File: BuilderTransform.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1704 lines) | stat: -rw-r--r-- 61,712 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
//===--- BuilderTransform.cpp - Result-builder transformation -----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements routines associated with the result-builder
// transformation.
//
//===----------------------------------------------------------------------===//

#include "MiscDiagnostics.h"
#include "TypeCheckAvailability.h"
#include "TypeChecker.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Sema/IDETypeChecking.h"
#include "swift/Sema/SolutionResult.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include <iterator>
#include <map>
#include <memory>
#include <tuple>
#include <utility>

using namespace swift;
using namespace constraints;

namespace {

/// Find the first #available condition within the statement condition,
/// or return NULL if there isn't one.
const StmtConditionElement *findAvailabilityCondition(StmtCondition stmtCond) {
  for (const auto &cond : stmtCond) {
    switch (cond.getKind()) {
    case StmtConditionElement::CK_Boolean:
    case StmtConditionElement::CK_PatternBinding:
    case StmtConditionElement::CK_HasSymbol:
      continue;

    case StmtConditionElement::CK_Availability:
      return &cond;
      break;
    }
  }

  return nullptr;
}

class ResultBuilderTransform
    : private StmtVisitor<ResultBuilderTransform, NullablePtr<Stmt>,
                          NullablePtr<VarDecl>> {
  friend StmtVisitor<ResultBuilderTransform, NullablePtr<Stmt>,
                     NullablePtr<VarDecl>>;

  using UnsupportedElt = SkipUnhandledConstructInResultBuilder::UnhandledNode;

  ASTContext &ctx;
  DeclContext *dc;
  ResultBuilder builder;

  /// The source range of the body.
  SourceRange bodyRange;

  /// The result type of this result builder body.
  Type ResultType;

  /// The first recorded unsupported element discovered by the transformation.
  UnsupportedElt FirstUnsupported;

public:
  ResultBuilderTransform(ConstraintSystem &cs, DeclContext *dc,
                         SourceRange bodyRange, Type builderType, Type resultTy)
      : ctx(cs.getASTContext()), dc(dc), builder(cs, dc, builderType),
        bodyRange(bodyRange), ResultType(resultTy) {}

  UnsupportedElt getUnsupportedElement() const { return FirstUnsupported; }

  BraceStmt *apply(BraceStmt *braceStmt) {
    auto newBody = visitBraceStmt(braceStmt, /*bodyVar=*/nullptr);
    if (!newBody)
      return nullptr;
    return castToStmt<BraceStmt>(newBody.get());
  }

  VarDecl *getBuilderSelf() const { return builder.getBuilderSelf(); }

protected:
  NullablePtr<Stmt> failTransform(UnsupportedElt unsupported) {
    recordUnsupported(unsupported);
    return nullptr;
  }

  VarDecl *recordVar(PatternBindingDecl *PB,
                     SmallVectorImpl<ASTNode> &container) {
    container.push_back(PB);
    container.push_back(PB->getSingleVar());
    return PB->getSingleVar();
  }

  VarDecl *captureExpr(Expr *expr, SmallVectorImpl<ASTNode> &container) {
    auto *var = builder.buildVar(expr->getStartLoc());
    Pattern *pattern = NamedPattern::createImplicit(ctx, var);
    auto *PB = PatternBindingDecl::createImplicit(
        ctx, StaticSpellingKind::None, pattern, expr, dc, var->getStartLoc());
    return recordVar(PB, container);
  }

  VarDecl *buildPlaceholderVar(SourceLoc loc,
                               SmallVectorImpl<ASTNode> &container,
                               Type type = Type(), Expr *initExpr = nullptr) {
    auto *var = builder.buildVar(loc);
    Pattern *placeholder = TypedPattern::createImplicit(
        ctx, NamedPattern::createImplicit(ctx, var),
        type ? type : PlaceholderType::get(ctx, var));
    auto *PB = PatternBindingDecl::createImplicit(
        ctx, StaticSpellingKind::None, placeholder, /*init=*/initExpr, dc,
        var->getStartLoc());
    return recordVar(PB, container);
  }

  AssignExpr *buildAssignment(VarDecl *dst, VarDecl *src) {
    auto *dstRef = builder.buildVarRef(dst, /*Loc=*/SourceLoc());
    auto *srcRef = builder.buildVarRef(src, /*Loc=*/SourceLoc());
    return new (ctx) AssignExpr(dstRef, /*EqualLoc=*/SourceLoc(), srcRef,
                                /*Implicit=*/true);
  }

  AssignExpr *buildAssignment(VarDecl *dst, Expr *srcExpr) {
    auto *dstRef = builder.buildVarRef(dst, /*Loc=*/SourceLoc());
    return new (ctx) AssignExpr(dstRef, /*EqualLoc=*/SourceLoc(), srcExpr,
                                /*implicit=*/true);
  }

  void recordUnsupported(UnsupportedElt node) {
    if (!FirstUnsupported)
      FirstUnsupported = node;
  }

#define UNSUPPORTED_STMT(StmtClass)                                            \
  NullablePtr<Stmt> visit##StmtClass##Stmt(StmtClass##Stmt *stmt,              \
                                           NullablePtr<VarDecl> var) {         \
    return failTransform(stmt);                                                \
  }

  /// Visit the element of a brace statement, returning \c None if the element
  /// was transformed successfully, or an unsupported element if the element
  /// cannot be handled.
  std::optional<UnsupportedElt>
  transformBraceElement(ASTNode element, SmallVectorImpl<ASTNode> &newBody,
                        SmallVectorImpl<Expr *> &buildBlockArguments) {
    if (auto *returnStmt = getAsStmt<ReturnStmt>(element)) {
      assert(returnStmt->isImplicit());
      element = returnStmt->getResult();
    }
    // Unwrap an implicit ThenStmt.
    if (auto *thenStmt = getAsStmt<ThenStmt>(element)) {
      if (thenStmt->isImplicit())
        element = thenStmt->getResult();
    }

    if (auto *decl = element.dyn_cast<Decl *>()) {
      switch (decl->getKind()) {
        // Just ignore #if; the chosen children should appear in
        // the surrounding context.  This isn't good for source
        // tools but it at least works.
      case DeclKind::IfConfig:
        // Skip #warning/#error; we'll handle them when applying
        // the builder.
      case DeclKind::PoundDiagnostic:
      case DeclKind::PatternBinding:
      case DeclKind::Var:
      case DeclKind::Param:
        newBody.push_back(element);
        return std::nullopt;

      default:
        return UnsupportedElt(decl);
      }
      llvm_unreachable("Unhandled case in switch!");
    }

    if (auto *stmt = element.dyn_cast<Stmt *>()) {
      // Throw is allowed as is.
      if (auto *throwStmt = dyn_cast<ThrowStmt>(stmt)) {
        newBody.push_back(throwStmt);
        return std::nullopt;
      }

      if (ctx.CompletionCallback && stmt->getSourceRange().isValid() &&
          !containsIDEInspectionTarget(stmt->getSourceRange(), ctx.SourceMgr) &&
          !isa<GuardStmt>(stmt)) {
        // A statement that doesn't contain the code completion expression can't
        // influence the type of the code completion expression, so we can skip
        // it to improve performance.
        return std::nullopt;
      }

      // Allocate variable with a placeholder type
      auto *resultVar = buildPlaceholderVar(stmt->getStartLoc(), newBody);

      auto result = visit(stmt, resultVar);
      if (!result)
        return UnsupportedElt(stmt);

      newBody.push_back(result.get());
      buildBlockArguments.push_back(
          builder.buildVarRef(resultVar, stmt->getStartLoc()));
      return std::nullopt;
    }

    auto *expr = element.get<Expr *>();
    if (auto *SVE = dyn_cast<SingleValueStmtExpr>(expr)) {
      // This should never be treated as an expression in a result builder, it
      // should have statement semantics.
      return transformBraceElement(SVE->getStmt(), newBody,
                                   buildBlockArguments);
    }
    if (builder.supports(ctx.Id_buildExpression)) {
      expr = builder.buildCall(expr->getStartLoc(), ctx.Id_buildExpression,
                               {expr}, {Identifier()});
    }

    if (isa<CodeCompletionExpr>(expr)) {
      // Insert the CodeCompletionExpr directly into the buildBlock call. That
      // way, we can extract the contextual type of the code completion token
      // to rank code completion items that match the type expected by
      // buildBlock higher.
      buildBlockArguments.push_back(expr);
    } else if (ctx.CompletionCallback && expr->getSourceRange().isValid() &&
               containsIDEInspectionTarget(bodyRange, ctx.SourceMgr) &&
               !containsIDEInspectionTarget(expr->getSourceRange(),
                                            ctx.SourceMgr)) {
      // A top-level expression that doesn't contain the code completion
      // expression can't influence the type of the code completion expression
      // if they're in the same result builder. Add a variable for it that we
      // can put into the buildBlock call but don't add the expression itself
      // into the transformed body to improve performance.
      auto *resultVar = buildPlaceholderVar(expr->getStartLoc(), newBody);
      buildBlockArguments.push_back(
          builder.buildVarRef(resultVar, expr->getStartLoc()));
    } else {
      auto *capture = captureExpr(expr, newBody);
      // A reference to the synthesized variable is passed as an argument
      // to buildBlock.
      buildBlockArguments.push_back(
          builder.buildVarRef(capture, element.getStartLoc()));
    }

    return std::nullopt;
  }

  std::pair<NullablePtr<Expr>, std::optional<UnsupportedElt>>
  transform(BraceStmt *braceStmt, SmallVectorImpl<ASTNode> &newBody) {
    SmallVector<Expr *, 4> buildBlockArguments;

    auto failTransform = [&](UnsupportedElt unsupported) {
      return std::make_pair(nullptr, unsupported);
    };

    for (auto element : braceStmt->getElements()) {
      if (auto unsupported =
              transformBraceElement(element, newBody, buildBlockArguments)) {
        // When in code completion mode, simply ignore unsported constructs to
        // get results for anything that's unrelated to the unsupported
        // constructs.
        if (!ctx.CompletionCallback) {
          return failTransform(*unsupported);
        }
      }
    }

    // Synthesize `buildBlock` or `buildPartial` based on captured arguments.
    {
      // If the builder supports `buildPartialBlock(first:)` and
      // `buildPartialBlock(accumulated:next:)`, use this to combine
      // sub-expressions pairwise.
      if (!buildBlockArguments.empty() && builder.canUseBuildPartialBlock()) {
        //   let v0 = Builder.buildPartialBlock(first: arg_0)
        //   let v1 = Builder.buildPartialBlock(accumulated: v0, next: arg_1)
        //   ...
        //   let vN = Builder.buildPartialBlock(accumulated: vN-1, next: argN)
        auto *buildPartialFirst = builder.buildCall(
            braceStmt->getStartLoc(), ctx.Id_buildPartialBlock,
            {buildBlockArguments.front()},
            /*argLabels=*/{ctx.Id_first});

        auto *buildBlockVar = captureExpr(buildPartialFirst, newBody);

        for (auto *argExpr : llvm::drop_begin(buildBlockArguments)) {
          auto *accumPartialBlock = builder.buildCall(
              braceStmt->getStartLoc(), ctx.Id_buildPartialBlock,
              {builder.buildVarRef(buildBlockVar, argExpr->getStartLoc()),
               argExpr},
              {ctx.Id_accumulated, ctx.Id_next});
          buildBlockVar = captureExpr(accumPartialBlock, newBody);
        }

        return std::make_pair(
            builder.buildVarRef(buildBlockVar, braceStmt->getStartLoc()),
            std::nullopt);
      }
      // If `buildBlock` does not exist at this point, it could be the case that
      // `buildPartialBlock` did not have the sufficient availability for this
      // call site.  Diagnose it.
      else if (!builder.supports(ctx.Id_buildBlock)) {
        ctx.Diags.diagnose(
            braceStmt->getStartLoc(),
            diag::result_builder_missing_available_buildpartialblock,
            builder.getType());
        return failTransform(braceStmt);
      }

      // Otherwise, call `buildBlock` on all subexpressions.
      // Call Builder.buildBlock(... args ...)
      auto *buildBlock = builder.buildCall(
          braceStmt->getStartLoc(), ctx.Id_buildBlock, buildBlockArguments,
          /*argLabels=*/{});
      return std::make_pair(buildBlock, std::nullopt);
    }
  }

  std::pair<bool, UnsupportedElt>
  transform(BraceStmt *braceStmt, NullablePtr<VarDecl> bodyVar,
            SmallVectorImpl<ASTNode> &elements) {
    // Arguments passed to a synthesized `build{Partial}Block`.
    SmallVector<Expr *, 4> buildBlockArguments;

    auto failure = [&](UnsupportedElt element) {
      return std::make_pair(true, element);
    };

    NullablePtr<Expr> buildBlockVarRef;
    std::optional<UnsupportedElt> unsupported;

    std::tie(buildBlockVarRef, unsupported) = transform(braceStmt, elements);
    if (unsupported)
      return failure(*unsupported);

    // If this is not a top-level brace statement, we need to form an
    // assignment from the `build{Partial}Block` call result variable
    // to the provided one.
    //
    // Use start loc for the return statement so any contextual issues
    // are attached to the beginning of the brace instead of its end.
    auto resultLoc = braceStmt->getStartLoc();
    if (bodyVar) {
      elements.push_back(
          new (ctx) AssignExpr(builder.buildVarRef(bodyVar.get(), resultLoc),
                               /*EqualLoc=*/SourceLoc(), buildBlockVarRef.get(),
                               /*Implicit=*/true));
    } else {
      Expr *buildBlockResult = buildBlockVarRef.get();
      // Otherwise, it's a top-level brace and we need to synthesize
      // a call to `buildFialBlock` if supported.
      if (builder.supports(ctx.Id_buildFinalResult, {Identifier()})) {
        buildBlockResult =
            builder.buildCall(resultLoc, ctx.Id_buildFinalResult,
                              {buildBlockResult}, {Identifier()});
      }

      elements.push_back(
          ReturnStmt::createImplicit(ctx, resultLoc, buildBlockResult));
    }

    return std::make_pair(false, UnsupportedElt());
  }

  BraceStmt *cloneBraceWith(BraceStmt *braceStmt,
                            SmallVectorImpl<ASTNode> &elements) {
    auto lBrace = braceStmt ? braceStmt->getLBraceLoc() : SourceLoc();
    auto rBrace = braceStmt ? braceStmt->getRBraceLoc() : SourceLoc();
    bool implicit = braceStmt ? braceStmt->isImplicit() : true;

    return BraceStmt::create(ctx, lBrace, elements, rBrace, implicit);
  }

  NullablePtr<Stmt> visitBraceStmt(BraceStmt *braceStmt,
                                   NullablePtr<VarDecl> bodyVar) {
    SmallVector<ASTNode, 4> elements;

    bool failed;
    UnsupportedElt unsupported;

    std::tie(failed, unsupported) = transform(braceStmt, bodyVar, elements);

    if (failed)
      return failTransform(unsupported);

    return cloneBraceWith(braceStmt, elements);
  }

  NullablePtr<Stmt> visitDoStmt(DoStmt *doStmt, NullablePtr<VarDecl> doVar) {
    auto body = visitBraceStmt(doStmt->getBody(), doVar);
    if (!body)
      return nullptr;

    return new (ctx) DoStmt(doStmt->getLabelInfo(), doStmt->getDoLoc(),
                            cast<BraceStmt>(body.get()), doStmt->isImplicit());
  }

  NullablePtr<Stmt> visitIfStmt(IfStmt *ifStmt, NullablePtr<VarDecl> ifVar) {
    // Check whether the chain is buildable and whether it terminates
    // without an `else`.
    bool isOptional = false;
    unsigned numPayloads = 0;
    if (!isBuildableIfChain(ifStmt, numPayloads, isOptional))
      return failTransform(ifStmt);

    SmallVector<std::pair<Expr *, Stmt *>, 4> branchVarRefs;

    auto transformed = transformIf(ifStmt, branchVarRefs);
    if (!transformed)
      return failTransform(ifStmt);

    // Let's wrap `if` statement into a `do` and inject `type-join`
    // operation with appropriate combination of `buildEither` that
    // would get re-distributed after inference.
    SmallVector<ASTNode, 4> doBody;
    {
      ifStmt = transformed.get();

      // `if` goes first.
      doBody.push_back(ifStmt);

      assert(numPayloads == branchVarRefs.size());

      SmallVector<Expr *, 4> buildEitherCalls;
      for (unsigned i = 0; i != numPayloads; i++) {
        Expr *branchVarRef;
        Stmt *anchor;

        std::tie(branchVarRef, anchor) = branchVarRefs[i];

        auto *builderCall =
            buildWrappedChainPayload(branchVarRef, i, numPayloads, isOptional);

        // The operand should have optional type if we had optional results,
        // so we just need to call `buildIf` now, since we're at the top level.
        if (isOptional) {
          builderCall = builder.buildCall(ifStmt->getThenStmt()->getStartLoc(),
                                          builder.getBuildOptionalId(),
                                          builderCall, /*argLabels=*/{});
        }

        buildEitherCalls.push_back(builderCall);
      }

      // If there is no `else` branch we need to build one.
      // It consists a `buildOptional` call that uses `nil` as an argument.
      //
      // ```
      // {
      //   $__builderResult = buildOptional(nil)
      // }
      // ```
      //
      // Type of `nil` is going to be inferred from `$__builderResult`.
      if (!hasUnconditionalElse(ifStmt)) {
        assert(isOptional);

        auto *nil =
            new (ctx) NilLiteralExpr(ifStmt->getEndLoc(), /*implicit=*/true);

        buildEitherCalls.push_back(builder.buildCall(
            /*loc=*/ifStmt->getEndLoc(), builder.getBuildOptionalId(), nil,
            /*argLabels=*/{}));
      }

      auto *ifVarRef = builder.buildVarRef(ifVar.get(), ifStmt->getStartLoc());
      doBody.push_back(TypeJoinExpr::create(ctx, ifVarRef, buildEitherCalls));
    }

    return DoStmt::createImplicit(ctx, LabeledStmtInfo(), doBody);
  }

  NullablePtr<IfStmt>
  transformIf(IfStmt *ifStmt,
              SmallVectorImpl<std::pair<Expr *, Stmt *>> &branchVarRefs) {
    std::optional<UnsupportedElt> unsupported;

    // If there is a #available in the condition, wrap the 'then' or 'else'
    // in a call to buildLimitedAvailability(_:).
    auto availabilityCond = findAvailabilityCondition(ifStmt->getCond());
    bool supportsAvailability =
        availabilityCond && builder.supports(ctx.Id_buildLimitedAvailability);

    NullablePtr<Expr> thenVarRef;
    NullablePtr<BraceStmt> thenBranch;
    {
      SmallVector<ASTNode, 4> thenBody;

      auto *ifBraceStmt = cast<BraceStmt>(ifStmt->getThenStmt());

      std::tie(thenVarRef, unsupported) = transform(ifBraceStmt, thenBody);
      if (unsupported) {
        recordUnsupported(*unsupported);
        return nullptr;
      }

      if (supportsAvailability &&
          !availabilityCond->getAvailability()->isUnavailability()) {
        auto *builderCall = builder.buildCall(
            ifBraceStmt->getStartLoc(), ctx.Id_buildLimitedAvailability,
            {thenVarRef.get()}, {Identifier()});

        thenVarRef = builder.buildVarRef(captureExpr(builderCall, thenBody),
                                         ifBraceStmt->getStartLoc());
      }

      thenBranch = cloneBraceWith(ifBraceStmt, thenBody);
      branchVarRefs.push_back({thenVarRef.get(), thenBranch.get()});
    }

    NullablePtr<Stmt> elseBranch;

    if (auto *elseStmt = ifStmt->getElseStmt()) {
      NullablePtr<Expr> elseVarRef;

      if (auto *innerIfStmt = getAsStmt<IfStmt>(elseStmt)) {
        elseBranch = transformIf(innerIfStmt, branchVarRefs);
        if (!elseBranch) {
          recordUnsupported(innerIfStmt);
          return nullptr;
        }
      } else {
        auto *elseBraceStmt = cast<BraceStmt>(elseStmt);
        SmallVector<ASTNode> elseBody;

        std::tie(elseVarRef, unsupported) = transform(elseBraceStmt, elseBody);
        if (unsupported) {
          recordUnsupported(*unsupported);
          return nullptr;
        }

        // If there is a #unavailable in the condition, wrap the 'else' in a
        // call to buildLimitedAvailability(_:).
        if (supportsAvailability &&
            availabilityCond->getAvailability()->isUnavailability()) {
          auto *builderCall = builder.buildCall(
              elseBraceStmt->getStartLoc(), ctx.Id_buildLimitedAvailability,
              {elseVarRef.get()}, {Identifier()});

          elseVarRef = builder.buildVarRef(captureExpr(builderCall, elseBody),
                                           elseBraceStmt->getStartLoc());
        }

        elseBranch = cloneBraceWith(elseBraceStmt, elseBody);
        branchVarRefs.push_back({elseVarRef.get(), elseBranch.get()});
      }
    }

    return new (ctx)
        IfStmt(ifStmt->getLabelInfo(), ifStmt->getIfLoc(), ifStmt->getCond(),
               thenBranch.get(), ifStmt->getElseLoc(),
               elseBranch.getPtrOrNull(), ifStmt->isImplicit());
  }

  NullablePtr<Stmt> visitSwitchStmt(SwitchStmt *switchStmt,
                                    NullablePtr<VarDecl> switchVar) {
    // For a do statement wrapping this switch that contains all of the
    // `buildEither` calls that would get injected back into `case` bodies
    // after solving is done.
    //
    // This is necessary because `buildEither requires type information from
    // both sides to be available, so all case statements have to be
    // type-checked first.
    SmallVector<ASTNode, 4> doBody;

    SmallVector<ASTNode, 4> cases;
    SmallVector<Expr *, 4> caseVarRefs;

    for (auto *caseStmt : switchStmt->getCases()) {
      auto transformed = transformCase(caseStmt);
      if (!transformed)
        return failTransform(caseStmt);

      cases.push_back(transformed->second);
      caseVarRefs.push_back(transformed->first);
    }

    // If there are no 'case' statements in the body let's try
    // to diagnose this situation via limited exhaustiveness check
    // before failing a builder transform, otherwise type-checker
    // might end up without any diagnostics which leads to crashes
    // in SILGen.
    if (caseVarRefs.empty()) {
      TypeChecker::checkSwitchExhaustiveness(switchStmt, dc,
                                             /*limitChecking=*/true);
      return failTransform(switchStmt);
    }

    auto *transformedSwitch = SwitchStmt::create(
        switchStmt->getLabelInfo(), switchStmt->getSwitchLoc(),
        switchStmt->getSubjectExpr(), switchStmt->getLBraceLoc(), cases,
        switchStmt->getRBraceLoc(), switchStmt->getEndLoc(), ctx);

    doBody.push_back(transformedSwitch);

    SmallVector<Expr *, 4> injectedExprs;
    for (auto idx : indices(caseVarRefs)) {
      auto *caseVarRef = caseVarRefs[idx];

      // Build the expression that injects the case variable into appropriate
      // buildEither(first:)/buildEither(second:) chain.
      Expr *injectedCaseExpr = buildWrappedChainPayload(
          caseVarRef, idx, caseVarRefs.size(), /*isOptional=*/false);

      injectedExprs.push_back(injectedCaseExpr);
    }

    auto *switchVarRef =
        builder.buildVarRef(switchVar.get(), switchStmt->getEndLoc());
    doBody.push_back(TypeJoinExpr::create(ctx, switchVarRef, injectedExprs));

    return DoStmt::createImplicit(ctx, LabeledStmtInfo(), doBody);
  }

  std::optional<std::pair<Expr *, CaseStmt *>>
  transformCase(CaseStmt *caseStmt) {
    auto *body = caseStmt->getBody();

    // Explicitly disallow `case` statements with empty bodies
    // since that helps to diagnose other issues with switch
    // statements by excluding invalid cases.
    if (auto *BS = dyn_cast<BraceStmt>(body)) {
      if (BS->getNumElements() == 0) {
        // HACK: still allow empty bodies if typechecking for code
        // completion. Code completion ignores diagnostics
        // and won't get any types if we fail.
        if (!ctx.SourceMgr.hasIDEInspectionTargetBuffer())
          return std::nullopt;
      }
    }

    NullablePtr<Expr> caseVarRef;
    std::optional<UnsupportedElt> unsupported;
    SmallVector<ASTNode, 4> newBody;

    std::tie(caseVarRef, unsupported) = transform(body, newBody);

    if (unsupported) {
      recordUnsupported(*unsupported);
      return std::nullopt;
    }

    auto *newCase = CaseStmt::create(
        ctx, caseStmt->getParentKind(), caseStmt->getLoc(),
        caseStmt->getCaseLabelItems(),
        caseStmt->hasUnknownAttr() ? caseStmt->getStartLoc() : SourceLoc(),
        caseStmt->getItemTerminatorLoc(), cloneBraceWith(body, newBody),
        caseStmt->getCaseBodyVariablesOrEmptyArray(), caseStmt->isImplicit(),
        caseStmt->getFallthroughStmt());

    return std::make_pair(caseVarRef.get(), newCase);
  }

  /// do {
  ///   var $__forEach = []
  ///   for ... in ... {
  ///     ...
  ///     $__builderVar = buildBlock(...)
  ///     $__forEach.append($__builderVar)
  ///   }
  ///   buildArray($__forEach)
  /// }
  NullablePtr<Stmt> visitForEachStmt(ForEachStmt *forEachStmt,
                                     NullablePtr<VarDecl> forEachVar) {
    // for...in statements are handled via buildArray(_:); bail out if the
    // builder does not support it.
    if (!builder.supports(ctx.Id_buildArray))
      return failTransform(forEachStmt);

    // For-each statements require the Sequence protocol. If we don't have
    // it (which generally means the standard library isn't loaded), fall
    // out of the result-builder path entirely to let normal type checking
    // take care of this.
    auto sequenceProto = TypeChecker::getProtocol(
        dc->getASTContext(), forEachStmt->getForLoc(),
        forEachStmt->getAwaitLoc().isValid() ? KnownProtocolKind::AsyncSequence
                                             : KnownProtocolKind::Sequence);
    if (!sequenceProto)
      return failTransform(forEachStmt);

    SmallVector<ASTNode, 4> doBody;
    SourceLoc endLoc = forEachStmt->getEndLoc();

    // Build a variable that is going to hold array of results produced
    // by each iteration of the loop.
    //
    // Not that it's not going to be initialized here, that would happen
    // only when a solution is found.
    VarDecl *arrayVar = buildPlaceholderVar(
        forEachStmt->getEndLoc(), doBody,
        ArraySliceType::get(PlaceholderType::get(ctx, forEachVar.get())),
        ArrayExpr::create(ctx, /*LBrace=*/endLoc, /*Elements=*/{},
                          /*Commas=*/{}, /*RBrace=*/endLoc));

    NullablePtr<Expr> bodyVarRef;
    std::optional<UnsupportedElt> unsupported;

    SmallVector<ASTNode, 4> newBody;
    {
      std::tie(bodyVarRef, unsupported) =
          transform(forEachStmt->getBody(), newBody);
      if (unsupported)
        return failTransform(*unsupported);

      // Form a call to Array.append(_:) to add the result of executing each
      // iteration of the loop body to the array formed above.
      {
        auto arrayVarRef = builder.buildVarRef(arrayVar, endLoc);
        auto arrayAppendRef = new (ctx) UnresolvedDotExpr(
            arrayVarRef, endLoc, DeclNameRef(ctx.getIdentifier("append")),
            DeclNameLoc(endLoc), /*implicit=*/true);
        arrayAppendRef->setFunctionRefKind(FunctionRefKind::SingleApply);

        auto *argList = ArgumentList::createImplicit(
            ctx, endLoc, {Argument::unlabeled(bodyVarRef.get())}, endLoc);

        newBody.push_back(
            CallExpr::createImplicit(ctx, arrayAppendRef, argList));
      }
    }

    auto *newForEach = new (ctx)
        ForEachStmt(forEachStmt->getLabelInfo(), forEachStmt->getForLoc(),
                    forEachStmt->getTryLoc(), forEachStmt->getAwaitLoc(),
                    forEachStmt->getPattern(), forEachStmt->getInLoc(),
                    forEachStmt->getParsedSequence(),
                    forEachStmt->getWhereLoc(), forEachStmt->getWhere(),
                    cloneBraceWith(forEachStmt->getBody(), newBody),
                    forEachStmt->isImplicit());

    // For a body of new `do` statement that holds updated `for-in` loop
    // and epilog that consists of a call to `buildArray` that forms the
    // final result.
    {
      // Modified `for { ... }`
      doBody.push_back(newForEach);

      // $__forEach = buildArray($__arrayVar)
      doBody.push_back(buildAssignment(
          forEachVar.get(),
          builder.buildCall(forEachStmt->getEndLoc(), ctx.Id_buildArray,
                            {builder.buildVarRef(arrayVar, endLoc)},
                            {Identifier()})));
    }

    return DoStmt::createImplicit(ctx, LabeledStmtInfo(), doBody);
  }

  UNSUPPORTED_STMT(Throw)
  UNSUPPORTED_STMT(Return)
  UNSUPPORTED_STMT(Yield)
  UNSUPPORTED_STMT(Then)
  UNSUPPORTED_STMT(Discard)
  UNSUPPORTED_STMT(Defer)
  UNSUPPORTED_STMT(Guard)
  UNSUPPORTED_STMT(While)
  UNSUPPORTED_STMT(DoCatch)
  UNSUPPORTED_STMT(RepeatWhile)
  UNSUPPORTED_STMT(Break)
  UNSUPPORTED_STMT(Continue)
  UNSUPPORTED_STMT(Fallthrough)
  UNSUPPORTED_STMT(Fail)
  UNSUPPORTED_STMT(PoundAssert)
  UNSUPPORTED_STMT(Case)

#undef UNSUPPORTED_STMT

private:
  static bool isBuildableIfChainRecursive(IfStmt *ifStmt, unsigned &numPayloads,
                                          bool &isOptional) {
    // The 'then' clause contributes a payload.
    ++numPayloads;

    // If there's an 'else' clause, it contributes payloads:
    if (auto elseStmt = ifStmt->getElseStmt()) {
      // If it's 'else if', it contributes payloads recursively.
      if (auto elseIfStmt = dyn_cast<IfStmt>(elseStmt)) {
        return isBuildableIfChainRecursive(elseIfStmt, numPayloads, isOptional);
        // Otherwise it's just the one.
      } else {
        ++numPayloads;
      }

      // If not, the chain result is at least optional.
    } else {
      isOptional = true;
    }

    return true;
  }

  static bool hasUnconditionalElse(IfStmt *ifStmt) {
    if (auto *elseStmt = ifStmt->getElseStmt()) {
      if (auto *ifStmt = dyn_cast<IfStmt>(elseStmt))
        return hasUnconditionalElse(ifStmt);
      return true;
    }

    return false;
  }

  bool isBuildableIfChain(IfStmt *ifStmt, unsigned &numPayloads,
                          bool &isOptional) {
    if (!isBuildableIfChainRecursive(ifStmt, numPayloads, isOptional))
      return false;

    // If there's a missing 'else', we need 'buildOptional' to exist.
    if (isOptional && !builder.supportsOptional())
      return false;

    // If there are multiple clauses, we need 'buildEither(first:)' and
    // 'buildEither(second:)' to both exist.
    if (numPayloads > 1) {
      if (!builder.supports(ctx.Id_buildEither, {ctx.Id_first}) ||
          !builder.supports(ctx.Id_buildEither, {ctx.Id_second}))
        return false;
    }

    return true;
  }

  /// Wrap a payload value in an expression which will produce a chain
  /// result (without `buildIf`).
  Expr *buildWrappedChainPayload(Expr *operand, unsigned payloadIndex,
                                 unsigned numPayloads, bool isOptional) {
    assert(payloadIndex < numPayloads);

    // Inject into the appropriate chain position.
    //
    // We produce a (left-biased) balanced binary tree of Eithers in order
    // to prevent requiring a linear number of injections in the worst case.
    // That is, if we have 13 clauses, we want to produce:
    //
    //                      /------------------Either------------\
    //           /-------Either-------\                     /--Either--\
    //     /--Either--\          /--Either--\          /--Either--\     \
    //   /-E-\      /-E-\      /-E-\      /-E-\      /-E-\      /-E-\    \
    // 0000 0001  0010 0011  0100 0101  0110 0111  1000 1001  1010 1011 1100
    //
    // Note that a prefix of length D of the payload index acts as a path
    // through the tree to the node at depth D.  On the rightmost path
    // through the tree (when this prefix is equal to the corresponding
    // prefix of the maximum payload index), the bits of the index mark
    // where Eithers are required.
    //
    // Since we naturally want to build from the innermost Either out, and
    // therefore work with progressively shorter prefixes, we can do it all
    // with right-shifts.
    for (auto path = payloadIndex, maxPath = numPayloads - 1; maxPath != 0;
         path >>= 1, maxPath >>= 1) {
      // Skip making Eithers on the rightmost path where they aren't required.
      // This isn't just an optimization: adding spurious Eithers could
      // leave us with unresolvable type variables if `buildEither` has
      // a signature like:
      //    static func buildEither<T,U>(first value: T) -> Either<T,U>
      // which relies on unification to work.
      if (path == maxPath && !(maxPath & 1))
        continue;

      bool isSecond = (path & 1);
      operand =
          builder.buildCall(operand->getStartLoc(), ctx.Id_buildEither, operand,
                            {isSecond ? ctx.Id_second : ctx.Id_first});
    }

    // Inject into Optional if required.  We'll be adding the call to
    // `buildIf` after all the recursive calls are complete.
    if (isOptional) {
      operand = buildSomeExpr(operand);
    }

    return operand;
  }

  Expr *buildSomeExpr(Expr *arg) {
    auto optionalDecl = ctx.getOptionalDecl();
    auto optionalType = optionalDecl->getDeclaredType();

    auto loc = arg->getStartLoc();
    auto optionalTypeExpr =
        TypeExpr::createImplicitHack(loc, optionalType, ctx);
    auto someRef = new (ctx) UnresolvedDotExpr(
        optionalTypeExpr, loc, DeclNameRef(ctx.getIdentifier("some")),
        DeclNameLoc(loc), /*implicit=*/true);
    auto *argList = ArgumentList::forImplicitUnlabeled(ctx, {arg});
    return CallExpr::createImplicit(ctx, someRef, argList);
  }

  Expr *buildNoneExpr(SourceLoc endLoc) {
    auto optionalDecl = ctx.getOptionalDecl();
    auto optionalType = optionalDecl->getDeclaredType();

    auto optionalTypeExpr =
        TypeExpr::createImplicitHack(endLoc, optionalType, ctx);
    return new (ctx) UnresolvedDotExpr(optionalTypeExpr, endLoc,
                                       DeclNameRef(ctx.getIdentifier("none")),
                                       DeclNameLoc(endLoc), /*implicit=*/true);
  }
};

} // end anonymous namespace

std::optional<BraceStmt *>
TypeChecker::applyResultBuilderBodyTransform(FuncDecl *func, Type builderType) {
  // Pre-check the body: pre-check any expressions in it and look
  // for return statements.
  //
  // If we encountered an error or there was an explicit result type,
  // bail out and report that to the caller.
  auto &ctx = func->getASTContext();
  auto request =
      PreCheckResultBuilderRequest{{AnyFunctionRef(func),
                                      /*SuppressDiagnostics=*/false}};
  switch (evaluateOrDefault(ctx.evaluator, request,
                            ResultBuilderBodyPreCheck::Error)) {
  case ResultBuilderBodyPreCheck::Okay:
    // If the pre-check was okay, apply the result-builder transform.
    break;

  case ResultBuilderBodyPreCheck::Error:
    return nullptr;

  case ResultBuilderBodyPreCheck::HasReturnStmt: {
    // One or more explicit 'return' statements were encountered, which
    // disables the result builder transform. Warn when we do this.
    auto returnStmts = findReturnStatements(func);
    assert(!returnStmts.empty());

    ctx.Diags.diagnose(
        returnStmts.front()->getReturnLoc(),
        diag::result_builder_disabled_by_return_warn, builderType);

    // Note that one can remove the result builder attribute.
    auto attr = func->getAttachedResultBuilder();
    if (!attr) {
      if (auto accessor = dyn_cast<AccessorDecl>(func)) {
        attr = accessor->getStorage()->getAttachedResultBuilder();
      }
    }

    if (attr) {
      diagnoseAndRemoveAttr(func, attr, diag::result_builder_remove_attr);
    }

    // Note that one can remove all of the return statements.
    {
      auto diag = ctx.Diags.diagnose(
          returnStmts.front()->getReturnLoc(),
          diag::result_builder_remove_returns);
      for (auto returnStmt : returnStmts) {
        diag.fixItRemove(returnStmt->getReturnLoc());
      }
    }

    return std::nullopt;
  }
  }

  ConstraintSystemOptions options = ConstraintSystemFlags::AllowFixes;
  auto resultInterfaceTy = func->getResultInterfaceType();
  auto resultContextType = func->mapTypeIntoContext(resultInterfaceTy);

  // Determine whether we're inferring the underlying type for the opaque
  // result type of this function.
  ConstraintKind resultConstraintKind = ConstraintKind::Conversion;
  if (auto opaque = resultContextType->getAs<OpaqueTypeArchetypeType>()) {
    if (opaque->getDecl()->isOpaqueReturnTypeOfFunction(func)) {
      resultConstraintKind = ConstraintKind::Equal;
    }
  }

  // Build a constraint system in which we can check the body of the function.
  ConstraintSystem cs(func, options);

  if (cs.isDebugMode()) {
    auto &log = llvm::errs();

    log << "--- Applying result builder to function ---\n";
    func->dump(log);
    log << '\n';
  }

  // Map type parameters into context. We don't want type
  // parameters to appear in the result builder type, because
  // the result builder type will only be used inside the body
  // of this decl; it's not part of the interface type.
  builderType = func->mapTypeIntoContext(builderType);

  if (auto result = cs.matchResultBuilder(
          func, builderType, resultContextType, resultConstraintKind,
          /*contextualType=*/Type(),
          cs.getConstraintLocator(func->getBody()))) {
    if (result->isFailure())
      return nullptr;
  }

  // Solve the constraint system.
  if (cs.getASTContext().CompletionCallback) {
    SmallVector<Solution, 4> solutions;
    cs.Options |= ConstraintSystemFlags::AllowFixes;
    cs.Options |= ConstraintSystemFlags::SuppressDiagnostics;
    cs.Options |= ConstraintSystemFlags::ForCodeCompletion;
    cs.solveForCodeCompletion(solutions);

    SyntacticElementTarget funcTarget(func);
    CompletionContextFinder analyzer(funcTarget, func->getDeclContext());
    if (analyzer.hasCompletion()) {
      filterSolutionsForCodeCompletion(solutions, analyzer);
      for (const auto &solution : solutions) {
        cs.getASTContext().CompletionCallback->sawSolution(solution);
      }
    }
    return nullptr;
  }

  SmallVector<Solution, 4> solutions;
  bool solvingFailed = cs.solve(solutions);

  auto reportSolutionsToSolutionCallback = [&](const SolutionResult &result) {
    if (!cs.getASTContext().SolutionCallback) {
      return;
    }
    switch (result.getKind()) {
    case SolutionResult::Success:
      cs.getASTContext().SolutionCallback->sawSolution(result.getSolution());
      break;
    case SolutionResult::Ambiguous:
      for (auto &solution : result.getAmbiguousSolutions()) {
        cs.getASTContext().SolutionCallback->sawSolution(solution);
      }
      break;
    default:
      break;
    }
  };

  if (solvingFailed || solutions.size() != 1) {
    // Try to fix the system or provide a decent diagnostic.
    auto salvagedResult = cs.salvage();
    switch (salvagedResult.getKind()) {
    case SolutionResult::Kind::Success:
      solutions.clear();
      solutions.push_back(std::move(salvagedResult).takeSolution());
      break;

    case SolutionResult::Kind::Error:
    case SolutionResult::Kind::Ambiguous:
      reportSolutionsToSolutionCallback(salvagedResult);
      return nullptr;

    case SolutionResult::Kind::UndiagnosedError:
      reportSolutionsToSolutionCallback(salvagedResult);
      cs.diagnoseFailureFor(SyntacticElementTarget(func));
      salvagedResult.markAsDiagnosed();
      return nullptr;

    case SolutionResult::Kind::TooComplex:
      reportSolutionsToSolutionCallback(salvagedResult);
      func->diagnose(diag::expression_too_complex)
        .highlight(func->getBodySourceRange());
      salvagedResult.markAsDiagnosed();
      return nullptr;
    }

    // The system was salvaged; continue on as if nothing happened.
  }

  if (cs.isDebugMode()) {
    auto indent = cs.solverState ? cs.solverState->getCurrentIndent() : 0;
    auto &log = llvm::errs().indent(indent);
    log << "--- Applying Solution ---\n";
    solutions.front().dump(log, indent);
    log << '\n';
  }

  if (cs.getASTContext().SolutionCallback) {
    for (auto &solution : solutions) {
      cs.getASTContext().SolutionCallback->sawSolution(solution);
    }
    return nullptr;
  }

  // FIXME: Shouldn't need to do this.
  cs.applySolution(solutions.front());

  // Apply the solution to the function body.
  if (auto result =
          cs.applySolution(solutions.front(), SyntacticElementTarget(func))) {
    performSyntacticDiagnosticsForTarget(*result, /*isExprStmt*/ false);
    auto *body = result->getFunctionBody();

    if (cs.isDebugMode()) {
      auto indent = cs.solverState ? cs.solverState->getCurrentIndent() : 0;
      auto &log = llvm::errs().indent(indent);
      log << "--- Type-checked function body ---\n";
      body->dump(log);
      log << '\n';
    }

    return body;
  }

  return nullptr;
}

std::optional<ConstraintSystem::TypeMatchResult>
ConstraintSystem::matchResultBuilder(AnyFunctionRef fn, Type builderType,
                                     Type bodyResultType,
                                     ConstraintKind bodyResultConstraintKind,
                                     Type contextualType,
                                     ConstraintLocatorBuilder locator) {
  builderType = simplifyType(builderType);
  auto builder = builderType->getAnyNominal();
  assert(builder && "Bad result builder type");
  assert(builder->getAttrs().hasAttribute<ResultBuilderAttr>());
  assert(!builderType->hasTypeParameter());

  if (InvalidResultBuilderBodies.count(fn)) {
    (void)recordFix(IgnoreInvalidResultBuilderBody::create(
        *this, getConstraintLocator(fn.getAbstractClosureExpr())));
    return getTypeMatchSuccess();
  }

  // We have already pre-checked the result builder body. Technically, we
  // shouldn't need to do anything here, but there was a bug here that we did
  // not apply the result builder transform if it contained an explicit return.
  // To maintain source compatibility, we still need to check for HasReturnStmt.
  // https://github.com/apple/swift/issues/64332.
  auto request =
      PreCheckResultBuilderRequest{{fn, /*SuppressDiagnostics=*/false}};
  switch (evaluateOrDefault(getASTContext().evaluator, request,
                            ResultBuilderBodyPreCheck::Error)) {
  case ResultBuilderBodyPreCheck::Okay:
    // If the pre-check was okay, apply the result-builder transform.
    break;

  case ResultBuilderBodyPreCheck::Error: {
    llvm_unreachable(
        "Running PreCheckResultBuilderRequest on a function shouldn't run "
        "preCheckExpression and thus we should never enter this case.");
    break;
  }

  case ResultBuilderBodyPreCheck::HasReturnStmt:
    // Diagnostic mode means that solver couldn't reach any viable
    // solution, so let's diagnose presence of a `return` statement
    // in the closure body.
    if (shouldAttemptFixes()) {
      if (recordFix(IgnoreResultBuilderWithReturnStmts::create(
              *this, builderType,
              getConstraintLocator(fn.getAbstractClosureExpr()))))
        return getTypeMatchFailure(locator);

      return getTypeMatchSuccess();
    }

    // If the body has a return statement, suppress the transform but
    // continue solving the constraint system.
    return std::nullopt;
  }

  auto transformedBody = getBuilderTransformedBody(fn, builder);
  // If this builder transform has not yet been applied to this function,
  // let's do it and cache the result.
  if (!transformedBody) {
    ResultBuilderTransform transform(*this, fn.getAsDeclContext(),
                                     fn.getBody()->getSourceRange(),
                                     builderType, bodyResultType);
    auto *body = transform.apply(fn.getBody());

    if (auto unsupported = transform.getUnsupportedElement()) {
      assert(!body || getASTContext().CompletionCallback);

      // If we aren't supposed to attempt fixes, fail.
      if (!shouldAttemptFixes()) {
        return getTypeMatchFailure(locator);
      }

      // If we're solving for code completion and the body contains the code
      // completion location, skipping it won't get us to a useful solution so
      // just bail.
      if (isForCodeCompletion() &&
          containsIDEInspectionTarget(fn.getBody())) {
        return getTypeMatchFailure(locator);
      }

      // Record the first unhandled construct as a fix.
      if (recordFix(
              SkipUnhandledConstructInResultBuilder::create(
                  *this, unsupported, builder, getConstraintLocator(locator)),
              /*impact=*/100)) {
        return getTypeMatchFailure(locator);
      }

      if (auto *closure =
              getAsExpr<ClosureExpr>(fn.getAbstractClosureExpr())) {
        recordTypeVariablesAsHoles(getClosureType(closure));
      }

      return getTypeMatchSuccess();
    }

    transformedBody = std::make_pair(transform.getBuilderSelf(), body);
    // Record the transformation so it could be re-used if needed.
    setBuilderTransformedBody(fn, builder, transformedBody->first,
                              transformedBody->second);
  }

  // Set the type of `$__builderSelf` variable before constraint generation.
  setType(transformedBody->first, MetatypeType::get(builderType));

  if (isDebugMode()) {
    auto &log = llvm::errs();
    auto indent = solverState ? solverState->getCurrentIndent() : 0;
    log.indent(indent) << "------- Transformed Body -------\n";
    transformedBody->second->dump(log, &getASTContext(), indent);
    log << '\n';
  }

  AppliedBuilderTransform transformInfo;

  transformInfo.builderType = builderType;
  transformInfo.bodyResultType = bodyResultType;
  transformInfo.contextualType = contextualType;
  transformInfo.transformedBody = transformedBody->second;

  // Record the transformation.
  assert(
      std::find_if(
          resultBuilderTransformed.begin(), resultBuilderTransformed.end(),
          [&](const std::pair<AnyFunctionRef, AppliedBuilderTransform> &elt) {
            return elt.first == fn;
          }) == resultBuilderTransformed.end() &&
      "already transformed this body along this path!?!");
  resultBuilderTransformed.insert(
      std::make_pair(fn, std::move(transformInfo)));

  if (generateConstraints(fn, transformInfo.transformedBody))
    return getTypeMatchFailure(locator);

  return getTypeMatchSuccess();
}

namespace {

/// Pre-check all the expressions in the body.
class PreCheckResultBuilderApplication : public ASTWalker {
  AnyFunctionRef Fn;
  bool SkipPrecheck = false;
  bool SuppressDiagnostics = false;
  std::vector<ReturnStmt *> ReturnStmts;
  bool HasError = false;

  bool hasReturnStmt() const { return !ReturnStmts.empty(); }

public:
  PreCheckResultBuilderApplication(AnyFunctionRef fn, bool skipPrecheck,
                                     bool suppressDiagnostics)
      : Fn(fn), SkipPrecheck(skipPrecheck),
        SuppressDiagnostics(suppressDiagnostics) {}

  const std::vector<ReturnStmt *> getReturnStmts() const { return ReturnStmts; }

  ResultBuilderBodyPreCheck run() {
    Stmt *oldBody = Fn.getBody();

    Stmt *newBody = oldBody->walk(*this);

    // If the walk was aborted, it was because we had a problem of some kind.
    assert((newBody == nullptr) == HasError &&
           "unexpected short-circuit while walking body");
    if (HasError)
      return ResultBuilderBodyPreCheck::Error;

    assert(oldBody == newBody && "pre-check walk wasn't in-place?");

    if (hasReturnStmt())
      return ResultBuilderBodyPreCheck::HasReturnStmt;

    return ResultBuilderBodyPreCheck::Okay;
  }

  MacroWalking getMacroWalkingBehavior() const override {
    return MacroWalking::Arguments;
  }

  PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
    if (SkipPrecheck)
      return Action::SkipNode(E);

    // Pre-check the expression.  If this fails, abort the walk immediately.
    // Otherwise, replace the expression with the result of pre-checking.
    // In either case, don't recurse into the expression.
    {
      auto *DC = Fn.getAsDeclContext();
      auto &diagEngine = DC->getASTContext().Diags;

      // Suppress any diagnostics which could be produced by this expression.
      DiagnosticTransaction transaction(diagEngine);

      HasError |= ConstraintSystem::preCheckExpression(
          E, DC, /*replaceInvalidRefsWithErrors=*/true);

      HasError |= transaction.hasErrors();

      if (!HasError)
        HasError |= containsErrorExpr(E);

      if (SuppressDiagnostics)
        transaction.abort();

      if (HasError)
        return Action::Stop();

      return Action::SkipNode(E);
    }
  }

  PreWalkResult<Stmt *> walkToStmtPre(Stmt *S) override {
    // If we see a return statement, note it..
    if (auto returnStmt = dyn_cast<ReturnStmt>(S)) {
      if (!returnStmt->isImplicit()) {
        ReturnStmts.push_back(returnStmt);
        return Action::SkipNode(S);
      }
    }

    // Otherwise, recurse into the statement normally.
    return Action::Continue(S);
  }

  /// Check whether given expression (including single-statement
  /// closures) contains `ErrorExpr` as one of its sub-expressions.
  bool containsErrorExpr(Expr *expr) {
    bool hasError = false;

    expr->forEachChildExpr([&](Expr *expr) -> Expr * {
      hasError |= isa<ErrorExpr>(expr);
      if (hasError)
        return nullptr;

      if (auto *closure = dyn_cast<ClosureExpr>(expr)) {
        if (closure->hasSingleExpressionBody()) {
          hasError |= containsErrorExpr(closure->getSingleExpressionBody());
          return hasError ? nullptr : expr;
        }
      }

      return expr;
    });

    return hasError;
  }

  /// Ignore patterns.
  PreWalkResult<Pattern *> walkToPatternPre(Pattern *pat) override {
    return Action::SkipNode(pat);
  }
};

}

ResultBuilderBodyPreCheck PreCheckResultBuilderRequest::evaluate(
    Evaluator &evaluator, PreCheckResultBuilderDescriptor owner) const {
  // Closures should already be pre-checked when we run this, so there's no need
  // to pre-check them again.
  bool skipPrecheck = owner.Fn.getAbstractClosureExpr();
  return PreCheckResultBuilderApplication(
             owner.Fn, skipPrecheck,
             /*suppressDiagnostics=*/owner.SuppressDiagnostics)
      .run();
}

std::vector<ReturnStmt *> TypeChecker::findReturnStatements(AnyFunctionRef fn) {
  PreCheckResultBuilderApplication precheck(fn, /*skipPreCheck=*/true,
                                              /*SuppressDiagnostics=*/true);
  (void)precheck.run();
  return precheck.getReturnStmts();
}

ResultBuilderOpSupport TypeChecker::checkBuilderOpSupport(
    Type builderType, DeclContext *dc, Identifier fnName,
    ArrayRef<Identifier> argLabels, SmallVectorImpl<ValueDecl *> *allResults) {

  auto isUnavailable = [&](Decl *D) -> bool {
    if (AvailableAttr::isUnavailable(D))
      return true;

    auto loc = extractNearestSourceLoc(dc);
    auto context = ExportContext::forFunctionBody(dc, loc);
    return TypeChecker::checkDeclarationAvailability(D, context).has_value();
  };

  bool foundMatch = false;
  bool foundUnavailable = false;

  SmallVector<ValueDecl *, 4> foundDecls;
  dc->lookupQualified(
      builderType, DeclNameRef(fnName),
      builderType->getAnyNominal()->getLoc(),
      NL_QualifiedDefault | NL_ProtocolMembers, foundDecls);
  for (auto decl : foundDecls) {
    if (auto func = dyn_cast<FuncDecl>(decl)) {
      // Function must be static.
      if (!func->isStatic())
        continue;

      // Function must have the right argument labels, if provided.
      if (!argLabels.empty()) {
        auto funcLabels = func->getName().getArgumentNames();
        if (argLabels.size() > funcLabels.size() ||
            funcLabels.slice(0, argLabels.size()) != argLabels)
          continue;
      }

      // Check if the candidate has a suitable availability for the
      // calling context.
      if (isUnavailable(func)) {
        foundUnavailable = true;
        continue;
      }
      foundMatch = true;
      break;
    }
  }

  if (allResults)
    allResults->append(foundDecls.begin(), foundDecls.end());

  if (!foundMatch) {
    return foundUnavailable ? ResultBuilderOpSupport::Unavailable
                            : ResultBuilderOpSupport::Unsupported;
  }
  // If the builder type itself isn't available, don't consider any builder
  // method available.
  if (auto *D = builderType->getAnyNominal()) {
    if (isUnavailable(D))
      return ResultBuilderOpSupport::Unavailable;
  }
  return ResultBuilderOpSupport::Supported;
}

bool TypeChecker::typeSupportsBuilderOp(
    Type builderType, DeclContext *dc, Identifier fnName,
    ArrayRef<Identifier> argLabels, SmallVectorImpl<ValueDecl *> *allResults) {
  return checkBuilderOpSupport(builderType, dc, fnName, argLabels, allResults)
      .isSupported(/*requireAvailable*/ false);
}

Type swift::inferResultBuilderComponentType(NominalTypeDecl *builder) {
  Type componentType;

  SmallVector<ValueDecl *, 4> potentialMatches;
  ASTContext &ctx = builder->getASTContext();
  bool supportsBuildBlock = TypeChecker::typeSupportsBuilderOp(
      builder->getDeclaredInterfaceType(), builder, ctx.Id_buildBlock,
      /*argLabels=*/{}, &potentialMatches);
  if (supportsBuildBlock) {
    for (auto decl : potentialMatches) {
      auto func = dyn_cast<FuncDecl>(decl);
      if (!func || !func->isStatic())
        continue;

      // If we haven't seen a component type before, gather it.
      if (!componentType) {
        componentType = func->getResultInterfaceType();
        continue;
      }

      // If there are inconsistent component types, bail out.
      if (!componentType->isEqual(func->getResultInterfaceType())) {
        componentType = Type();
        break;
      }
    }
  }

  return componentType;
}

std::tuple<SourceLoc, std::string, Type>
swift::determineResultBuilderBuildFixItInfo(NominalTypeDecl *builder) {
  SourceLoc buildInsertionLoc = builder->getBraces().Start;
  std::string stubIndent;
  Type componentType;

  if (buildInsertionLoc.isInvalid())
    return std::make_tuple(buildInsertionLoc, stubIndent, componentType);

  ASTContext &ctx = builder->getASTContext();
  buildInsertionLoc = Lexer::getLocForEndOfToken(
      ctx.SourceMgr, buildInsertionLoc);

  StringRef extraIndent;
  StringRef currentIndent = Lexer::getIndentationForLine(
      ctx.SourceMgr, buildInsertionLoc, &extraIndent);
  stubIndent = (currentIndent + extraIndent).str();

  componentType = inferResultBuilderComponentType(builder);
  return std::make_tuple(buildInsertionLoc, stubIndent, componentType);
}

void swift::printResultBuilderBuildFunction(
    NominalTypeDecl *builder, Type componentType,
    ResultBuilderBuildFunction function, std::optional<std::string> stubIndent,
    llvm::raw_ostream &out) {
  // Render the component type into a string.
  std::string componentTypeString;
  if (componentType)
    componentTypeString = componentType.getString();
  else
    componentTypeString = "<#Component#>";

  // Render the code.
  std::string stubIndentStr = stubIndent.value_or(std::string());
  ExtraIndentStreamPrinter printer(out, stubIndentStr);

  // If we're supposed to provide a full stub, add a newline and the introducer
  // keywords.
  if (stubIndent) {
    printer.printNewline();

    if (builder->getFormalAccess() >= AccessLevel::Public)
      printer << "public ";

    printer << "static func ";
  }

  bool printedResult = false;
  switch (function) {
  case ResultBuilderBuildFunction::BuildBlock:
    printer << "buildBlock(_ components: " << componentTypeString << "...)";
    break;

  case ResultBuilderBuildFunction::BuildExpression:
    printer << "buildExpression(_ expression: <#Expression#>)";
    break;

  case ResultBuilderBuildFunction::BuildOptional:
    printer << "buildOptional(_ component: " << componentTypeString << "?)";
    break;

  case ResultBuilderBuildFunction::BuildEitherFirst:
    printer << "buildEither(first component: " << componentTypeString << ")";
    break;

  case ResultBuilderBuildFunction::BuildEitherSecond:
    printer << "buildEither(second component: " << componentTypeString << ")";
    break;

  case ResultBuilderBuildFunction::BuildArray:
    printer << "buildArray(_ components: [" << componentTypeString << "])";
    break;

  case ResultBuilderBuildFunction::BuildLimitedAvailability:
    printer << "buildLimitedAvailability(_ component: " << componentTypeString
            << ")";
    break;

  case ResultBuilderBuildFunction::BuildFinalResult:
    printer << "buildFinalResult(_ component: " << componentTypeString
            << ") -> <#Result#>";
    printedResult = true;
    break;
  case ResultBuilderBuildFunction::BuildPartialBlockFirst:
    printer << "buildPartialBlock(first: " << componentTypeString << ")";
    break;
  case ResultBuilderBuildFunction::BuildPartialBlockAccumulated:
    printer << "buildPartialBlock(accumulated: " << componentTypeString
            << ", next: " << componentTypeString << ")";
    break;
  }

  if (!printedResult)
    printer << " -> " << componentTypeString;

  if (stubIndent) {
    printer << " {";
    printer.printNewline();
    printer << "  <#code#>";
    printer.printNewline();
    printer << "}";
  }
}

ResultBuilder::ResultBuilder(ConstraintSystem &CS, DeclContext *DC,
                             Type builderType)
    : DC(DC), BuilderType(CS.simplifyType(builderType)) {
  auto &ctx = DC->getASTContext();
  // Use buildOptional(_:) if available, otherwise fall back to buildIf
  // when available.
  BuildOptionalId =
      (supports(ctx.Id_buildOptional) || !supports(ctx.Id_buildIf))
          ? ctx.Id_buildOptional
          : ctx.Id_buildIf;

  BuilderSelf = new (ctx) VarDecl(
      /*isStatic=*/false, VarDecl::Introducer::Let,
      /*nameLoc=*/SourceLoc(), ctx.Id_builderSelf, DC);
  BuilderSelf->setImplicit();
  CS.setType(BuilderSelf, MetatypeType::get(BuilderType));
}

bool ResultBuilder::supportsBuildPartialBlock(bool checkAvailability) {
  auto &ctx = DC->getASTContext();
  return supports(ctx.Id_buildPartialBlock, {ctx.Id_first},
                  checkAvailability) &&
         supports(ctx.Id_buildPartialBlock, {ctx.Id_accumulated, ctx.Id_next},
                  checkAvailability);
}

bool ResultBuilder::canUseBuildPartialBlock() {
  // If buildPartialBlock doesn't exist at all, we can't use it.
  if (!supportsBuildPartialBlock(/*checkAvailability*/ false))
    return false;

  // If buildPartialBlock exists and is available, use it.
  if (supportsBuildPartialBlock(/*checkAvailability*/ true))
    return true;

  // We have buildPartialBlock, but it is unavailable. We can however still
  // use it if buildBlock is also unavailable.
  auto &ctx = DC->getASTContext();
  return supports(ctx.Id_buildBlock) &&
         !supports(ctx.Id_buildBlock, /*labels*/ {},
                   /*checkAvailability*/ true);
}

bool ResultBuilder::supports(Identifier fnBaseName,
                             ArrayRef<Identifier> argLabels,
                             bool checkAvailability) {
  DeclName name(DC->getASTContext(), fnBaseName, argLabels);
  auto known = SupportedOps.find(name);
  if (known != SupportedOps.end())
    return known->second.isSupported(checkAvailability);

  auto support = TypeChecker::checkBuilderOpSupport(
      BuilderType, DC, fnBaseName, argLabels, /*allResults*/ {});
  SupportedOps.insert({name, support});
  return support.isSupported(checkAvailability);
}

Expr *ResultBuilder::buildCall(SourceLoc loc, Identifier fnName,
                               ArrayRef<Expr *> argExprs,
                               ArrayRef<Identifier> argLabels) const {
  assert(BuilderSelf);

  auto &ctx = DC->getASTContext();

  SmallVector<Argument, 4> args;
  for (auto i : indices(argExprs)) {
    auto *expr = argExprs[i];
    auto label = argLabels.empty() ? Identifier() : argLabels[i];
    auto labelLoc = argLabels.empty() ? SourceLoc() : expr->getStartLoc();
    args.emplace_back(labelLoc, label, expr);
  }

  auto *baseExpr = new (ctx) DeclRefExpr({BuilderSelf}, DeclNameLoc(loc),
                                         /*isImplicit=*/true);

  auto memberRef = new (ctx)
      UnresolvedDotExpr(baseExpr, loc, DeclNameRef(fnName), DeclNameLoc(loc),
                        /*implicit=*/true);
  memberRef->setFunctionRefKind(FunctionRefKind::SingleApply);

  auto openLoc = args.empty() ? loc : argExprs.front()->getStartLoc();
  auto closeLoc = args.empty() ? loc : argExprs.back()->getEndLoc();

  auto *argList = ArgumentList::createImplicit(ctx, openLoc, args, closeLoc);
  return CallExpr::createImplicit(ctx, memberRef, argList);
}

VarDecl *ResultBuilder::buildVar(SourceLoc loc) {
  auto &ctx = DC->getASTContext();
  // Create the implicit variable.
  Identifier name =
      ctx.getIdentifier(("$__builder" + Twine(VarCounter++)).str());
  auto var = new (ctx)
      VarDecl(/*isStatic=*/false, VarDecl::Introducer::Var, loc, name, DC);
  var->setImplicit();
  return var;
}

DeclRefExpr *ResultBuilder::buildVarRef(VarDecl *var, SourceLoc loc) {
  return new (DC->getASTContext())
      DeclRefExpr(var, DeclNameLoc(loc), /*Implicit=*/true);
}