred();
}
void TypeWitnessSystem::EquivalenceClass::dump(llvm::raw_ostream &out) const {
if (auto resolvedType = getResolvedType()) {
out << resolvedType;
if (isPreferred())
out << " (preferred)";
} else if (isAmbiguous()) {
out << "(ambiguous)";
} else {
out << "(unresolved)";
}
}
TypeWitnessSystem::TypeWitnessSystem(
ArrayRef<AssociatedTypeDecl *> assocTypes) {
for (auto *assocType : assocTypes) {
this->TypeWitnesses.try_emplace(assocType->getName());
}
}
TypeWitnessSystem::~TypeWitnessSystem() {
for (auto *equivClass : this->EquivalenceClasses) {
delete equivClass;
}
}
bool TypeWitnessSystem::hasResolvedTypeWitness(Identifier name) const {
return (bool)getResolvedTypeWitness(name);
}
Type TypeWitnessSystem::getResolvedTypeWitness(Identifier name) const {
assert(this->TypeWitnesses.count(name));
if (auto *equivClass = this->TypeWitnesses.lookup(name).EquivClass) {
return equivClass->getResolvedType();
}
return Type();
}
AssociatedTypeDecl *
TypeWitnessSystem::getDefaultedAssocType(Identifier name) const {
assert(this->TypeWitnesses.count(name));
return this->TypeWitnesses.lookup(name).DefaultedAssocType;
}
void TypeWitnessSystem::addTypeWitness(Identifier name, Type type,
bool preferred) {
assert(this->TypeWitnesses.count(name));
if (const auto *depTy = type->getAs<DependentMemberType>()) {
// If the type corresponds to a name variable in the system, form an
// equivalence between variables.
if (depTy->getBase()->is<GenericTypeParamType>()) {
if (this->TypeWitnesses.count(depTy->getName())) {
return addEquivalence(name, depTy->getName());
}
} else {
while (depTy->getBase()->is<DependentMemberType>()) {
depTy = depTy->getBase()->castTo<DependentMemberType>();
}
// Equivalences of the form 'Self.X == Self.X.*' do not contribute
// to solving the system, so just ignore them.
if (name == depTy->getName()) {
return;
}
}
}
auto &tyWitness = this->TypeWitnesses[name];
// Assume that the type resolves the equivalence class.
if (tyWitness.EquivClass) {
// Nothing else to do if the equivalence class had been marked as ambiguous.
if (tyWitness.EquivClass->isAmbiguous()) {
return;
}
const Type currResolvedTy = tyWitness.EquivClass->getResolvedType();
if (currResolvedTy) {
// If we already have a resolved type, keep going only if the new one is
// a better choice.
switch (compareResolvedTypes(type, preferred,
tyWitness.EquivClass->getResolvedType(),
tyWitness.EquivClass->isPreferred())) {
case ResolvedTypeComparisonResult::Better:
break;
case ResolvedTypeComparisonResult::EquivalentOrWorse:
return;
case ResolvedTypeComparisonResult::Ambiguity:
// Mark the equivalence class as ambiguous and give up.
tyWitness.EquivClass->setAmbiguous();
return;
}
}
}
// If we can find an existing equivalence class for this type, use it.
for (auto *const equivClass : this->EquivalenceClasses) {
if (equivClass->getResolvedType() &&
equivClass->getResolvedType()->isEqual(type)) {
if (tyWitness.EquivClass) {
mergeEquivalenceClasses(equivClass, tyWitness.EquivClass);
} else {
tyWitness.EquivClass = equivClass;
}
return;
}
}
if (tyWitness.EquivClass) {
tyWitness.EquivClass->setResolvedType(type, preferred);
} else {
auto *equivClass = new EquivalenceClass(type, preferred);
this->EquivalenceClasses.insert(equivClass);
tyWitness.EquivClass = equivClass;
}
}
void TypeWitnessSystem::addDefaultTypeWitness(
Type type, AssociatedTypeDecl *defaultedAssocType,
bool preferred) {
const auto name = defaultedAssocType->getName();
assert(this->TypeWitnesses.count(name));
auto &tyWitness = this->TypeWitnesses[name];
assert(!hasResolvedTypeWitness(name) && "already resolved a type witness");
assert(!tyWitness.DefaultedAssocType &&
"already recorded a default type witness");
// Set the defaulted associated type.
tyWitness.DefaultedAssocType = defaultedAssocType;
// Record the type witness.
addTypeWitness(name, type, preferred);
}
void TypeWitnessSystem::addSameTypeRequirement(const Requirement &req,
bool preferred) {
assert(req.getKind() == RequirementKind::SameType);
auto *const depTy1 = req.getFirstType()->getAs<DependentMemberType>();
auto *const depTy2 = req.getSecondType()->getAs<DependentMemberType>();
// Equivalences other than 'Self.X == ...' (or '... == Self.X'), where
// 'X' is a name variable in this system, do not contribute to solving
// the system.
if (depTy1 && depTy1->getBase()->is<GenericTypeParamType>() &&
this->TypeWitnesses.count(depTy1->getName())) {
addTypeWitness(depTy1->getName(), req.getSecondType(), preferred);
} else if (depTy2 && depTy2->getBase()->is<GenericTypeParamType>() &&
this->TypeWitnesses.count(depTy2->getName())) {
addTypeWitness(depTy2->getName(), req.getFirstType(), preferred);
}
}
void TypeWitnessSystem::dump(
llvm::raw_ostream &out,
const NormalProtocolConformance *conformance) const {
llvm::SmallVector<Identifier, 4> sortedNames;
sortedNames.reserve(this->TypeWitnesses.size());
for (const auto &pair : this->TypeWitnesses) {
sortedNames.push_back(pair.first);
}
// Deterministic ordering.
llvm::array_pod_sort(sortedNames.begin(), sortedNames.end(),
[](const Identifier *lhs, const Identifier *rhs) -> int {
return lhs->compare(*rhs);
});
out << "Abstract type witness system for conformance"
<< " of " << conformance->getType() << " to "
<< conformance->getProtocol()->getName() << ": {\n";
for (const auto &name : sortedNames) {
out.indent(2) << name << " => ";
const auto *eqClass = this->TypeWitnesses.lookup(name).EquivClass;
if (eqClass) {
eqClass->dump(out);
} else {
out << "(unresolved)";
}
if (eqClass) {
out << ", " << eqClass;
}
out << "\n";
}
out << "}\n";
}
void TypeWitnessSystem::addEquivalence(Identifier name1, Identifier name2) {
assert(this->TypeWitnesses.count(name1));
assert(this->TypeWitnesses.count(name2));
if (name1 == name2) {
return;
}
auto &tyWitness1 = this->TypeWitnesses[name1];
auto &tyWitness2 = this->TypeWitnesses[name2];
// If both candidates are associated with existing equivalence classes,
// merge them.
if (tyWitness1.EquivClass && tyWitness2.EquivClass) {
mergeEquivalenceClasses(tyWitness1.EquivClass, tyWitness2.EquivClass);
return;
}
if (tyWitness1.EquivClass) {
tyWitness2.EquivClass = tyWitness1.EquivClass;
} else if (tyWitness2.EquivClass) {
tyWitness1.EquivClass = tyWitness2.EquivClass;
} else {
// Neither has an associated equivalence class.
auto *equivClass = new EquivalenceClass(nullptr, /*preferred=*/false);
this->EquivalenceClasses.insert(equivClass);
tyWitness1.EquivClass = equivClass;
tyWitness2.EquivClass = equivClass;
}
}
void TypeWitnessSystem::mergeEquivalenceClasses(
EquivalenceClass *equivClass1, const EquivalenceClass *equivClass2) {
assert(equivClass1 && equivClass2);
if (equivClass1 == equivClass2) {
return;
}
// Merge the second equivalence class into the first.
if (equivClass1->getResolvedType() && equivClass2->getResolvedType()) {
switch (compareResolvedTypes(equivClass2->getResolvedType(),
equivClass2->isPreferred(),
equivClass1->getResolvedType(),
equivClass1->isPreferred())) {
case ResolvedTypeComparisonResult::Better:
equivClass1->setResolvedType(equivClass2->getResolvedType(),
equivClass2->isPreferred());
break;
case ResolvedTypeComparisonResult::EquivalentOrWorse:
break;
case ResolvedTypeComparisonResult::Ambiguity:
equivClass1->setAmbiguous();
break;
}
} else if (equivClass1->isAmbiguous()) {
// Ambiguity is retained.
} else if (equivClass2->getResolvedType()) {
// Carry over the resolved type.
equivClass1->setResolvedType(equivClass2->getResolvedType(),
equivClass2->isPreferred());
} else if (equivClass2->isAmbiguous()) {
// Carry over ambiguity.
equivClass1->setAmbiguous();
}
// Migrate members of the second equivalence class to the first.
for (auto &pair : this->TypeWitnesses) {
if (pair.second.EquivClass == equivClass2) {
pair.second.EquivClass = equivClass1;
}
}
// Finally, dispose of the second equivalence class.
this->EquivalenceClasses.erase(const_cast<EquivalenceClass *>(equivClass2));
delete equivClass2;
}
TypeWitnessSystem::ResolvedTypeComparisonResult
TypeWitnessSystem::compareResolvedTypes(Type ty1, bool preferred1,
Type ty2, bool preferred2) {
assert(ty1 && ty2);
// Prefer type parameters from our current protocol, then break a tie by
// applying the type parameter order. This is just a heuristic and has no
// theoretical basis at all.
if (ty1->isTypeParameter() && ty2->isTypeParameter()) {
if (preferred1 && !preferred2)
return ResolvedTypeComparisonResult::Better;
if (preferred2 && !preferred1)
return ResolvedTypeComparisonResult::EquivalentOrWorse;
return compareDependentTypes(ty1, ty2) < 0
? ResolvedTypeComparisonResult::Better
: ResolvedTypeComparisonResult::EquivalentOrWorse;
}
// A concrete type is better than a type parameter.
if (!ty1->isTypeParameter() && ty2->isTypeParameter()) {
return ResolvedTypeComparisonResult::Better;
}
// A type parameter is worse than a concrete type.
if (ty1->isTypeParameter() && !ty2->isTypeParameter()) {
return ResolvedTypeComparisonResult::EquivalentOrWorse;
}
// Ambiguous concrete types.
if (ty1->isEqual(ty2)) {
return ResolvedTypeComparisonResult::EquivalentOrWorse;
}
return ResolvedTypeComparisonResult::Ambiguity;
}
//
// Request evaluator entry points
//
evaluator::SideEffect
ResolveTypeWitnessesRequest::evaluate(Evaluator &evaluator,
NormalProtocolConformance *conformance) const {
// Attempt to infer associated type witnesses.
auto &ctx = conformance->getDeclContext()->getASTContext();
AssociatedTypeInference inference(ctx, conformance);
if (auto inferred = inference.solve()) {
for (const auto &inferredWitness : *inferred) {
recordTypeWitness(conformance,
inferredWitness.first,
inferredWitness.second,
/*typeDecl=*/nullptr);
}
return evaluator::SideEffect();
}
// Conformance failed. Record errors for each of the witnesses.
conformance->setInvalid();
// We're going to produce an error below. Mark each unresolved
// associated type witness as erroneous.
for (auto assocType : conformance->getProtocol()->getAssociatedTypeMembers()) {
// If we already have a type witness, do nothing.
if (conformance->hasTypeWitness(assocType))
continue;
recordTypeWitness(conformance, assocType, ErrorType::get(ctx), nullptr);
}
return evaluator::SideEffect();
}
static NormalProtocolConformance *
getBetterConformanceForResolvingTypeWitnesses(NormalProtocolConformance *conformance,
AssociatedTypeDecl *requirement) {
auto *proto = conformance->getProtocol();
for (auto *otherConformance : getPeerConformances(conformance)) {
auto *otherNormal = dyn_cast<NormalProtocolConformance>(
otherConformance->getRootConformance());
if (otherNormal == nullptr)
continue;
auto *otherProto = otherNormal->getProtocol();
if (otherProto->inheritsFrom(proto) &&
otherProto->getAssociatedType(requirement->getName())) {
return otherNormal;
}
}
return conformance;
}
TypeWitnessAndDecl
TypeWitnessRequest::evaluate(Evaluator &eval,
NormalProtocolConformance *conformance,
AssociatedTypeDecl *requirement) const {
switch (resolveTypeWitnessViaLookup(conformance, requirement)) {
case ResolveWitnessResult::Success:
case ResolveWitnessResult::ExplicitFailed:
// We resolved this type witness one way or another.
break;
case ResolveWitnessResult::Missing: {
auto &ctx = requirement->getASTContext();
// Let's see if there is a better conformance we can perform associated
// type inference on.
auto *better = getBetterConformanceForResolvingTypeWitnesses(
conformance, requirement);
if (better == conformance) {
LLVM_DEBUG(llvm::dbgs() << "Conformance to " << conformance->getProtocol()->getName()
<< " is best\n";);
} else {
LLVM_DEBUG(llvm::dbgs() << "Conformance to " << better->getProtocol()->getName()
<< " is better than " << conformance->getProtocol()->getName()
<< "\n";);
}
if (better != conformance &&
!ctx.evaluator.hasActiveRequest(ResolveTypeWitnessesRequest{better})) {
// Let's try to resolve type witnesses in the better conformance.
evaluateOrDefault(ctx.evaluator,
ResolveTypeWitnessesRequest{better},
evaluator::SideEffect());
// Check whether the above populated the type witness of our conformance.
auto known = conformance->TypeWitnesses.find(requirement);
if (known != conformance->TypeWitnesses.end())
return known->second;
}
// The type witness is still missing. Resolve all of the type witnesses
// in this conformance.
evaluateOrDefault(ctx.evaluator,
ResolveTypeWitnessesRequest{conformance},
evaluator::SideEffect());
break;
}
}
// FIXME: resolveTypeWitnessViaLookup() and ResolveTypeWitnessesRequest
// pre-populate the type witnesses in this manner. This should be cleaned up.
const auto known = conformance->TypeWitnesses.find(requirement);
assert(known != conformance->TypeWitnesses.end() &&
"Didn't resolve witness?");
return known->second;
}
ProtocolConformanceRef
AssociatedConformanceRequest::evaluate(Evaluator &eval,
NormalProtocolConformance *conformance,
CanType origTy, ProtocolDecl *reqProto,
unsigned index) const {
auto *module = conformance->getDeclContext()->getParentModule();
auto subMap = SubstitutionMap::getProtocolSubstitutions(
conformance->getProtocol(),
conformance->getType(),
ProtocolConformanceRef(conformance));
auto substTy = origTy.subst(subMap);
// Looking up a conformance for a contextual type and mapping the
// conformance context produces a more accurate result than looking
// up a conformance from an interface type.
//
// This can happen if the conformance has an associated conformance
// depending on an associated type that is made concrete in a
// refining protocol.
//
// That is, the conformance of an interface type G<T> : P really
// depends on the generic signature of the current context, because
// performing the lookup in a "more" constrained extension than the
// one where the conformance was defined must produce concrete
// conformances.
//
// FIXME: Eliminate this, perhaps by adding a variant of
// lookupConformance() taking a generic signature.
if (substTy->hasTypeParameter())
substTy = conformance->getDeclContext()->mapTypeIntoContext(substTy);
return module->lookupConformance(substTy, reqProto, /*allowMissing=*/true)
.mapConformanceOutOfContext();
}
TinyPtrVector<AssociatedTypeDecl *>
ReferencedAssociatedTypesRequest::evaluate(Evaluator &eval,
ValueDecl *req) const {
// Collect the set of associated types rooted on Self in the
// signature. Note that for references to nested types, we only
// want to consider the outermost dependent member type.
//
// For example, a requirement typed '(Iterator.Element) -> ()'
// is not considered to reference the associated type 'Iterator'.
TinyPtrVector<AssociatedTypeDecl *> assocTypes;
class Walker : public TypeWalker {
ProtocolDecl *Proto;
llvm::TinyPtrVector<AssociatedTypeDecl *> &assocTypes;
llvm::SmallPtrSet<AssociatedTypeDecl *, 4> knownAssocTypes;
public:
Walker(ProtocolDecl *Proto,
llvm::TinyPtrVector<AssociatedTypeDecl *> &assocTypes)
: Proto(Proto), assocTypes(assocTypes) {}
Action walkToTypePre(Type type) override {
if (type->is<DependentMemberType>()) {
if (auto assocType = getReferencedAssocTypeOfProtocol(type, Proto)) {
if (knownAssocTypes.insert(assocType).second)
assocTypes.push_back(assocType);
}
return Action::SkipNode;
}
return Action::Continue;
}
};
Walker walker(cast<ProtocolDecl>(req->getDeclContext()), assocTypes);
// This dance below is to avoid calling getCanonicalType() on a
// GenericFunctionType, which creates a GenericSignatureBuilder, which
// can in turn trigger associated type inference and cause a cycle.
auto reqTy = req->getInterfaceType();
if (auto *funcTy = reqTy->getAs<GenericFunctionType>()) {
for (auto param : funcTy->getParams())
param.getPlainType()->getCanonicalType().walk(walker);
funcTy->getResult()->getCanonicalType().walk(walker);
} else {
reqTy->getCanonicalType().walk(walker);
}
return assocTypes;
}
|