File: CSApply.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (10078 lines) | stat: -rw-r--r-- 394,158 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
//===--- CSApply.cpp - Constraint Application -----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements application of a solution to a constraint
// system to a particular expression, resulting in a
// fully-type-checked expression.
//
//===----------------------------------------------------------------------===//

#include "CSDiagnostics.h"
#include "CodeSynthesis.h"
#include "MiscDiagnostics.h"
#include "TypeCheckConcurrency.h"
#include "TypeCheckMacros.h"
#include "TypeCheckProtocol.h"
#include "TypeCheckType.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/ClangModuleLoader.h"
#include "swift/AST/Effects.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/OperatorNameLookup.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Sema/SolutionResult.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Mangle.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/Template.h"
#include "clang/Sema/TemplateDeduction.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/SaveAndRestore.h"

using namespace swift;
using namespace constraints;

bool Solution::hasFixedType(TypeVariableType *typeVar) const {
  auto knownBinding = typeBindings.find(typeVar);
  return knownBinding != typeBindings.end();
}

/// Retrieve the fixed type for the given type variable.
Type Solution::getFixedType(TypeVariableType *typeVar) const {
  auto knownBinding = typeBindings.find(typeVar);
  assert(knownBinding != typeBindings.end());
  return knownBinding->second;
}

/// Determine whether the given type is an opened AnyObject.
///
/// This comes up in computeSubstitutions() when accessing
/// members via dynamic lookup.
static bool isOpenedAnyObject(Type type) {
  auto archetype = type->getAs<OpenedArchetypeType>();
  if (!archetype || !archetype->isRoot())
    return false;

  return archetype->getExistentialType()->isAnyObject();
}

SubstitutionMap
Solution::computeSubstitutions(NullablePtr<ValueDecl> decl,
                               GenericSignature sig,
                               ConstraintLocator *locator) const {
  if (sig.isNull())
    return SubstitutionMap();

  // Gather the substitutions from dependent types to concrete types.
  auto openedTypes = OpenedTypes.find(locator);

  // If we have a member reference on an existential, there are no
  // opened types or substitutions.
  if (openedTypes == OpenedTypes.end())
    return SubstitutionMap();

  TypeSubstitutionMap subs;
  for (const auto &opened : openedTypes->second) {
    auto type = getFixedType(opened.second);
    if (opened.first->isParameterPack()) {
      if (type->is<PlaceholderType>()) {
        auto &ctx = type->getASTContext();
        type =
        PackType::get(ctx, {PackExpansionType::get(ctx.TheUnresolvedType,
                                                   ctx.TheUnresolvedType)});
      } else if (!type->is<PackType>())
        type = PackType::getSingletonPackExpansion(type);
    }
    subs[opened.first] = type;
  }

  auto lookupConformanceFn =
      [&](CanType original, Type replacement,
          ProtocolDecl *protoType) -> ProtocolConformanceRef {
    if (replacement->hasError() ||
        isOpenedAnyObject(replacement) ||
        replacement->is<GenericTypeParamType>()) {
      return ProtocolConformanceRef(protoType);
    }

    // FIXME: Retrieve the conformance from the solution itself.
    auto conformance =
        getConstraintSystem().DC->getParentModule()->lookupConformance(
            replacement, protoType, /*allowMissing=*/true);

    if (conformance.isInvalid()) {
      auto synthesized = SynthesizedConformances.find(locator);
      if (synthesized != SynthesizedConformances.end())
        return synthesized->second;
    }

    return conformance;
  };

  return SubstitutionMap::get(sig,
                              QueryTypeSubstitutionMap{subs},
                              lookupConformanceFn);
}

// Lazily instantiate function definitions for class template specializations.
// Members of a class template specialization will be instantiated here (not
// when imported). If this method has already be instantiated, then this is a
// no-op.
static void maybeInstantiateCXXMethodDefinition(ValueDecl *decl) {
  if (const auto *constMethod =
          dyn_cast_or_null<clang::CXXMethodDecl>(decl->getClangDecl())) {
    auto method = const_cast<clang::CXXMethodDecl *>(constMethod);
    // Make sure that this method is part of a class template specialization.
    if (method->getTemplateInstantiationPattern())
      decl->getASTContext()
          .getClangModuleLoader()
          ->getClangSema()
          .InstantiateFunctionDefinition(method->getLocation(), method);
  }
}

ConcreteDeclRef
Solution::resolveConcreteDeclRef(ValueDecl *decl,
                                 ConstraintLocator *locator) const {
  if (!decl)
    return ConcreteDeclRef();

  // Get the generic signature of the decl and compute the substitutions.
  auto sig = decl->getInnermostDeclContext()->getGenericSignatureOfContext();
  auto subst = computeSubstitutions(decl, sig, locator);

  maybeInstantiateCXXMethodDefinition(decl);

  // If this is a C++ function template, get it's specialization for the given
  // substitution map and update the decl accordingly.
  if (isa_and_nonnull<clang::FunctionTemplateDecl>(decl->getClangDecl())) {
    auto moduleLoader = decl->getASTContext().getClangModuleLoader();
    return moduleLoader->getCXXFunctionTemplateSpecialization(subst, decl);
  }

  return ConcreteDeclRef(decl, subst);
}


ConstraintLocator *Solution::getCalleeLocator(ConstraintLocator *locator,
                                              bool lookThroughApply) const {
  auto &cs = getConstraintSystem();
  return cs.getCalleeLocator(
      locator, lookThroughApply,
      [&](Expr *expr) -> Type { return getType(expr); },
      [&](Type type) -> Type { return simplifyType(type)->getRValueType(); },
      [&](ConstraintLocator *locator) -> std::optional<SelectedOverload> {
        return getOverloadChoiceIfAvailable(locator);
      });
}

ConstraintLocator *
Solution::getConstraintLocator(ASTNode anchor,
                               ArrayRef<LocatorPathElt> path) const {
  auto &cs = getConstraintSystem();
  return cs.getConstraintLocator(anchor, path);
}

ConstraintLocator *
Solution::getConstraintLocator(ConstraintLocator *base,
                               ArrayRef<LocatorPathElt> path) const {
  auto &cs = getConstraintSystem();
  return cs.getConstraintLocator(base, path);
}

/// Return the implicit access kind for a MemberRefExpr with the
/// specified base and member in the specified DeclContext.
static AccessSemantics
getImplicitMemberReferenceAccessSemantics(Expr *base, VarDecl *member,
                                          DeclContext *DC) {
  // Check whether this is a member access on 'self'.
  bool isAccessOnSelf = false;
  if (auto *baseDRE = dyn_cast<DeclRefExpr>(base->getValueProvidingExpr()))
    if (auto *baseVar = dyn_cast<VarDecl>(baseDRE->getDecl()))
      isAccessOnSelf = baseVar->isSelfParameter();

  // If the value is always directly accessed from this context, do it.
  return member->getAccessSemanticsFromContext(DC, isAccessOnSelf);
}

/// This extends functionality of `Expr::isTypeReference` with
/// support for `UnresolvedDotExpr` and `UnresolvedMemberExpr`.
/// This method could be used on not yet fully type-checked AST.
bool ConstraintSystem::isTypeReference(Expr *E) {
  return E->isTypeReference(
      [&](Expr *E) -> Type { return simplifyType(getType(E)); },
      [&](Expr *E) -> Decl * {
        if (auto *UDE = dyn_cast<UnresolvedDotExpr>(E)) {
          return findResolvedMemberRef(
              getConstraintLocator(UDE, ConstraintLocator::Member));
        }

        if (auto *UME = dyn_cast<UnresolvedMemberExpr>(E)) {
          return findResolvedMemberRef(
              getConstraintLocator(UME, ConstraintLocator::UnresolvedMember));
        }

        if (isa<OverloadSetRefExpr>(E))
          return findResolvedMemberRef(
              getConstraintLocator(const_cast<Expr *>(E)));

        return nullptr;
      });
}

bool Solution::isTypeReference(Expr *E) const {
  return E->isTypeReference(
      [&](Expr *expr) -> Type { return simplifyType(getType(expr)); },
      [&](Expr *expr) -> Decl * {
        ConstraintLocator *locator = nullptr;
        if (auto *UDE = dyn_cast<UnresolvedDotExpr>(E)) {
          locator = getConstraintLocator(UDE, {ConstraintLocator::Member});
        }

        if (auto *UME = dyn_cast<UnresolvedMemberExpr>(E)) {
          locator =
              getConstraintLocator(UME, {ConstraintLocator::UnresolvedMember});
        }

        if (isa<OverloadSetRefExpr>(E))
          locator = getConstraintLocator(const_cast<Expr *>(E));

        if (locator) {
          if (auto selectedOverload = getOverloadChoiceIfAvailable(locator)) {
            const auto &choice = selectedOverload->choice;
            return choice.getDeclOrNull();
          }
        }

        return nullptr;
      });
}

bool ConstraintSystem::isStaticallyDerivedMetatype(Expr *E) {
  return E->isStaticallyDerivedMetatype(
      [&](Expr *E) -> Type { return simplifyType(getType(E)); },
      [&](Expr *E) -> bool { return isTypeReference(E); });
}

bool Solution::isStaticallyDerivedMetatype(Expr *E) const {
  return E->isStaticallyDerivedMetatype(
      [&](Expr *E) -> Type { return simplifyType(getType(E)); },
      [&](Expr *E) -> bool { return isTypeReference(E); });
}

Type ConstraintSystem::getInstanceType(TypeExpr *E) {
  if (!hasType(E))
    return Type();

  if (auto metaType = getType(E)->getAs<MetatypeType>())
    return metaType->getInstanceType();

  return ErrorType::get(getType(E)->getASTContext());
}

Type ConstraintSystem::getResultType(const AbstractClosureExpr *E) {
  return E->getResultType([&](Expr *E) -> Type { return getType(E); });
}

static bool buildObjCKeyPathString(KeyPathExpr *E,
                                   llvm::SmallVectorImpl<char> &buf) {
  for (auto &component : E->getComponents()) {
    switch (component.getKind()) {
    case KeyPathExpr::Component::Kind::OptionalChain:
    case KeyPathExpr::Component::Kind::OptionalForce:
    case KeyPathExpr::Component::Kind::OptionalWrap:
      // KVC propagates nulls, so these don't affect the key path string.
      continue;
    case KeyPathExpr::Component::Kind::Identity:
      // The identity component can be elided from the KVC string (unless it's
      // the only component, in which case we use @"self").
      continue;

    case KeyPathExpr::Component::Kind::Property: {
      // Property references must be to @objc properties.
      // TODO: If we added special properties matching KVC operators like '@sum',
      // '@count', etc. those could be mapped too.
      auto property = cast<VarDecl>(component.getDeclRef().getDecl());
      if (!property->isObjC())
        return false;
      if (!buf.empty()) {
        buf.push_back('.');
      }
      auto objcName = property->getObjCPropertyName().str();
      buf.append(objcName.begin(), objcName.end());
      continue;
    }
    case KeyPathExpr::Component::Kind::TupleElement:
    case KeyPathExpr::Component::Kind::Subscript:
      // Subscripts and tuples aren't generally represented in KVC.
      // TODO: There are some subscript forms we could map to KVC, such as
      // when indexing a Dictionary or NSDictionary by string, or when applying
      // a mapping subscript operation to Array/Set or NSArray/NSSet.
      return false;
    case KeyPathExpr::Component::Kind::Invalid:
    case KeyPathExpr::Component::Kind::UnresolvedProperty:
    case KeyPathExpr::Component::Kind::UnresolvedSubscript:
    case KeyPathExpr::Component::Kind::CodeCompletion:
      // Don't bother building the key path string if the key path didn't even
      // resolve.
      return false;
    case KeyPathExpr::Component::Kind::DictionaryKey:
      llvm_unreachable("DictionaryKey only valid in #keyPath expressions.");
      return false;
    }
  }
  
  // If there are no non-identity components, this is the "self" key.
  if (buf.empty()) {
    auto self = StringRef("self");
    buf.append(self.begin(), self.end());
  }
  
  return true;
}

/// Since a cast to an optional will consume a noncopyable type, check to see
/// if injecting the value into an optional here will potentially be confusing.
static bool willHaveConfusingConsumption(Type type,
                                         ConstraintLocatorBuilder locator,
                                         ConstraintSystem &cs) {
  assert(type);
  if (!type->isNoncopyable())
    return false; /// If it's a copyable type, there's no confusion.

  auto loc = cs.getConstraintLocator(locator);
  if (!loc)
    return true;

  auto path = loc->getPath();
  if (path.empty())
    return true;

  switch (loc->getPath().back().getKind()) {
  case ConstraintLocator::FunctionResult:
  case ConstraintLocator::ClosureResult:
  case ConstraintLocator::ClosureBody:
  case ConstraintLocator::ContextualType:
  case ConstraintLocator::CoercionOperand:
    return false; // These last-uses won't be confused for borrowing.

  case ConstraintLocator::ApplyArgToParam: {
    auto argLoc = loc->castLastElementTo<LocatorPathElt::ApplyArgToParam>();
    auto paramFlags = argLoc.getParameterFlags();
    if (paramFlags.getOwnershipSpecifier() == ParamSpecifier::Consuming)
      return false; // Parameter already declares 'consuming'.

    return true;
  }

  default:
    return true;
  }
}

namespace {

  /// Rewrites an expression by applying the solution of a constraint
  /// system to that expression.
  class ExprRewriter : public ExprVisitor<ExprRewriter, Expr *> {
  public:
    ConstraintSystem &cs;
    DeclContext *dc;
    Solution &solution;
    std::optional<SyntacticElementTarget> target;
    bool SuppressDiagnostics;

    /// Coerce the given tuple to another tuple type.
    ///
    /// \param expr The expression we're converting.
    ///
    /// \param fromTuple The tuple type we're converting from, which is the same
    /// as \c expr->getType().
    ///
    /// \param toTuple The tuple type we're converting to.
    ///
    /// \param locator Locator describing where this tuple conversion occurs.
    ///
    /// \param sources The sources of each of the elements to be used in the
    /// resulting tuple, as provided by \c computeTupleShuffle.
    Expr *coerceTupleToTuple(Expr *expr, TupleType *fromTuple,
                             TupleType *toTuple,
                             ConstraintLocatorBuilder locator,
                             ArrayRef<unsigned> sources);

    /// Coerce a subclass, class-constrained archetype, class-constrained
    /// existential or to a superclass type.
    ///
    /// Also supports metatypes of the above.
    ///
    /// \param expr The expression to be coerced.
    /// \param toType The type to which the expression will be coerced.
    ///
    /// \return The coerced expression, whose type will be equivalent to
    /// \c toType.
    Expr *coerceSuperclass(Expr *expr, Type toType);

    /// Coerce the given value to existential type.
    ///
    /// The following conversions are supported:
    /// - concrete to existential
    /// - existential to existential
    /// - concrete metatype to existential metatype
    /// - existential metatype to existential metatype
    ///
    /// \param expr The expression to be coerced.
    /// \param toType The type to which the expression will be coerced.
    /// \param locator Locator describing where this existential conversion occurs.
    ///
    /// \return The coerced expression, whose type will be equivalent to
    /// \c toType.
    Expr *coerceExistential(Expr *expr, Type toType,
                            ConstraintLocatorBuilder locator);

    /// Coerce an expression of (possibly unchecked) optional
    /// type to have a different (possibly unchecked) optional type.
    Expr *coerceOptionalToOptional(Expr *expr, Type toType,
                                   ConstraintLocatorBuilder locator);

    /// Peephole an array upcast.
    void peepholeArrayUpcast(ArrayExpr *expr, Type toType, bool bridged,
                             Type elementType,
                             ConstraintLocatorBuilder locator);

    /// Peephole a dictionary upcast.
    void peepholeDictionaryUpcast(DictionaryExpr *expr, Type toType,
                                  bool bridged, Type keyType,
                                  Type valueType,
                                  ConstraintLocatorBuilder locator);

    /// Try to peephole the collection upcast, eliminating the need for
    /// a separate collection-upcast expression.
    ///
    /// \returns true if the peephole operation succeeded, in which case
    /// \c expr already subsumes the upcast.
    bool peepholeCollectionUpcast(Expr *expr, Type toType,  bool bridged,
                                  ConstraintLocatorBuilder locator);

    /// Build a collection upcast expression.
    ///
    /// \param bridged Whether this is a bridging conversion, meaning that the
    /// element types themselves are bridged (vs. simply coerced).
    Expr *buildCollectionUpcastExpr(Expr *expr, Type toType,
                                    bool bridged,
                                    ConstraintLocatorBuilder locator);

    /// Build the expression that performs a bridging operation from the
    /// given expression to the given \c toType.
    Expr *buildObjCBridgeExpr(Expr *expr, Type toType,
                              ConstraintLocatorBuilder locator);

    static Type getBaseType(AnyFunctionType *fnType,
                            bool wantsRValueInstanceType = true) {
      auto params = fnType->getParams();
      assert(params.size() == 1);

      const auto &base = params.front();
      if (wantsRValueInstanceType)
        return base.getPlainType()->getMetatypeInstanceType();

      return base.getOldType();
    }

    /// Check whether it is possible to have an ObjC key path string for the keypath expression
    /// and set the key path string, if yes
    void checkAndSetObjCKeyPathString(KeyPathExpr *keyPath) {
      if (cs.getASTContext().LangOpts.EnableObjCInterop) {
        SmallString<64> compatStringBuf;
        if (buildObjCKeyPathString(keyPath, compatStringBuf)) {
            auto stringCopy = cs.getASTContext().AllocateCopy<char>(compatStringBuf.begin(),
                                                                    compatStringBuf.end());
            auto stringExpr = new (cs.getASTContext()) StringLiteralExpr(
                                  StringRef(stringCopy, compatStringBuf.size()),
                                  SourceRange(),
                                  /*implicit*/ true);
            cs.setType(
                stringExpr,
                cs.getASTContext().getStringType());
            keyPath->setObjCStringLiteralExpr(stringExpr);
        }
      }
    }

    // Returns None if the AST does not contain enough information to recover
    // substitutions; this is different from an Optional(SubstitutionMap()),
    // indicating a valid call to a non-generic operator.
    std::optional<SubstitutionMap> getOperatorSubstitutions(ValueDecl *witness,
                                                            Type refType) {
      // We have to recover substitutions in this hacky way because
      // the AST does not retain enough information to devirtualize
      // calls like this.
      auto witnessType = witness->getInterfaceType();

      // Compute the substitutions.
      auto *gft = witnessType->getAs<GenericFunctionType>();
      if (gft == nullptr) {
        if (refType->isEqual(witnessType))
          return SubstitutionMap();
        return std::nullopt;
      }

      auto sig = gft->getGenericSignature();
      auto *env = sig.getGenericEnvironment();

      witnessType = FunctionType::get(gft->getParams(),
                                      gft->getResult(),
                                      gft->getExtInfo());
      witnessType = env->mapTypeIntoContext(witnessType);

      TypeSubstitutionMap subs;
      auto substType = witnessType->substituteBindingsTo(
        refType,
        [&](ArchetypeType *origType, CanType substType) -> CanType {
          if (auto gpType = dyn_cast<GenericTypeParamType>(
                origType->getInterfaceType()->getCanonicalType()))
            subs[gpType] = substType;

          return substType;
        });

      // If substitution failed, it means that the protocol requirement type
      // and the witness type did not match up. The only time that this
      // should happen is when the witness is defined in a base class and
      // the actual call uses a derived class. For example,
      //
      // protocol P { func +(lhs: Self, rhs: Self) }
      // class Base : P { func +(lhs: Base, rhs: Base) {} }
      // class Derived : Base {}
      //
      // If we enter this code path with two operands of type Derived,
      // we know we're calling the protocol requirement P.+, with a
      // substituted type of (Derived, Derived) -> (). But the type of
      // the witness is (Base, Base) -> (). Just bail out and make a
      // witness method call in this rare case; SIL mandatory optimizations
      // will likely devirtualize it anyway.
      if (!substType)
        return std::nullopt;

      return SubstitutionMap::get(sig,
                                  QueryTypeSubstitutionMap{subs},
                                  LookUpConformanceInModule(dc->getParentModule()));
    }

    /// Determine whether the given reference is to a method on
    /// a remote distributed actor in the given context.
    bool isDistributedThunk(ConcreteDeclRef ref, Expr *context);

  public:
    /// Build a reference to the given declaration.
    Expr *buildDeclRef(SelectedOverload overload, DeclNameLoc loc,
                       ConstraintLocatorBuilder locator, bool implicit) {
      auto choice = overload.choice;
      assert(choice.getKind() != OverloadChoiceKind::DeclViaDynamic);
      auto *decl = choice.getDecl();
      Type fullType = simplifyType(overload.openedFullType);
      Type adjustedFullType = simplifyType(overload.adjustedOpenedFullType);

      // Determine the declaration selected for this overloaded reference.
      auto &ctx = cs.getASTContext();
      
      auto semantics = decl->getAccessSemanticsFromContext(dc,
                                                           /*isAccessOnSelf*/false);

      // If this is a member of a nominal type, build a reference to the
      // member with an implied base type.
      if (decl->getDeclContext()->isTypeContext() && isa<FuncDecl>(decl)) {
        assert(cast<FuncDecl>(decl)->isOperator() && "Must be an operator");

        auto baseTy = getBaseType(adjustedFullType->castTo<FunctionType>());

        // Handle operator requirements found in protocols.
        if (auto proto = dyn_cast<ProtocolDecl>(decl->getDeclContext())) {
          bool isCurried = shouldBuildCurryThunk(choice, /*baseIsInstance=*/false);

          // If we have a concrete conformance, build a call to the witness.
          //
          // FIXME: This is awful. We should be able to handle this as a call to
          // the protocol requirement with Self == the concrete type, and SILGen
          // (or later) can devirtualize as appropriate.
          auto conformance =
            dc->getParentModule()->checkConformance(baseTy, proto);
          if (conformance.isConcrete()) {
            if (auto witness = conformance.getConcrete()->getWitnessDecl(decl)) {
              bool isMemberOperator = witness->getDeclContext()->isTypeContext();

              if (!isMemberOperator || !isCurried) {
                // The fullType was computed by substituting the protocol
                // requirement so it always has a (Self) -> ... curried
                // application. Strip it off if the witness was a top-level
                // function.
                Type refType;
                if (isMemberOperator)
                  refType = adjustedFullType;
                else
                  refType = adjustedFullType->castTo<AnyFunctionType>()->getResult();

                // Build the AST for the call to the witness.
                auto subMap = getOperatorSubstitutions(witness, refType);
                if (subMap) {
                  ConcreteDeclRef witnessRef(witness, *subMap);
                  auto declRefExpr =  new (ctx) DeclRefExpr(witnessRef, loc,
                                                            /*Implicit=*/false);
                  declRefExpr->setFunctionRefKind(choice.getFunctionRefKind());
                  cs.setType(declRefExpr, refType);

                  Expr *refExpr;
                  if (isMemberOperator) {
                    // If the operator is a type member, add the implicit
                    // (Self) -> ... call.
                    Expr *base =
                      TypeExpr::createImplicitHack(loc.getBaseNameLoc(), baseTy,
                                                   ctx);
                    cs.setType(base, MetatypeType::get(baseTy));

                    refExpr =
                        DotSyntaxCallExpr::create(ctx, declRefExpr, SourceLoc(),
                                                  Argument::unlabeled(base));
                    auto refType = adjustedFullType->castTo<FunctionType>()->getResult();
                    cs.setType(refExpr, refType);
                  } else {
                    refExpr = declRefExpr;
                  }

                  return forceUnwrapIfExpected(refExpr, locator);
                }
              }
            }
          }
        }

        // Build a reference to the member.
        Expr *base =
          TypeExpr::createImplicitHack(loc.getBaseNameLoc(), baseTy, ctx);
        cs.cacheExprTypes(base);

        return buildMemberRef(base, SourceLoc(), overload, loc, locator,
                              locator, implicit, semantics);
      }

      if (auto *typeDecl = dyn_cast<TypeDecl>(decl)) {
        if (!isa<ModuleDecl>(decl)) {
          TypeExpr *typeExpr = nullptr;
          if (implicit) {
            typeExpr = TypeExpr::createImplicitHack(
                loc.getBaseNameLoc(), adjustedFullType->getMetatypeInstanceType(), ctx);
          } else {
            typeExpr = TypeExpr::createForDecl(loc, typeDecl, dc);
            typeExpr->setType(adjustedFullType);
          }
          cs.cacheType(typeExpr);
          return typeExpr;
        }
      }

      auto ref = resolveConcreteDeclRef(decl, locator);
      auto declRefExpr =
          new (ctx) DeclRefExpr(ref, loc, implicit, semantics, fullType);
      cs.cacheType(declRefExpr);
      declRefExpr->setFunctionRefKind(choice.getFunctionRefKind());
      Expr *result = adjustTypeForDeclReference(
          declRefExpr, fullType, adjustedFullType, locator);
      result = forceUnwrapIfExpected(result, locator);

      if (auto *fnDecl = dyn_cast<AbstractFunctionDecl>(decl)) {
        if (AnyFunctionRef(fnDecl).hasExternalPropertyWrapperParameters() &&
            (declRefExpr->getFunctionRefKind() == FunctionRefKind::Compound ||
             declRefExpr->getFunctionRefKind() == FunctionRefKind::Unapplied)) {
          result = buildSingleCurryThunk(result, fnDecl, locator);
        }
      }

      return result;
    }

    /// Describes an opened existential that has not yet been closed.
    struct OpenedExistential {
      /// The archetype describing this opened existential.
      OpenedArchetypeType *Archetype;

      /// The existential value being opened.
      Expr *ExistentialValue;

      /// The opaque value (of archetype type) stored within the
      /// existential.
      OpaqueValueExpr *OpaqueValue;

      /// The depth of this currently-opened existential. Once the
      /// depth of the expression stack is equal to this value, the
      /// existential can be closed.
      unsigned Depth;
    };

    /// A stack of opened existentials that have not yet been closed.
    /// Ordered by decreasing depth.
    llvm::SmallVector<OpenedExistential, 2> OpenedExistentials;

    /// A stack of expressions being walked, used to compute existential depth.
    llvm::SmallVector<Expr *, 8> ExprStack;

    /// A map of apply exprs to their callee locators. This is necessary
    /// because after rewriting an apply's function expr, its callee locator
    /// will no longer be equivalent to the one stored in the solution.
    llvm::DenseMap<ApplyExpr *, ConstraintLocator *> CalleeLocators;

    /// A cache of decl references with their contextual substitutions for a
    /// given callee locator.
    llvm::DenseMap<ConstraintLocator *, ConcreteDeclRef> CachedConcreteRefs;

    /// Resolves the contextual substitutions for a reference to a declaration
    /// at a given locator. This should be preferred to
    /// Solution::resolveConcreteDeclRef as it caches the result.
    ConcreteDeclRef
    resolveConcreteDeclRef(ValueDecl *decl, ConstraintLocatorBuilder locator) {
      if (!decl)
        return ConcreteDeclRef();

      // Cache the resulting concrete reference. Ideally this would be done on
      // Solution, however unfortunately that would require a const_cast which
      // would be undefined behaviour if we ever had a `const Solution`.
      auto *loc = getConstraintSystem().getConstraintLocator(locator);
      auto &ref = CachedConcreteRefs[loc];
      if (!ref)
        ref = solution.resolveConcreteDeclRef(decl, loc);

      return ref;
    }

    /// Members which are AbstractFunctionDecls but not FuncDecls cannot
    /// mutate self.
    bool isNonMutatingMember(ValueDecl *member) {
      if (!isa<AbstractFunctionDecl>(member))
        return false;
      return !isa<FuncDecl>(member) || !cast<FuncDecl>(member)->isMutating();
    }

    /// If the expression might be a dynamic method call, return the base
    /// value for the call.
    Expr *getBaseExpr(Expr *expr) {
      // Keep going up as long as this expression is the parent's base.
      if (auto unresolvedDot = dyn_cast<UnresolvedDotExpr>(expr)) {
        return unresolvedDot->getBase();
      // Remaining cases should only come up when we're re-typechecking.
      // FIXME: really it would be much better if Sema had stricter phase
      // separation.
      } else if (auto selfApply = dyn_cast<SelfApplyExpr>(expr)) {
        return selfApply->getBase();
      } else if (auto apply = dyn_cast<ApplyExpr>(expr)) {
        return apply->getFn();
      } else if (auto lookupRef = dyn_cast<LookupExpr>(expr)) {
        return lookupRef->getBase();
      } else if (auto load = dyn_cast<LoadExpr>(expr)) {
        return load->getSubExpr();
      } else if (auto inout = dyn_cast<InOutExpr>(expr)) {
        return inout->getSubExpr();
      } else if (auto force = dyn_cast<ForceValueExpr>(expr)) {
        return force->getSubExpr();
      } else {
        return nullptr;
      }
    }

    /// Calculates the nesting depth of the current application.
    unsigned getArgCount(unsigned maxArgCount) {
      // FIXME: Walking over the ExprStack to figure out the number of argument
      // lists being applied is brittle. We should instead be checking
      // hasAppliedSelf to figure out if the self param is applied, and looking
      // at the FunctionRefKind to see if the parameter list is applied.
      unsigned e = ExprStack.size();
      unsigned argCount;

      // Starting from the current expression, count up if the expression is
      // equal to its parent expression's base.
      Expr *prev = ExprStack.back();

      for (argCount = 1; argCount < maxArgCount && argCount < e; ++argCount) {
        Expr *result = ExprStack[e - argCount - 1];
        Expr *base = getBaseExpr(result);
        if (base != prev)
          break;
        prev = result;
      }

      return argCount;
    }

    /// Open an existential value into a new, opaque value of
    /// archetype type.
    ///
    /// \param base An expression of existential type whose value will
    /// be opened.
    ///
    /// \param archetype The archetype that describes the opened existential
    /// type.
    ///
    /// \param member The member that is being referenced on the existential
    /// type.
    ///
    /// \returns An OpaqueValueExpr that provides a reference to the value
    /// stored within the expression or its metatype (if the base was a
    /// metatype).
    Expr *openExistentialReference(Expr *base, OpenedArchetypeType *archetype,
                                   ValueDecl *member) {
      assert(archetype && "archetype not already opened?");

      // Dig out the base type.
      Type baseTy = cs.getType(base);

      // Look through inout.
      bool isLValue = false;
      InOutExpr *origInOutBase = dyn_cast<InOutExpr>(base);
      if (origInOutBase) {
        base = origInOutBase->getSubExpr();
        baseTy = baseTy->getInOutObjectType();
        isLValue = true;
      }

      // Look through lvalues.
      if (auto lvalueTy = baseTy->getAs<LValueType>()) {
        isLValue = true;
        baseTy = lvalueTy->getObjectType();
      }

      // Look through metatypes.
      bool isMetatype = false;
      if (auto metaTy = baseTy->getAs<AnyMetatypeType>()) {
        isMetatype = true;
        baseTy = metaTy->getInstanceType();
      }

      assert(baseTy->isAnyExistentialType() && "Type must be existential");

      // If the base was an lvalue but it will only be treated as an
      // rvalue, turn the base into an rvalue now. This results in
      // better SILGen.
      if (isLValue && !origInOutBase &&
          (isNonMutatingMember(member) ||
           member->getDeclContext()->getDeclaredInterfaceType()
             ->hasReferenceSemantics())) {
        base = cs.coerceToRValue(base);
        isLValue = false;
      }

      // Determine the number of applications that need to occur before
      // we can close this existential, and record it.
      unsigned maxArgCount = member->getNumCurryLevels();
      unsigned depth = ExprStack.size() - getArgCount(maxArgCount);

      // Invalid case -- direct call of a metatype. Has one less argument
      // application because there's no ".init".
      if (isa<ApplyExpr>(ExprStack.back()))
        depth++;

      // Create the opaque opened value. If we started with a
      // metatype, it's a metatype.
      Type opaqueType = archetype;
      if (isMetatype)
        opaqueType = MetatypeType::get(opaqueType);
      if (isLValue)
        opaqueType = LValueType::get(opaqueType);

      ASTContext &ctx = cs.getASTContext();
      auto archetypeVal =
          new (ctx) OpaqueValueExpr(base->getSourceRange(), opaqueType);
      cs.cacheType(archetypeVal);

      // Record the opened existential.
      OpenedExistentials.push_back({archetype, base, archetypeVal, depth});

      // Re-apply inout if needed.
      Expr *resultExpr = archetypeVal;
      if (origInOutBase) {
        resultExpr = new (ctx) InOutExpr(
            origInOutBase->getLoc(), resultExpr, opaqueType->getRValueType());
        cs.cacheType(resultExpr);
      }

      return resultExpr;
    }

    /// Try to close the innermost active existential, if there is one.
    bool closeExistential(Expr *&result, ConstraintLocatorBuilder locator,
                          bool force) {
      if (OpenedExistentials.empty())
        return false;

      auto &record = OpenedExistentials.back();
      assert(record.Depth <= ExprStack.size());

      if (!force && record.Depth < ExprStack.size() - 1)
        return false;

      // If we had a return type of 'Self', erase it.
      Type resultTy;
      resultTy = cs.getType(result);
      if (resultTy->hasOpenedExistentialWithRoot(record.Archetype)) {
        Type erasedTy = constraints::typeEraseOpenedArchetypesWithRoot(
            resultTy, record.Archetype);
        auto range = result->getSourceRange();
        result = coerceToType(result, erasedTy, locator);
        // FIXME: Implement missing tuple-to-tuple conversion
        if (result == nullptr) {
          result = new (cs.getASTContext()) ErrorExpr(range);
          cs.setType(result, erasedTy);
          // The opaque value is no longer reachable in an AST walk as
          // a result of the result above being replaced with an
          // ErrorExpr, but there is code expecting to have a type set
          // on it. Since we no longer have a reachable reference,
          // we'll null this out.
          record.OpaqueValue = nullptr;
        }
      }

      // Form the open-existential expression.
      result = new (cs.getASTContext()) OpenExistentialExpr(
                                  record.ExistentialValue,
                                  record.OpaqueValue,
                                  result, cs.getType(result));
      cs.cacheType(result);

      OpenedExistentials.pop_back();
      return true;
    }

    /// Close any active existentials.
    bool closeExistentials(Expr *&result, ConstraintLocatorBuilder locator,
                           bool force=false) {
      bool closedAny = false;
      while (closeExistential(result, locator, force)) {
        force = false;
        closedAny = true;
      }

      return closedAny;
    }

    /// When we have a reference to a declaration whose type in context is
    /// different from its normal interface type, introduce the appropriate
    /// conversions. This can happen due to `@preconcurrency`.
    Expr *adjustTypeForDeclReference(
        Expr *expr, Type openedType, Type adjustedOpenedType,
        ConstraintLocatorBuilder locator,
        llvm::function_ref<Type(Type)> getNewType = [](Type type) {
          return type;
        }) {
      // If the types are the same, do nothing.
      if (openedType->isEqual(adjustedOpenedType))
        return expr;

      auto &context = cs.getASTContext();

      // For an RValue function type, use a standard function conversion.
      if (openedType->is<AnyFunctionType>()) {
        expr = new (context) FunctionConversionExpr(
            expr, getNewType(adjustedOpenedType));
        cs.cacheType(expr);
        return expr;
      }

      // For any kind of LValue, use an ABISafeConversion.
      if (openedType->hasLValueType()) {
        assert(adjustedOpenedType->hasLValueType() && "lvalueness mismatch?");

        expr = new (context) ABISafeConversionExpr(
                                expr, getNewType(adjustedOpenedType));
        cs.cacheType(expr);
        return expr;
      }

      // If we have an optional type, wrap it up in a monadic '?' and recurse.
      if (Type objectType = openedType->getOptionalObjectType()) {
        Type adjustedRefType = getNewType(adjustedOpenedType);
        Type adjustedObjectType = adjustedRefType->getOptionalObjectType();
        assert(adjustedObjectType && "Not an optional?");

        expr = new (context) BindOptionalExpr(expr, SourceLoc(), 0, objectType);
        cs.cacheType(expr);
        expr = adjustTypeForDeclReference(
            expr, objectType, adjustedObjectType, locator);
        expr = new (context) InjectIntoOptionalExpr(expr, adjustedRefType);
        cs.cacheType(expr);
        expr = new (context) OptionalEvaluationExpr(expr, adjustedRefType);
        cs.cacheType(expr);
        return expr;
      }

      return coerceToType(expr, adjustedOpenedType, locator);
    }

    /// Determines if a partially-applied member reference should be
    /// converted into a fully-applied member reference with a pair of
    /// closures.
    bool shouldBuildCurryThunk(OverloadChoice choice,
                               bool baseIsInstance) {
      ValueDecl *member = choice.getDecl();

      // If we're inside a selector expression, don't build the thunk.
      // Were not actually going to emit the member reference, just
      // look at the AST.
      for (auto expr : ExprStack)
        if (isa<ObjCSelectorExpr>(expr))
          return false;

      // Unbound instance method references always build a thunk, even if
      // we apply the arguments (eg, SomeClass.method(self)(a)), to avoid
      // representational issues.
      if (!baseIsInstance && member->isInstanceMember())
        return true;

      // Bound member references that are '@objc optional' or found via dynamic
      // lookup are always represented via DynamicMemberRefExpr instead of a
      // curry thunk.
      if (member->getAttrs().hasAttribute<OptionalAttr>() ||
          choice.getKind() == OverloadChoiceKind::DeclViaDynamic)
        return false;

      // Figure out how many argument lists we need.
      unsigned maxArgCount = member->getNumCurryLevels();

      unsigned argCount = [&]() -> unsigned {
        Expr *prev = ExprStack.back();

        // FIXME: Representational gunk because "T(...)" is really
        // "T.init(...)" -- pretend it has two argument lists like
        // a real '.' call.
        if (isa<ConstructorDecl>(member) &&
            isa<CallExpr>(prev) &&
            isa<TypeExpr>(cast<CallExpr>(prev)->getFn())) {
          assert(maxArgCount == 2);
          return 2;
        }

        // Similarly, ".foo(...)" really applies two argument lists.
        if (isa<CallExpr>(prev) &&
            isa<UnresolvedMemberExpr>(cast<CallExpr>(prev)->getFn()))
          return 2;

        return getArgCount(maxArgCount);
      }();

      // If we have fewer argument lists than expected, build a thunk.
      if (argCount < maxArgCount)
        return true;

      return false;
    }

    /// Build the call inside the body of a single curry thunk
    /// "{ args in base.fn(args) }".
    ///
    /// \param baseExpr The captured base expression, if warranted.
    /// \param fnExpr The expression to be called by consecutively applying
    /// the optional \p baseExpr and thunk parameters.
    /// \param declOrClosure The underlying function-like declaration or
    /// closure we're going to call.
    /// \param thunkParamList The enclosing thunk's parameter list.
    /// \param locator The locator pinned on the function reference carried
    /// by \p fnExpr. If the function has associated applied property wrappers,
    /// the locator is used to pull them in.
    ApplyExpr *buildSingleCurryThunkBodyCall(Expr *baseExpr, Expr *fnExpr,
                                             DeclContext *declOrClosure,
                                             ParameterList *thunkParamList,
                                             ConstraintLocatorBuilder locator) {
      auto &ctx = cs.getASTContext();
      auto *const fnTy = cs.getType(fnExpr)->castTo<FunctionType>();
      auto *calleeFnTy = fnTy;

      if (baseExpr) {
        // Coerce the base expression to the container type.
        const auto calleeSelfParam = calleeFnTy->getParams().front();
        baseExpr =
            coerceToType(baseExpr, calleeSelfParam.getOldType(), locator);

        // Uncurry the callee type in the presence of a base expression; we
        // want '(args) -> result' vs. '(self) -> (args) -> result'.
        calleeFnTy = calleeFnTy->getResult()->castTo<FunctionType>();
      }

      const auto &appliedPropertyWrappers =
          solution.appliedPropertyWrappers[locator.getAnchor()];
      const auto calleeDeclRef = resolveConcreteDeclRef(
          dyn_cast<AbstractFunctionDecl>(declOrClosure), locator);

      auto *const calleeParamList = getParameterList(declOrClosure);
      const auto calleeParams = calleeFnTy->getParams();

      // Rebuild the callee params: SILGen knows how to emit property-wrapped
      // parameters, but the corresponding parameter types need to match the
      // backing wrapper types.
      SmallVector<AnyFunctionType::Param, 4> newCalleeParams;
      newCalleeParams.reserve(calleeParams.size());

      // Build the argument list for the call.
      SmallVector<Argument, 4> args;
      unsigned appliedWrapperIndex = 0;
      for (const auto idx : indices(*thunkParamList)) {
        auto *const thunkParamDecl = thunkParamList->get(idx);

        const auto calleeParam = calleeParams[idx];
        const auto calleeParamType = calleeParam.getParameterType();
        const auto thunkParamType = thunkParamDecl->getTypeInContext();

        Expr *paramRef = new (ctx)
            DeclRefExpr(thunkParamDecl, DeclNameLoc(), /*implicit*/ true);
        paramRef->setType(thunkParamDecl->isInOut()
                              ? LValueType::get(thunkParamType)
                              : thunkParamType);
        cs.cacheType(paramRef);

        paramRef = coerceToType(paramRef,
                                thunkParamDecl->isInOut()
                                    ? LValueType::get(calleeParamType)
                                    : calleeParamType,
                                locator);

        auto *const calleeParamDecl = calleeParamList->get(idx);
        if (calleeParamDecl->hasExternalPropertyWrapper()) {
          // Rewrite the parameter ref to the backing wrapper initialization
          // expression.
          auto &appliedWrapper = appliedPropertyWrappers[appliedWrapperIndex++];

          using ValueKind = AppliedPropertyWrapperExpr::ValueKind;
          ValueKind valueKind = (appliedWrapper.initKind ==
                                         PropertyWrapperInitKind::ProjectedValue
                                     ? ValueKind::ProjectedValue
                                     : ValueKind::WrappedValue);

          paramRef = AppliedPropertyWrapperExpr::create(
              ctx, calleeDeclRef, calleeParamDecl, SourceLoc(),
              appliedWrapper.wrapperType, paramRef, valueKind);
          cs.cacheExprTypes(paramRef);

          newCalleeParams.push_back(calleeParam.withType(paramRef->getType()));

          // TODO: inout
          // FIXME: vararg
        } else {
          if (thunkParamDecl->isInOut()) {
            paramRef =
                new (ctx) InOutExpr(SourceLoc(), paramRef, calleeParamType,
                                    /*implicit=*/true);
          } else if (thunkParamDecl->isVariadic()) {
            assert(calleeParamType->isEqual(paramRef->getType()));
            paramRef = VarargExpansionExpr::createParamExpansion(ctx, paramRef);
          }
          cs.cacheType(paramRef);

          newCalleeParams.push_back(calleeParam);
        }

        args.emplace_back(SourceLoc(), calleeParam.getLabel(), paramRef);
      }

      // SILGen knows how to emit property-wrapped parameters, but the
      // corresponding parameter types need to match the backing wrapper types.
      // To handle this, build a new callee function type out of the adjusted
      // callee params, hand it over to the conditional 'self' call, and use it
      // to update the type of the called expression with respect to whether
      // it's 'self'-curried.
      auto *const newCalleeFnTy = FunctionType::get(
          newCalleeParams, calleeFnTy->getResult(), calleeFnTy->getExtInfo());

      // If given, apply the base expression to the curried 'self'
      // parameter first.
      if (baseExpr) {
        fnExpr->setType(FunctionType::get(fnTy->getParams(), newCalleeFnTy,
                                          fnTy->getExtInfo()));
        cs.cacheType(fnExpr);

        fnExpr = DotSyntaxCallExpr::create(ctx, fnExpr, SourceLoc(),
                                           Argument::unlabeled(baseExpr));
      }
      fnExpr->setType(newCalleeFnTy);
      cs.cacheType(fnExpr);

      // Finally, apply the argument list to the callee.
      ApplyExpr *callExpr = CallExpr::createImplicit(
          ctx, fnExpr, ArgumentList::createImplicit(ctx, args));
      callExpr->setType(calleeFnTy->getResult());
      cs.cacheType(callExpr);

      return callExpr;
    }

    /// Build a "{ args in base.fn(args) }" single-expression curry thunk.
    ///
    /// \param baseExpr The base expression to be captured, if warranted.
    /// \param fnExpr The expression to be called by consecutively applying
    /// the optional \p baseExpr and thunk parameters.
    /// \param declOrClosure The underlying function-like declaration or
    /// closure we're going to call.
    /// \param thunkTy The type of the thunk.
    /// \param locator The locator pinned on the function reference carried
    /// by \p fnExpr. If the function has associated applied property wrappers,
    /// the locator is used to pull them in.
    AutoClosureExpr *buildSingleCurryThunk(Expr *baseExpr, Expr *fnExpr,
                                           DeclContext *declOrClosure,
                                           FunctionType *thunkTy,
                                           ConstraintLocatorBuilder locator) {
      auto &ctx = cs.getASTContext();

      const OptionSet<ParameterList::CloneFlags> options =
          (ParameterList::Implicit | ParameterList::NamedArguments);
      auto *const thunkParamList =
          getParameterList(declOrClosure)->clone(ctx, options);

      for (const auto idx : indices(*thunkParamList)) {
        auto *param = thunkParamList->get(idx);
        auto arg = thunkTy->getParams()[idx];

        param->setInterfaceType(arg.getParameterType()->mapTypeOutOfContext());
        param->setSpecifier(ParamDecl::getParameterSpecifierForValueOwnership(
            arg.getValueOwnership()));
      }

      auto *const thunk =
          new (ctx) AutoClosureExpr(/*set body later*/ nullptr, thunkTy, dc);
      thunk->setParameterList(thunkParamList);
      thunk->setThunkKind(AutoClosureExpr::Kind::SingleCurryThunk);
      cs.cacheType(thunk);
      
      // If the `self` type is existential, it must be opened.
      OpaqueValueExpr *baseOpened = nullptr;
      Expr *origBaseExpr = baseExpr;
      if (baseExpr) {
        auto baseTy = cs.getType(baseExpr);
        if (baseTy->isAnyExistentialType()) {
          Type openedTy = solution.OpenedExistentialTypes.lookup(
              cs.getConstraintLocator(locator));
          assert(openedTy);

          Type opaqueValueTy = openedTy;
          if (baseTy->is<ExistentialMetatypeType>())
            opaqueValueTy = MetatypeType::get(opaqueValueTy);

          baseOpened = new (ctx) OpaqueValueExpr(SourceLoc(), opaqueValueTy);
          cs.cacheType(baseOpened);
          baseExpr = baseOpened;
        }
      }

      Expr *thunkBody = buildSingleCurryThunkBodyCall(
          baseExpr, fnExpr, declOrClosure, thunkParamList, locator);
          
      // If we called a function with a dynamic 'Self' result, we may need some
      // special handling.
      if (baseExpr) {
        if (auto *fnDecl = dyn_cast<AbstractFunctionDecl>(declOrClosure)) {
          if (fnDecl->hasDynamicSelfResult()) {
            Type convTy;

            if (cs.getType(baseExpr)->hasOpenedExistential()) {
              // FIXME: Sometimes we need to convert to an opened existential
              // first, because CovariantReturnConversionExpr does not support
              // direct conversions from a class C to an existential C & P.
              convTy = cs.getType(baseExpr)->getMetatypeInstanceType();
              convTy =
                  thunkTy->getResult()->replaceCovariantResultType(convTy, 0);
            } else {
              convTy = thunkTy->getResult();
            }

            if (!thunkBody->getType()->isEqual(convTy)) {
              thunkBody = cs.cacheType(
                  new (ctx) CovariantReturnConversionExpr(thunkBody, convTy));
            }
          }
        }
      }

      // Now, coerce to the result type of the thunk.
      thunkBody = coerceToType(thunkBody, thunkTy->getResult(), locator);

      // Close up the existential if necessary.
      if (baseOpened) {
        thunkBody = new (ctx) OpenExistentialExpr(origBaseExpr,
                                                  baseOpened,
                                                  thunkBody,
                                                  thunkBody->getType());
        cs.cacheType(thunkBody);
      }

      if (thunkTy->getExtInfo().isThrowing()) {
        thunkBody = new (ctx)
            TryExpr(thunkBody->getStartLoc(), thunkBody, cs.getType(thunkBody),
                    /*implicit=*/true);
        cs.cacheType(thunkBody);
      }

      thunk->setBody(thunkBody);

      return thunk;
    }

    /// Build a "{ args in fn(args) }" single-expression curry thunk.
    ///
    /// \param fnExpr The expression to be called by applying the thunk
    /// parameters.
    /// \param declOrClosure The underlying function-like declaration or
    /// closure we're going to call.
    /// \param locator The locator pinned on the function reference carried
    /// by \p fnExpr. If the function has associated applied property wrappers,
    /// the locator is used to pull them in.
    AutoClosureExpr *buildSingleCurryThunk(Expr *fnExpr,
                                           DeclContext *declOrClosure,
                                           ConstraintLocatorBuilder locator) {
      auto *const thunkTy = cs.getType(fnExpr)->castTo<FunctionType>();

      return buildSingleCurryThunk(/*baseExpr=*/nullptr, fnExpr, declOrClosure,
                                   thunkTy, locator);
    }

    /// Build a "{ args in base.fn(args) }" single-expression curry thunk.
    ///
    /// \param baseExpr The base expression to be captured.
    /// \param fnExpr The expression to be called by consecutively applying
    /// the \p baseExpr and thunk parameters.
    /// \param declOrClosure The underlying function-like declaration or
    /// closure we're going to call.
    /// \param locator The locator pinned on the function reference carried
    /// by \p fnExpr. If the function has associated applied property wrappers,
    /// the locator is used to pull them in.
    AutoClosureExpr *buildSingleCurryThunk(Expr *baseExpr, Expr *fnExpr,
                                           DeclContext *declOrClosure,
                                           ConstraintLocatorBuilder locator) {
      assert(baseExpr);
      auto *const thunkTy = cs.getType(fnExpr)
                                ->castTo<FunctionType>()
                                ->getResult()
                                ->castTo<FunctionType>();

      return buildSingleCurryThunk(baseExpr, fnExpr, declOrClosure, thunkTy,
                                   locator);
    }

    /// Build a "{ self in { args in self.fn(args) } }" nested curry thunk.
    ///
    /// \param memberRef The expression to be called in the inner thunk by
    /// consecutively applying the captured outer thunk's 'self' parameter and
    /// the parameters of the inner thunk.
    /// \param member The underlying function declaration to be called.
    /// \param outerThunkTy The type of the outer thunk.
    /// \param memberLocator The locator pinned on the member reference. If the
    /// function has associated applied property wrappers, the locator is used
    /// to pull them in.
    AutoClosureExpr *
    buildDoubleCurryThunk(DeclRefExpr *memberRef, ValueDecl *member,
                          FunctionType *outerThunkTy,
                          ConstraintLocatorBuilder memberLocator,
                          DeclNameLoc memberLoc, bool isDynamicLookup) {
      auto &ctx = cs.getASTContext();

      const auto selfThunkParam = outerThunkTy->getParams().front();
      const auto selfThunkParamTy = selfThunkParam.getPlainType();

      // Build the 'self' param for the outer thunk, "{ self in ... }".
      auto *const selfParamDecl =
          new (ctx) ParamDecl(SourceLoc(),
                              /*argument label*/ SourceLoc(), Identifier(),
                              /*parameter name*/ SourceLoc(), ctx.Id_self, dc);
      selfParamDecl->setInterfaceType(selfThunkParamTy->mapTypeOutOfContext());
      selfParamDecl->setSpecifier(
          ParamDecl::getParameterSpecifierForValueOwnership(
              selfThunkParam.getValueOwnership()));
      selfParamDecl->setImplicit();

      // Build a reference to the 'self' parameter.
      Expr *selfParamRef = new (ctx) DeclRefExpr(selfParamDecl, DeclNameLoc(),
                                                 /*implicit=*/true);
      selfParamRef->setType(selfThunkParam.isInOut()
                                ? LValueType::get(selfThunkParamTy)
                                : selfThunkParamTy);
      cs.cacheType(selfParamRef);

      if (selfThunkParam.isInOut()) {
        selfParamRef =
            new (ctx) InOutExpr(SourceLoc(), selfParamRef, selfThunkParamTy,
                                /*implicit=*/true);
        cs.cacheType(selfParamRef);
      }

      bool hasOpenedExistential = false;
      Expr *selfOpenedRef = selfParamRef;

      // If the 'self' parameter type is existential, it must be opened.
      if (selfThunkParamTy->isAnyExistentialType()) {
        Type openedTy = solution.OpenedExistentialTypes.lookup(
            cs.getConstraintLocator(memberLocator));
        assert(openedTy);

        hasOpenedExistential = true;

        // If we're opening an existential:
        // - The type of 'memberRef' inside the thunk is written in terms of the
        //   opened existential archetype.
        // - The type of the thunk is written in terms of the
        //   erased existential bounds.
        Type opaqueValueTy = openedTy;
        if (selfThunkParamTy->is<ExistentialMetatypeType>())
          opaqueValueTy = MetatypeType::get(opaqueValueTy);

        if (selfThunkParam.isInOut())
          opaqueValueTy = LValueType::get(opaqueValueTy);

        selfOpenedRef = new (ctx) OpaqueValueExpr(SourceLoc(), opaqueValueTy);
        cs.cacheType(selfOpenedRef);
      }

      Expr *outerThunkBody = nullptr;

      // For an @objc optional member or a member found via dynamic lookup,
      // build a dynamic member reference. Otherwise, build a nested
      // "{ args... in self.member(args...) }" thunk that calls the member.
      if (isDynamicLookup || member->getAttrs().hasAttribute<OptionalAttr>()) {
        auto *const selfCalleeTy =
            cs.getType(memberRef)->castTo<FunctionType>();

        outerThunkBody = new (ctx) DynamicMemberRefExpr(
            selfOpenedRef, SourceLoc(),
            resolveConcreteDeclRef(member, memberLocator), memberLoc);
        outerThunkBody->setImplicit(true);
        outerThunkBody->setType(selfCalleeTy->getResult());
        cs.cacheType(outerThunkBody);

        outerThunkBody = coerceToType(outerThunkBody, outerThunkTy->getResult(),
                                      memberLocator);

        // Close the existential if warranted.
        if (hasOpenedExistential) {
          outerThunkBody = new (ctx) OpenExistentialExpr(
              selfParamRef, cast<OpaqueValueExpr>(selfOpenedRef),
              outerThunkBody, outerThunkBody->getType());
          cs.cacheType(outerThunkBody);
        }
      } else {
        auto *innerThunk = buildSingleCurryThunk(
            selfOpenedRef, memberRef, cast<DeclContext>(member),
            outerThunkTy->getResult()->castTo<FunctionType>(), memberLocator);

        // Rewrite the body to close the existential if warranted.
        if (hasOpenedExistential) {
          auto *body = innerThunk->getSingleExpressionBody();
          body = new (ctx) OpenExistentialExpr(
              selfParamRef, cast<OpaqueValueExpr>(selfOpenedRef), body,
              body->getType());
          cs.cacheType(body);

          innerThunk->setBody(body);
        }

        outerThunkBody = innerThunk;
      }

      // Finally, construct the outer thunk.
      auto *outerThunk =
          new (ctx) AutoClosureExpr(outerThunkBody, outerThunkTy, dc);
      outerThunk->setThunkKind(AutoClosureExpr::Kind::DoubleCurryThunk);
      outerThunk->setParameterList(
          ParameterList::create(ctx, SourceLoc(), selfParamDecl, SourceLoc()));
      cs.cacheType(outerThunk);

      return outerThunk;
    }

    /// Build a new member reference with the given base and member.
    Expr *buildMemberRef(Expr *base, SourceLoc dotLoc,
                         SelectedOverload overload, DeclNameLoc memberLoc,
                         ConstraintLocatorBuilder locator,
                         ConstraintLocatorBuilder memberLocator, bool Implicit,
                         AccessSemantics semantics) {
      const auto &choice = overload.choice;
      const auto openedType = overload.openedType;
      const auto adjustedOpenedType = overload.adjustedOpenedType;

      ValueDecl *member = choice.getDecl();

      auto &context = cs.getASTContext();

      bool isSuper = base->isSuperExpr();

      // The formal type of the 'self' value for the call.
      Type baseTy = cs.getType(base)->getRValueType();

      // Figure out the actual base type, and whether we have an instance of
      // that type or its metatype.
      bool baseIsInstance = true;
      bool isExistentialMetatype = false;
      if (auto baseMeta = baseTy->getAs<AnyMetatypeType>()) {
        baseIsInstance = false;
        isExistentialMetatype = baseMeta->is<ExistentialMetatypeType>();
        baseTy = baseMeta->getInstanceType();
        if (auto existential = baseTy->getAs<ExistentialType>())
          baseTy = existential->getConstraintType();

        // A valid reference to a static member (computed property or a method)
        // declared on a protocol is only possible if result type conforms to
        // that protocol, otherwise it would be impossible to find a witness to
        // use.
        // Such means that (for valid references) base expression here could be
        // adjusted to  point to a type conforming to a protocol as-if reference
        // has originated directly from it e.g.
        //
        // \code
        // protocol P {}
        // struct S : P {}
        //
        // extension P {
        //   static var foo: S { S() }
        // }
        //
        // _ = P.foo
        // \endcode
        //
        // Here `P.foo` would be replaced with `S.foo`
        if (!isExistentialMetatype && baseTy->is<ProtocolType>() &&
            member->isStatic()) {
          auto selfParam =
              overload.adjustedOpenedFullType->castTo<FunctionType>()->getParams()[0];

          Type baseTy =
              simplifyType(selfParam.getPlainType())->getMetatypeInstanceType();

          base = TypeExpr::createImplicitHack(base->getLoc(), baseTy, context);
          cs.cacheType(base);
        }
      }

      // Build a member reference.
      auto memberRef = resolveConcreteDeclRef(member, memberLocator);

      // If we're referring to a member type, it's just a type
      // reference.
      if (auto *TD = dyn_cast<TypeDecl>(member)) {
        Type refType = simplifyType(adjustedOpenedType);
        auto ref = TypeExpr::createForDecl(memberLoc, TD, dc);
        cs.setType(ref, refType);
        auto *result = new (context) DotSyntaxBaseIgnoredExpr(
            base, dotLoc, ref, refType);
        cs.setType(result, refType);
        return result;
      }

      Type refTy = simplifyType(overload.openedFullType);
      Type adjustedRefTy = simplifyType(overload.adjustedOpenedFullType);

      // If we're referring to the member of a module, it's just a simple
      // reference.
      if (baseTy->is<ModuleType>()) {
        assert(semantics == AccessSemantics::Ordinary &&
               "Direct property access doesn't make sense for this");
        auto *dre = new (context) DeclRefExpr(memberRef, memberLoc, Implicit);
        cs.setType(dre, refTy);
        dre->setFunctionRefKind(choice.getFunctionRefKind());
        Expr *ref = cs.cacheType(new (context) DotSyntaxBaseIgnoredExpr(
            base, dotLoc, dre, refTy));

        ref = adjustTypeForDeclReference(ref, refTy, adjustedRefTy, locator);
        return forceUnwrapIfExpected(ref, memberLocator);
      }

      const bool isUnboundInstanceMember =
          (!baseIsInstance && member->isInstanceMember());
      const bool needsCurryThunk =
          shouldBuildCurryThunk(choice, baseIsInstance);

      // The formal type of the 'self' value for the member's declaration.
      Type containerTy = getBaseType(refTy->castTo<FunctionType>());

      // If we have an opened existential, selfTy and baseTy will both be
      // the same opened existential type.
      Type selfTy = containerTy;

      // If we opened up an existential when referencing this member, update
      // the base accordingly.
      bool openedExistential = false;

      auto knownOpened = solution.OpenedExistentialTypes.find(
                           getConstraintSystem().getConstraintLocator(
                             memberLocator));
      if (knownOpened != solution.OpenedExistentialTypes.end()) {
        // Determine if we're going to have an OpenExistentialExpr around
        // this member reference.
        //
        // For an unbound reference to a method, always open the existential
        // inside the curry thunk, because we won't have a 'self' value until
        // the curry thunk is applied.
        //
        // For a partial application of a protocol method, open the existential
        // inside the curry thunk as well. This reduces abstraction and
        // post-factum function type conversions, and results in better SILGen.
        //
        // For a partial application of a class instance method, however, we
        // always want the thunk to accept a class to avoid potential
        // abstraction, so the existential base must be opened eagerly in order
        // to be upcast to the appropriate class reference type before it is
        //  passed to the thunk.
        if (!needsCurryThunk ||
            (!member->getDeclContext()->getSelfProtocolDecl() &&
             baseIsInstance && member->isInstanceMember())) {
          // Open the existential before performing the member reference.
          base = openExistentialReference(base, knownOpened->second, member);
          baseTy = knownOpened->second;
          selfTy = baseTy;
          openedExistential = true;
        } else {
          // Erase opened existentials from the type of the thunk; we're
          // going to open the existential inside the thunk's body.
          containerTy = constraints::typeEraseOpenedArchetypesWithRoot(
              containerTy, knownOpened->second);
          selfTy = containerTy;
        }
      }

      // References to properties with accessors and storage usually go
      // through the accessors, but sometimes are direct.
      if (auto *VD = dyn_cast<VarDecl>(member)) {
        if (semantics == AccessSemantics::Ordinary)
          semantics = getImplicitMemberReferenceAccessSemantics(base, VD, dc);
      }

      auto isDynamic = choice.getKind() == OverloadChoiceKind::DeclViaDynamic;
      if (baseIsInstance) {
        // Convert the base to the appropriate container type, turning it
        // into an lvalue if required.

        // If the base is already an lvalue with the right base type, we can
        // pass it as an inout qualified type.
        auto selfParamTy = isDynamic ? selfTy : containerTy;

        if (selfTy->isEqual(baseTy))
          if (cs.getType(base)->is<LValueType>())
            selfParamTy = InOutType::get(selfTy);

        base = coerceSelfArgumentToType(
                 base, selfParamTy, member,
                 locator.withPathElement(ConstraintLocator::MemberRefBase));
      } else {
        // The base of an unbound reference is unused, and thus a conversion
        // is not necessary.
        if (!isUnboundInstanceMember) {
          if (!isExistentialMetatype || openedExistential) {
            // Convert the base to an rvalue of the appropriate metatype.
            base = coerceToType(
                base, MetatypeType::get(isDynamic ? selfTy : containerTy),
                locator.withPathElement(ConstraintLocator::MemberRefBase));
          }
        }

        if (!base)
          return nullptr;

        base = cs.coerceToRValue(base);
      }
      assert(base && "Unable to convert base?");

      // Handle dynamic references.
      if (!needsCurryThunk &&
          (isDynamic || member->getAttrs().hasAttribute<OptionalAttr>())) {
        base = cs.coerceToRValue(base);
        Expr *ref = new (context) DynamicMemberRefExpr(base, dotLoc, memberRef,
                                                       memberLoc);
        ref->setImplicit(Implicit);
        // FIXME: FunctionRefKind

        auto computeRefType = [&](Type openedType) {
          // Compute the type of the reference.
          Type refType = simplifyType(openedType);

          // If the base was an opened existential, erase the opened
          // existential.
          if (openedExistential) {
            refType = constraints::typeEraseOpenedArchetypesWithRoot(
                refType, baseTy->castTo<OpenedArchetypeType>());
          }

          return refType;
        };

        Type refType = computeRefType(openedType);
        cs.setType(ref, refType);

        // Adjust the declaration reference type, if required.
        ref = adjustTypeForDeclReference(
            ref, openedType, adjustedOpenedType, locator, computeRefType);

        closeExistentials(ref, locator, /*force=*/openedExistential);

        // We also need to handle the implicitly unwrap of the result
        // of the called function if that's the type checking solution
        // we ended up with.
        return forceUnwrapIfExpected(ref, memberLocator);
      }

      // For properties, build member references.
      if (auto *varDecl = dyn_cast<VarDecl>(member)) {
        // \returns result of the given function type
        auto resultType = [](Type fnTy) -> Type {
          return fnTy->castTo<FunctionType>()->getResult();
        };

        if (isUnboundInstanceMember) {
          assert(memberLocator.getBaseLocator() &&
                 cs.UnevaluatedRootExprs.count(
                     getAsExpr(memberLocator.getBaseLocator()->getAnchor())) &&
                 "Attempt to reference an instance member of a metatype");
          auto baseInstanceTy = cs.getType(base)
              ->getInOutObjectType()->getMetatypeInstanceType();
          base = new (context) UnevaluatedInstanceExpr(base, baseInstanceTy);
          cs.cacheType(base);
          base->setImplicit();
        }

        const auto hasDynamicSelf =
            varDecl->getValueInterfaceType()->hasDynamicSelfType();

        auto memberRefExpr
          = new (context) MemberRefExpr(base, dotLoc, memberRef,
                                        memberLoc, Implicit, semantics);
        memberRefExpr->setIsSuper(isSuper);

        if (hasDynamicSelf) {
          refTy = refTy->replaceCovariantResultType(containerTy, 1);
          adjustedRefTy = adjustedRefTy->replaceCovariantResultType(
              containerTy, 1);
        }

        cs.setType(memberRefExpr, resultType(refTy));

        Expr *result = memberRefExpr;
        result = adjustTypeForDeclReference(result, resultType(refTy),
                                            resultType(adjustedRefTy),
                                            locator);
        closeExistentials(result, locator);

        // If the property is of dynamic 'Self' type, wrap an implicit
        // conversion around the resulting expression, with the destination
        // type having 'Self' swapped for the appropriate replacement
        // type -- usually the base object type.
        if (hasDynamicSelf) {
          const auto conversionTy = simplifyType(adjustedOpenedType);
          if (!containerTy->isEqual(conversionTy)) {
            result = cs.cacheType(new (context) CovariantReturnConversionExpr(
                result, conversionTy));
          }
        }
        return forceUnwrapIfExpected(result, memberLocator);
      }

      auto *func = dyn_cast<FuncDecl>(member);
      if (func && func->getResultInterfaceType()->hasDynamicSelfType()) {
        refTy = refTy->replaceCovariantResultType(containerTy, 2);
        adjustedRefTy = adjustedRefTy->replaceCovariantResultType(
            containerTy, 2);
      }

      // Handle all other references.
      auto declRefExpr = new (context) DeclRefExpr(memberRef, memberLoc,
                                                   Implicit, semantics);
      declRefExpr->setFunctionRefKind(choice.getFunctionRefKind());
      declRefExpr->setType(refTy);
      cs.setType(declRefExpr, refTy);
      Expr *ref = declRefExpr;

      ref = adjustTypeForDeclReference(ref, refTy, adjustedRefTy, locator);

      // A partial application thunk consists of two nested closures:
      //
      // { self in { args... in self.method(args...) } }
      //
      // If the reference has an applied 'self', eg 'let fn = foo.method',
      // the outermost closure is wrapped inside a single ApplyExpr:
      //
      // { self in { args... in self.method(args...) } }(foo)
      //
      // This is done instead of just hoisting the expression 'foo' up
      // into the closure, which would change evaluation order.
      //
      // However, for a super method reference, eg, 'let fn = super.foo',
      // the base expression is always a SuperRefExpr, possibly wrapped
      // by an upcast. Since SILGen expects super method calls to have a
      // very specific shape, we only emit a single closure here and
      // capture the original SuperRefExpr, since its evaluation does not
      // have side effects, instead of abstracting out a 'self' parameter.
      const auto isSuperPartialApplication = needsCurryThunk && isSuper;
      if (isSuperPartialApplication) {
        ref = buildSingleCurryThunk(base, declRefExpr,
                                    cast<AbstractFunctionDecl>(member),
                                    memberLocator);
      } else if (needsCurryThunk) {
        // Another case where we want to build a single closure is when
        // we have a partial application of a static member. It is better
        // to either push the base reference down into the closure (if it's
        // just a literal type reference, in which case there are no order of
        // operation concerns with capturing vs. evaluating it in the closure),
        // or to evaluate the base as a capture and hand it down via the
        // capture list.
        if (isa<ConstructorDecl>(member) || member->isStatic()) {
          if (cs.isStaticallyDerivedMetatype(base)) {
            // Add a useless ".self" to avoid downstream diagnostics.
            base = new (context) DotSelfExpr(base, SourceLoc(), base->getEndLoc(),
                                             cs.getType(base));
            cs.setType(base, base->getType());

            auto *closure = buildSingleCurryThunk(
                base, declRefExpr, cast<AbstractFunctionDecl>(member),
                memberLocator);

            // Skip the code below -- we're not building an extra level of
            // call by applying the metatype; instead, the closure we just
            // built is the curried reference.
            return closure;
          } else {
            // Add a useless ".self" to avoid downstream diagnostics, in case
            // the type ref is still a TypeExpr.
            base = new (context) DotSelfExpr(base, SourceLoc(), base->getEndLoc(),
                                             cs.getType(base));
            // Introduce a capture variable.
            cs.cacheType(base);
            solution.setExprTypes(base);
            auto capture = new (context) VarDecl(/*static*/ false,
                                                 VarDecl::Introducer::Let,
                                                 SourceLoc(),
                                                 context.getIdentifier("$base$"),
                                                 dc);
            capture->setImplicit();
            capture->setInterfaceType(base->getType()->mapTypeOutOfContext());

            auto *capturePat =
                NamedPattern::createImplicit(context, capture, base->getType());

            auto *captureDecl = PatternBindingDecl::createImplicit(
                context, StaticSpellingKind::None, capturePat, base, dc);

            // Write the closure in terms of the capture.
            auto baseRef = new (context)
              DeclRefExpr(capture, DeclNameLoc(base->getLoc()), /*implicit*/ true);
            baseRef->setType(base->getType());
            cs.cacheType(baseRef);
            
            auto *closure = buildSingleCurryThunk(
              baseRef, declRefExpr, cast<AbstractFunctionDecl>(member),
              simplifyType(adjustedOpenedType)->castTo<FunctionType>(),
              memberLocator);
              
            // Wrap the closure in a capture list.
            auto captureEntry = CaptureListEntry(captureDecl);
            auto captureExpr = CaptureListExpr::create(context, captureEntry,
                                                       closure);
            captureExpr->setImplicit();
            captureExpr->setType(cs.getType(closure));
            cs.cacheType(captureExpr);
            
            Expr *finalExpr = captureExpr;
            closeExistentials(finalExpr, locator,
                              /*force*/ openedExistential);
            return finalExpr;
          }
        }

        FunctionType *curryThunkTy = nullptr;
        if (isUnboundInstanceMember) {
          // For an unbound reference to a method, all conversions, including
          // dynamic 'Self' handling, are done within the thunk to support
          // the edge case of an unbound reference to a 'Self'-returning class
          // method on a protocol metatype. The result of calling the method
          // must be downcast to the opened archetype before being erased to the
          // subclass existential to cope with the expectations placed
          // on 'CovariantReturnConversionExpr'.
          curryThunkTy = simplifyType(adjustedOpenedType)->castTo<FunctionType>();
        } else {
          curryThunkTy = adjustedRefTy->castTo<FunctionType>();

          // Check if we need to open an existential stored inside 'self'.
          auto knownOpened = solution.OpenedExistentialTypes.find(
              getConstraintSystem().getConstraintLocator(memberLocator));
          if (knownOpened != solution.OpenedExistentialTypes.end()) {
            curryThunkTy =
                constraints::typeEraseOpenedArchetypesWithRoot(
                  curryThunkTy, knownOpened->second)
                    ->castTo<FunctionType>();
          }
        }

        // Replace the DeclRefExpr with a closure expression which SILGen
        // knows how to emit.
        ref = buildDoubleCurryThunk(declRefExpr, member, curryThunkTy,
                                    memberLocator, memberLoc, isDynamic);
      }

      // If the member is a method with a dynamic 'Self' result type, wrap an
      // implicit function type conversion around the resulting expression,
      // with the destination type having 'Self' swapped for the appropriate
      // replacement type -- usually the base object type.
      //
      // Note: For unbound references this is handled inside the thunk.
      if (!isUnboundInstanceMember &&
          !member->getDeclContext()->getSelfProtocolDecl()) {
        if (auto func = dyn_cast<AbstractFunctionDecl>(member)) {
          if (func->hasDynamicSelfResult() &&
              !baseTy->getOptionalObjectType()) {
            // FIXME: Once CovariantReturnConversionExpr (unchecked_ref_cast)
            // supports a class existential dest., consider using the opened
            // type directly to avoid recomputing the 'Self' replacement and
            // substituting.
            const Type replacementTy = getDynamicSelfReplacementType(
                baseTy, member, memberLocator.getBaseLocator());
            if (!replacementTy->isEqual(containerTy)) {
              Type conversionTy =
                  adjustedRefTy->replaceCovariantResultType(replacementTy, 2);
              if (isSuperPartialApplication) {
                conversionTy =
                    conversionTy->castTo<FunctionType>()->getResult();
              }

              ref = cs.cacheType(new (context) CovariantFunctionConversionExpr(
                  ref, conversionTy));
            }
          }
        }
      }

      // The thunk that is built for a 'super' method reference does not
      // require application.
      if (isSuperPartialApplication) {
        return forceUnwrapIfExpected(ref, memberLocator);
      }

      ApplyExpr *apply;
      if (isa<ConstructorDecl>(member)) {
        // FIXME: Provide type annotation.
        ref = forceUnwrapIfExpected(ref, memberLocator);
        apply = ConstructorRefCallExpr::create(context, ref, base);
      } else if (isUnboundInstanceMember) {
        ref = adjustTypeForDeclReference(
            ref, cs.getType(ref), cs.simplifyType(adjustedOpenedType),
            locator);

        // Reference to an unbound instance method.
        Expr *result = new (context) DotSyntaxBaseIgnoredExpr(base, dotLoc,
                                                              ref,
                                                              cs.getType(ref));
        cs.cacheType(result);
        closeExistentials(result, locator, /*force=*/openedExistential);
        return forceUnwrapIfExpected(result, memberLocator);
      } else {
        assert((!baseIsInstance || member->isInstanceMember()) &&
               "can't call a static method on an instance");
        ref = forceUnwrapIfExpected(ref, memberLocator);
        apply = DotSyntaxCallExpr::create(context, ref, dotLoc, Argument::unlabeled(base));
        if (Implicit) {
          apply->setImplicit();
        }
      }

      return finishApply(apply, adjustedOpenedType, locator, memberLocator);
    }

    /// Convert the given literal expression via a protocol pair.
    ///
    /// This routine handles the two-step literal conversion process used
    /// by integer, float, character, extended grapheme cluster, and string
    /// literals. The first step uses \c builtinProtocol while the second
    /// step uses \c protocol.
    ///
    /// \param literal The literal expression.
    ///
    /// \param type The literal type. This type conforms to \c protocol,
    /// and may also conform to \c builtinProtocol.
    ///
    /// \param protocol The protocol that describes the literal requirement.
    ///
    /// \param literalType The name of the associated type in \c protocol that
    /// describes the argument type of the conversion function (\c
    /// literalFuncName).
    ///
    /// \param literalFuncName The name of the conversion function requirement
    /// in \c protocol.
    ///
    /// \param builtinProtocol The "builtin" form of the protocol, which
    /// always takes builtin types and can only be properly implemented
    /// by standard library types. If \c type does not conform to this
    /// protocol, it's literal type will.
    ///
    /// \param builtinLiteralFuncName The name of the conversion function
    /// requirement in \c builtinProtocol.
    ///
    /// \param brokenProtocolDiag The diagnostic to emit if the protocol
    /// is broken.
    ///
    /// \param brokenBuiltinProtocolDiag The diagnostic to emit if the builtin
    /// protocol is broken.
    ///
    /// \returns the converted literal expression.
    Expr *convertLiteralInPlace(LiteralExpr *literal, Type type,
                                ProtocolDecl *protocol, Identifier literalType,
                                DeclName literalFuncName,
                                ProtocolDecl *builtinProtocol,
                                DeclName builtinLiteralFuncName,
                                Diag<> brokenProtocolDiag,
                                Diag<> brokenBuiltinProtocolDiag);

    /// Finish a function application by performing the appropriate
    /// conversions on the function and argument expressions and setting
    /// the resulting type.
    ///
    /// \param apply The function application to finish type-checking, which
    /// may be a newly-built expression.
    ///
    /// \param openedType The "opened" type this expression had during
    /// type checking, which will be used to specialize the resulting,
    /// type-checked expression appropriately.
    ///
    /// \param locator The locator for the original expression.
    ///
    /// \param calleeLocator The locator that identifies the apply's callee.
    Expr *finishApply(ApplyExpr *apply, Type openedType,
                      ConstraintLocatorBuilder locator,
                      ConstraintLocatorBuilder calleeLocator);

    /// Build the function and argument list for a `@dynamicCallable`
    /// application.
    std::pair</*fn*/ Expr *, ArgumentList *>
    buildDynamicCallable(ApplyExpr *apply, SelectedOverload selected,
                         FuncDecl *method, AnyFunctionType *methodType,
                         ConstraintLocatorBuilder applyFunctionLoc);

  private:
    /// Simplify the given type by substituting all occurrences of
    /// type variables for their fixed types.
    Type simplifyType(Type type) {
      return solution.simplifyType(type);
    }

  public:
    /// Coerce the given expression to the given type.
    ///
    /// This operation cannot fail.
    ///
    /// \param expr The expression to coerce.
    /// \param toType The type to coerce the expression to.
    /// \param locator Locator used to describe where in this expression we are.
    ///
    /// \returns the coerced expression, which will have type \c ToType.
    Expr *coerceToType(Expr *expr, Type toType,
                       ConstraintLocatorBuilder locator);

    /// Coerce the arguments in the provided argument list to their matching
    /// parameter types.
    ///
    /// This operation cannot fail.
    ///
    /// \param args The argument list.
    /// \param funcType The function type.
    /// \param callee The callee for the function being applied.
    /// \param apply The ApplyExpr that forms the call.
    /// \param locator Locator used to describe where in this expression we are.
    ///
    /// \returns The resulting ArgumentList.
    ArgumentList *coerceCallArguments(
        ArgumentList *args, AnyFunctionType *funcType, ConcreteDeclRef callee,
        ApplyExpr *apply, ConstraintLocatorBuilder locator,
        ArrayRef<AppliedPropertyWrapper> appliedPropertyWrappers);

    /// Coerce the given 'self' argument (e.g., for the base of a
    /// member expression) to the given type.
    ///
    /// \param expr The expression to coerce.
    ///
    /// \param baseTy The base type
    ///
    /// \param member The member being accessed.
    ///
    /// \param locator Locator used to describe where in this expression we are.
    Expr *coerceSelfArgumentToType(Expr *expr,
                                   Type baseTy, ValueDecl *member,
                                   ConstraintLocatorBuilder locator);

  private:
    /// Build a new subscript.
    ///
    /// \param base The base of the subscript.
    /// \param args The argument list of the subscript.
    /// \param locator The locator used to refer to the subscript.
    /// \param isImplicit Whether this is an implicit subscript.
    Expr *buildSubscript(Expr *base, ArgumentList *args,
                         ConstraintLocatorBuilder locator,
                         ConstraintLocatorBuilder memberLocator,
                         bool isImplicit, AccessSemantics semantics,
                         const SelectedOverload &selected) {
      // Build the new subscript.
      auto newSubscript = buildSubscriptHelper(base, args, selected,
                                               locator, isImplicit, semantics);
      return forceUnwrapIfExpected(newSubscript, memberLocator,
                                   IUOReferenceKind::ReturnValue);
    }

    Expr *buildSubscriptHelper(Expr *base, ArgumentList *args,
                               const SelectedOverload &selected,
                               ConstraintLocatorBuilder locator,
                               bool isImplicit, AccessSemantics semantics) {
      auto choice = selected.choice;
      auto &ctx = cs.getASTContext();

      // Apply a key path if we have one.
      if (choice.getKind() == OverloadChoiceKind::KeyPathApplication) {
        auto applicationTy =
            simplifyType(selected.adjustedOpenedType)->castTo<FunctionType>();

        // The index argument should be (keyPath: KeyPath<Root, Value>).
        // Dig the key path expression out of the arguments.
        auto *indexKP = args->getUnaryExpr();
        assert(indexKP);
        indexKP = cs.coerceToRValue(indexKP);
        auto keyPathExprTy = cs.getType(indexKP);
        auto keyPathTy = applicationTy->getParams().front().getOldType();

        Type valueTy;
        Type baseTy;
        bool resultIsLValue;
        
        if (auto nom = keyPathTy->getAs<NominalType>()) {
          // AnyKeyPath is <T> rvalue T -> rvalue Any?
          if (nom->isAnyKeyPath()) {
            valueTy = ctx.getAnyExistentialType();
            valueTy = OptionalType::get(valueTy);
            resultIsLValue = false;
            base = cs.coerceToRValue(base);
            baseTy = cs.getType(base);
            // We don't really want to attempt AnyKeyPath application
            // if we know a more specific key path type is being applied.
            if (!keyPathTy->isEqual(keyPathExprTy)) {
              ctx.Diags
                  .diagnose(base->getLoc(),
                            diag::expr_smart_keypath_application_type_mismatch,
                            keyPathExprTy, baseTy)
                  .highlight(args->getSourceRange());
            }
          } else {
            llvm_unreachable("unknown key path class!");
          }
        } else {
          auto keyPathBGT = keyPathTy->castTo<BoundGenericType>();
          baseTy = keyPathBGT->getGenericArgs()[0];

          // Coerce the index to the key path's type
          indexKP = coerceToType(indexKP, keyPathTy, locator);

          // Coerce the base to the key path's expected base type.
          if (!baseTy->isEqual(cs.getType(base)->getRValueType()))
            base = coerceToType(base, baseTy, locator);

          if (keyPathBGT->isPartialKeyPath()) {
            // PartialKeyPath<T> is rvalue T -> rvalue Any
            valueTy = ctx.getAnyExistentialType();
            resultIsLValue = false;
            base = cs.coerceToRValue(base);
          } else {
            // *KeyPath<T, U> is T -> U, with rvalueness based on mutability
            // of base and keypath
            valueTy = keyPathBGT->getGenericArgs()[1];
        
            // The result may be an lvalue based on the base and key path kind.
            if (keyPathBGT->isKeyPath()) {
              resultIsLValue = false;
              base = cs.coerceToRValue(base);
            } else if (keyPathBGT->isWritableKeyPath()) {
              resultIsLValue = cs.getType(base)->hasLValueType();
            } else if (keyPathBGT->isReferenceWritableKeyPath()) {
              resultIsLValue = true;
              base = cs.coerceToRValue(base);
            } else {
              llvm_unreachable("unknown key path class!");
            }
          }
        }
        if (resultIsLValue)
          valueTy = LValueType::get(valueTy);

        auto keyPathAp = new (cs.getASTContext()) KeyPathApplicationExpr(
            base, args->getStartLoc(), indexKP, args->getEndLoc(), valueTy,
            base->isImplicit() && args->isImplicit());
        cs.setType(keyPathAp, valueTy);
        return keyPathAp;
      }
      
      auto subscript = cast<SubscriptDecl>(choice.getDecl());

      auto baseTy = cs.getType(base)->getRValueType();
      
      bool baseIsInstance = true;
      if (auto baseMeta = baseTy->getAs<AnyMetatypeType>()) {
        baseIsInstance = false;
        baseTy = baseMeta->getInstanceType();
      }

      // Check whether the base is 'super'.
      bool isSuper = base->isSuperExpr();

      // If we opened up an existential when performing the subscript, open
      // the base accordingly.
      auto memberLoc = cs.getCalleeLocator(cs.getConstraintLocator(locator));
      auto knownOpened = solution.OpenedExistentialTypes.find(memberLoc);
      if (knownOpened != solution.OpenedExistentialTypes.end()) {
        base = openExistentialReference(base, knownOpened->second, subscript);
        baseTy = knownOpened->second;
      }

      // Compute the concrete reference to the subscript.
      auto subscriptRef = resolveConcreteDeclRef(subscript, memberLoc);

      // Coerce the index argument.
      auto openedFullFnType = simplifyType(selected.adjustedOpenedFullType)
                                  ->castTo<FunctionType>();
      auto fullSubscriptTy = openedFullFnType->getResult()
                                  ->castTo<FunctionType>();
      auto &appliedWrappers =
          solution.appliedPropertyWrappers[memberLoc->getAnchor()];
      args = coerceCallArguments(
          args, fullSubscriptTy, subscriptRef, nullptr,
          locator.withPathElement(ConstraintLocator::ApplyArgument),
          appliedWrappers);
      if (!args)
        return nullptr;

      // Handle dynamic lookup.
      if (choice.getKind() == OverloadChoiceKind::DeclViaDynamic ||
          subscript->getAttrs().hasAttribute<OptionalAttr>()) {
        base = coerceSelfArgumentToType(base, baseTy, subscript, locator);
        if (!base)
          return nullptr;

        // TODO: diagnose if semantics != AccessSemantics::Ordinary?
        auto subscriptExpr = DynamicSubscriptExpr::create(
            ctx, base, args, subscriptRef, isImplicit);
        auto resultTy = simplifyType(selected.adjustedOpenedType)
                            ->castTo<FunctionType>()
                            ->getResult();
        assert(!selected.adjustedOpenedFullType->hasOpenedExistential()
               && "open existential archetype in AnyObject subscript type?");
        cs.setType(subscriptExpr, resultTy);
        Expr *result = subscriptExpr;
        closeExistentials(result, locator);
        return result;
      }

      // Convert the base.
      auto openedBaseType =
          getBaseType(openedFullFnType, /*wantsRValue*/ false);
      auto containerTy = solution.simplifyType(openedBaseType);
      
      if (baseIsInstance) {
        base = coerceSelfArgumentToType(
          base, containerTy, subscript,
          locator.withPathElement(ConstraintLocator::MemberRefBase));
      } else {
        base = coerceToType(base,
                            MetatypeType::get(containerTy),
                            locator.withPathElement(
                              ConstraintLocator::MemberRefBase));
        
        if (!base)
          return nullptr;
        
        base = cs.coerceToRValue(base);
      }
      if (!base)
        return nullptr;

      const auto hasDynamicSelf =
          subscript->getElementInterfaceType()->hasDynamicSelfType();

      // Form the subscript expression.
      auto subscriptExpr = SubscriptExpr::create(
          ctx, base, args, subscriptRef, isImplicit, semantics);
      cs.setType(subscriptExpr, fullSubscriptTy->getResult());
      subscriptExpr->setIsSuper(isSuper);
      cs.setType(subscriptExpr,
                 hasDynamicSelf
                     ? fullSubscriptTy->getResult()->replaceCovariantResultType(
                           containerTy, 0)
                     : fullSubscriptTy->getResult());

      Expr *result = subscriptExpr;
      closeExistentials(result, locator);

      // If the element is of dynamic 'Self' type, wrap an implicit conversion
      // around the resulting expression, with the destination type having
      // 'Self' swapped for the appropriate replacement type -- usually the
      // base object type.
      if (hasDynamicSelf) {
        const auto conversionTy = simplifyType(
            selected.adjustedOpenedType->castTo<FunctionType>()->getResult());

        if (!containerTy->isEqual(conversionTy)) {
          result = cs.cacheType(
              new (ctx) CovariantReturnConversionExpr(result, conversionTy));
        }
      }

      return result;
    }

    /// Build a new reference to another constructor.
    Expr *buildOtherConstructorRef(Type openedFullType,
                                   ConcreteDeclRef ref, Expr *base,
                                   DeclNameLoc loc,
                                   ConstraintLocatorBuilder locator,
                                   bool implicit) {
      auto &ctx = cs.getASTContext();

      // The constructor was opened with the allocating type, not the
      // initializer type. Map the former into the latter.
      auto *resultTy =
          solution.simplifyType(openedFullType)->castTo<FunctionType>();

      const auto selfTy = getBaseType(resultTy);

      ParameterTypeFlags flags;
      if (!selfTy->hasReferenceSemantics())
        flags = flags.withInOut(true);

      auto selfParam = AnyFunctionType::Param(selfTy, Identifier(), flags);
      resultTy = FunctionType::get({selfParam}, resultTy->getResult(),
                                   resultTy->getExtInfo());

      // Build the constructor reference.
      Expr *ctorRef = cs.cacheType(
          new (ctx) OtherConstructorDeclRefExpr(ref, loc, implicit, resultTy));

      // Wrap in covariant `Self` return if needed.
      if (selfTy->hasReferenceSemantics()) {
        auto covariantTy = resultTy->replaceCovariantResultType(
          cs.getType(base)->getWithoutSpecifierType(), 2);
        if (!covariantTy->isEqual(resultTy))
          ctorRef = cs.cacheType(
               new (ctx) CovariantFunctionConversionExpr(ctorRef, covariantTy));
      }

      return ctorRef;
    }

    /// Build an implicit argument for keypath based dynamic lookup,
    /// which consists of KeyPath expression and a single component.
    ///
    /// \param argType The type of the keypath subscript argument.
    /// \param dotLoc The location of the '.' preceding member name.
    /// \param memberLoc The locator to be associated with new argument.
    Expr *buildKeyPathDynamicMemberArgExpr(Type argType, SourceLoc dotLoc,
                                           ConstraintLocator *memberLoc) {
      using Component = KeyPathExpr::Component;
      auto &ctx = cs.getASTContext();
      auto *anchor = getAsExpr(memberLoc->getAnchor());

      auto makeKeyPath = [&](ArrayRef<Component> components) -> Expr * {
        auto *kp = KeyPathExpr::createImplicit(ctx, /*backslashLoc*/ dotLoc,
                                               components, anchor->getEndLoc());
        kp->setType(argType);
        cs.cacheExprTypes(kp);

        // See whether there's an equivalent ObjC key path string we can produce
        // for interop purposes.
        checkAndSetObjCKeyPathString(kp);
        return kp;
      };

      Type keyPathTy = argType;
      if (auto *existential = keyPathTy->getAs<ExistentialType>()) {
        keyPathTy = existential->getSuperclass();
        assert(isKnownKeyPathType(keyPathTy));
      }

      SmallVector<Component, 2> components;
      auto *componentLoc = cs.getConstraintLocator(
          memberLoc,
          LocatorPathElt::KeyPathDynamicMember(keyPathTy->getAnyNominal()));
      auto overload = solution.getOverloadChoice(componentLoc);

      // Looks like there is a chain of implicit `subscript(dynamicMember:)`
      // calls necessary to resolve a member reference.
      switch (overload.choice.getKind()) {
      case OverloadChoiceKind::DynamicMemberLookup:
      case OverloadChoiceKind::KeyPathDynamicMemberLookup: {
        buildKeyPathSubscriptComponent(overload, dotLoc, /*args=*/nullptr,
                                       componentLoc, components);
        return makeKeyPath(components);
      }

      default:
        break;
      }

      if (auto *KPE = dyn_cast<KeyPathExpr>(anchor)) {
        // Looks like keypath dynamic member lookup was used inside
        // of a keypath expression e.g. `\Lens<[Int]>.count` where
        // `count` is referenced using dynamic lookup.
        auto kpElt = memberLoc->findFirst<LocatorPathElt::KeyPathComponent>();
        assert(kpElt && "no keypath component node");
        auto &comp = KPE->getComponents()[kpElt->getIndex()];

        if (comp.getKind() == Component::Kind::UnresolvedProperty) {
          buildKeyPathPropertyComponent(overload, comp.getLoc(), componentLoc,
                                        components);
        } else if (comp.getKind() == Component::Kind::UnresolvedSubscript) {
          buildKeyPathSubscriptComponent(overload, comp.getLoc(),
                                         comp.getSubscriptArgs(), componentLoc,
                                         components);
        } else {
          return nullptr;
        }
        return makeKeyPath(components);
      }

      if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchor)) {
        buildKeyPathPropertyComponent(overload, UDE->getLoc(), componentLoc,
                                      components);
      } else if (auto *SE = dyn_cast<SubscriptExpr>(anchor)) {
        buildKeyPathSubscriptComponent(overload, SE->getLoc(), SE->getArgs(),
                                       componentLoc, components);
      } else {
        return nullptr;
      }
      return makeKeyPath(components);
    }

    /// Bridge the given value (which is an error type) to NSError.
    Expr *bridgeErrorToObjectiveC(Expr *value) {
      auto &ctx = cs.getASTContext();

      auto nsErrorType = ctx.getNSErrorType();
      assert(nsErrorType && "Missing NSError?");

      auto result = new (ctx) BridgeToObjCExpr(value, nsErrorType);
      return cs.cacheType(result);
    }

    /// Bridge the given value to its corresponding Objective-C object
    /// type.
    ///
    /// This routine should only be used for bridging value types.
    ///
    /// \param value The value to be bridged.
    Expr *bridgeToObjectiveC(Expr *value, Type objcType) {
      auto result = new (cs.getASTContext()) BridgeToObjCExpr(value, objcType);
      return cs.cacheType(result);
    }

    /// Bridge the given object from Objective-C to its value type.
    ///
    /// This routine should only be used for bridging value types.
    ///
    /// \param object The object, whose type should already be of the type
    /// that the value type bridges through.
    ///
    /// \param valueType The value type to which we are bridging.
    ///
    /// \param conditional Whether the bridging should be conditional. If false,
    /// uses forced bridging.
    ///
    /// \returns a value of type \c valueType (optional if \c conditional) that
    /// stores the bridged result or (when \c conditional) an empty optional if
    /// conditional bridging fails.
    Expr *bridgeFromObjectiveC(Expr *object, Type valueType, bool conditional) {
      auto &ctx = cs.getASTContext();

      if (!conditional) {
        auto result = new (ctx) BridgeFromObjCExpr(object, valueType);
        return cs.cacheType(result);
      }

      // Find the _BridgedToObjectiveC protocol.
      auto bridgedProto =
          ctx.getProtocol(KnownProtocolKind::ObjectiveCBridgeable);

      // Try to find the conformance of the value type to _BridgedToObjectiveC.
      auto bridgedToObjectiveCConformance
        = dc->getParentModule()->checkConformance(valueType, bridgedProto);

      FuncDecl *fn = nullptr;

      if (bridgedToObjectiveCConformance) {
        assert(bridgedToObjectiveCConformance.getConditionalRequirements()
                   .empty() &&
               "cannot conditionally conform to _BridgedToObjectiveC");
        // The conformance to _BridgedToObjectiveC is statically known.
        // Retrieve the bridging operation to be used if a static conformance
        // to _BridgedToObjectiveC can be proven.
        fn = conditional ? ctx.getConditionallyBridgeFromObjectiveCBridgeable()
                         : ctx.getForceBridgeFromObjectiveCBridgeable();
      } else {
        // Retrieve the bridging operation to be used if a static conformance
        // to _BridgedToObjectiveC cannot be proven.
        fn = conditional ? ctx.getConditionallyBridgeFromObjectiveC()
                         : ctx.getForceBridgeFromObjectiveC();
      }

      if (!fn) {
        ctx.Diags.diagnose(object->getLoc(), diag::missing_bridging_function,
                           conditional);
        return nullptr;
      }

      // Form a reference to the function. The bridging operations are generic,
      // so we need to form substitutions and compute the resulting type.
      auto genericSig = fn->getGenericSignature();

      auto subMap = SubstitutionMap::get(
          genericSig,
          [&](SubstitutableType *type) -> Type {
            assert(type->isEqual(genericSig.getGenericParams()[0]));
            return valueType;
          },
          [&](CanType origType, Type replacementType,
              ProtocolDecl *protoType) -> ProtocolConformanceRef {
            assert(bridgedToObjectiveCConformance);
            return bridgedToObjectiveCConformance;
          });

      ConcreteDeclRef fnSpecRef(fn, subMap);

      auto resultType = OptionalType::get(valueType);

      auto result = new (ctx)
          ConditionalBridgeFromObjCExpr(object, resultType, fnSpecRef);
      return cs.cacheType(result);
    }

    /// Bridge the given object from Objective-C to its value type.
    ///
    /// This routine should only be used for bridging value types.
    ///
    /// \param object The object, whose type should already be of the type
    /// that the value type bridges through.
    ///
    /// \param valueType The value type to which we are bridging.
    ///
    /// \returns a value of type \c valueType that stores the bridged result.
    Expr *forceBridgeFromObjectiveC(Expr *object, Type valueType) {
      return bridgeFromObjectiveC(object, valueType, false);
    }
    
  public:
    ExprRewriter(ConstraintSystem &cs, Solution &solution,
                 std::optional<SyntacticElementTarget> target,
                 bool suppressDiagnostics)
        : cs(cs), dc(target ? target->getDeclContext() : cs.DC),
          solution(solution), target(target),
          SuppressDiagnostics(suppressDiagnostics) {}

    ConstraintSystem &getConstraintSystem() const { return cs; }

    /// Simplify the expression type and return the expression.
    ///
    /// This routine is used for 'simple' expressions that only need their
    /// types simplified, with no further computation.
    Expr *simplifyExprType(Expr *expr) {
      auto toType = simplifyType(cs.getType(expr));
      cs.setType(expr, toType);
      return expr;
    }

    Expr *visitErrorExpr(ErrorExpr *expr) {
      // Do nothing with error expressions.
      return expr;
    }

    Expr *visitCodeCompletionExpr(CodeCompletionExpr *expr) {
      // Do nothing with code completion expressions.
      auto toType = simplifyType(cs.getType(expr));
      cs.setType(expr, toType);
      return expr;
    }

    Expr *handleIntegerLiteralExpr(LiteralExpr *expr) {
      // If the literal has been assigned a builtin integer type,
      // don't mess with it.
      if (cs.getType(expr)->is<AnyBuiltinIntegerType>())
        return expr;

      auto &ctx = cs.getASTContext();
      ProtocolDecl *protocol = TypeChecker::getProtocol(
          cs.getASTContext(), expr->getLoc(),
          KnownProtocolKind::ExpressibleByIntegerLiteral);
      ProtocolDecl *builtinProtocol = TypeChecker::getProtocol(
          cs.getASTContext(), expr->getLoc(),
          KnownProtocolKind::ExpressibleByBuiltinIntegerLiteral);

      // For type-sugar reasons, prefer the spelling of the default literal
      // type.
      auto type = simplifyType(cs.getType(expr));
      if (auto defaultType = TypeChecker::getDefaultType(protocol, dc)) {
        if (defaultType->isEqual(type))
          type = defaultType;
      }
      if (auto floatProtocol = TypeChecker::getProtocol(
              cs.getASTContext(), expr->getLoc(),
              KnownProtocolKind::ExpressibleByFloatLiteral)) {
        if (auto defaultFloatType =
                TypeChecker::getDefaultType(floatProtocol, dc)) {
          if (defaultFloatType->isEqual(type))
            type = defaultFloatType;
        }
      }

      DeclName initName(ctx, DeclBaseName::createConstructor(),
                        {ctx.Id_integerLiteral});
      DeclName builtinInitName(ctx, DeclBaseName::createConstructor(),
                               {ctx.Id_builtinIntegerLiteral});

      auto *result = convertLiteralInPlace(
          expr, type, protocol, ctx.Id_IntegerLiteralType, initName,
          builtinProtocol, builtinInitName, diag::integer_literal_broken_proto,
          diag::builtin_integer_literal_broken_proto);
      if (result) {
        // TODO: It seems that callers expect this to have types assigned...
        result->setType(cs.getType(result));
      }
      return result;
    }
    
    Expr *visitNilLiteralExpr(NilLiteralExpr *expr) {
      auto type = simplifyType(cs.getType(expr));

      // By far the most common 'nil' literal is for Optional<T>.none.
      // We don't have to look up the witness in this case since SILGen
      // knows how to lower it directly.
      if (auto objectType = type->getOptionalObjectType()) {
        cs.setType(expr, type);
        return expr;
      }

      auto &ctx = cs.getASTContext();
      auto *protocol = TypeChecker::getProtocol(
          ctx, expr->getLoc(), KnownProtocolKind::ExpressibleByNilLiteral);

      // For type-sugar reasons, prefer the spelling of the default literal
      // type.
      if (auto defaultType = TypeChecker::getDefaultType(protocol, dc)) {
        if (defaultType->isEqual(type))
          type = defaultType;
      }

      DeclName initName(ctx, DeclBaseName::createConstructor(),
                        {ctx.Id_nilLiteral});
      return convertLiteralInPlace(expr, type, protocol,
                                   Identifier(), initName,
                                   nullptr,
                                   Identifier(),
                                   diag::nil_literal_broken_proto,
                                   diag::nil_literal_broken_proto);
    }

    
    Expr *visitIntegerLiteralExpr(IntegerLiteralExpr *expr) {
      return handleIntegerLiteralExpr(expr);
    }

    Expr *visitFloatLiteralExpr(FloatLiteralExpr *expr) {
      // If the literal has been assigned a builtin float type,
      // don't mess with it.
      if (cs.getType(expr)->is<BuiltinFloatType>())
        return expr;

      auto &ctx = cs.getASTContext();
      ProtocolDecl *protocol = TypeChecker::getProtocol(
          cs.getASTContext(), expr->getLoc(),
          KnownProtocolKind::ExpressibleByFloatLiteral);
      ProtocolDecl *builtinProtocol = TypeChecker::getProtocol(
          cs.getASTContext(), expr->getLoc(),
          KnownProtocolKind::ExpressibleByBuiltinFloatLiteral);

      // For type-sugar reasons, prefer the spelling of the default literal
      // type.
      auto type = simplifyType(cs.getType(expr));
      if (auto defaultType = TypeChecker::getDefaultType(protocol, dc)) {
        if (defaultType->isEqual(type))
          type = defaultType;
      }

      // Get the _MaxBuiltinFloatType decl, or look for it if it's not cached.
      auto maxFloatTypeDecl = ctx.get_MaxBuiltinFloatTypeDecl();
      // Presence of this declaration has been validated in CSGen.
      assert(maxFloatTypeDecl);

      auto maxType = maxFloatTypeDecl->getUnderlyingType();

      DeclName initName(ctx, DeclBaseName::createConstructor(),
                        {ctx.Id_floatLiteral});
      DeclName builtinInitName(ctx, DeclBaseName::createConstructor(),
                               {ctx.Id_builtinFloatLiteral});

      expr->setBuiltinType(maxType);
      return convertLiteralInPlace(
          expr, type, protocol, ctx.Id_FloatLiteralType, initName,
          builtinProtocol, builtinInitName, diag::float_literal_broken_proto,
          diag::builtin_float_literal_broken_proto);
    }

    Expr *visitBooleanLiteralExpr(BooleanLiteralExpr *expr) {
      if (cs.getType(expr) && cs.getType(expr)->is<BuiltinIntegerType>())
        return expr;

      auto &ctx = cs.getASTContext();
      ProtocolDecl *protocol = TypeChecker::getProtocol(
          cs.getASTContext(), expr->getLoc(),
          KnownProtocolKind::ExpressibleByBooleanLiteral);
      ProtocolDecl *builtinProtocol = TypeChecker::getProtocol(
          cs.getASTContext(), expr->getLoc(),
          KnownProtocolKind::ExpressibleByBuiltinBooleanLiteral);
      if (!protocol || !builtinProtocol)
        return nullptr;

      auto type = simplifyType(cs.getType(expr));
      DeclName initName(ctx, DeclBaseName::createConstructor(),
                        {ctx.Id_booleanLiteral});
      DeclName builtinInitName(ctx, DeclBaseName::createConstructor(),
                               {ctx.Id_builtinBooleanLiteral});
      return convertLiteralInPlace(
          expr, type, protocol, ctx.Id_BooleanLiteralType, initName,
          builtinProtocol, builtinInitName, diag::boolean_literal_broken_proto,
          diag::builtin_boolean_literal_broken_proto);
    }

    Expr *handleStringLiteralExpr(LiteralExpr *expr) {
      auto stringLiteral = dyn_cast<StringLiteralExpr>(expr);
      auto magicLiteral = dyn_cast<MagicIdentifierLiteralExpr>(expr);
      assert(bool(stringLiteral) != bool(magicLiteral) &&
             "literal must be either a string literal or a magic literal");

      auto type = simplifyType(cs.getType(expr));
      auto &ctx = cs.getASTContext();

      bool isStringLiteral = true;
      bool isGraphemeClusterLiteral = false;
      ProtocolDecl *protocol = TypeChecker::getProtocol(
          ctx, expr->getLoc(), KnownProtocolKind::ExpressibleByStringLiteral);

      if (!dc->getParentModule()->checkConformance(type, protocol)) {
        // If the type does not conform to ExpressibleByStringLiteral, it should
        // be ExpressibleByExtendedGraphemeClusterLiteral.
        protocol = TypeChecker::getProtocol(
            cs.getASTContext(), expr->getLoc(),
            KnownProtocolKind::ExpressibleByExtendedGraphemeClusterLiteral);
        isStringLiteral = false;
        isGraphemeClusterLiteral = true;
      }
      if (!dc->getParentModule()->checkConformance(type, protocol)) {
        // ... or it should be ExpressibleByUnicodeScalarLiteral.
        protocol = TypeChecker::getProtocol(
            cs.getASTContext(), expr->getLoc(),
            KnownProtocolKind::ExpressibleByUnicodeScalarLiteral);
        isStringLiteral = false;
        isGraphemeClusterLiteral = false;
      }

      // For type-sugar reasons, prefer the spelling of the default literal
      // type.
      if (auto defaultType = TypeChecker::getDefaultType(protocol, dc)) {
        if (defaultType->isEqual(type))
          type = defaultType;
      }

      ProtocolDecl *builtinProtocol;
      Identifier literalType;
      DeclName literalFuncName;
      DeclName builtinLiteralFuncName;
      Diag<> brokenProtocolDiag;
      Diag<> brokenBuiltinProtocolDiag;

      if (isStringLiteral) {
        literalType = ctx.Id_StringLiteralType;

        literalFuncName = DeclName(ctx, DeclBaseName::createConstructor(),
                                   {ctx.Id_stringLiteral});

        builtinProtocol = TypeChecker::getProtocol(
            cs.getASTContext(), expr->getLoc(),
            KnownProtocolKind::ExpressibleByBuiltinStringLiteral);
        builtinLiteralFuncName =
            DeclName(ctx, DeclBaseName::createConstructor(),
                     {ctx.Id_builtinStringLiteral,
                      ctx.getIdentifier("utf8CodeUnitCount"),
                      ctx.getIdentifier("isASCII")});
        if (stringLiteral)
          stringLiteral->setEncoding(StringLiteralExpr::UTF8);
        else
          magicLiteral->setStringEncoding(StringLiteralExpr::UTF8);

        brokenProtocolDiag = diag::string_literal_broken_proto;
        brokenBuiltinProtocolDiag = diag::builtin_string_literal_broken_proto;
      } else if (isGraphemeClusterLiteral) {
        literalType = ctx.Id_ExtendedGraphemeClusterLiteralType;
        literalFuncName = DeclName(ctx, DeclBaseName::createConstructor(),
                                   {ctx.Id_extendedGraphemeClusterLiteral});
        builtinLiteralFuncName =
            DeclName(ctx, DeclBaseName::createConstructor(),
                     {ctx.Id_builtinExtendedGraphemeClusterLiteral,
                      ctx.getIdentifier("utf8CodeUnitCount"),
                      ctx.getIdentifier("isASCII")});

        builtinProtocol = TypeChecker::getProtocol(
            cs.getASTContext(), expr->getLoc(),
            KnownProtocolKind::
                ExpressibleByBuiltinExtendedGraphemeClusterLiteral);
        brokenProtocolDiag =
            diag::extended_grapheme_cluster_literal_broken_proto;
        brokenBuiltinProtocolDiag =
            diag::builtin_extended_grapheme_cluster_literal_broken_proto;
      } else {
        // Otherwise, we should have just one Unicode scalar.
        literalType = ctx.Id_UnicodeScalarLiteralType;

        literalFuncName = DeclName(ctx, DeclBaseName::createConstructor(),
                                   {ctx.Id_unicodeScalarLiteral});
        builtinLiteralFuncName =
            DeclName(ctx, DeclBaseName::createConstructor(),
                     {ctx.Id_builtinUnicodeScalarLiteral});

        builtinProtocol = TypeChecker::getProtocol(
            cs.getASTContext(), expr->getLoc(),
            KnownProtocolKind::ExpressibleByBuiltinUnicodeScalarLiteral);

        brokenProtocolDiag = diag::unicode_scalar_literal_broken_proto;
        brokenBuiltinProtocolDiag =
            diag::builtin_unicode_scalar_literal_broken_proto;

        stringLiteral->setEncoding(StringLiteralExpr::OneUnicodeScalar);
      }

      return convertLiteralInPlace(expr,
                                   type,
                                   protocol,
                                   literalType,
                                   literalFuncName,
                                   builtinProtocol,
                                   builtinLiteralFuncName,
                                   brokenProtocolDiag,
                                   brokenBuiltinProtocolDiag);
    }
    
    Expr *visitStringLiteralExpr(StringLiteralExpr *expr) {
      return handleStringLiteralExpr(expr);
    }

    Expr *
    visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *expr) {
      // Figure out the string type we're converting to.
      auto openedType = cs.getType(expr);
      auto type = simplifyType(openedType);
      cs.setType(expr, type);

      auto &ctx = cs.getASTContext();
      auto loc = expr->getStartLoc();

      auto fetchProtocolInitWitness =
          [&](KnownProtocolKind protocolKind, Type type,
              ArrayRef<Identifier> argLabels) -> ConcreteDeclRef {
        auto proto = TypeChecker::getProtocol(ctx, loc, protocolKind);
        assert(proto && "Missing string interpolation protocol?");

        auto conformance =
          dc->getParentModule()->checkConformance(type, proto);
        assert(conformance && "string interpolation type conforms to protocol");

        DeclName constrName(ctx, DeclBaseName::createConstructor(), argLabels);

        ConcreteDeclRef witness =
            conformance.getWitnessByName(type->getRValueType(), constrName);
        if (!witness || !isa<AbstractFunctionDecl>(witness.getDecl()))
          return nullptr;
        return witness;
      };

      auto *interpolationProto = TypeChecker::getProtocol(
          cs.getASTContext(), expr->getLoc(),
          KnownProtocolKind::ExpressibleByStringInterpolation);
      auto associatedTypeDecl =
          interpolationProto->getAssociatedType(ctx.Id_StringInterpolation);
      if (associatedTypeDecl == nullptr) {
        ctx.Diags.diagnose(expr->getStartLoc(),
                           diag::interpolation_broken_proto);
        return nullptr;
      }
      auto interpolationType =
        simplifyType(DependentMemberType::get(openedType, associatedTypeDecl));

      // Fetch needed witnesses.
      ConcreteDeclRef builderInit = fetchProtocolInitWitness(
          KnownProtocolKind::StringInterpolationProtocol, interpolationType,
          {ctx.Id_literalCapacity, ctx.Id_interpolationCount});
      if (!builderInit) return nullptr;
      expr->setBuilderInit(builderInit);

      ConcreteDeclRef resultInit = fetchProtocolInitWitness(
          KnownProtocolKind::ExpressibleByStringInterpolation, type,
          {ctx.Id_stringInterpolation});
      if (!resultInit) return nullptr;
      expr->setInitializer(resultInit);

      // Make the integer literals for the parameters.
      auto buildExprFromUnsigned = [&](unsigned value) {
        LiteralExpr *expr = IntegerLiteralExpr::createFromUnsigned(ctx, value, loc);
        cs.setType(expr, ctx.getIntType());
        return handleIntegerLiteralExpr(expr);
      };

      expr->setLiteralCapacityExpr(
          buildExprFromUnsigned(expr->getLiteralCapacity()));
      expr->setInterpolationCountExpr(
          buildExprFromUnsigned(expr->getInterpolationCount()));

      // This OpaqueValueExpr represents the result of builderInit above in
      // silgen.
      OpaqueValueExpr *interpolationExpr =
          new (ctx) OpaqueValueExpr(expr->getSourceRange(), interpolationType);
      cs.setType(interpolationExpr, interpolationType);
      expr->setInterpolationExpr(interpolationExpr);

      auto appendingExpr = expr->getAppendingExpr();
      appendingExpr->setSubExpr(interpolationExpr);

      return expr;
    }

    Expr *visitRegexLiteralExpr(RegexLiteralExpr *expr) {
      simplifyExprType(expr);
      expr->setInitializer(
          cs.getASTContext().getRegexInitDecl(cs.getType(expr)));
      return expr;
    }

    Expr *visitMagicIdentifierLiteralExpr(MagicIdentifierLiteralExpr *expr) {
#if SWIFT_BUILD_SWIFT_SYNTAX
      auto &ctx = cs.getASTContext();
      if (ctx.LangOpts.hasFeature(Feature::BuiltinMacros)) {
        auto expandedType = solution.simplifyType(solution.getType(expr));
        cs.setType(expr, expandedType);

        auto locator = cs.getConstraintLocator(expr);
        auto overload = solution.getOverloadChoice(locator);

        auto macro = cast<MacroDecl>(overload.choice.getDecl());
        ConcreteDeclRef macroRef = resolveConcreteDeclRef(macro, locator);
        auto *expansion = MacroExpansionExpr::create(
            dc, expr->getStartLoc(), DeclNameRef(macro->getName()),
            DeclNameLoc(expr->getLoc()), SourceLoc(), {}, SourceLoc(), nullptr,
            MacroRole::Expression, /*isImplicit=*/true, expandedType);
        expansion->setMacroRef(macroRef);
        (void)evaluateOrDefault(ctx.evaluator,
                                ExpandMacroExpansionExprRequest{expansion},
                                std::nullopt);
        if (expansion->getRewritten()) {
          cs.cacheExprTypes(expansion);
          return expansion;
        }

        // Fall through to use old implementation.
      }
#endif

      switch (expr->getKind()) {
#define MAGIC_STRING_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
      case MagicIdentifierLiteralExpr::NAME: \
        return handleStringLiteralExpr(expr);
#define MAGIC_INT_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
      case MagicIdentifierLiteralExpr::NAME: \
        return handleIntegerLiteralExpr(expr);
#define MAGIC_POINTER_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
      case MagicIdentifierLiteralExpr::NAME: \
        return expr;
#include "swift/AST/MagicIdentifierKinds.def"
      }


      llvm_unreachable("Unhandled MagicIdentifierLiteralExpr in switch.");
    }

    Expr *visitObjectLiteralExpr(ObjectLiteralExpr *expr) {
      if (cs.getType(expr) && !cs.getType(expr)->hasTypeVariable())
        return expr;

      // Figure out the type we're converting to.
      auto openedType = cs.getType(expr);
      auto type = simplifyType(openedType);
      cs.setType(expr, type);

      if (type->is<UnresolvedType>())
        return expr;

      auto &ctx = cs.getASTContext();

      Type conformingType = type;
      if (auto baseType = conformingType->getOptionalObjectType()) {
        // The type may be optional due to a failable initializer in the
        // protocol.
        conformingType = baseType;
      }

      // Find the appropriate object literal protocol.
      auto proto = TypeChecker::getLiteralProtocol(ctx, expr);
      assert(proto && "Missing object literal protocol?");
      auto conformance =
        dc->getParentModule()->checkConformance(conformingType, proto);
      assert(conformance && "object literal type conforms to protocol");

      auto constrName = TypeChecker::getObjectLiteralConstructorName(ctx, expr);

      ConcreteDeclRef witness = conformance.getWitnessByName(
          conformingType->getRValueType(), constrName);

      auto selectedOverload = solution.getOverloadChoiceIfAvailable(
          cs.getConstraintLocator(expr, ConstraintLocator::ConstructorMember));

      if (!selectedOverload)
        return nullptr;

      auto fnType =
          simplifyType(selectedOverload->adjustedOpenedType)->castTo<FunctionType>();

      auto newArgs = coerceCallArguments(
          expr->getArgs(), fnType, witness, /*applyExpr=*/nullptr,
          cs.getConstraintLocator(expr, ConstraintLocator::ApplyArgument),
          /*appliedPropertyWrappers=*/{});

      expr->setInitializer(witness);
      expr->setArgs(newArgs);
      return expr;
    }

    /// Add an implicit force unwrap of an expression that references an
    /// implicitly unwrapped optional T!.
    Expr *forceUnwrapIUO(Expr *expr) {
      auto optTy = cs.getType(expr);
      auto objectTy = optTy->getWithoutSpecifierType()->getOptionalObjectType();
      assert(objectTy && "Trying to unwrap non-optional?");

      // Preserve l-valueness of the result.
      if (optTy->is<LValueType>())
        objectTy = LValueType::get(objectTy);

      expr = new (cs.getASTContext()) ForceValueExpr(expr, expr->getEndLoc(),
                                                     /*forcedIUO*/ true);
      cs.setType(expr, objectTy);
      expr->setImplicit();
      return expr;
    }

    /// Retrieve the number of implicit force unwraps required for an implicitly
    /// unwrapped optional reference at a given locator.
    unsigned getIUOForceUnwrapCount(ConstraintLocatorBuilder locator,
                                    IUOReferenceKind refKind) {
      // Adjust the locator depending on the type of IUO reference.
      auto loc = locator;
      switch (refKind) {
      case IUOReferenceKind::ReturnValue:
        loc = locator.withPathElement(ConstraintLocator::FunctionResult);
        break;
      case IUOReferenceKind::Value:
        break;
      }
      auto *iuoLocator = cs.getConstraintLocator(
          loc, {ConstraintLocator::ImplicitlyUnwrappedDisjunctionChoice});
      auto *dynamicLocator = cs.getConstraintLocator(
          loc, {ConstraintLocator::DynamicLookupResult});

      // First check whether we recorded an implicit unwrap for an IUO.
      unsigned unwrapCount = 0;
      if (solution.DisjunctionChoices.lookup(iuoLocator))
        unwrapCount += 1;

      // Next check if we recorded an implicit unwrap for dynamic lookup.
      if (solution.DisjunctionChoices.lookup(dynamicLocator))
        unwrapCount += 1;

      return unwrapCount;
    }

    Expr *
    forceUnwrapIfExpected(Expr *expr, ConstraintLocatorBuilder locator,
                          IUOReferenceKind refKind = IUOReferenceKind::Value) {
      auto unwrapCount = getIUOForceUnwrapCount(locator, refKind);
      for (unsigned i = 0; i < unwrapCount; ++i)
        expr = forceUnwrapIUO(expr);
      return expr;
    }

    Expr *visitDeclRefExpr(DeclRefExpr *expr) {
      auto locator = cs.getConstraintLocator(expr);

      // Check whether this is a reference to `__buildSelf`, and if so,
      // replace it with a type expression with fully resolved type.
      if (auto *var = dyn_cast<VarDecl>(expr->getDecl())) {
        auto &ctx = cs.getASTContext();
        if (var->getName() == ctx.Id_builderSelf) {
          assert(expr->isImplicit() && var->isImplicit());
          auto builderTy =
            solution.getResolvedType(var)->getMetatypeInstanceType();

          return cs.cacheType(
            TypeExpr::createImplicitHack(expr->getLoc(), builderTy, ctx));
        }
      }

      // Find the overload choice used for this declaration reference.
      auto selected = solution.getOverloadChoice(locator);
      return buildDeclRef(selected, expr->getNameLoc(), locator,
                          expr->isImplicit());
    }

    Expr *visitSuperRefExpr(SuperRefExpr *expr) {
      simplifyExprType(expr);
      return expr;
    }

    Expr *visitTypeExpr(TypeExpr *expr) {
      auto toType = simplifyType(cs.getType(expr));
      assert(toType->is<MetatypeType>());
      cs.setType(expr, toType);
      return expr;
    }

    Expr *visitOtherConstructorDeclRefExpr(OtherConstructorDeclRefExpr *expr) {
      cs.setType(expr, expr->getDecl()->getInitializerInterfaceType());
      return expr;
    }

    Expr *visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *expr) {
      return simplifyExprType(expr);
    }

    Expr *visitOverloadedDeclRefExpr(OverloadedDeclRefExpr *expr) {
      // Determine the declaration selected for this overloaded reference.
      auto locator = cs.getConstraintLocator(expr);
      auto selected = solution.getOverloadChoice(locator);

      return buildDeclRef(selected, expr->getNameLoc(), locator,
                          expr->isImplicit());
    }

    Expr *visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *expr) {
      // FIXME: We should have generated an overload set from this, in which
      // case we can emit a typo-correction error here but recover well.
      return nullptr;
    }

    Expr *visitUnresolvedSpecializeExpr(UnresolvedSpecializeExpr *expr) {
      // Our specializations should have resolved the subexpr to the right type.
      return expr->getSubExpr();
    }

    Expr *visitMemberRefExpr(MemberRefExpr *expr) {
      auto memberLocator = cs.getConstraintLocator(expr,
                                                   ConstraintLocator::Member);
      auto selected = solution.getOverloadChoice(memberLocator);
      return buildMemberRef(
          expr->getBase(), expr->getDotLoc(), selected, expr->getNameLoc(),
          cs.getConstraintLocator(expr), memberLocator, expr->isImplicit(),
          expr->getAccessSemantics());
    }

    Expr *visitDynamicMemberRefExpr(DynamicMemberRefExpr *expr) {
      llvm_unreachable("already type-checked?");
    }

    Expr *visitUnresolvedMemberExpr(UnresolvedMemberExpr *expr) {
      // If constraint solving resolved this to an UnresolvedType, then we're in
      // an ambiguity tolerant mode used for diagnostic generation.  Just leave
      // this as an unresolved member reference.
      Type resultTy = simplifyType(cs.getType(expr));
      if (resultTy->hasUnresolvedType()) {
        cs.setType(expr, resultTy);
        return expr;
      }

      auto &ctx = cs.getASTContext();
      // Find the selected member and base type.
      auto memberLocator = cs.getConstraintLocator(
                             expr, ConstraintLocator::UnresolvedMember);
      auto selected = solution.getOverloadChoice(memberLocator);

      // Unresolved member lookup always happens in a metatype so dig out the
      // instance type.
      auto baseTy = selected.choice.getBaseType()->getMetatypeInstanceType();
      baseTy = simplifyType(baseTy);

      // The base expression is simply the metatype of the base type.
      // FIXME: This location info is bogus.
      auto base = TypeExpr::createImplicitHack(expr->getDotLoc(), baseTy, ctx);
      cs.cacheExprTypes(base);

      // Build the member reference.
      auto *exprLoc = cs.getConstraintLocator(expr);
      auto result = buildMemberRef(
          base, expr->getDotLoc(), selected, expr->getNameLoc(), exprLoc,
          memberLocator, expr->isImplicit(), AccessSemantics::Ordinary);
      if (!result)
        return nullptr;

      return coerceToType(result, resultTy, cs.getConstraintLocator(expr));
    }

  private:
    /// A list of "suspicious" optional injections.
    SmallVector<InjectIntoOptionalExpr *, 4> SuspiciousOptionalInjections;

    /// A list of implicit coercions of noncopyable types.
    SmallVector<Expr *, 4> ConsumingCoercions;

    /// Create a member reference to the given constructor.
    Expr *applyCtorRefExpr(Expr *expr, Expr *base, SourceLoc dotLoc,
                           DeclNameLoc nameLoc, bool implicit,
                           ConstraintLocator *ctorLocator,
                           SelectedOverload overload) {
      auto locator = cs.getConstraintLocator(expr);
      auto choice = overload.choice;
      assert(choice.getKind() != OverloadChoiceKind::DeclViaDynamic);
      auto *ctor = cast<ConstructorDecl>(choice.getDecl());

      // If the subexpression is a metatype, build a direct reference to the
      // constructor.
      if (cs.getType(base)->is<AnyMetatypeType>()) {
        return buildMemberRef(base, dotLoc, overload, nameLoc, locator,
                              ctorLocator, implicit, AccessSemantics::Ordinary);
      }

      // The subexpression must be either 'self' or 'super'.
      if (!base->isSuperExpr()) {
        // 'super' references have already been fully checked; handle the
        // 'self' case below.
        auto &de = cs.getASTContext().Diags;
        bool diagnoseBadInitRef = true;
        auto arg = base->getSemanticsProvidingExpr();
        if (auto dre = dyn_cast<DeclRefExpr>(arg)) {
          if (dre->getDecl()->getName() == cs.getASTContext().Id_self) {
            // We have a reference to 'self'.
            diagnoseBadInitRef = false;
            // Make sure the reference to 'self' occurs within an initializer.
            if (!dyn_cast_or_null<ConstructorDecl>(
                   dc->getInnermostMethodContext())) {
              if (!SuppressDiagnostics)
                de.diagnose(dotLoc, diag::init_delegation_outside_initializer);
              return nullptr;
            }
          }
        }

        // If we need to diagnose this as a bad reference to an initializer,
        // do so now.
        if (diagnoseBadInitRef) {
          // Determine whether 'super' would have made sense as a base.
          bool hasSuper = false;
          if (auto func = dc->getInnermostMethodContext()) {
            if (auto classDecl = func->getDeclContext()->getSelfClassDecl()) {
              hasSuper = classDecl->hasSuperclass();
            }
          }

          if (SuppressDiagnostics)
            return nullptr;

          de.diagnose(dotLoc, diag::bad_init_ref_base, hasSuper);
        }
      }

      // Build a partial application of the delegated initializer.
      auto callee = resolveConcreteDeclRef(ctor, ctorLocator);
      Expr *ctorRef = buildOtherConstructorRef(overload.adjustedOpenedFullType, callee,
                                               base, nameLoc, ctorLocator,
                                               implicit);
      auto *call =
          DotSyntaxCallExpr::create(cs.getASTContext(), ctorRef, dotLoc,
                                    Argument::unlabeled(base));

      return finishApply(call, cs.getType(expr), locator, ctorLocator);
    }

    /// Give the deprecation warning for referring to a global function
    /// when there's a method from a conditional conformance in a smaller/closer
    /// scope.
    void
    diagnoseDeprecatedConditionalConformanceOuterAccess(UnresolvedDotExpr *UDE,
                                                        ValueDecl *choice) {
      auto getValueDecl = [](DeclContext *context) -> ValueDecl * {
        if (auto generic = context->getSelfNominalTypeDecl()) {
          return generic;
        } else if (context->isModuleScopeContext())
          return context->getParentModule();
        else
          llvm_unreachable("Unsupported base");
      };

      auto result =
          TypeChecker::lookupUnqualified(dc, UDE->getName(), UDE->getLoc());
      assert(result && "names can't just disappear");
      // These should all come from the same place.
      auto exampleInner = result.front();
      auto innerChoice = exampleInner.getValueDecl();
      auto innerDC = exampleInner.getDeclContext()->getInnermostTypeContext();
      auto innerParentDecl = getValueDecl(innerDC);

      auto choiceDC = choice->getDeclContext();
      auto choiceParentDecl = getValueDecl(choiceDC);

      auto &DE = cs.getASTContext().Diags;
      DE.diagnose(UDE->getLoc(),
                  diag::warn_deprecated_conditional_conformance_outer_access,
                  UDE->getName(),
                  choice->getDescriptiveKind(), choiceParentDecl,
                  innerChoice->getDescriptiveKind(), innerParentDecl);

      auto name = choiceParentDecl->getName().getBaseIdentifier();
      SmallString<32> namePlusDot = name.str();
      namePlusDot.push_back('.');

      DE.diagnose(UDE->getLoc(),
                  diag::fix_deprecated_conditional_conformance_outer_access,
                  namePlusDot, choice->getDescriptiveKind())
          .fixItInsert(UDE->getStartLoc(), namePlusDot);
    }

    Expr *applyMemberRefExpr(Expr *expr, Expr *base, SourceLoc dotLoc,
                             DeclNameLoc nameLoc, bool implicit) {
      // If we have a constructor member, handle it as a constructor.
      auto ctorLocator = cs.getConstraintLocator(
                           expr,
                           ConstraintLocator::ConstructorMember);
      if (auto selected = solution.getOverloadChoiceIfAvailable(ctorLocator)) {
        return applyCtorRefExpr(
            expr, base, dotLoc, nameLoc, implicit, ctorLocator, *selected);
      }

      // Determine the declaration selected for this overloaded reference.
      auto memberLocator = cs.getConstraintLocator(expr,
                                                   ConstraintLocator::Member);
      auto selectedElt = solution.getOverloadChoiceIfAvailable(memberLocator);

      if (!selectedElt) {
        // If constraint solving resolved this to an UnresolvedType, then we're
        // in an ambiguity tolerant mode used for diagnostic generation.  Just
        // leave this as whatever type of member reference it already is.
        Type resultTy = simplifyType(cs.getType(expr));
        cs.setType(expr, resultTy);
        return expr;
      }

      auto selected = *selectedElt;
      if (!selected.choice.getBaseType()) {
        // This is one of the "outer alternatives", meaning the innermost
        // methods didn't work out.
        //
        // The only way to get here is via an UnresolvedDotExpr with outer
        // alternatives.
        auto UDE = cast<UnresolvedDotExpr>(expr);
        diagnoseDeprecatedConditionalConformanceOuterAccess(
            UDE, selected.choice.getDecl());

        return buildDeclRef(selected, nameLoc, memberLocator, implicit);
      }

      switch (selected.choice.getKind()) {
      case OverloadChoiceKind::DeclViaBridge: {
        base = cs.coerceToRValue(base);

        // Look through an implicitly unwrapped optional.
        auto baseTy = cs.getType(base);
        auto &ctx = cs.getASTContext();
        auto baseMetaTy = baseTy->getAs<MetatypeType>();
        auto baseInstTy = (baseMetaTy ? baseMetaTy->getInstanceType() : baseTy);
        auto classTy = ctx.getBridgedToObjC(dc, baseInstTy);

        if (baseMetaTy) {
          // FIXME: We're dropping side effects in the base here!
          base = TypeExpr::createImplicitHack(base->getLoc(), classTy, ctx);
          cs.cacheExprTypes(base);
        } else {
          // Bridge the base to its corresponding Objective-C object.
          base = bridgeToObjectiveC(base, classTy);
        }

        // Fall through to build the member reference.
        LLVM_FALLTHROUGH;
      }

      case OverloadChoiceKind::Decl:
      case OverloadChoiceKind::DeclViaUnwrappedOptional:
      case OverloadChoiceKind::DeclViaDynamic:
        return buildMemberRef(base, dotLoc, selected, nameLoc,
                              cs.getConstraintLocator(expr), memberLocator,
                              implicit, AccessSemantics::Ordinary);

      case OverloadChoiceKind::TupleIndex: {
        Type toType = simplifyType(cs.getType(expr));

        auto baseTy = cs.getType(base);
        // If the base type is not a tuple l-value, access to
        // its elements supposed to be r-value as well.
        //
        // This is modeled in constraint system in a way
        // that when member type is resolved by `resolveOverload`
        // it would take r-value type of the element at
        // specified index, but if it's a type variable it
        // could still be bound to l-value later.
        if (!baseTy->is<LValueType>())
          toType = toType->getRValueType();

        // If the result type is an rvalue and the base contains lvalues,
        // need a full tuple coercion to properly load & set access kind
        // on all underlying elements before taking a single element.
        if (!toType->hasLValueType() && baseTy->hasLValueType())
          base = coerceToType(base, baseTy->getRValueType(),
                              cs.getConstraintLocator(base));

        return cs.cacheType(new (cs.getASTContext())
                            TupleElementExpr(base, dotLoc,
                                             selected.choice.getTupleIndex(),
                                             nameLoc.getBaseNameLoc(), toType));
      }

      case OverloadChoiceKind::MaterializePack: {
        auto baseTy = solution.getResolvedType(base);

        // Load the base tuple if necessary, materialization
        // operates on r-value types only.
        if (baseTy->is<LValueType>())
          base = coerceToType(base, baseTy->getRValueType(),
                              cs.getConstraintLocator(base));

        auto packType = solution.getResolvedType(expr);
        return cs.cacheType(
            MaterializePackExpr::create(cs.getASTContext(),
                                        base, expr->getEndLoc(),
                                        packType));
      }

      case OverloadChoiceKind::ExtractFunctionIsolation: {
        auto isolationType = solution.getResolvedType(expr);
        auto *extractExpr = new (cs.getASTContext())
          ExtractFunctionIsolationExpr(base,
                                       expr->getEndLoc(),
                                       isolationType);
        return cs.cacheType(extractExpr);
      }

      case OverloadChoiceKind::KeyPathApplication:
        llvm_unreachable("should only happen in a subscript");

      case OverloadChoiceKind::DynamicMemberLookup:
      case OverloadChoiceKind::KeyPathDynamicMemberLookup: {
        return buildDynamicMemberLookupRef(
            expr, base, dotLoc, nameLoc.getStartLoc(), selected, memberLocator);
      }
      }

      llvm_unreachable("Unhandled OverloadChoiceKind in switch.");
    }

    /// Form a type checked expression for the argument of a
    /// @dynamicMemberLookup subscript index parameter.
    Expr *buildDynamicMemberLookupArgExpr(StringRef name, SourceLoc loc,
                                          Type literalTy) {
      // Build and type check the string literal index value to the specific
      // string type expected by the subscript.
      auto &ctx = cs.getASTContext();
      auto *nameExpr = new (ctx) StringLiteralExpr(name, loc, /*implicit*/true);
      cs.setType(nameExpr, literalTy);
      return handleStringLiteralExpr(nameExpr);
    }

    Expr *buildDynamicMemberLookupRef(Expr *expr, Expr *base, SourceLoc dotLoc,
                                      SourceLoc nameLoc,
                                      const SelectedOverload &overload,
                                      ConstraintLocator *memberLocator) {
      // Application of a DynamicMemberLookup result turns
      // a member access of `x.foo` into x[dynamicMember: "foo"], or
      // x[dynamicMember: KeyPath<T, U>]
      auto &ctx = cs.getASTContext();

      // Figure out the expected type of the lookup parameter. We know the
      // openedFullType will be "xType -> indexType -> resultType".  Dig out
      // its index type.
      auto paramTy = getTypeOfDynamicMemberIndex(overload);

      Expr *argExpr = nullptr;
      if (overload.choice.getKind() ==
          OverloadChoiceKind::DynamicMemberLookup) {
        // Build and type check the string literal index value to the specific
        // string type expected by the subscript.
        auto fieldName = overload.choice.getName().getBaseIdentifier().str();
        argExpr = buildDynamicMemberLookupArgExpr(fieldName, nameLoc, paramTy);
      } else {
        argExpr =
            buildKeyPathDynamicMemberArgExpr(paramTy, dotLoc, memberLocator);
      }

      if (!argExpr)
        return nullptr;

      // Build an argument list.
      auto *argList =
          ArgumentList::forImplicitSingle(ctx, ctx.Id_dynamicMember, argExpr);
      // Build and return a subscript that uses this string as the index.
      return buildSubscript(base, argList, cs.getConstraintLocator(expr),
                            memberLocator, /*isImplicit*/ true,
                            AccessSemantics::Ordinary, overload);
    }

    Type getTypeOfDynamicMemberIndex(const SelectedOverload &overload) {
      assert(overload.choice.isAnyDynamicMemberLookup());

      auto declTy = solution.simplifyType(overload.adjustedOpenedFullType);
      auto subscriptTy = declTy->castTo<FunctionType>()->getResult();
      auto refFnType = subscriptTy->castTo<FunctionType>();
      assert(refFnType->getParams().size() == 1 &&
             "subscript always has one arg");
      return refFnType->getParams()[0].getPlainType();
    }

  public:
    Expr *visitUnresolvedDotExpr(UnresolvedDotExpr *expr) {
      return applyMemberRefExpr(expr, expr->getBase(), expr->getDotLoc(),
                                expr->getNameLoc(), expr->isImplicit());
    }

    Expr *visitSequenceExpr(SequenceExpr *expr) {
      llvm_unreachable("Expression wasn't parsed?");
    }

    Expr *visitArrowExpr(ArrowExpr *expr) {
      llvm_unreachable("Arrow expr wasn't converted to type?");
    }

    Expr *visitIdentityExpr(IdentityExpr *expr) {
      cs.setType(expr, cs.getType(expr->getSubExpr()));
      return expr;
    }

    Expr *visitCopyExpr(CopyExpr *expr) {
      auto toType = simplifyType(cs.getType(expr));
      cs.setType(expr, toType);

      auto *subExpr = expr->getSubExpr();
      auto type = simplifyType(cs.getType(subExpr));

      // Let's load the value associated with this try.
      if (type->hasLValueType()) {
        subExpr = coerceToType(subExpr, type->getRValueType(),
                               cs.getConstraintLocator(subExpr));

        if (!subExpr)
          return nullptr;
      }

      expr->setSubExpr(subExpr);

      return expr;
    }

    Expr *visitConsumeExpr(ConsumeExpr *expr) {
      auto toType = simplifyType(cs.getType(expr));
      cs.setType(expr, toType);

      auto *subExpr = expr->getSubExpr();
      auto type = simplifyType(cs.getType(subExpr));

      // Let's load the value associated with this consume.
      if (type->hasLValueType()) {
        subExpr = coerceToType(subExpr, type->getRValueType(),
                               cs.getConstraintLocator(subExpr));

        if (!subExpr)
          return nullptr;
      }

      expr->setSubExpr(subExpr);

      return expr;
    }

    Expr *visitAnyTryExpr(AnyTryExpr *expr) {
      auto *subExpr = expr->getSubExpr();
      auto type = simplifyType(cs.getType(subExpr));

      // Let's load the value associated with this try.
      if (type->hasLValueType()) {
        subExpr = coerceToType(subExpr, type->getRValueType(),
                               cs.getConstraintLocator(subExpr));

        if (!subExpr)
          return nullptr;
      }

      cs.setType(expr, cs.getType(subExpr));
      expr->setSubExpr(subExpr);

      return expr;
    }

    Expr *visitOptionalTryExpr(OptionalTryExpr *expr) {
      // Prior to Swift 5, 'try?' simply wraps the type of its sub-expression
      // in an Optional, regardless of the sub-expression type.
      //
      // In Swift 5+, the type of a 'try?' expression of static type T is:
      //  - Equal to T if T is optional
      //  - Equal to T? if T is not optional
      //
      // The result is that in Swift 5, 'try?' avoids producing nested optionals.
      
      if (!cs.getASTContext().LangOpts.isSwiftVersionAtLeast(5)) {
        // Nothing to do for Swift 4 and earlier!
        return simplifyExprType(expr);
      }
      
      Type exprType = simplifyType(cs.getType(expr));

      auto subExpr = coerceToType(expr->getSubExpr(), exprType,
                                  cs.getConstraintLocator(expr));
      if (!subExpr) return nullptr;
      expr->setSubExpr(subExpr);

      cs.setType(expr, exprType);
      return expr;
    }

    Expr *visitParenExpr(ParenExpr *expr) {
      Expr *result = expr;
      auto type = simplifyType(cs.getType(expr));

      // A ParenExpr can end up with a tuple type if it contains
      // a pack expansion. Rewrite it to a TupleExpr.
      if (dyn_cast<PackExpansionExpr>(expr->getSubExpr())) {
        auto &ctx = cs.getASTContext();
        result = TupleExpr::create(ctx, expr->getLParenLoc(),
                                   {expr->getSubExpr()},
                                   /*elementNames=*/{},
                                   /*elementNameLocs=*/{},
                                   expr->getRParenLoc(),
                                   expr->isImplicit());
      }

      cs.setType(result, type);
      return result;
    }

    Expr *visitUnresolvedMemberChainResultExpr(
        UnresolvedMemberChainResultExpr *expr) {
      // Since this expression only exists to give the result type of an
      // unresolved member chain visibility in the AST, remove it from the AST
      // now that we have a solution and coerce the subexpr to the resulting
      // type.
      auto *subExpr = expr->getSubExpr();
      auto type = simplifyType(cs.getType(expr));
      subExpr = coerceToType(
          subExpr, type,
          cs.getConstraintLocator(
              expr, ConstraintLocator::UnresolvedMemberChainResult));
      cs.setType(subExpr, type);
      return subExpr;
    }

    Expr *visitTupleExpr(TupleExpr *expr) {
      return simplifyExprType(expr);
    }

    Expr *visitSubscriptExpr(SubscriptExpr *expr) {
      auto *memberLocator =
          cs.getConstraintLocator(expr, ConstraintLocator::SubscriptMember);
      auto overload = solution.getOverloadChoiceIfAvailable(memberLocator);

      // Handles situation where there was a solution available but it didn't
      // have a proper overload selected from subscript call, might be because
      // solver was allowed to return free or unresolved types, which can
      // happen while running diagnostics on one of the expressions.
      if (!overload) {
        auto *base = expr->getBase();
        auto &de = cs.getASTContext().Diags;
        auto baseType = cs.getType(base);

        if (auto errorType = baseType->getAs<ErrorType>()) {
          de.diagnose(base->getLoc(), diag::cannot_subscript_base,
                      errorType->getOriginalType())
              .highlight(base->getSourceRange());
        } else {
          de.diagnose(base->getLoc(), diag::cannot_subscript_ambiguous_base)
              .highlight(base->getSourceRange());
        }

        return nullptr;
      }

      if (overload->choice.isKeyPathDynamicMemberLookup()) {
        return buildDynamicMemberLookupRef(
            expr, expr->getBase(), expr->getArgs()->getStartLoc(), SourceLoc(),
            *overload, memberLocator);
      }

      return buildSubscript(expr->getBase(), expr->getArgs(),
                            cs.getConstraintLocator(expr), memberLocator,
                            expr->isImplicit(), expr->getAccessSemantics(),
                            *overload);
    }

    /// "Finish" an array expression by filling in the semantic expression.
    ArrayExpr *finishArrayExpr(ArrayExpr *expr) {
      Type arrayTy = cs.getType(expr);
      auto &ctx = cs.getASTContext();

      ProtocolDecl *arrayProto = TypeChecker::getProtocol(
          ctx, expr->getLoc(), KnownProtocolKind::ExpressibleByArrayLiteral);
      assert(arrayProto && "type-checked array literal w/o protocol?!");

      auto conformance =
        dc->getParentModule()->checkConformance(arrayTy, arrayProto);
      assert(conformance && "Type does not conform to protocol?");

      DeclName name(ctx, DeclBaseName::createConstructor(),
                    {ctx.Id_arrayLiteral});
      ConcreteDeclRef witness =
          conformance.getWitnessByName(arrayTy->getRValueType(), name);
      if (!witness || !isa<AbstractFunctionDecl>(witness.getDecl()))
        return nullptr;
      expr->setInitializer(witness);

      auto elementType = expr->getElementType();

      for (unsigned i = 0, n = expr->getNumElements(); i != n; ++i) {
        expr->setElement(
            i, coerceToType(expr->getElement(i), elementType,
                            cs.getConstraintLocator(
                                expr, {LocatorPathElt::TupleElement(i)})));
      }

      return expr;
    }

    Expr *visitArrayExpr(ArrayExpr *expr) {
      Type openedType = cs.getType(expr);
      Type arrayTy = simplifyType(openedType);
      cs.setType(expr, arrayTy);
      if (!finishArrayExpr(expr)) return nullptr;

      // If the array element type was defaulted, note that in the expression.
      if (solution.DefaultedConstraints.count(cs.getConstraintLocator(expr)))
        expr->setIsTypeDefaulted();

      return expr;
    }

    /// "Finish" a dictionary expression by filling in the semantic expression.
    DictionaryExpr *finishDictionaryExpr(DictionaryExpr *expr) {
      Type dictionaryTy = cs.getType(expr);

      auto &ctx = cs.getASTContext();
      ProtocolDecl *dictionaryProto = TypeChecker::getProtocol(
          cs.getASTContext(), expr->getLoc(),
          KnownProtocolKind::ExpressibleByDictionaryLiteral);

      auto conformance =
        dc->getParentModule()->checkConformance(dictionaryTy, dictionaryProto);
      if (conformance.isInvalid())
        return nullptr;

      DeclName name(ctx, DeclBaseName::createConstructor(),
                    {ctx.Id_dictionaryLiteral});
      ConcreteDeclRef witness =
          conformance.getWitnessByName(dictionaryTy->getRValueType(), name);
      if (!witness || !isa<AbstractFunctionDecl>(witness.getDecl()))
        return nullptr;
      expr->setInitializer(witness);

      auto elementType = expr->getElementType();

      for (unsigned i = 0, n = expr->getNumElements(); i != n; ++i) {
        expr->setElement(
            i, coerceToType(expr->getElement(i), elementType,
                            cs.getConstraintLocator(
                                expr, {LocatorPathElt::TupleElement(i)})));
      }

      return expr;
    }

    Expr *visitDictionaryExpr(DictionaryExpr *expr) {
      Type openedType = cs.getType(expr);
      Type dictionaryTy = simplifyType(openedType);
      cs.setType(expr, dictionaryTy);
      if (!finishDictionaryExpr(expr)) return nullptr;

      // If the dictionary key or value type was defaulted, note that in the
      // expression.
      if (solution.DefaultedConstraints.count(cs.getConstraintLocator(expr)))
        expr->setIsTypeDefaulted();

      return expr;
    }

    Expr *visitDynamicSubscriptExpr(DynamicSubscriptExpr *expr) {
      auto *memberLocator =
          cs.getConstraintLocator(expr, ConstraintLocator::SubscriptMember);
      return buildSubscript(expr->getBase(), expr->getArgs(),
                            cs.getConstraintLocator(expr), memberLocator,
                            expr->isImplicit(), AccessSemantics::Ordinary,
                            solution.getOverloadChoice(memberLocator));
    }

    Expr *visitTupleElementExpr(TupleElementExpr *expr) {
      simplifyExprType(expr);
      return expr;
    }

    Expr *visitCaptureListExpr(CaptureListExpr *expr) {
      // The type of the capture list is the type of the closure contained
      // inside it.
      cs.setType(expr, cs.getType(expr->getClosureBody()));
      return expr;
    }

    Expr *visitClosureExpr(ClosureExpr *expr) {
      llvm_unreachable("Handled by the walker directly");
    }

    Expr *visitAutoClosureExpr(AutoClosureExpr *expr) {
      llvm_unreachable("Already type-checked");
    }

    Expr *visitInOutExpr(InOutExpr *expr) {
      auto objectTy = cs.getType(expr->getSubExpr())->getRValueType();

      // The type is simply inout of whatever the lvalue's object type was.
      cs.setType(expr, InOutType::get(objectTy));
      return expr;
    }

    Expr *visitVarargExpansionExpr(VarargExpansionExpr *expr) {
      simplifyExprType(expr);

      auto arrayTy = cs.getType(expr);
      expr->setSubExpr(coerceToType(expr->getSubExpr(), arrayTy,
                                    cs.getConstraintLocator(expr)));
      return expr;
    }

    Expr *visitPackExpansionExpr(PackExpansionExpr *expr) {
      simplifyExprType(expr);

      // Set the opened pack element environment for this pack expansion.
      auto expansionTy = cs.getType(expr)->castTo<PackExpansionType>();
      auto *locator = cs.getConstraintLocator(expr);
      auto *environment = cs.getPackElementEnvironment(locator,
          expansionTy->getCountType()->getCanonicalType());

      // Assert that we have an opened element environment, otherwise we'll get
      // an ASTVerifier crash when pack archetypes or element archetypes appear
      // inside the pack expansion expression.
      assert(environment);
      expr->setGenericEnvironment(environment);

      return expr;
    }

    Expr *visitPackElementExpr(PackElementExpr *expr) {
      if (auto *packRefExpr = expr->getPackRefExpr()) {
        packRefExpr = cs.coerceToRValue(packRefExpr);
        auto packRefType = cs.getType(packRefExpr);
        if (auto patternType =
                getPatternTypeOfSingleUnlabeledPackExpansionTuple(
                    packRefType)) {
          auto *materializedPackExpr = MaterializePackExpr::create(
              cs.getASTContext(), packRefExpr, packRefExpr->getLoc(),
              patternType, /*implicit*/ true);
          cs.cacheType(materializedPackExpr);
          expr->setPackRefExpr(materializedPackExpr);
        }
      }
      return simplifyExprType(expr);
    }

    Expr *visitMaterializePackExpr(MaterializePackExpr *expr) {
      llvm_unreachable("MaterializePackExpr already type-checked");
    }

    Expr *visitDynamicTypeExpr(DynamicTypeExpr *expr) {
      Expr *base = expr->getBase();
      base = cs.coerceToRValue(base);
      expr->setBase(base);

      return simplifyExprType(expr);
    }

    Expr *visitOpaqueValueExpr(OpaqueValueExpr *expr) {
      return expr;
    }

    Expr *visitPropertyWrapperValuePlaceholderExpr(
        PropertyWrapperValuePlaceholderExpr *expr) {
      // If there is no opaque value placeholder, the enclosing init(wrappedValue:)
      // expression cannot be reused, so we only need the original wrapped value
      // argument in the AST.
      if (!expr->getOpaqueValuePlaceholder())
        return expr->getOriginalWrappedValue();

      return expr;
    }

    Expr *visitAppliedPropertyWrapperExpr(AppliedPropertyWrapperExpr *expr) {
      llvm_unreachable("Already type-checked");
    }

    Expr *visitDefaultArgumentExpr(DefaultArgumentExpr *expr) {
      llvm_unreachable("Already type-checked");
    }

    Expr *visitApplyExpr(ApplyExpr *expr) {
      auto *calleeLoc = CalleeLocators[expr];
      assert(calleeLoc);
      return finishApply(expr, cs.getType(expr), cs.getConstraintLocator(expr),
                         calleeLoc);
    }

    Expr *visitRebindSelfInConstructorExpr(RebindSelfInConstructorExpr *expr) {
      Expr *subExpr = expr->getSubExpr();
      auto *inCtor = cast<ConstructorDecl>(dc->getInnermostMethodContext());

      // A non-failable initializer cannot delegate nor chain to
      //  * a throwing initializer via 'try?'
      //  * a failable initializer, unless the failability kind is IUO or the
      //    result is explicitly forced
      if (!inCtor->isFailable() && cs.getType(subExpr)->isOptional()) {
        bool isChaining;
        auto *otherCtorRef = expr->getCalledConstructor(isChaining);
        auto *otherCtor = otherCtorRef->getDecl();
        assert(otherCtor);

        Expr *newSubExpr = subExpr;
        auto &de = cs.getASTContext().Diags;

        // Look through 'try', 'try!', and identity expressions.
        subExpr = subExpr->getValueProvidingExpr();

        // Diagnose if we find a 'try?'.
        // FIXME: We could put up with occurrences of 'try?' if they do not apply
        // directly to the called ctor, e.g. 'try? try self.init()', or if the
        // called ctor isn't throwing.
        if (auto *OTE = dyn_cast<OptionalTryExpr>(subExpr)) {
          if (SuppressDiagnostics)
            return nullptr;

          // Give the user the option of using 'try!' or making the enclosing
          // initializer failable.
          de.diagnose(OTE->getTryLoc(),
                      diag::delegate_chain_nonoptional_to_optional_try,
                      isChaining);
          de.diagnose(OTE->getTryLoc(), diag::init_delegate_force_try)
              .fixItReplace({OTE->getTryLoc(), OTE->getQuestionLoc()}, "try!");
          de.diagnose(inCtor->getLoc(), diag::init_propagate_failure)
              .fixItInsertAfter(inCtor->getLoc(), "?");

          subExpr = OTE->getSubExpr();
        }

        while (true) {
          subExpr = subExpr->getSemanticsProvidingExpr();

          // Look through optional injections.
          if (auto *IIOE = dyn_cast<InjectIntoOptionalExpr>(subExpr)) {
            subExpr = IIOE->getSubExpr();
            continue;
          }

          // Look through all try expressions.
          if (auto *ATE = dyn_cast<AnyTryExpr>(subExpr)) {
            subExpr = ATE->getSubExpr();
            continue;
          }

          break;
        }

        // If we're still hitting an optional and the called ctor is failable,
        // diagnose only if the failability kind is not IUO. Note that the
        // expression type alone is not always indicative of the ctor's
        // failability, because it could be declared on 'Optional' itself.
        if (cs.getType(subExpr)->isOptional() && otherCtor->isFailable()) {
          if (!otherCtor->isImplicitlyUnwrappedOptional()) {
            if (SuppressDiagnostics)
              return nullptr;

            // Give the user the option of adding '!' or making the enclosing
            // initializer failable.
            de.diagnose(otherCtorRef->getLoc(),
                        diag::delegate_chain_nonoptional_to_optional,
                        isChaining, otherCtor);
            de.diagnose(otherCtorRef->getLoc(), diag::init_force_unwrap)
                .fixItInsertAfter(expr->getEndLoc(), "!");
            de.diagnose(inCtor->getLoc(), diag::init_propagate_failure)
                .fixItInsertAfter(inCtor->getLoc(), "?");
          }

          // Recover by injecting the force operation (the first option).
          newSubExpr = forceUnwrapIUO(newSubExpr);
        }

        expr->setSubExpr(newSubExpr);
      }

      return expr;
    }

    Expr *visitTernaryExpr(TernaryExpr *expr) {
      auto resultTy = simplifyType(cs.getType(expr));
      cs.setType(expr, resultTy);

      auto cond = cs.coerceToRValue(expr->getCondExpr());
      expr->setCondExpr(cond);

      // Coerce the then/else branches to the common type.
      expr->setThenExpr(coerceToType(
          expr->getThenExpr(), resultTy,
          cs.getConstraintLocator(expr, LocatorPathElt::TernaryBranch(true))));
      expr->setElseExpr(coerceToType(
          expr->getElseExpr(), resultTy,
          cs.getConstraintLocator(expr, LocatorPathElt::TernaryBranch(false))));

      return expr;
    }
    
    Expr *visitImplicitConversionExpr(ImplicitConversionExpr *expr) {
      llvm_unreachable("Already type-checked");
    }

    Expr *visitIsExpr(IsExpr *expr) {
      // Turn the subexpression into an rvalue.
      auto &ctx = cs.getASTContext();
      auto sub = cs.coerceToRValue(expr->getSubExpr());
      expr->setSubExpr(sub);

      // Simplify and update the type we checked against.
      auto *const castTypeRepr = expr->getCastTypeRepr();

      const auto fromType = cs.getType(sub);
      const auto toType = simplifyType(cs.getType(castTypeRepr));
      expr->setCastType(toType);
      cs.setType(castTypeRepr, toType);

      auto castKind = TypeChecker::typeCheckCheckedCast(
          fromType, toType, CheckedCastContextKind::IsExpr, dc);

      switch (castKind) {
      case CheckedCastKind::Unresolved:
        expr->setCastKind(CheckedCastKind::ValueCast);
        break;
          
      case CheckedCastKind::Coercion:
      case CheckedCastKind::BridgingCoercion:
      case CheckedCastKind::ValueCast:
      case CheckedCastKind::ArrayDowncast:
      case CheckedCastKind::DictionaryDowncast:
      case CheckedCastKind::SetDowncast:
        // Valid checks.
        expr->setCastKind(castKind);
        break;
      }

      // SIL-generation magically turns this into a Bool; make sure it can.
      if (!ctx.getBoolBuiltinInitDecl()) {
        ctx.Diags.diagnose(expr->getLoc(), diag::broken_bool);
        // Continue anyway.
      }

      // Dig through the optionals in the from/to types.
      SmallVector<Type, 2> fromOptionals;
      fromType->lookThroughAllOptionalTypes(fromOptionals);
      SmallVector<Type, 2> toOptionals;
      toType->lookThroughAllOptionalTypes(toOptionals);

      // If we have an imbalance of optionals or a collection
      // downcast, handle this as a checked cast followed by a
      // a 'hasValue' check.
      if (fromOptionals.size() != toOptionals.size() ||
          castKind == CheckedCastKind::ArrayDowncast ||
          castKind == CheckedCastKind::DictionaryDowncast ||
          castKind == CheckedCastKind::SetDowncast) {
        auto *const cast =
            ConditionalCheckedCastExpr::createImplicit(ctx, sub, toType);
        cast->setType(OptionalType::get(toType));
        cast->setCastType(toType);
        cs.setType(cast, cast->getType());

        // Type-check this conditional case.
        Expr *result = handleConditionalCheckedCastExpr(cast, castTypeRepr);
        if (!result)
          return nullptr;

        // Extract a Bool from the resulting expression.
        TypeChecker::requireOptionalIntrinsics(ctx, expr->getLoc());

        // Match the optional value against its `Some` case.
        auto *someDecl = ctx.getOptionalSomeDecl();
        auto isSomeExpr =
            new (ctx) EnumIsCaseExpr(result, castTypeRepr, someDecl);
        auto boolDecl = ctx.getBoolDecl();

        if (!boolDecl) {
          ctx.Diags.diagnose(SourceLoc(), diag::broken_bool);
        }

        cs.setType(isSomeExpr, boolDecl ? ctx.getBoolType() : Type());
        return isSomeExpr;
      }

      return expr;
    }

    /// The kind of cast we're working with for handling optional bindings.
    enum class OptionalBindingsCastKind {
      /// An explicit bridging conversion, spelled "as".
      Bridged,
      /// A forced cast, spelled "as!".
      Forced,
      /// A conditional cast, spelled "as?".
      Conditional,
    };

    /// Handle optional operands and results in an explicit cast.
    Expr *handleOptionalBindingsForCast(ExplicitCastExpr *cast, 
                                        Type finalResultType,
                                        OptionalBindingsCastKind castKind) {
      return handleOptionalBindings(cast->getSubExpr(), finalResultType,
                                    castKind,
        [&](Expr *sub, Type resultType) -> Expr* {

        // Complain about conditional casts to CF class types; they can't
        // actually be conditionally checked.
        if (castKind == OptionalBindingsCastKind::Conditional) {
          Type destValueType = resultType->getOptionalObjectType();
          auto destObjectType = destValueType;
          if (auto metaTy = destObjectType->getAs<MetatypeType>())
            destObjectType = metaTy->getInstanceType();
          if (auto destClass = destObjectType->getClassOrBoundGenericClass()) {
            if (destClass->getForeignClassKind() ==
                  ClassDecl::ForeignKind::CFType) {
              if (SuppressDiagnostics)
                return nullptr;

              auto &de = cs.getASTContext().Diags;
              de.diagnose(cast->getLoc(), diag::conditional_downcast_foreign,
                          destValueType);
              ConcreteDeclRef refDecl = sub->getReferencedDecl();
              if (refDecl) {
                de.diagnose(cast->getLoc(),
                            diag::note_explicitly_compare_cftypeid,
                            refDecl.getDecl()->getBaseName(), destValueType);
              }
            }
          }
        }

        // Set the expression as the sub-expression of the cast, then
        // use the cast as the inner operation.
        cast->setSubExpr(sub);
        cs.setType(cast, resultType);
        return cast;
      });
    }

    /// A helper function to build an operation.  The inner result type
    /// is the expected type of the operation; it will be a non-optional
    /// type unless the castKind is Conditional.
    using OperationBuilderRef =
      llvm::function_ref<Expr*(Expr *subExpr, Type innerResultType)>;

    /// Handle optional operands and results in an explicit cast.
    Expr *handleOptionalBindings(Expr *subExpr, Type finalResultType,
                                 OptionalBindingsCastKind castKind,
                                 OperationBuilderRef buildInnerOperation) {
      auto &ctx = cs.getASTContext();

      unsigned destExtraOptionals;
      bool forceExtraSourceOptionals;
      switch (castKind) {
      case OptionalBindingsCastKind::Bridged:
        destExtraOptionals = 0;
        forceExtraSourceOptionals = true;
        break;

      case OptionalBindingsCastKind::Forced:
        destExtraOptionals = 0;
        forceExtraSourceOptionals = true;
        break;

      case OptionalBindingsCastKind::Conditional:
        destExtraOptionals = 1;
        forceExtraSourceOptionals = false;
        break;
      }

      // FIXME: some of this work needs to be delayed until runtime to
      // properly account for archetypes dynamically being optional
      // types.  For example, if we're casting T to NSView?, that
      // should succeed if T=NSObject? and its value is actually nil.
      Type srcType = cs.getType(subExpr);

      SmallVector<Type, 4> srcOptionals;
      srcType = srcType->lookThroughAllOptionalTypes(srcOptionals);

      SmallVector<Type, 4> destOptionals;
      auto destValueType
        = finalResultType->lookThroughAllOptionalTypes(destOptionals);

      auto isBridgeToAnyObject =
        castKind == OptionalBindingsCastKind::Bridged &&
        destValueType->isAnyObject();

      // If the destination value type is 'AnyObject' when performing a
      // bridging operation, or if the destination value type could dynamically
      // be an optional type, leave any extra optionals on the source in place.
      // Only apply the latter condition in Swift 5 mode to best preserve
      // compatibility with Swift 4.1's casting behaviour.
      if (isBridgeToAnyObject || (ctx.isSwiftVersionAtLeast(5) &&
                                  destValueType->canDynamicallyBeOptionalType(
                                      /*includeExistential*/ false))) {
        auto destOptionalsCount = destOptionals.size() - destExtraOptionals;
        if (srcOptionals.size() > destOptionalsCount) {
          srcType = srcOptionals[destOptionalsCount];
          srcOptionals.erase(srcOptionals.begin() + destOptionalsCount,
                             srcOptionals.end());
        }
      }

      // When performing a bridging operation, if the destination type
      // is more optional than the source, we'll add extra optional injections
      // at the end.
      SmallVector<Type, 4> destOptionalInjections;
      if (castKind == OptionalBindingsCastKind::Bridged &&
          destOptionals.size() > srcOptionals.size()) {
        // Remove the extra optionals from destOptionals, but keep them around
        // separately so we can perform the injections on the final result of
        // the cast.
        auto cutPoint = destOptionals.end() - srcOptionals.size();
        destOptionalInjections.append(destOptionals.begin(), cutPoint);
        destOptionals.erase(destOptionals.begin(), cutPoint);

        finalResultType = destOptionals.empty() ? destValueType
                                                : destOptionals.front();
      }

      // Local function to add the optional injections to final result.
      auto addFinalOptionalInjections = [&](Expr *result) {
        for (auto destType : llvm::reverse(destOptionalInjections)) {
          result =
              cs.cacheType(new (ctx) InjectIntoOptionalExpr(result, destType));
        }

        return result;
      };

      // There's nothing special to do if the operand isn't optional
      // (or is insufficiently optional) and we don't need any bridging.
      if (srcOptionals.empty()
          || (srcOptionals.size() < destOptionals.size() - destExtraOptionals)) {
        Expr *result = buildInnerOperation(subExpr, finalResultType);
        if (!result) return nullptr;
        return addFinalOptionalInjections(result);
      }

      // The outermost N levels of optionals on the operand must all
      // be present or the cast fails.  The innermost M levels of
      // optionals on the operand are reflected in the requested
      // destination type, so we should map these nils into the result.
      unsigned numRequiredOptionals =
        srcOptionals.size() - (destOptionals.size() - destExtraOptionals);

      // The number of OptionalEvaluationExprs between the point of the
      // inner cast and the enclosing OptionalEvaluationExpr (exclusive)
      // which represents failure for the entire operation.
      unsigned failureDepth = destOptionals.size() - destExtraOptionals;

      // Drill down on the operand until it's non-optional.
      SourceLoc fakeQuestionLoc = subExpr->getEndLoc();
      for (unsigned i : indices(srcOptionals)) {
        Type valueType =
          (i + 1 == srcOptionals.size() ? srcType : srcOptionals[i+1]);

        // As we move into the range of mapped optionals, start
        // lowering the depth.
        unsigned depth = failureDepth;
        if (i >= numRequiredOptionals) {
          depth -= (i - numRequiredOptionals) + 1;
        } else if (forceExtraSourceOptionals) {
          // For a forced cast, force the required optionals.
          subExpr = new (ctx) ForceValueExpr(subExpr, fakeQuestionLoc);
          cs.setType(subExpr, valueType);
          subExpr->setImplicit(true);
          continue;
        }

        subExpr = cs.cacheType(new (ctx) BindOptionalExpr(
            subExpr, fakeQuestionLoc, depth, valueType));
        subExpr->setImplicit(true);
      }

      // If this is a conditional cast, the result type will always
      // have at least one level of optional, which should become the
      // type of the checked-cast expression.
      Expr *result;
      if (castKind == OptionalBindingsCastKind::Conditional) {
        assert(!destOptionals.empty() &&
               "result of checked cast is not an optional type");
        result = buildInnerOperation(subExpr, destOptionals.back());
      } else {
        result = buildInnerOperation(subExpr, destValueType);
      }
      if (!result) return nullptr;

      // If we're casting to an optional type, we need to capture the
      // final M bindings.

      if (destOptionals.size() > destExtraOptionals) {
        if (castKind == OptionalBindingsCastKind::Conditional) {
          // If the innermost cast fails, the entire expression fails.  To
          // get this behavior, we have to bind and then re-inject the result.
          // (SILGen should know how to peephole this.)
          result = cs.cacheType(new (ctx) BindOptionalExpr(
              result, result->getEndLoc(), failureDepth, destValueType));
          result->setImplicit(true);
        }

        for (unsigned i = destOptionals.size(); i != 0; --i) {
          Type destType = destOptionals[i-1];
          result =
              cs.cacheType(new (ctx) InjectIntoOptionalExpr(result, destType));
          result =
              cs.cacheType(new (ctx) OptionalEvaluationExpr(result, destType));
        }

      // Otherwise, we just need to capture the failure-depth binding.
      } else if (!forceExtraSourceOptionals) {
        result = cs.cacheType(
            new (ctx) OptionalEvaluationExpr(result, finalResultType));
      }

      return addFinalOptionalInjections(result);
    }

    bool hasForcedOptionalResult(ExplicitCastExpr *expr) {
      const auto *const TR = expr->getCastTypeRepr();
      if (TR && TR->getKind() == TypeReprKind::ImplicitlyUnwrappedOptional) {
        auto *locator = cs.getConstraintLocator(
            expr, ConstraintLocator::ImplicitlyUnwrappedDisjunctionChoice);
        return solution.getDisjunctionChoice(locator);
      }
      return false;
    }

    Expr *visitCoerceExpr(CoerceExpr *expr) {
      auto *coerced = visitCoerceExprImpl(expr);
      if (!coerced)
        return nullptr;

      // If we need to insert a force-unwrap for coercions of the form
      // 'as T!', do so now.
      if (hasForcedOptionalResult(expr))
        coerced = forceUnwrapIUO(coerced);

      return coerced;
    }

    Expr *visitCoerceExprImpl(CoerceExpr *expr) {
      if (auto *castTypeRepr = expr->getCastTypeRepr()) {
        // Simplify and update the type we're coercing to.
        auto toType = simplifyType(cs.getType(castTypeRepr));
        expr->setCastType(toType);
        cs.setType(castTypeRepr, toType);
      } else {
        assert(expr->isImplicit());
        assert(expr->getCastType());
      }

      cs.setType(expr, expr->getCastType());

      // If this is a literal that got converted into constructor call
      // lets put proper source information in place.
      if (expr->isLiteralInit()) {
        auto toType = expr->getCastType();
        auto *literalInit = expr->getSubExpr();
        if (auto *call = dyn_cast<CallExpr>(literalInit)) {
          cs.forEachExpr(call->getFn(), [&](Expr *subExpr) -> Expr * {
            auto *TE = dyn_cast<TypeExpr>(subExpr);
            if (!TE)
              return subExpr;

            auto type = cs.getInstanceType(TE);

            assert(!type->hasError());

            if (!type->isEqual(toType))
              return subExpr;

            return cs.cacheType(TypeExpr::createImplicitHack(
                expr->getLoc(), toType, cs.getASTContext()));
          });
        }

        if (auto *literal = dyn_cast<NumberLiteralExpr>(literalInit)) {
          literal->setExplicitConversion();
        } else {
          literalInit->setImplicit(false);
        }

        // Keep the coercion around, because it contains the source range
        // for the original constructor call.
        return expr;
      }

      // Turn the subexpression into an rvalue.
      auto rvalueSub = cs.coerceToRValue(expr->getSubExpr());
      expr->setSubExpr(rvalueSub);

      // If we weren't explicitly told by the caller which disjunction choice,
      // get it from the solution to determine whether we've picked a coercion
      // or a bridging conversion.
      auto *locator =
          cs.getConstraintLocator(expr, ConstraintLocator::CoercionOperand);
      auto choice = solution.getDisjunctionChoice(locator);

      // Handle the coercion/bridging of the underlying subexpression, where
      // optionality has been removed.
      if (choice == 0) {
        // Convert the subexpression.
        Expr *sub = expr->getSubExpr();
        auto subLoc =
            cs.getConstraintLocator(sub, ConstraintLocator::CoercionOperand);
        sub = solution.coerceToType(sub, expr->getCastType(), subLoc);
        if (!sub)
          return nullptr;

        expr->setSubExpr(sub);
        return expr;
      }

      // Bridging conversion.
      assert(choice == 1 && "should be bridging");

      // Handle optional bindings.
      Expr *sub = handleOptionalBindings(
          expr->getSubExpr(), expr->getCastType(),
          OptionalBindingsCastKind::Bridged,
          [&](Expr *sub, Type toInstanceType) {
            return buildObjCBridgeExpr(sub, toInstanceType, locator);
          });

      if (!sub)
        return nullptr;

      expr->setSubExpr(sub);
      return expr;
    }

    // Rewrite ForcedCheckedCastExpr based on what the solver computed.
    Expr *visitForcedCheckedCastExpr(ForcedCheckedCastExpr *expr) {
      // The subexpression is always an rvalue.
      auto sub = cs.coerceToRValue(expr->getSubExpr());
      expr->setSubExpr(sub);

      const auto fromType = cs.getType(sub);

      Type toType;
      SourceRange castTypeRange;

      // Simplify and update the type we're casting to.
      if (auto *const castTypeRepr = expr->getCastTypeRepr()) {
        toType = simplifyType(cs.getType(castTypeRepr));
        castTypeRange = castTypeRepr->getSourceRange();

        cs.setType(castTypeRepr, toType);
        expr->setCastType(toType);
      } else {
        assert(expr->isImplicit());
        assert(expr->getCastType());

        toType = expr->getCastType();
      }

      if (hasForcedOptionalResult(expr))
        toType = toType->getOptionalObjectType();

      const auto castKind = TypeChecker::typeCheckCheckedCast(
          fromType, toType, CheckedCastContextKind::ForcedCast, dc);
      switch (castKind) {
        /// Invalid cast.
      case CheckedCastKind::Unresolved:
        if (expr->isImplicit())
          return nullptr;

        expr->setCastKind(CheckedCastKind::ValueCast);
        break;
      case CheckedCastKind::Coercion:
      case CheckedCastKind::BridgingCoercion: {
        expr->setCastKind(castKind);
        cs.setType(expr, toType);
        return expr;
      }

      // Valid casts.
      case CheckedCastKind::ArrayDowncast:
      case CheckedCastKind::DictionaryDowncast:
      case CheckedCastKind::SetDowncast:
      case CheckedCastKind::ValueCast:
        expr->setCastKind(castKind);
        break;
      }

      return handleOptionalBindingsForCast(expr, simplifyType(cs.getType(expr)),
                                           OptionalBindingsCastKind::Forced);
    }

    Expr *visitConditionalCheckedCastExpr(ConditionalCheckedCastExpr *expr) {
      auto *const castTypeRepr = expr->getCastTypeRepr();

      // If there is no type repr, it means this is implicit cast which
      // should have a type set.
      if (!castTypeRepr) {
        assert(expr->isImplicit());
        assert(expr->getCastType());

        auto sub = cs.coerceToRValue(expr->getSubExpr());
        expr->setSubExpr(sub);

        return expr;
      }

      // Simplify and update the type we're casting to.
      const auto toType = simplifyType(cs.getType(castTypeRepr));
      expr->setCastType(toType);

      cs.setType(castTypeRepr, toType);

      // If we need to insert a force-unwrap for coercions of the form
      // 'as! T!', do so now.
      if (hasForcedOptionalResult(expr)) {
        auto *coerced = handleConditionalCheckedCastExpr(expr, castTypeRepr);
        if (!coerced)
          return nullptr;

        return forceUnwrapIUO(coerced);
      }

      return handleConditionalCheckedCastExpr(expr, castTypeRepr);
    }

    Expr *handleConditionalCheckedCastExpr(ConditionalCheckedCastExpr *expr,
                                           TypeRepr *castTypeRepr) {
      assert(castTypeRepr &&
             "cast requires TypeRepr; implicit casts are superfluous");

      // The subexpression is always an rvalue.
      auto sub = cs.coerceToRValue(expr->getSubExpr());
      expr->setSubExpr(sub);

      // Simplify and update the type we're casting to.
      const auto fromType = cs.getType(sub);
      const auto toType = expr->getCastType();

      auto castKind = TypeChecker::typeCheckCheckedCast(
          fromType, toType, CheckedCastContextKind::ConditionalCast, dc);
      switch (castKind) {
      // Invalid cast.
      case CheckedCastKind::Unresolved:
        expr->setCastKind(CheckedCastKind::ValueCast);
        break;

      case CheckedCastKind::Coercion:
      case CheckedCastKind::BridgingCoercion: {
        expr->setCastKind(castKind);
        cs.setType(expr, OptionalType::get(toType));
        return expr;
      }

      // Valid casts.
      case CheckedCastKind::ArrayDowncast:
      case CheckedCastKind::DictionaryDowncast:
      case CheckedCastKind::SetDowncast:
      case CheckedCastKind::ValueCast:
        expr->setCastKind(castKind);
        break;
      }

      return handleOptionalBindingsForCast(expr, simplifyType(cs.getType(expr)),
                                         OptionalBindingsCastKind::Conditional);
    }

    Expr *visitAssignExpr(AssignExpr *expr) {
      // Convert the source to the simplified destination type.
      auto destTy = simplifyType(cs.getType(expr->getDest()));
      // Conversion is recorded as anchored on an assignment itself by
      // constraint generator and that has to be preserved here in case
      // anything depends on the locator (i.e. Double<->CGFloat implicit
      // conversion).
      Expr *src = coerceToType(expr->getSrc(), destTy->getRValueType(),
                               cs.getConstraintLocator(expr));
      if (!src)
        return nullptr;

      expr->setSrc(src);

      if (!SuppressDiagnostics) {
        // If we're performing an assignment to a weak or unowned variable from
        // a constructor call, emit a warning that the instance will be
        // immediately deallocated.
        diagnoseUnownedImmediateDeallocation(cs.getASTContext(), expr);
      }
      return expr;
    }
    
    Expr *visitDiscardAssignmentExpr(DiscardAssignmentExpr *expr) {
      return simplifyExprType(expr);
    }

    Expr *visitUnresolvedPatternExpr(UnresolvedPatternExpr *expr) {
      llvm_unreachable("Should have diagnosed");
    }

    Expr *visitBindOptionalExpr(BindOptionalExpr *expr) {
      return simplifyExprType(expr);
    }

    Expr *visitOptionalEvaluationExpr(OptionalEvaluationExpr *expr) {
      Type optType = simplifyType(cs.getType(expr));

      // If this is an optional chain that isn't chaining anything, and if the
      // subexpression is already optional (not IUO), then this is a noop:
      // reject it.  This avoids confusion of the model (where the programmer
      // thought it was doing something) and keeps pointless ?'s out of the
      // code.
      if (!SuppressDiagnostics) {
        auto &de = cs.getASTContext().Diags;
        if (auto *Bind = dyn_cast<BindOptionalExpr>(
                        expr->getSubExpr()->getSemanticsProvidingExpr())) {
          if (cs.getType(Bind->getSubExpr())->isEqual(optType)) {
            de.diagnose(expr->getLoc(), diag::optional_chain_noop, optType)
                .fixItRemove(Bind->getQuestionLoc());
          } else {
            de.diagnose(expr->getLoc(), diag::optional_chain_isnt_chaining);
          }
        }
      }

      Expr *subExpr = coerceToType(expr->getSubExpr(), optType,
                                   cs.getConstraintLocator(expr));
      if (!subExpr) return nullptr;

      expr->setSubExpr(subExpr);
      cs.setType(expr, optType);
      return expr;
    }

    Expr *visitForceValueExpr(ForceValueExpr *expr) {
      return simplifyExprType(expr);
    }

    Expr *visitOpenExistentialExpr(OpenExistentialExpr *expr) {
      llvm_unreachable("Already type-checked");
    }
    
    Expr *visitMakeTemporarilyEscapableExpr(MakeTemporarilyEscapableExpr *expr){
      llvm_unreachable("Already type-checked");
    }

    Expr *visitKeyPathApplicationExpr(KeyPathApplicationExpr *expr){
      // This should already be type-checked, but we may have had to re-
      // check it for failure diagnosis.
      return simplifyExprType(expr);
    }
    
    Expr *visitEnumIsCaseExpr(EnumIsCaseExpr *expr) {
      // Should already be type-checked.
      return simplifyExprType(expr);
    }

    Expr *visitLazyInitializerExpr(LazyInitializerExpr *expr) {
      llvm_unreachable("Already type-checked");
    }
    
    Expr *visitEditorPlaceholderExpr(EditorPlaceholderExpr *E) {
      simplifyExprType(E);
      auto valueType = cs.getType(E);
      assert(!valueType->hasUnresolvedType());

      auto &ctx = cs.getASTContext();
      // Synthesize a call to _undefined() of appropriate type.
      FuncDecl *undefinedDecl = ctx.getUndefined();
      if (!undefinedDecl) {
        ctx.Diags.diagnose(E->getLoc(), diag::missing_undefined_runtime);
        return nullptr;
      }
      DeclRefExpr *fnRef = new (ctx) DeclRefExpr(undefinedDecl, DeclNameLoc(),
                                                 /*Implicit=*/true);
      fnRef->setFunctionRefKind(FunctionRefKind::SingleApply);

      StringRef msg = "attempt to evaluate editor placeholder";
      Expr *argExpr = new (ctx) StringLiteralExpr(msg, E->getLoc(),
                                                  /*implicit*/true);

      auto *argList = ArgumentList::forImplicitUnlabeled(ctx, {argExpr});
      Expr *callExpr = CallExpr::createImplicit(ctx, fnRef, argList);

      auto resultTy = TypeChecker::typeCheckExpression(
          callExpr, dc, /*contextualInfo=*/{valueType, CTP_CannotFail});
      assert(resultTy && "Conversion cannot fail!");
      (void)resultTy;

      cs.cacheExprTypes(callExpr);
      E->setSemanticExpr(callExpr);
      return E;
    }

    Expr *visitObjCSelectorExpr(ObjCSelectorExpr *E) {
      // Dig out the reference to a declaration.
      Expr *subExpr = E->getSubExpr();
      ValueDecl *foundDecl = nullptr;
      while (subExpr) {
        // Declaration reference.
        if (auto declRef = dyn_cast<DeclRefExpr>(subExpr)) {
          foundDecl = declRef->getDecl();
          break;
        }

        // Constructor reference.
        if (auto ctorRef = dyn_cast<OtherConstructorDeclRefExpr>(subExpr)) {
          foundDecl = ctorRef->getDecl();
          break;
        }

        // Member reference.
        if (auto memberRef = dyn_cast<MemberRefExpr>(subExpr)) {
          foundDecl = memberRef->getMember().getDecl();
          break;
        }

        // Dynamic member reference.
        if (auto dynMemberRef = dyn_cast<DynamicMemberRefExpr>(subExpr)) {
          foundDecl = dynMemberRef->getMember().getDecl();
          break;
        }

        // Look through parentheses.
        if (auto paren = dyn_cast<ParenExpr>(subExpr)) {
          subExpr = paren->getSubExpr();
          continue;
        }

        // Look through "a.b" to "b".
        if (auto dotSyntax = dyn_cast<DotSyntaxBaseIgnoredExpr>(subExpr)) {
          subExpr = dotSyntax->getRHS();
          continue;
        }

        // Look through self-rebind expression.
        if (auto rebindSelf = dyn_cast<RebindSelfInConstructorExpr>(subExpr)) {
          subExpr = rebindSelf->getSubExpr();
          continue;
        }

        // Look through optional binding within the monadic "?".
        if (auto bind = dyn_cast<BindOptionalExpr>(subExpr)) {
          subExpr = bind->getSubExpr();
          continue;
        }

        // Look through optional evaluation of the monadic "?".
        if (auto optEval = dyn_cast<OptionalEvaluationExpr>(subExpr)) {
          subExpr = optEval->getSubExpr();
          continue;
        }

        // Look through an implicit force-value.
        if (auto force = dyn_cast<ForceValueExpr>(subExpr)) {
          subExpr = force->getSubExpr();
          continue;
        }

        // Look through implicit open-existential operations.
        if (auto open = dyn_cast<OpenExistentialExpr>(subExpr)) {
          if (open->isImplicit()) {
            subExpr = open->getSubExpr();
            continue;
          }
          break;
        }

        // Look to the referenced member in a self-application.
        if (auto selfApply = dyn_cast<SelfApplyExpr>(subExpr)) {
          subExpr = selfApply->getFn();
          continue;
        }

        // Look through implicit conversions.
        if (auto conversion = dyn_cast<ImplicitConversionExpr>(subExpr)) {
          subExpr = conversion->getSubExpr();
          continue;
        }

        // Look through explicit coercions.
        if (auto coercion = dyn_cast<CoerceExpr>(subExpr)) {
          subExpr = coercion->getSubExpr();
          continue;
        }

        break;
      }

      if (!subExpr) return nullptr;

      // If we didn't find any declaration at all, we're stuck.
      auto &de = cs.getASTContext().Diags;
      if (!foundDecl) {
        de.diagnose(E->getLoc(), diag::expr_selector_no_declaration)
            .highlight(subExpr->getSourceRange());
        return E;
      }

      // Check whether we found an entity that #selector could refer to.
      // If we found a method or initializer, check it.
      AbstractFunctionDecl *method = nullptr;
      if (auto func = dyn_cast<AbstractFunctionDecl>(foundDecl)) {
        // Methods and initializers.

        // If this isn't a method, complain.
        if (!func->getDeclContext()->isTypeContext()) {
          de.diagnose(E->getLoc(), diag::expr_selector_not_method,
                      func->getDeclContext()->isModuleScopeContext(),
                      func)
              .highlight(subExpr->getSourceRange());
          de.diagnose(func, diag::decl_declared_here, func);
          return E;
        }

        // Check that we requested a method.
        switch (E->getSelectorKind()) {
        case ObjCSelectorExpr::Method:
          break;

        case ObjCSelectorExpr::Getter:
        case ObjCSelectorExpr::Setter:
          // Complain that we cannot ask for the getter or setter of a
          // method.
          de.diagnose(E->getModifierLoc(),
                      diag::expr_selector_expected_property,
                      E->getSelectorKind() == ObjCSelectorExpr::Setter,
                      foundDecl)
              .fixItRemoveChars(E->getModifierLoc(),
                                E->getSubExpr()->getStartLoc());

          // Update the AST to reflect the fix.
          E->overrideObjCSelectorKind(ObjCSelectorExpr::Method, SourceLoc());
          break;
        }

        // Note the method we're referring to.
        method = func;
      } else if (auto var = dyn_cast<VarDecl>(foundDecl)) {
        // Properties.

        // If this isn't a property on a type, complain.
        if (!var->getDeclContext()->isTypeContext()) {
          de.diagnose(E->getLoc(), diag::expr_selector_not_property,
                      isa<ParamDecl>(var), var)
              .highlight(subExpr->getSourceRange());
          de.diagnose(var, diag::decl_declared_here, var);
          return E;
        }

        // Check that we requested a property getter or setter.
        switch (E->getSelectorKind()) {
        case ObjCSelectorExpr::Method: {
          bool isSettable = var->isSettable(dc) &&
            var->isSetterAccessibleFrom(dc);
          auto primaryDiag =
              de.diagnose(E->getLoc(), diag::expr_selector_expected_method,
                          isSettable, var);
          primaryDiag.highlight(subExpr->getSourceRange());

          // The point at which we will insert the modifier.
          SourceLoc modifierLoc = E->getSubExpr()->getStartLoc();

          // If the property is settable, we don't know whether the
          // user wanted the getter or setter. Provide notes for each.
          if (isSettable) {
            // Flush the primary diagnostic. We have notes to add.
            primaryDiag.flush();

            // Add notes for the getter and setter, respectively.
            de.diagnose(modifierLoc, diag::expr_selector_add_modifier, false,
                        var)
                .fixItInsert(modifierLoc, "getter: ");
            de.diagnose(modifierLoc, diag::expr_selector_add_modifier, true,
                        var)
                .fixItInsert(modifierLoc, "setter: ");

            // Bail out now. We don't know what the user wanted, so
            // don't fill in the details.
            return E;
          }

          // The property is non-settable, so add "getter:".
          primaryDiag.fixItInsert(modifierLoc, "getter: ");
          E->overrideObjCSelectorKind(ObjCSelectorExpr::Getter, modifierLoc);
          method = var->getOpaqueAccessor(AccessorKind::Get);
          break;
        }

        case ObjCSelectorExpr::Getter:
          method = var->getOpaqueAccessor(AccessorKind::Get);
          break;

        case ObjCSelectorExpr::Setter:
          // Make sure we actually have a setter.
          if (!var->isSettable(dc)) {
            de.diagnose(E->getLoc(), diag::expr_selector_property_not_settable,
                        var);
            de.diagnose(var, diag::decl_declared_here, var);
            return E;
          }

          // Make sure the setter is accessible.
          if (!var->isSetterAccessibleFrom(dc)) {
            de.diagnose(E->getLoc(),
                        diag::expr_selector_property_setter_inaccessible, var);
            de.diagnose(var, diag::decl_declared_here, var);
            return E;
          }

          method = var->getOpaqueAccessor(AccessorKind::Set);
          break;
        }
      } else {
        // Cannot reference with #selector.
        de.diagnose(E->getLoc(), diag::expr_selector_no_declaration)
            .highlight(subExpr->getSourceRange());
        de.diagnose(foundDecl, diag::decl_declared_here, foundDecl);
        return E;
      }
      assert(method && "Didn't find a method?");

      // The declaration we found must be exposed to Objective-C.
      if (!method->isObjC()) {
        // If the method declaration lies in a protocol and we're providing
        // a default implementation of the method through a protocol extension
        // and using it as a selector, then bail out as adding @objc to the
        // protocol might not be the right thing to do and could lead to
        // problems.
        if (auto protocolDecl = dyn_cast<ProtocolDecl>(foundDecl->getDeclContext())) {
          de.diagnose(E->getLoc(), diag::expr_selector_cannot_be_used,
                      foundDecl, protocolDecl);
          return E;
        }

        de.diagnose(E->getLoc(), diag::expr_selector_not_objc, foundDecl)
            .highlight(subExpr->getSourceRange());
        de.diagnose(foundDecl, diag::make_decl_objc,
                    foundDecl->getDescriptiveKind())
            .fixItInsert(foundDecl->getAttributeInsertionLoc(false), "@objc ");
        return E;
      }

      // Note which method we're referencing.
      E->setMethod(method);
      return E;
    }

    Expr *visitKeyPathExpr(KeyPathExpr *E) {
      if (E->isObjC()) {
        cs.setType(E, cs.getType(E->getObjCStringLiteralExpr()));
        return E;
      }

      simplifyExprType(E);
      
      if (cs.getType(E)->hasError())
        return E;

      // If a component is already resolved, then all of them should be
      // resolved, and we can let the expression be. This might happen when
      // re-checking a failed system for diagnostics.
      if (!E->getComponents().empty()
          && E->getComponents().front().isResolved()) {
        assert([&]{
          for (auto &c : E->getComponents())
            if (!c.isResolved())
              return false;
          return true;
        }());
        return E;
      }

      SmallVector<KeyPathExpr::Component, 4> resolvedComponents;

      // Resolve each of the components.
      bool didOptionalChain = false;
      bool isFunctionType = false;
      auto baseTy = cs.simplifyType(solution.getKeyPathRootType(E));
      Type leafTy;
      Type exprType = cs.getType(E);
      if (auto fnTy = exprType->getAs<FunctionType>()) {
        leafTy = fnTy->getResult();
        isFunctionType = true;
      } else if (auto *existential = exprType->getAs<ExistentialType>()) {
        auto layout = existential->getExistentialLayout();
        auto keyPathTy = layout.explicitSuperclass->castTo<BoundGenericType>();
        leafTy = keyPathTy->getGenericArgs()[1];
      } else {
        auto keyPathTy = exprType->castTo<BoundGenericType>();
        leafTy = keyPathTy->getGenericArgs()[1];
      }

      // Track the type of the current component. Once we finish projecting
      // through each component of the key path, we should reach the leafTy.
      auto componentTy = baseTy;
      for (unsigned i : indices(E->getComponents())) {
        auto &origComponent = E->getMutableComponents()[i];
        
        // If there were unresolved types, we may end up with a null base for
        // following components.
        if (!componentTy) {
          resolvedComponents.push_back(origComponent);
          continue;
        }

        auto kind = origComponent.getKind();
        auto componentLocator =
            cs.getConstraintLocator(E, LocatorPathElt::KeyPathComponent(i));

        // Get a locator such that it includes any additional elements to point
        // to the component's callee, e.g a SubscriptMember for a subscript
        // component.
        auto calleeLoc = cs.getCalleeLocator(componentLocator);

        bool isDynamicMember = false;
        // If this is an unresolved link, make sure we resolved it.
        if (kind == KeyPathExpr::Component::Kind::UnresolvedProperty ||
            kind == KeyPathExpr::Component::Kind::UnresolvedSubscript) {
          auto foundDecl = solution.getOverloadChoiceIfAvailable(calleeLoc);
          if (!foundDecl) {
            // If we couldn't resolve the component, leave it alone.
            resolvedComponents.push_back(origComponent);
            componentTy = origComponent.getComponentType();
            continue;
          }

          isDynamicMember = foundDecl->choice.isAnyDynamicMemberLookup();

          // If this was a @dynamicMemberLookup property, then we actually
          // form a subscript reference, so switch the kind.
          if (isDynamicMember) {
            kind = KeyPathExpr::Component::Kind::UnresolvedSubscript;
          }
        }

        switch (kind) {
        case KeyPathExpr::Component::Kind::UnresolvedProperty: {
          buildKeyPathPropertyComponent(solution.getOverloadChoice(calleeLoc),
                                        origComponent.getLoc(), calleeLoc,
                                        resolvedComponents);
          break;
        }
        case KeyPathExpr::Component::Kind::UnresolvedSubscript: {
          buildKeyPathSubscriptComponent(solution.getOverloadChoice(calleeLoc),
                                         origComponent.getLoc(),
                                         origComponent.getSubscriptArgs(),
                                         componentLocator, resolvedComponents);
          break;
        }
        case KeyPathExpr::Component::Kind::OptionalChain: {
          didOptionalChain = true;
          // Chaining always forces the element to be an rvalue.
          auto objectTy =
              componentTy->getWithoutSpecifierType()->getOptionalObjectType();
          if (componentTy->hasUnresolvedType() && !objectTy) {
            objectTy = componentTy;
          }
          assert(objectTy);
          
          auto loc = origComponent.getLoc();
          resolvedComponents.push_back(
              KeyPathExpr::Component::forOptionalChain(objectTy, loc));
          break;
        }
        case KeyPathExpr::Component::Kind::OptionalForce: {
          // Handle force optional when it is the first component e.g.
          // \String?.!.count
          if (resolvedComponents.empty()) {
            auto loc = origComponent.getLoc();
            auto objectTy = componentTy->getOptionalObjectType();
            assert(objectTy);

            resolvedComponents.push_back(
                KeyPathExpr::Component::forOptionalForce(objectTy, loc));
          } else {
            buildKeyPathOptionalForceComponent(resolvedComponents);
          }
          break;
        }
        case KeyPathExpr::Component::Kind::Invalid:
        case KeyPathExpr::Component::Kind::CodeCompletion: {
          auto component = origComponent;
          component.setComponentType(leafTy);
          resolvedComponents.push_back(component);
          break;
        }
        case KeyPathExpr::Component::Kind::Identity: {
          auto component = origComponent;
          component.setComponentType(componentTy);
          resolvedComponents.push_back(component);
          break;
        }
        case KeyPathExpr::Component::Kind::Property:
        case KeyPathExpr::Component::Kind::Subscript:
        case KeyPathExpr::Component::Kind::OptionalWrap:
        case KeyPathExpr::Component::Kind::TupleElement:
          llvm_unreachable("already resolved");
          break;
        case KeyPathExpr::Component::Kind::DictionaryKey:
          llvm_unreachable("DictionaryKey only valid in #keyPath");
          break;
        }

        // Update "componentTy" with the result type of the last component.
        assert(!resolvedComponents.empty());
        componentTy = resolvedComponents.back().getComponentType();
      }

      // Wrap a non-optional result if there was chaining involved.
      if (didOptionalChain && componentTy &&
          !componentTy->hasUnresolvedType() &&
          !componentTy->getWithoutSpecifierType()->isEqual(leafTy)) {
        auto component = KeyPathExpr::Component::forOptionalWrap(leafTy);
        resolvedComponents.push_back(component);
        // Optional chaining forces the component to be r-value.
        componentTy = OptionalType::get(componentTy->getWithoutSpecifierType());
      }

      // Set the resolved components, and cache their types.
      E->setComponents(cs.getASTContext(), resolvedComponents);
      cs.cacheExprTypes(E);

      // See whether there's an equivalent ObjC key path string we can produce
      // for interop purposes.
      checkAndSetObjCKeyPathString(E);

      if (!isFunctionType)
        return E;

      // If we've gotten here, the user has used key path literal syntax to form
      // a closure. The type checker has given E a function type to indicate
      // this.
      //
      // Since functions support more conversions than generic types, we may
      // have ended up with a type of (baseTy) -> leafTy, where the actual type
      // of the key path is some subclass of KeyPath<baseTy, componentTy>, and
      // with componentTy: leafTy.
      //
      // We're going to change E's type to KeyPath<baseTy, componentTy> and
      // then wrap it in a larger closure expression which we will convert to
      // appropriate type.

      auto kpResultTy = componentTy->getWithoutSpecifierType();

      // Compute KeyPath<baseTy, leafTy> and set E's type back to it.
      auto kpDecl = cs.getASTContext().getKeyPathDecl();
      auto keyPathTy =
          BoundGenericType::get(kpDecl, nullptr, { baseTy, kpResultTy });
      E->setType(keyPathTy);
      cs.cacheType(E);

      // To ensure side effects of the key path expression (mainly indices in
      // subscripts) are only evaluated once, we use a capture list to evaluate
      // the key path immediately and capture it in the function value created.
      // The result looks like:
      //
      //     return "{ [$kp$ = \(E)] in $0[keyPath: $kp$] }"

      auto &ctx = cs.getASTContext();

      FunctionType::ExtInfo closureInfo;
      auto closureTy =
          FunctionType::get({FunctionType::Param(baseTy)}, kpResultTy,
                            closureInfo);
      auto closure = new (ctx)
          AutoClosureExpr(/*set body later*/nullptr, kpResultTy, dc);

      auto param = new (ctx) ParamDecl(
          SourceLoc(),
          /*argument label*/ SourceLoc(), Identifier(),
          /*parameter name*/ SourceLoc(), ctx.getIdentifier("$0"), closure);
      param->setInterfaceType(baseTy->mapTypeOutOfContext());
      param->setSpecifier(ParamSpecifier::Default);
      param->setImplicit();
      
      auto params = ParameterList::create(ctx, SourceLoc(),
                                          param, SourceLoc());

      closure->setParameterList(params);

      // The capture list.
      VarDecl *outerParam = new (ctx) VarDecl(/*static*/ false,
                                          VarDecl::Introducer::Let,
                                          SourceLoc(),
                                          ctx.getIdentifier("$kp$"),
                                          dc);
      outerParam->setImplicit();
      outerParam->setInterfaceType(keyPathTy->mapTypeOutOfContext());

      auto *outerParamPat =
          NamedPattern::createImplicit(ctx, outerParam, keyPathTy);

      solution.setExprTypes(E);
      auto *outerParamDecl = PatternBindingDecl::createImplicit(
          ctx, StaticSpellingKind::None, outerParamPat, E, dc);

      auto outerParamCapture = CaptureListEntry(outerParamDecl);
      auto captureExpr = CaptureListExpr::create(ctx, outerParamCapture,
                                                 closure);
      captureExpr->setImplicit();

      // let paramRef = "$0"
      auto *paramRef = new (ctx)
          DeclRefExpr(param, DeclNameLoc(E->getLoc()), /*Implicit=*/true);
      paramRef->setType(baseTy);
      cs.cacheType(paramRef);

      // let outerParamRef = "$kp$"
      auto outerParamRef = new (ctx)
          DeclRefExpr(outerParam, DeclNameLoc(E->getLoc()), /*Implicit=*/true);
      outerParamRef->setType(keyPathTy);
      cs.cacheType(outerParamRef);

      // let application = "\(paramRef)[keyPath: \(outerParamRef)]"
      auto *application = new (ctx)
          KeyPathApplicationExpr(paramRef,
                                 E->getStartLoc(), outerParamRef, E->getEndLoc(),
                                 kpResultTy, /*implicit=*/true);
      cs.cacheType(application);

      // Finish up the inner closure.
      closure->setParameterList(ParameterList::create(ctx, {param}));
      closure->setBody(application);
      closure->setType(closureTy);
      cs.cacheType(closure);
      
      captureExpr->setType(closureTy);
      cs.cacheType(captureExpr);
      
      return coerceToType(captureExpr, exprType, cs.getConstraintLocator(E));
    }

    void buildKeyPathOptionalForceComponent(
        SmallVectorImpl<KeyPathExpr::Component> &components) {
      assert(!components.empty());

      // Unwrap the last component type, preserving @lvalue-ness.
      auto optionalTy = components.back().getComponentType();
      Type objectTy;
      if (auto lvalue = optionalTy->getAs<LValueType>()) {
        objectTy = lvalue->getObjectType()->getOptionalObjectType();
        if (optionalTy->hasUnresolvedType() && !objectTy) {
          objectTy = optionalTy;
        }
        objectTy = LValueType::get(objectTy);
      } else {
        objectTy = optionalTy->getOptionalObjectType();
        if (optionalTy->hasUnresolvedType() && !objectTy) {
          objectTy = optionalTy;
        }
      }
      assert(objectTy);

      auto loc = components.back().getLoc();
      components.push_back(
          KeyPathExpr::Component::forOptionalForce(objectTy, loc));
    }

    void buildKeyPathPropertyComponent(
        const SelectedOverload &overload, SourceLoc componentLoc,
        ConstraintLocator *locator,
        SmallVectorImpl<KeyPathExpr::Component> &components) {
      auto resolvedTy = simplifyType(overload.adjustedOpenedType);
      if (auto *property = overload.choice.getDeclOrNull()) {
        // Key paths can only refer to properties currently.
        auto varDecl = cast<VarDecl>(property);
        // Key paths don't work with mutating-get properties.
        assert(!varDecl->isGetterMutating());
        // Key paths don't currently support static members.
        // There is a fix which diagnoses such situation already.
        assert(!varDecl->isStatic());

        // Compute the concrete reference to the member.
        auto ref = resolveConcreteDeclRef(property, locator);
        components.push_back(
            KeyPathExpr::Component::forProperty(ref, resolvedTy, componentLoc));
      } else {
        auto fieldIndex = overload.choice.getTupleIndex();
        components.push_back(KeyPathExpr::Component::forTupleElement(
            fieldIndex, resolvedTy, componentLoc));
      }

      auto unwrapCount =
          getIUOForceUnwrapCount(locator, IUOReferenceKind::Value);
      for (unsigned i = 0; i < unwrapCount; ++i)
        buildKeyPathOptionalForceComponent(components);
    }

    void buildKeyPathSubscriptComponent(
        const SelectedOverload &overload, SourceLoc componentLoc,
        ArgumentList *args, ConstraintLocator *locator,
        SmallVectorImpl<KeyPathExpr::Component> &components) {
      auto &ctx = cs.getASTContext();
      auto subscript = cast<SubscriptDecl>(overload.choice.getDecl());
      assert(!subscript->isGetterMutating());
      auto memberLoc = cs.getCalleeLocator(locator);

      // Compute substitutions to refer to the member.
      auto ref = resolveConcreteDeclRef(subscript, memberLoc);

      // If this is a @dynamicMemberLookup reference to resolve a property
      // through the subscript(dynamicMember:) member, restore the
      // openedType and origComponent to its full reference as if the user
      // wrote out the subscript manually.
      if (overload.choice.isAnyDynamicMemberLookup()) {
        auto indexType = getTypeOfDynamicMemberIndex(overload);
        Expr *argExpr = nullptr;
        if (overload.choice.isKeyPathDynamicMemberLookup()) {
          argExpr = buildKeyPathDynamicMemberArgExpr(indexType, componentLoc,
                                                     memberLoc);
        } else {
          auto fieldName = overload.choice.getName().getBaseIdentifier().str();
          argExpr = buildDynamicMemberLookupArgExpr(fieldName, componentLoc,
                                                    indexType);
        }
        args = ArgumentList::forImplicitSingle(ctx, ctx.Id_dynamicMember,
                                               argExpr);
        // Record the implicit subscript expr's parameter bindings and matching
        // direction as `coerceCallArguments` requires them.
        solution.recordSingleArgMatchingChoice(locator);
      }

      auto subscriptType =
          simplifyType(overload.adjustedOpenedType)->castTo<AnyFunctionType>();
      auto resolvedTy = subscriptType->getResult();

      // Coerce the indices to the type the subscript expects.
      args = coerceCallArguments(
          args, subscriptType, ref, /*applyExpr*/ nullptr,
          cs.getConstraintLocator(locator, ConstraintLocator::ApplyArgument),
          /*appliedPropertyWrappers*/ {});

      // We need to be able to hash the captured index values in order for
      // KeyPath itself to be hashable, so check that all of the subscript
      // index components are hashable and collect their conformances here.
      SmallVector<ProtocolConformanceRef, 4> conformances;

      auto hashable = ctx.getProtocol(KnownProtocolKind::Hashable);

      auto fnType = overload.adjustedOpenedType->castTo<FunctionType>();
      SmallVector<Identifier, 4> newLabels;
      for (auto &param : fnType->getParams()) {
        newLabels.push_back(param.getLabel());

        auto indexType = simplifyType(param.getParameterType());
        // Index type conformance to Hashable protocol has been
        // verified by the solver, we just need to get it again
        // with all of the generic parameters resolved.
        auto hashableConformance =
          dc->getParentModule()->checkConformance(indexType, hashable);
        assert(hashableConformance);

        conformances.push_back(hashableConformance);
      }

      auto comp = KeyPathExpr::Component::forSubscript(
          ctx, ref, args, resolvedTy, ctx.AllocateCopy(conformances));
      components.push_back(comp);

      auto unwrapCount =
          getIUOForceUnwrapCount(memberLoc, IUOReferenceKind::ReturnValue);
      for (unsigned i = 0; i < unwrapCount; ++i)
        buildKeyPathOptionalForceComponent(components);
    }

    Expr *visitCurrentContextIsolationExpr(CurrentContextIsolationExpr *E) {
      E->setType(simplifyType(cs.getType(E)));
      return E;
    }

    Expr *visitExtractFunctionIsolationExpr(ExtractFunctionIsolationExpr *E) {
      llvm_unreachable("found ExtractFunctionIsolationExpr in CSApply");
    }

    Expr *visitKeyPathDotExpr(KeyPathDotExpr *E) {
      llvm_unreachable("found KeyPathDotExpr in CSApply");
    }

    Expr *visitSingleValueStmtExpr(SingleValueStmtExpr *E) {
      llvm_unreachable("Handled by the walker directly");
    }

    Expr *visitOneWayExpr(OneWayExpr *E) {
      auto type = simplifyType(cs.getType(E));
      return coerceToType(E->getSubExpr(), type, cs.getConstraintLocator(E));
    }

    Expr *visitTapExpr(TapExpr *E) {
      auto type = simplifyType(cs.getType(E));

      E->getVar()->setInterfaceType(type->mapTypeOutOfContext());

      cs.setType(E, type);
      E->setType(type);

      return E;
    }

    Expr *visitTypeJoinExpr(TypeJoinExpr *E) {
      llvm_unreachable("already type-checked?");
    }

    Expr *visitMacroExpansionExpr(MacroExpansionExpr *E) {
      auto expandedType = solution.simplifyType(solution.getType(E));
      cs.setType(E, expandedType);

      auto locator = cs.getConstraintLocator(E);
      auto overload = solution.getOverloadChoice(locator);

      auto macro = cast<MacroDecl>(overload.choice.getDecl());
      ConcreteDeclRef macroRef = resolveConcreteDeclRef(macro, locator);
      E->setMacroRef(macroRef);
      E->setType(expandedType);

      // FIXME: Expansion should be lazy.
      // i.e. 'ExpandMacroExpansionExprRequest' should be sinked into
      // 'getRewritten()', and performed on-demand.
      if (!cs.Options.contains(ConstraintSystemFlags::DisableMacroExpansions) &&
          // Do not expand macros inside macro arguments. For example for
          // '#stringify(#assert(foo))' when typechecking `#assert(foo)`,
          // we don't want to expand it.
          llvm::none_of(llvm::ArrayRef(ExprStack).drop_back(1),
                        [](Expr *E) { return isa<MacroExpansionExpr>(E); })) {
        (void)evaluateOrDefault(cs.getASTContext().evaluator,
                                ExpandMacroExpansionExprRequest{E},
                                std::nullopt);
      }

      cs.cacheExprTypes(E);
      return E;
    }

    /// Interface for ExprWalker
    void walkToExprPre(Expr *expr) {
      // If we have an apply, make a note of its callee locator prior to
      // rewriting.
      if (auto *apply = dyn_cast<ApplyExpr>(expr)) {
        auto *calleeLoc = cs.getCalleeLocator(cs.getConstraintLocator(expr));
        CalleeLocators[apply] = calleeLoc;
      }
      ExprStack.push_back(expr);
    }

    Expr *walkToExprPost(Expr *expr) {
      Expr *result = visit(expr);

      assert(expr == ExprStack.back());
      ExprStack.pop_back();

      return result;
    }

    void finalize() {
      assert(ExprStack.empty());
      assert(OpenedExistentials.empty());

      auto &ctx = cs.getASTContext();
      auto *module = dc->getParentModule();

      // Look at all of the suspicious optional injections
      for (auto injection : SuspiciousOptionalInjections) {
        if (auto *cast = findForcedDowncast(ctx, injection->getSubExpr())) {
          if (!isa<ParenExpr>(injection->getSubExpr())) {
            ctx.Diags.diagnose(
                injection->getLoc(), diag::inject_forced_downcast,
                cs.getType(injection->getSubExpr())->getRValueType());
            auto exclaimLoc = cast->getExclaimLoc();
            ctx.Diags
                .diagnose(exclaimLoc, diag::forced_to_conditional_downcast,
                          cs.getType(injection)->getOptionalObjectType())
                .fixItReplace(exclaimLoc, "?");
            ctx.Diags
                .diagnose(cast->getStartLoc(),
                          diag::silence_inject_forced_downcast)
                .fixItInsert(cast->getStartLoc(), "(")
                .fixItInsertAfter(cast->getEndLoc(), ")");
          }
        }
      }

      // Diagnose the implicit coercions of noncopyable values that happen in
      // a context where it isn't "obviously" consuming already.
      for (auto *coercion : ConsumingCoercions) {
        assert(coercion->isImplicit());
        ctx.Diags
            .diagnose(coercion->getLoc(),
                      diag::consume_expression_needed_for_cast,
                      cs.getType(coercion));
        ctx.Diags
            .diagnose(coercion->getLoc(),
                      diag::add_consume_to_silence)
            .fixItInsert(coercion->getStartLoc(), "consume ");
      }
    }

    /// Diagnose an optional injection that is probably not what the
    /// user wanted, because it comes from a forced downcast, or from an
    /// implicitly consumed noncopyable type.
    void diagnoseOptionalInjection(InjectIntoOptionalExpr *injection,
                                   ConstraintLocatorBuilder locator) {
      // Check whether we have a forced downcast.
      if (findForcedDowncast(cs.getASTContext(), injection->getSubExpr()))
        SuspiciousOptionalInjections.push_back(injection);

      /// Check if it needs an explicit consume, due to this being a cast.
      auto *module = dc->getParentModule();
      auto origType = cs.getType(injection->getSubExpr());
      if (willHaveConfusingConsumption(origType, locator, cs) &&
          canAddExplicitConsume(module, injection->getSubExpr()))
        ConsumingCoercions.push_back(injection);
    }

    void diagnoseExistentialErasureOf(Expr *fromExpr, Expr *toExpr,
                                      ConstraintLocatorBuilder locator) {
      auto *module = dc->getParentModule();
      auto fromType = cs.getType(fromExpr);
      if (willHaveConfusingConsumption(fromType, locator, cs) &&
          canAddExplicitConsume(module, fromExpr)) {
        ConsumingCoercions.push_back(toExpr);
      }
    }
  };
} // end anonymous namespace

ConcreteDeclRef
Solution::resolveLocatorToDecl(ConstraintLocator *locator) const {
  // Get the callee locator without looking through applies, ensuring we only
  // return a decl for a direct reference.
  auto *calleeLoc =
      constraintSystem->getCalleeLocator(locator, /*lookThroughApply*/ false);
  auto overload = getOverloadChoiceIfAvailable(calleeLoc);
  if (!overload)
    return ConcreteDeclRef();

  return resolveConcreteDeclRef(overload->choice.getDeclOrNull(), locator);
}

/// Returns the concrete callee which 'owns' the default argument at a given
/// index. This looks through inheritance for inherited default args.
static ConcreteDeclRef getDefaultArgOwner(ConcreteDeclRef owner,
                                          unsigned index) {
  auto *param = getParameterAt(owner, index);
  assert(param);
  if (param->getDefaultArgumentKind() == DefaultArgumentKind::Inherited) {
    return getDefaultArgOwner(owner.getOverriddenDecl(), index);
  }
  return owner;
}

static bool canPeepholeTupleConversion(Expr *expr,
                                       ArrayRef<unsigned> sources) {
  if (!isa<TupleExpr>(expr))
    return false;

  for (unsigned i = 0, e = sources.size(); i != e; ++i) {
    if (sources[i] != i)
      return false;
  }

  return true;
}

Expr *ExprRewriter::coerceTupleToTuple(Expr *expr,
                                       TupleType *fromTuple,
                                       TupleType *toTuple,
                                       ConstraintLocatorBuilder locator,
                                       ArrayRef<unsigned> sources) {
  auto &ctx = cs.getASTContext();

  // If the input expression is a tuple expression, we can convert it in-place.
  if (canPeepholeTupleConversion(expr, sources)) {
    auto *tupleExpr = cast<TupleExpr>(expr);

    for (unsigned i = 0, e = tupleExpr->getNumElements(); i != e; ++i) {
      auto *fromElt = tupleExpr->getElement(i);

      // Actually convert the source element.
      auto toEltType = toTuple->getElementType(i);

      auto *toElt
        = coerceToType(fromElt, toEltType,
                      locator.withPathElement(
                        LocatorPathElt::TupleElement(i)));
      if (!toElt)
        return nullptr;

      tupleExpr->setElement(i, toElt);
    }

    tupleExpr->setType(toTuple);
    cs.cacheType(tupleExpr);

    return tupleExpr;
  }

  // Build a list of OpaqueValueExprs that matches the structure
  // of expr's type.
  //
  // Each OpaqueValueExpr's type is equal to the type of the
  // corresponding element of fromTuple.
  SmallVector<OpaqueValueExpr *, 4> destructured;
  for (unsigned i = 0, e = sources.size(); i != e; ++i) {
    auto fromEltType = fromTuple->getElementType(i);
    auto *opaqueElt =
        new (ctx) OpaqueValueExpr(expr->getSourceRange(), fromEltType);
    cs.cacheType(opaqueElt);
    destructured.push_back(opaqueElt);
  }

  // Convert each OpaqueValueExpr to the correct type.
  SmallVector<Expr *, 4> converted;
  SmallVector<Identifier, 4> labels;
  SmallVector<TupleTypeElt, 4> convertedElts;

  bool anythingShuffled = false;
  for (unsigned i = 0, e = sources.size(); i != e; ++i) {
    unsigned source = sources[i];
    auto *fromElt = destructured[source];

    // Actually convert the source element.
    auto toEltType = toTuple->getElementType(i);
    auto toLabel = toTuple->getElement(i).getName();

    // If we're shuffling positions and labels, we have to warn about this
    // conversion.
    if (i != sources[i] &&
        fromTuple->getElement(i).getName() != toLabel)
      anythingShuffled = true;

    auto *toElt
      = coerceToType(fromElt, toEltType,
                     locator.withPathElement(
                       LocatorPathElt::TupleElement(source)));
    if (!toElt)
      return nullptr;

    converted.push_back(toElt);
    labels.push_back(toLabel);
    convertedElts.emplace_back(toEltType, toLabel);
  }

  // Shuffling tuple elements is an anti-pattern worthy of a diagnostic.  We
  // will form the shuffle for now, but a future compiler should decline to
  // do so and begin the process of removing them altogether.
  if (anythingShuffled) {
    cs.getASTContext().Diags.diagnose(
        expr->getLoc(), diag::warn_reordering_tuple_shuffle_deprecated);
  }

  // Create the result tuple, written in terms of the destructured
  // OpaqueValueExprs.
  auto *result = TupleExpr::createImplicit(ctx, converted, labels);
  result->setType(TupleType::get(convertedElts, ctx));
  cs.cacheType(result);

  // Create the tuple conversion.
  return cs.cacheType(
      DestructureTupleExpr::create(ctx, destructured, expr, result, toTuple));
}

static Type getMetatypeSuperclass(Type t) {
  if (auto *metaTy = t->getAs<MetatypeType>())
    return MetatypeType::get(getMetatypeSuperclass(
                               metaTy->getInstanceType()));

  if (auto *metaTy = t->getAs<ExistentialMetatypeType>())
    return ExistentialMetatypeType::get(getMetatypeSuperclass(
                                          metaTy->getInstanceType()));

  return t->getSuperclass();
}

Expr *ExprRewriter::coerceSuperclass(Expr *expr, Type toType) {
  auto &ctx = cs.getASTContext();

  auto fromType = cs.getType(expr);

  auto fromInstanceType = fromType;
  auto toInstanceType = toType;

  while (fromInstanceType->is<AnyMetatypeType>() &&
         toInstanceType->is<MetatypeType>()) {
    fromInstanceType = fromInstanceType->getMetatypeInstanceType();
    toInstanceType = toInstanceType->getMetatypeInstanceType();
  }

  if (fromInstanceType->is<ArchetypeType>()) {
    // Coercion from archetype to its (concrete) superclass.
    auto superclass = getMetatypeSuperclass(fromType);

    expr =
      cs.cacheType(
        new (ctx) ArchetypeToSuperExpr(expr, superclass));

    if (!superclass->isEqual(toType))
      return coerceSuperclass(expr, toType);

    return expr;

  }

  if (fromInstanceType->isExistentialType()) {
    // Coercion from superclass-constrained existential to its
    // concrete superclass.
    auto fromArchetype =
        OpenedArchetypeType::getAny(fromType->getCanonicalType(),
                                    dc->getGenericSignatureOfContext());

    auto *archetypeVal = cs.cacheType(new (ctx) OpaqueValueExpr(
        expr->getSourceRange(), fromArchetype));

    auto *result = coerceSuperclass(archetypeVal, toType);

    return cs.cacheType(
      new (ctx) OpenExistentialExpr(expr, archetypeVal, result,
                                           toType));
  }

  // Coercion from subclass to superclass.
  if (toType->is<MetatypeType>()) {
    return cs.cacheType(
      new (ctx) MetatypeConversionExpr(expr, toType));
  }

  return cs.cacheType(
    new (ctx) DerivedToBaseExpr(expr, toType));
}

/// Given that the given expression is an implicit conversion added
/// to the target by coerceToType, find out how many OptionalEvaluationExprs
/// it includes and the target.
static unsigned getOptionalEvaluationDepth(Expr *expr, Expr *target) {
  unsigned depth = 0;
  while (true) {
    // Look through sugar expressions.
    expr = expr->getSemanticsProvidingExpr();

    // If we find the target expression, we're done.
    if (expr == target) return depth;

    // If we see an optional evaluation, the depth goes up.
    if (auto optEval = dyn_cast<OptionalEvaluationExpr>(expr)) {
      ++depth;
      expr = optEval->getSubExpr();

    // We have to handle any other expressions that can be introduced by
    // coerceToType.
    } else if (auto bind = dyn_cast<BindOptionalExpr>(expr)) {
      expr = bind->getSubExpr();
    } else if (auto force = dyn_cast<ForceValueExpr>(expr)) {
      expr = force->getSubExpr();
    } else if (auto open = dyn_cast<OpenExistentialExpr>(expr)) {
      depth += getOptionalEvaluationDepth(open->getSubExpr(),
                                          open->getOpaqueValue());
      expr = open->getExistentialValue();

    // Otherwise, look through implicit conversions.
    } else {
      expr = cast<ImplicitConversionExpr>(expr)->getSubExpr();
    }
  }
}

Expr *ExprRewriter::coerceOptionalToOptional(Expr *expr, Type toType,
                                             ConstraintLocatorBuilder locator) {
  auto &ctx = cs.getASTContext();
  Type fromType = cs.getType(expr);

  TypeChecker::requireOptionalIntrinsics(ctx, expr->getLoc());

  SmallVector<Type, 4> fromOptionals;
  (void)fromType->lookThroughAllOptionalTypes(fromOptionals);

  SmallVector<Type, 4> toOptionals;
  (void)toType->lookThroughAllOptionalTypes(toOptionals);

  assert(!toOptionals.empty());
  assert(!fromOptionals.empty());

  // If we are adding optionals but the types are equivalent up to the common
  // depth, peephole the optional-to-optional conversion into a series of nested
  // injections.
  auto toDepth = toOptionals.size();
  auto fromDepth = fromOptionals.size();
  if (toDepth > fromDepth &&
      toOptionals[toOptionals.size() - fromDepth]->isEqual(fromType)) {
    auto diff = toDepth - fromDepth;
    while (diff--) {
      Type type = toOptionals[diff];
      expr = cs.cacheType(new (ctx) InjectIntoOptionalExpr(expr, type));
      diagnoseOptionalInjection(cast<InjectIntoOptionalExpr>(expr), locator);
    }

    return expr;
  }

  Type fromValueType = fromType->getOptionalObjectType();
  Type toValueType = toType->getOptionalObjectType();

  // The depth we use here will get patched after we apply the coercion.
  auto bindOptional =
      new (ctx) BindOptionalExpr(expr, expr->getSourceRange().End,
                                 /*depth*/ 0, fromValueType);

  expr = cs.cacheType(bindOptional);
  expr->setImplicit(true);
  expr = coerceToType(expr, toValueType, locator);
  if (!expr) return nullptr;

  unsigned depth = getOptionalEvaluationDepth(expr, bindOptional);
  bindOptional->setDepth(depth);

  expr = cs.cacheType(new (ctx) InjectIntoOptionalExpr(expr, toType));

  expr = cs.cacheType(new (ctx) OptionalEvaluationExpr(expr, toType));
  expr->setImplicit(true);
  return expr;
}

/// Determine whether the given expression is a reference to an
/// unbound instance member of a type.
static bool isReferenceToMetatypeMember(ConstraintSystem &cs, Expr *expr) {
  expr = expr->getSemanticsProvidingExpr();
  if (auto dotIgnored = dyn_cast<DotSyntaxBaseIgnoredExpr>(expr))
    return cs.getType(dotIgnored->getLHS())->is<AnyMetatypeType>();
  if (auto dotSyntax = dyn_cast<DotSyntaxCallExpr>(expr))
    return cs.getType(dotSyntax->getBase())->is<AnyMetatypeType>();
  return false;
}

static bool hasCurriedSelf(ConstraintSystem &cs, ConcreteDeclRef callee,
                           ApplyExpr *apply) {
  // If we do not have a callee, return false.
  if (!callee) {
    return false;
  }

  // Only calls to members of types can have curried 'self'.
  auto calleeDecl = callee.getDecl();
  if (!calleeDecl->getDeclContext()->isTypeContext()) {
    return false;
  }

  // Would have `self`, if we're not applying it.
  if (auto *call = dyn_cast<CallExpr>(apply)) {
    if (!calleeDecl->isInstanceMember() ||
        !isReferenceToMetatypeMember(cs, call->getDirectCallee())) {
      return true;
    }
    return false;
  }

  // Operators have curried self.
  if (isa<PrefixUnaryExpr>(apply) || isa<PostfixUnaryExpr>(apply) ||
      isa<BinaryExpr>(apply)) {
    return true;
  }

  // Otherwise, we have a normal application.
  return false;
}

/// Apply the contextually Sendable flag to the given expression,
static void applyContextualClosureFlags(Expr *expr, bool implicitSelfCapture,
                                        bool inheritActorContext,
                                        bool isPassedToSendingParameter) {
  if (auto closure = dyn_cast<ClosureExpr>(expr)) {
    closure->setAllowsImplicitSelfCapture(implicitSelfCapture);
    closure->setInheritsActorContext(inheritActorContext);
    closure->setIsPassedToSendingParameter(isPassedToSendingParameter);
    return;
  }

  if (auto captureList = dyn_cast<CaptureListExpr>(expr)) {
    applyContextualClosureFlags(captureList->getClosureBody(),
                                implicitSelfCapture, inheritActorContext,
                                isPassedToSendingParameter);
  }

  if (auto identity = dyn_cast<IdentityExpr>(expr)) {
    applyContextualClosureFlags(identity->getSubExpr(), implicitSelfCapture,
                                inheritActorContext,
                                isPassedToSendingParameter);
  }
}

// For variadic generic declarations we need to compute a substituted
// version of bindings because all of the packs are exploaded in the
// substituted function type.
//
// \code
// func fn<each T>(_: repeat each T) {}
//
// fn("", 42)
// \endcode
//
// The type of `fn` in the call is `(String, Int) -> Void` but bindings
// have only one parameter at index `0` with two argument positions: 0, 1.
static bool shouldSubstituteParameterBindings(ConcreteDeclRef callee) {
  auto subst = callee.getSubstitutions();
  if (subst.empty())
    return false;

  auto sig = subst.getGenericSignature();
  return llvm::any_of(
      sig.getGenericParams(),
      [&](const GenericTypeParamType *GP) { return GP->isParameterPack(); });
}

/// Compute parameter binding substitutions by exploding pack expansions
/// into multiple bindings (if they matched more than one argument) and
/// ignoring empty ones.
static void computeParameterBindingsSubstitutions(
    ConcreteDeclRef callee, ArrayRef<AnyFunctionType::Param> params,
    ArrayRef<ParamBinding> origBindings,
    SmallVectorImpl<ParamBinding> &substitutedBindings) {
  for (unsigned bindingIdx = 0, numBindings = origBindings.size();
       bindingIdx != numBindings; ++bindingIdx) {
    if (origBindings[bindingIdx].size() > 1) {
      const auto &param = params[substitutedBindings.size()];
      if (!param.isVariadic()) {
#ifndef NDEBUG
        auto *PD = getParameterAt(callee.getDecl(), bindingIdx);
        assert(PD && PD->getInterfaceType()->is<PackExpansionType>());
#endif
        // Explode binding set to match substituted function parameters.
        for (auto argIdx : origBindings[bindingIdx])
          substitutedBindings.push_back({argIdx});
        continue;
      }
    }

    const auto &bindings = origBindings[bindingIdx];
    if (bindings.size() == 0) {
      auto *PD = getParameterAt(callee.getDecl(), bindingIdx);
      // Skip pack expansions with no arguments because they are not
      // present in the substituted function type.
      if (PD->getInterfaceType()->is<PackExpansionType>())
        continue;
    }

    substitutedBindings.push_back(bindings);
  }
}

ArgumentList *ExprRewriter::coerceCallArguments(
    ArgumentList *args, AnyFunctionType *funcType, ConcreteDeclRef callee,
    ApplyExpr *apply, ConstraintLocatorBuilder locator,
    ArrayRef<AppliedPropertyWrapper> appliedPropertyWrappers) {
  assert(locator.endsWith<LocatorPathElt::ApplyArgument>());

  auto &ctx = getConstraintSystem().getASTContext();
  auto params = funcType->getParams();
  unsigned appliedWrapperIndex = 0;

  // Local function to produce a locator to refer to the given parameter.
  auto getArgLocator =
      [&](unsigned argIdx, unsigned paramIdx,
          ParameterTypeFlags flags) -> ConstraintLocatorBuilder {
    return locator.withPathElement(
        LocatorPathElt::ApplyArgToParam(argIdx, paramIdx, flags));
  };

  // Determine whether this application has curried self.
  bool skipCurriedSelf = apply ? hasCurriedSelf(cs, callee, apply) : true;
  // Determine the parameter bindings.
  ParameterListInfo paramInfo(params, callee.getDecl(), skipCurriedSelf);

  // If this application is an init(wrappedValue:) call that needs an injected
  // wrapped value placeholder, the first non-defaulted argument must be
  // wrapped in an OpaqueValueExpr.
  bool shouldInjectWrappedValuePlaceholder =
      target && target->shouldInjectWrappedValuePlaceholder(apply);

  auto injectWrappedValuePlaceholder =
      [&](Expr *arg, bool isAutoClosure = false) -> Expr * {
        auto *placeholder = PropertyWrapperValuePlaceholderExpr::create(
            ctx, arg->getSourceRange(), cs.getType(arg),
            target->propertyWrapperHasInitialWrappedValue() ? arg : nullptr,
            isAutoClosure);
        cs.cacheType(placeholder);
        cs.cacheType(placeholder->getOpaqueValuePlaceholder());
        shouldInjectWrappedValuePlaceholder = false;
        return placeholder;
      };

  // Quickly test if any further fix-ups for the argument types are necessary.
  auto matches = args->matches(params, [&](Expr *E) { return cs.getType(E); });
  if (matches && !shouldInjectWrappedValuePlaceholder &&
      !paramInfo.anyContextualInfo()) {
    return args;
  }

  // Determine the parameter bindings that were applied.
  auto *locatorPtr = cs.getConstraintLocator(locator);
  assert(solution.argumentMatchingChoices.count(locatorPtr) == 1);
  auto parameterBindings = solution.argumentMatchingChoices.find(locatorPtr)
                               ->second.parameterBindings;
  bool shouldSubstituteBindings = shouldSubstituteParameterBindings(callee);

  SmallVector<ParamBinding, 4> substitutedBindings;
  if (shouldSubstituteBindings) {
    computeParameterBindingsSubstitutions(callee, params, parameterBindings,
                                          substitutedBindings);
  } else {
    substitutedBindings = parameterBindings;
  }

  SmallVector<Argument, 4> newArgs;
  for (unsigned paramIdx = 0, numParams = substitutedBindings.size();
       paramIdx != numParams; ++paramIdx) {
    // Extract the parameter.
    const auto &param = params[paramIdx];
    auto paramLabel = param.getLabel();

    // Handle variadic parameters.
    if (param.isVariadic()) {
      assert(!param.isInOut());

      SmallVector<Expr *, 4> variadicArgs;

      // The first argument of this vararg parameter may have had a label;
      // save its location.
      auto &varargIndices = substitutedBindings[paramIdx];
      SourceLoc labelLoc;
      if (!varargIndices.empty())
        labelLoc = args->getLabelLoc(varargIndices[0]);

      // Convert the arguments.
      for (auto argIdx : varargIndices) {
        auto *arg = args->getExpr(argIdx);
        auto argType = cs.getType(arg);

        // If the argument type exactly matches, this just works.
        if (argType->isEqual(param.getPlainType())) {
          variadicArgs.push_back(arg);
          continue;
        }

        // Convert the argument.
        auto convertedArg = coerceToType(
            arg, param.getPlainType(),
            getArgLocator(argIdx, paramIdx, param.getParameterFlags()));
        if (!convertedArg)
          return nullptr;

        // Add the converted argument.
        variadicArgs.push_back(convertedArg);
      }

      SourceLoc start, end;
      if (!variadicArgs.empty()) {
        start = variadicArgs.front()->getStartLoc();
        end = variadicArgs.back()->getEndLoc();
      }

      // Collect them into an ArrayExpr.
      auto *arrayExpr = ArrayExpr::create(ctx, start, variadicArgs, {}, end,
                                          param.getParameterType());
      arrayExpr->setImplicit();
      cs.cacheType(arrayExpr);

      // Wrap the ArrayExpr in a VarargExpansionExpr.
      auto *varargExpansionExpr =
          VarargExpansionExpr::createArrayExpansion(ctx, arrayExpr);
      cs.cacheType(varargExpansionExpr);

      newArgs.push_back(Argument(labelLoc, paramLabel, varargExpansionExpr));
      continue;
    }

    // Handle default arguments.
    if (substitutedBindings[paramIdx].empty()) {
      auto paramIdxForDefault = paramIdx;
      // If bindings were substituted we need to find "original"
      // (or contextless) parameter index for the default argument.
      if (shouldSubstituteBindings) {
        auto *paramList = getParameterList(callee.getDecl());
        assert(paramList);
        paramIdxForDefault =
            paramList->getOrigParamIndex(callee.getSubstitutions(), paramIdx);
      }

      auto owner = getDefaultArgOwner(callee, paramIdx);
      auto paramTy = param.getParameterType();
      auto *defArg = new (ctx) DefaultArgumentExpr(
          owner, paramIdxForDefault, args->getStartLoc(), paramTy, dc);

      cs.cacheType(defArg);
      newArgs.emplace_back(SourceLoc(), param.getLabel(), defArg);
      continue;
    }

    // Otherwise, we have a plain old ordinary argument.

    // Extract the argument used to initialize this parameter.
    assert(substitutedBindings[paramIdx].size() == 1);
    unsigned argIdx = substitutedBindings[paramIdx].front();
    auto arg = args->get(argIdx);
    auto *argExpr = arg.getExpr();
    auto argType = cs.getType(argExpr);

    // Update the argument label to match the parameter. This may be necessary
    // for things like trailing closures and args to property wrapper params.
    arg.setLabel(param.getLabel());

    // Determine whether the closure argument should be treated as having
    // implicit self capture or inheriting actor context.
    bool isImplicitSelfCapture = paramInfo.isImplicitSelfCapture(paramIdx);
    bool inheritsActorContext = paramInfo.inheritsActorContext(paramIdx);
    bool isPassedToSendingParameter =
        paramInfo.isPassedToSendingParameter(paramIdx);

    applyContextualClosureFlags(argExpr, isImplicitSelfCapture,
                                inheritsActorContext,
                                isPassedToSendingParameter);

    // If the types exactly match, this is easy.
    auto paramType = param.getOldType();
    if (argType->isEqual(paramType) && !shouldInjectWrappedValuePlaceholder) {
      newArgs.push_back(arg);
      continue;
    }

    Expr *convertedArg = nullptr;
    auto argRequiresAutoClosureExpr = [&](const AnyFunctionType::Param &param,
                                          Type argType) {
      if (!param.isAutoClosure())
        return false;

      // Since it was allowed to pass function types to @autoclosure
      // parameters in Swift versions < 5, it has to be handled as
      // a regular function conversion by `coerceToType`.
      if (isAutoClosureArgument(argExpr)) {
        // In Swift >= 5 mode we only allow `@autoclosure` arguments
        // to be used by value if parameter would return a function
        // type (it just needs to get wrapped into autoclosure expr),
        // otherwise argument must always form a call.
        return cs.getASTContext().isSwiftVersionAtLeast(5);
      }

      return true;
    };

    if (paramInfo.hasExternalPropertyWrapper(paramIdx)) {
      auto *paramDecl = getParameterAt(callee, paramIdx);
      assert(paramDecl);

      auto appliedWrapper = appliedPropertyWrappers[appliedWrapperIndex++];
      auto wrapperType = solution.simplifyType(appliedWrapper.wrapperType);
      auto initKind = appliedWrapper.initKind;

      AppliedPropertyWrapperExpr::ValueKind valueKind;
      PropertyWrapperValuePlaceholderExpr *generatorArg;
      auto initInfo = paramDecl->getPropertyWrapperInitializerInfo();
      if (initKind == PropertyWrapperInitKind::ProjectedValue) {
        valueKind = AppliedPropertyWrapperExpr::ValueKind::ProjectedValue;
        generatorArg = initInfo.getProjectedValuePlaceholder();
      } else {
        valueKind = AppliedPropertyWrapperExpr::ValueKind::WrappedValue;
        generatorArg = initInfo.getWrappedValuePlaceholder();
      }

      // Coerce the property wrapper argument type to the input type of
      // the property wrapper generator function. The wrapper generator
      // has the same generic signature as the enclosing function, so we
      // can use substitutions from the callee.
      Type generatorInputType =
          generatorArg->getType().subst(callee.getSubstitutions());
      auto argLoc = getArgLocator(argIdx, paramIdx, param.getParameterFlags());

      if (generatorArg->isAutoClosure()) {
        auto *closureType = generatorInputType->castTo<FunctionType>();
        argExpr = coerceToType(
            argExpr, closureType->getResult(),
            argLoc.withPathElement(ConstraintLocator::AutoclosureResult));
        argExpr = cs.buildAutoClosureExpr(argExpr, closureType, dc);
      }

      argExpr = coerceToType(argExpr, generatorInputType, argLoc);

      // Wrap the argument in an applied property wrapper expr, which will
      // later turn into a call to the property wrapper generator function.
      argExpr = AppliedPropertyWrapperExpr::create(ctx, callee, paramDecl,
                                                   argExpr->getStartLoc(),
                                                   wrapperType, argExpr,
                                                   valueKind);
      cs.cacheExprTypes(argExpr);
    }

    auto argLoc = getArgLocator(argIdx, paramIdx, param.getParameterFlags());

    // If the argument is an existential type that has been opened, perform
    // the open operation.
    if (argType->getWithoutSpecifierType()->isAnyExistentialType() &&
        paramType->hasOpenedExistential()) {
      // FIXME: Look for an opened existential and use it. We need to
      // know how far out we need to go to close the existentials. Huh.
      auto knownOpened = solution.OpenedExistentialTypes.find(
          cs.getConstraintLocator(argLoc));
      if (knownOpened != solution.OpenedExistentialTypes.end()) {
        argExpr = openExistentialReference(
            argExpr, knownOpened->second, callee.getDecl());
        argType = cs.getType(argExpr);
      }
    }

    if (argRequiresAutoClosureExpr(param, argType)) {
      assert(!param.isInOut());

      // If parameter is an autoclosure, we need to make sure that:
      //   - argument type is coerced to parameter result type
      //   - implicit autoclosure is created to wrap argument expression
      //   - new types are propagated to constraint system
      auto *closureType = param.getPlainType()->castTo<FunctionType>();

      argExpr = coerceToType(
          argExpr, closureType->getResult(),
          argLoc.withPathElement(ConstraintLocator::AutoclosureResult));

      if (shouldInjectWrappedValuePlaceholder) {
        // If init(wrappedValue:) takes an autoclosure, then we want
        // the effect of autoclosure forwarding of the placeholder
        // autoclosure. The only way to do this is to call the placeholder
        // autoclosure when passing it to the init.
        bool isDefaultWrappedValue =
            target->propertyWrapperHasInitialWrappedValue();
        auto *placeholder = injectWrappedValuePlaceholder(
            cs.buildAutoClosureExpr(argExpr, closureType, dc,
                                    isDefaultWrappedValue),
            /*isAutoClosure=*/true);
        argExpr = CallExpr::createImplicitEmpty(ctx, placeholder);
        argExpr->setType(closureType->getResult());
        cs.cacheType(argExpr);
      }

      convertedArg = cs.buildAutoClosureExpr(argExpr, closureType, dc);
    } else {
      convertedArg = coerceToType(argExpr, paramType, argLoc);
    }

    // Perform the wrapped value placeholder injection
    if (shouldInjectWrappedValuePlaceholder)
      convertedArg = injectWrappedValuePlaceholder(convertedArg);

    if (!convertedArg)
      return nullptr;

    // Write back the rewritten argument to the original argument list. This
    // ensures it has the same semantic argument information as the rewritten
    // argument list, which may be required by IDE logic.
    args->setExpr(argIdx, convertedArg);

    arg.setExpr(convertedArg);
    newArgs.push_back(arg);
  }
  return ArgumentList::createTypeChecked(ctx, args, newArgs);
}

static bool isClosureLiteralExpr(Expr *expr) {
  expr = expr->getSemanticsProvidingExpr();
  return (isa<CaptureListExpr>(expr) || isa<ClosureExpr>(expr));
}

/// Whether the given expression is a closure that should inherit
/// the actor context from where it was formed.
static bool closureInheritsActorContext(Expr *expr) {
  if (auto IE = dyn_cast<IdentityExpr>(expr))
    return closureInheritsActorContext(IE->getSubExpr());

  if (auto CLE = dyn_cast<CaptureListExpr>(expr))
    return closureInheritsActorContext(CLE->getClosureBody());

  if (auto CE = dyn_cast<ClosureExpr>(expr))
    return CE->inheritsActorContext();

  return false;
}

/// If the expression is an explicit closure expression (potentially wrapped in
/// IdentityExprs), change the type of the closure and identities to the
/// specified type and return true.  Otherwise, return false with no effect.
static bool applyTypeToClosureExpr(ConstraintSystem &cs,
                                   Expr *expr, Type toType) {
  // Look through identity expressions, like parens.
  if (auto IE = dyn_cast<IdentityExpr>(expr)) {
    if (!applyTypeToClosureExpr(cs, IE->getSubExpr(), toType))
      return false;

    auto subExprTy = cs.getType(IE->getSubExpr());
    if (isa<ParenExpr>(IE)) {
      cs.setType(IE, ParenType::get(cs.getASTContext(), subExprTy));
    } else {
      cs.setType(IE, subExprTy);
    }
    return true;
  }

  // Look through capture lists.
  if (auto CLE = dyn_cast<CaptureListExpr>(expr)) {
    if (!applyTypeToClosureExpr(cs, CLE->getClosureBody(), toType)) return false;
    cs.setType(CLE, toType);
    return true;
  }

  // If we found an explicit ClosureExpr, update its type.
  if (auto CE = dyn_cast<ClosureExpr>(expr)) {
    cs.setType(CE, toType);

    // If solution application for this closure is delayed, let's write the
    // type into the ClosureExpr directly here, since the visitor won't.
    if (!CE->hasSingleExpressionBody())
      CE->setType(toType);

    return true;
  }

  // Otherwise fail.
  return false;
}

// Look through sugar and DotSyntaxBaseIgnoredExprs.
static Expr *
getSemanticExprForDeclOrMemberRef(Expr *expr) {
  auto semanticExpr = expr->getSemanticsProvidingExpr();
  while (auto ignoredBase = dyn_cast<DotSyntaxBaseIgnoredExpr>(semanticExpr)){
    semanticExpr = ignoredBase->getRHS()->getSemanticsProvidingExpr();
  }
  return semanticExpr;
}

static void
maybeDiagnoseUnsupportedDifferentiableConversion(ConstraintSystem &cs,
                                                 Expr *expr,
                                                 AnyFunctionType *toType) {
  ASTContext &ctx = cs.getASTContext();
  Type fromType = cs.getType(expr);
  auto fromFnType = fromType->getAs<AnyFunctionType>();
  // Conversion between two different differentiable function types is not
  // yet supported.
  if (fromFnType->isDifferentiable() && toType->isDifferentiable() &&
      fromFnType->getDifferentiabilityKind() !=
          toType->getDifferentiabilityKind()) {
    ctx.Diags.diagnose(expr->getLoc(),
                       diag::invalid_differentiable_function_conversion_expr);
    return;
  }
  // Conversion from a non-`@differentiable` function to a `@differentiable` is
  // only allowed from a closure expression or a declaration/member reference.
  if (!fromFnType->isDifferentiable() && toType->isDifferentiable()) {
    std::function<void(Expr *)> maybeDiagnoseFunctionRef;
    maybeDiagnoseFunctionRef = [&](Expr *semanticExpr) {
      if (auto *capture = dyn_cast<CaptureListExpr>(semanticExpr))
        semanticExpr = capture->getClosureBody();
      if (isa<ClosureExpr>(semanticExpr)) return;
      if (auto *declRef = dyn_cast<DeclRefExpr>(semanticExpr)) {
        if (isa<AbstractFunctionDecl>(declRef->getDecl())) return;
        // If the referenced decl is a function parameter, the user may want
        // to change the declaration to be a '@differentiable' closure. Emit a
        // note with a fix-it.
        if (auto *paramDecl = dyn_cast<ParamDecl>(declRef->getDecl())) {
          ctx.Diags.diagnose(
              expr->getLoc(),
              diag::invalid_differentiable_function_conversion_expr);
          if (paramDecl->getInterfaceType()->is<AnyFunctionType>()) {
            auto *typeRepr = paramDecl->getTypeRepr();
            while (auto *attributed = dyn_cast<AttributedTypeRepr>(typeRepr))
              typeRepr = attributed->getTypeRepr();
            std::string attributeString = "@differentiable";
            auto *funcTypeRepr = cast<FunctionTypeRepr>(typeRepr);
            auto paramListLoc = funcTypeRepr->getArgsTypeRepr()->getStartLoc();
            ctx.Diags.diagnose(paramDecl->getLoc(),
                    diag::invalid_differentiable_function_conversion_parameter,
                    attributeString)
                .highlight(paramDecl->getTypeRepr()->getSourceRange())
                .fixItInsert(paramListLoc, attributeString + " ");
          }
          return;
        }
      } else if (auto *memberRef = dyn_cast<MemberRefExpr>(semanticExpr)) {
        if (isa<FuncDecl>(memberRef->getMember().getDecl())) return;
      } else if (auto *dotSyntaxCall =
                     dyn_cast<DotSyntaxCallExpr>(semanticExpr)) {
        // Recurse on the function expression.
        auto *fnExpr = dotSyntaxCall->getFn()->getSemanticsProvidingExpr();
        maybeDiagnoseFunctionRef(fnExpr);
        return;
      } else if (auto *autoclosureExpr = dyn_cast<AutoClosureExpr>(semanticExpr)) {
        // Peer through curry thunks.
        if (auto *unwrappedFnExpr = autoclosureExpr->getUnwrappedCurryThunkExpr()) {
          maybeDiagnoseFunctionRef(unwrappedFnExpr);
          return;
        }
      }
      ctx.Diags.diagnose(expr->getLoc(),
                         diag::invalid_differentiable_function_conversion_expr);
    };
    maybeDiagnoseFunctionRef(getSemanticExprForDeclOrMemberRef(expr));
  }
}

static void
maybeDiagnoseUnsupportedFunctionConversion(ConstraintSystem &cs, Expr *expr,
                                           AnyFunctionType *toType) {
  auto &de = cs.getASTContext().Diags;
  Type fromType = cs.getType(expr);
  auto fromFnType = fromType->getAs<AnyFunctionType>();
  
  // Conversions to C function pointer type are limited. Since a C function
  // pointer captures no context, we can only do the necessary thunking or
  // codegen if the original function is a direct reference to a global function
  // or context-free closure or local function.
  if (toType->getRepresentation()
       == AnyFunctionType::Representation::CFunctionPointer) {
    // Can convert from an ABI-compatible C function pointer.
    if (fromFnType
        && fromFnType->getRepresentation()
            == AnyFunctionType::Representation::CFunctionPointer)
      return;
    
    // Can convert a decl ref to a global or local function that doesn't
    // capture context. Look through ignored bases too.
    // TODO: Look through static method applications to the type.
    auto semanticExpr = getSemanticExprForDeclOrMemberRef(expr);
    auto maybeDiagnoseFunctionRef = [&](FuncDecl *fn) {
      // TODO: We could allow static (or class final) functions too by
      // "capturing" the metatype in a thunk.
      if (fn->getDeclContext()->isTypeContext()) {
        de.diagnose(expr->getLoc(), diag::c_function_pointer_from_method);
      } else if (fn->getGenericParams()) {
        de.diagnose(expr->getLoc(),
                    diag::c_function_pointer_from_generic_function);
      }
    };
    
    // Look through a function conversion that only adds or removes
    // `@Sendable`.
    if (auto conv = dyn_cast<FunctionConversionExpr>(semanticExpr)) {
      auto ty1 = conv->getType()->castTo<AnyFunctionType>();
      auto ty2 = conv->getSubExpr()->getType()->castTo<AnyFunctionType>();
      if (ty1->withExtInfo(ty1->getExtInfo().withSendable(false))
             ->isEqual(ty2->withExtInfo(ty2->getExtInfo().withSendable(false)))){
        semanticExpr = conv->getSubExpr()->getSemanticsProvidingExpr();
      }
    }
    
    if (auto declRef = dyn_cast<DeclRefExpr>(semanticExpr)) {
      if (auto fn = dyn_cast<FuncDecl>(declRef->getDecl())) {
        return maybeDiagnoseFunctionRef(fn);
      }
    }
    
    if (auto memberRef = dyn_cast<MemberRefExpr>(semanticExpr)) {
      if (auto fn = dyn_cast<FuncDecl>(memberRef->getMember().getDecl())) {
        return maybeDiagnoseFunctionRef(fn);
      }
    }

    // Unwrap closures with explicit capture lists.
    if (auto capture = dyn_cast<CaptureListExpr>(semanticExpr))
      semanticExpr = capture->getClosureBody();
    
    // Can convert a literal closure that doesn't capture context.
    if (auto closure = dyn_cast<ClosureExpr>(semanticExpr))
      return;

    // Diagnose cases like:
    //   func f() { print(w) }; func g(_ : @convention(c) () -> ()) {}
    //   let k = f; g(k) // error
    //   func m() { let x = 0; g({ print(x) }) } // error
    // (See also: [NOTE: diagnose-swift-to-c-convention-change])
    de.diagnose(expr->getLoc(),
                diag::invalid_c_function_pointer_conversion_expr);
  }
}

/// Build the conversion of an element in a collection upcast.
static Expr *buildElementConversion(ExprRewriter &rewriter,
                                    SourceRange srcRange, Type srcType,
                                    Type destType, bool bridged,
                                    ConstraintLocatorBuilder locator,
                                    Expr *element) {
  if (bridged && TypeChecker::typeCheckCheckedCast(
                     srcType, destType, CheckedCastContextKind::None,
                     rewriter.dc) != CheckedCastKind::Coercion) {
    if (auto conversion =
          rewriter.buildObjCBridgeExpr(element, destType, locator))
        return conversion;
  }

  return rewriter.coerceToType(element, destType, locator);
}

static CollectionUpcastConversionExpr::ConversionPair
buildOpaqueElementConversion(ExprRewriter &rewriter, SourceRange srcRange,
                             Type srcType, Type destType,
                             bool bridged, ConstraintLocatorBuilder locator,
                             unsigned typeArgIndex) {
  // Build the conversion.
  auto &cs = rewriter.getConstraintSystem();
  ASTContext &ctx = cs.getASTContext();
  auto opaque =
      rewriter.cs.cacheType(new (ctx) OpaqueValueExpr(srcRange, srcType));

  Expr *conversion = buildElementConversion(
      rewriter, srcRange, srcType, destType, bridged,
      locator.withPathElement(LocatorPathElt::GenericArgument(typeArgIndex)),
      opaque);

  return { opaque, conversion };
}

void ExprRewriter::peepholeArrayUpcast(ArrayExpr *expr, Type toType,
                                       bool bridged, Type elementType,
                                       ConstraintLocatorBuilder locator) {
  // Update the type of the array literal.
  cs.setType(expr, toType);
  // FIXME: finish{Array,Dictionary}Expr invoke cacheExprTypes after forming
  // the semantic expression for the dictionary literal, which will undo the
  // type we set here if this dictionary literal is nested unless we update
  // the expr type as well.
  expr->setType(toType);

  // Convert the elements.
  ConstraintLocatorBuilder innerLocator =
    locator.withPathElement(LocatorPathElt::GenericArgument(0));
  for (auto &element : expr->getElements()) {
    if (auto newElement = buildElementConversion(*this, expr->getLoc(),
                                                 cs.getType(element),
                                                 elementType,
                                                 bridged, innerLocator,
                                                 element)) {
      element = newElement;
    }
  }

  (void)finishArrayExpr(expr);
}

void ExprRewriter::peepholeDictionaryUpcast(DictionaryExpr *expr,
                                            Type toType, bool bridged,
                                            Type keyType, Type valueType,
                                            ConstraintLocatorBuilder locator) {
  // Update the type of the dictionary literal.
  cs.setType(expr, toType);
  // FIXME: finish{Array,Dictionary}Expr invoke cacheExprTypes after forming
  // the semantic expression for the dictionary literal, which will undo the
  // type we set here if this dictionary literal is nested unless we update
  // the expr type as well.
  expr->setType(toType);

  ConstraintLocatorBuilder valueLocator =
    locator.withPathElement(LocatorPathElt::GenericArgument(1));

  // Convert the elements.
  TupleTypeElt tupleTypeElts[2] = { keyType, valueType };
  auto tupleType = TupleType::get(tupleTypeElts, cs.getASTContext());
  for (auto element : expr->getElements()) {
    if (auto tuple = dyn_cast<TupleExpr>(element)) {
      auto key = tuple->getElement(0);
      if (auto newKey = buildElementConversion(*this, expr->getLoc(),
                                               cs.getType(key), keyType,
                                               bridged, valueLocator, key))
        tuple->setElement(0, newKey);

      auto value = tuple->getElement(1);
      if (auto newValue = buildElementConversion(*this, expr->getLoc(),
                                                 cs.getType(value), valueType,
                                                 bridged, valueLocator,
                                                 value)) {
        tuple->setElement(1, newValue);
      }

      cs.setType(tuple, tupleType);
      // FIXME: finish{Array,Dictionary}Expr invoke cacheExprTypes after forming
      // the semantic expression for the dictionary literal, which will undo the
      // type we set here if this dictionary literal is nested unless we update
      // the expr type as well.
      tuple->setType(tupleType);
    }
  }

  (void)finishDictionaryExpr(expr);
}

bool ExprRewriter::peepholeCollectionUpcast(Expr *expr, Type toType,
                                            bool bridged,
                                            ConstraintLocatorBuilder locator) {
  // Recur into parenthesized expressions.
  if (auto paren = dyn_cast<ParenExpr>(expr)) {
    // If we can't peephole the subexpression, we're done.
    if (!peepholeCollectionUpcast(paren->getSubExpr(), toType, bridged,
                                  locator))
      return false;

    // Update the type of this expression.
    auto parenTy = ParenType::get(cs.getASTContext(),
                                  cs.getType(paren->getSubExpr()));
    cs.setType(paren, parenTy);
    // FIXME: finish{Array,Dictionary}Expr invoke cacheExprTypes after forming
    // the semantic expression for the dictionary literal, which will undo the
    // type we set here if this dictionary literal is nested unless we update
    // the expr type as well.
    paren->setType(parenTy);
    return true;
  }

  // Array literals.
  if (auto arrayLiteral = dyn_cast<ArrayExpr>(expr)) {
    if (Type elementType = toType->isArrayType()) {
      peepholeArrayUpcast(arrayLiteral, toType, bridged, elementType, locator);
      return true;
    }

    if (std::optional<Type> elementType = ConstraintSystem::isSetType(toType)) {
      peepholeArrayUpcast(arrayLiteral, toType, bridged, *elementType, locator);
      return true;
    }

    return false;
  }

  // Dictionary literals.
  if (auto dictLiteral = dyn_cast<DictionaryExpr>(expr)) {
    if (auto elementType = ConstraintSystem::isDictionaryType(toType)) {
      peepholeDictionaryUpcast(dictLiteral, toType, bridged,
                               elementType->first, elementType->second,
                               locator);
      return true;
    }

    return false;
  }

  return false;
}

Expr *ExprRewriter::buildCollectionUpcastExpr(
                                            Expr *expr, Type toType,
                                            bool bridged,
                                            ConstraintLocatorBuilder locator) {
  if (peepholeCollectionUpcast(expr, toType, bridged, locator))
    return expr;

  ASTContext &ctx = cs.getASTContext();
  // Build the first value conversion.
  auto fromArgs = cs.getType(expr)->castTo<BoundGenericType>()->getGenericArgs();
  auto toArgs = toType->castTo<BoundGenericType>()->getGenericArgs();
  auto conv =
    buildOpaqueElementConversion(*this, expr->getLoc(),
                                 fromArgs[0], toArgs[0],
                                 bridged, locator, 0);

  // For single-parameter collections, form the upcast.
  if (toType->isArrayType() || ConstraintSystem::isSetType(toType)) {
    return cs.cacheType(
              new (ctx) CollectionUpcastConversionExpr(expr, toType, {}, conv));
  }

  assert(ConstraintSystem::isDictionaryType(toType) &&
         "Unhandled collection upcast");

  // Build the second value conversion.
  auto conv2 =
    buildOpaqueElementConversion(*this, expr->getLoc(),
                                 fromArgs[1], toArgs[1],
                                 bridged, locator, 1);

  return cs.cacheType(
           new (ctx) CollectionUpcastConversionExpr(expr, toType, conv, conv2));

}

Expr *ExprRewriter::buildObjCBridgeExpr(Expr *expr, Type toType,
                                        ConstraintLocatorBuilder locator) {
  Type fromType = cs.getType(expr);

  // Bridged collection casts always succeed, so we treat them as
  // collection "upcasts".
  if ((fromType->isArrayType() && toType->isArrayType())
      || (ConstraintSystem::isDictionaryType(fromType)
          && ConstraintSystem::isDictionaryType(toType))
      || (ConstraintSystem::isSetType(fromType)
          && ConstraintSystem::isSetType(toType))) {
    return buildCollectionUpcastExpr(expr, toType, /*bridged=*/true, locator);
  }

  // Bridging from a Swift type to an Objective-C class type.
  if (toType->isAnyObject() ||
      (fromType->getRValueType()->isPotentiallyBridgedValueType() &&
       (toType->isBridgeableObjectType() || toType->isExistentialType()))) {
    // Bridging to Objective-C.
    Expr *objcExpr = bridgeToObjectiveC(expr, toType);
    if (!objcExpr)
      return nullptr;

    // We might have a coercion of a Swift type to a CF type toll-free
    // bridged to Objective-C.
    //
    // FIXME: Ideally we would instead have already recorded a restriction
    // when solving the constraint, and we wouldn't need to duplicate this
    // part of coerceToType() here.
    if (auto foreignClass = toType->getClassOrBoundGenericClass()) {
      if (foreignClass->getForeignClassKind() ==
            ClassDecl::ForeignKind::CFType) {
        return cs.cacheType(new (cs.getASTContext())
                                ForeignObjectConversionExpr(objcExpr, toType));
      }
    }

    return coerceToType(objcExpr, toType, locator);
  }

  // Bridging from an Objective-C class type to a Swift type.
  return forceBridgeFromObjectiveC(expr, toType);
}

Expr *ExprRewriter::coerceExistential(Expr *expr, Type toType,
                                      ConstraintLocatorBuilder locator) {
  Type fromType = cs.getType(expr);
  Type fromInstanceType = fromType;
  Type toInstanceType = toType;

  // For existential-to-existential coercions, open the source existential.
  Type openedFromType;
  if (fromType->isAnyExistentialType()) {
    openedFromType = OpenedArchetypeType::getAny(fromType->getCanonicalType(),
                                                 dc->getGenericSignatureOfContext());
  }

  Type openedFromInstanceType = openedFromType;

  // Look through metatypes.
  while ((fromInstanceType->is<UnresolvedType>() ||
          fromInstanceType->is<AnyMetatypeType>()) &&
         toInstanceType->is<ExistentialMetatypeType>()) {
    if (!fromInstanceType->is<UnresolvedType>())
      fromInstanceType = fromInstanceType->getMetatypeInstanceType();
    if (openedFromInstanceType && !openedFromInstanceType->is<UnresolvedType>())
      openedFromInstanceType = openedFromInstanceType->getMetatypeInstanceType();
    toInstanceType = toInstanceType->getMetatypeInstanceType();
  }

  ASTContext &ctx = cs.getASTContext();

  /// Collect the conformances for all the protocols of an existential type.
  /// If the source type is also existential, we don't want to check conformance
  /// because most protocols do not conform to themselves -- however we still
  /// allow the conversion here, except the ErasureExpr ends up with trivial
  /// conformances.

  // Use the requirements of any parameterized protocols to build out fake
  // argument conversions that can be used to infer opaque types.
  SmallVector<CollectionUpcastConversionExpr::ConversionPair, 4> argConversions;

  auto fromConstraintType = fromInstanceType;
  if (auto existential = fromConstraintType->getAs<ExistentialType>())
    fromConstraintType = existential->getConstraintType();

  auto toConstraintType = toInstanceType;
  if (auto existential = toConstraintType->getAs<ExistentialType>())
    toConstraintType = existential->getConstraintType();

  auto fromPPT = fromConstraintType->getAs<ParameterizedProtocolType>();
  auto toPPT = toConstraintType->getAs<ParameterizedProtocolType>();

  if (fromPPT && toPPT) {
    assert(fromPPT->getArgs().size() >= toPPT->getArgs().size());
    for (unsigned i = 0; i < toPPT->getArgs().size(); ++i) {
      auto firstTy = fromPPT->getArgs()[i];
      auto secondTy = toPPT->getArgs()[i];
      auto conv =
        buildOpaqueElementConversion(*this, expr->getLoc(),
                                     firstTy,
                                     secondTy,
                                     /*bridged*/ false,
                                     locator, i);
      argConversions.push_back(conv);
    }
  } else if ((fromPPT || toPPT) &&
             !fromInstanceType->isExistentialType()) {
    auto parameterized = fromConstraintType;
    auto base = toConstraintType;
    if (toPPT)
      std::swap(parameterized, base);

    SmallVector<Requirement, 4> reqs;
    parameterized->castTo<ParameterizedProtocolType>()
                 ->getRequirements(base, reqs);

    for (unsigned i = 0; i < reqs.size(); ++i) {
      const auto &req = reqs[i];
      assert(req.getKind() == RequirementKind::SameType);
      auto conv =
        buildOpaqueElementConversion(*this, expr->getLoc(),
                                     req.getFirstType(),
                                     req.getSecondType(),
                                     /*bridged*/ false,
                                     locator, i);
      argConversions.push_back(conv);
    }
  }

  // For existential-to-existential coercions, open the source existential.
  if (openedFromType) {
    auto *archetypeVal = cs.cacheType(
        new (ctx) OpaqueValueExpr(expr->getSourceRange(), openedFromType));

    auto conformances =
        dc->getParentModule()
          ->collectExistentialConformances(openedFromInstanceType->getCanonicalType(),
                                           toInstanceType->getCanonicalType(),
                                           /*allowMissing=*/true);

    auto *result = cs.cacheType(ErasureExpr::create(ctx, archetypeVal, toType,
                                                    conformances,
                                                    argConversions));
    return cs.cacheType(
        new (ctx) OpenExistentialExpr(expr, archetypeVal, result,
                                      cs.getType(result)));
  }

  // Load tuples with lvalue elements.
  if (auto tupleType = fromType->getAs<TupleType>()) {
    if (tupleType->hasLValueType()) {
      expr = cs.coerceToRValue(expr);
    }
  }

  auto conformances =
      dc->getParentModule()
        ->collectExistentialConformances(fromInstanceType->getCanonicalType(),
                                         toInstanceType->getCanonicalType(),
                                         /*allowMissing=*/true);

  return cs.cacheType(ErasureExpr::create(ctx, expr, toType,
                                          conformances, argConversions));
}

Expr *ConstraintSystem::addImplicitLoadExpr(Expr *expr) {
  return TypeChecker::addImplicitLoadExpr(
      getASTContext(), expr, [this](Expr *expr) { return getType(expr); },
      [this](Expr *expr, Type type) { setType(expr, type); });
}

Expr *ExprRewriter::coerceToType(Expr *expr, Type toType,
                                 ConstraintLocatorBuilder locator) {
  auto &ctx = cs.getASTContext();

  // Diagnose conversions to invalid function types that couldn't be performed
  // beforehand because of placeholders.
  if (auto *fnTy = toType->getAs<FunctionType>()) {
    auto contextTy = cs.getContextualType(expr, /*forConstraint=*/false);
    if (cs.getConstraintLocator(locator)->isForContextualType() && contextTy &&
        contextTy->hasPlaceholder()) {
      bool hadError = TypeChecker::diagnoseInvalidFunctionType(
          fnTy, expr->getLoc(), std::nullopt, dc, std::nullopt);
      if (hadError)
        return nullptr;
    }
  }

  // The type we're converting from.
  Type fromType = cs.getType(expr);

  // If the types are already equivalent, we don't have to do anything.
  if (fromType->isEqual(toType))
    return expr;

  // If the solver recorded what we should do here, just do it immediately.
  auto knownRestriction = solution.ConstraintRestrictions.find(
                            { fromType->getCanonicalType(),
                              toType->getCanonicalType() });
  if (knownRestriction != solution.ConstraintRestrictions.end()) {
    switch (knownRestriction->second) {
    case ConversionRestrictionKind::DeepEquality: {
      if (toType->hasUnresolvedType())
        break;

      // HACK: Fix problem related to Swift 4 mode (with assertions),
      // since Swift 4 mode allows passing arguments with extra parens
      // to parameters which don't expect them, it should be supported
      // by "deep equality" type - Optional<T> e.g.
      // ```swift
      // func foo(_: (() -> Void)?) {}
      // func bar() -> ((()) -> Void)? { return nil }
      // foo(bar) // This expression should compile in Swift 3 mode
      // ```
      //
      // See also: https://github.com/apple/swift/issues/49345
      if (cs.getASTContext().isSwiftVersionAtLeast(4) &&
          !cs.getASTContext().isSwiftVersionAtLeast(5)) {
        auto obj1 = fromType->getOptionalObjectType();
        auto obj2 = toType->getOptionalObjectType();

        if (obj1 && obj2) {
          auto *fn1 = obj1->getAs<AnyFunctionType>();
          auto *fn2 = obj2->getAs<AnyFunctionType>();

          if (fn1 && fn2) {
            auto params1 = fn1->getParams();
            auto params2 = fn2->getParams();

            // This handles situations like argument: (()), parameter: ().
            if (params1.size() == 1 && params2.empty()) {
              auto tupleTy = params1.front().getOldType()->getAs<TupleType>();
              if (tupleTy && tupleTy->getNumElements() == 0)
                break;
            }
          }
        }
      }

      auto &err = llvm::errs();
      err << "fromType->getCanonicalType() = ";
      fromType->getCanonicalType()->dump(err);
      err << "toType->getCanonicalType() = ";
      toType->getCanonicalType()->dump(err);
      llvm_unreachable("Should be handled above");
    }

    case ConversionRestrictionKind::Superclass:
    case ConversionRestrictionKind::ExistentialMetatypeToMetatype:
      return coerceSuperclass(expr, toType);

    case ConversionRestrictionKind::Existential:
    case ConversionRestrictionKind::MetatypeToExistentialMetatype: {
      auto coerced = coerceExistential(expr, toType, locator);
      diagnoseExistentialErasureOf(expr, coerced, locator);
      return coerced;
    }

    case ConversionRestrictionKind::ClassMetatypeToAnyObject: {
      assert(ctx.LangOpts.EnableObjCInterop &&
             "metatypes can only be cast to objects w/ objc runtime!");
      return cs.cacheType(new (ctx) ClassMetatypeToObjectExpr(expr, toType));
    }
    case ConversionRestrictionKind::ExistentialMetatypeToAnyObject: {
      assert(ctx.LangOpts.EnableObjCInterop &&
             "metatypes can only be cast to objects w/ objc runtime!");
      return cs.cacheType(new (ctx)
                              ExistentialMetatypeToObjectExpr(expr, toType));
    }
    case ConversionRestrictionKind::ProtocolMetatypeToProtocolClass: {
      return cs.cacheType(new (ctx) ProtocolMetatypeToObjectExpr(expr, toType));
    }
        
    case ConversionRestrictionKind::ValueToOptional: {
      auto toGenericType = toType->castTo<BoundGenericType>();
      assert(toGenericType->getDecl()->isOptionalDecl());
      TypeChecker::requireOptionalIntrinsics(cs.getASTContext(),
                                             expr->getLoc());

      Type valueType = toGenericType->getGenericArgs()[0];
      expr = coerceToType(expr, valueType, locator);
      if (!expr) return nullptr;

      auto *result =
          cs.cacheType(new (ctx) InjectIntoOptionalExpr(expr, toType));
      diagnoseOptionalInjection(result, locator);
      return result;
    }

    case ConversionRestrictionKind::OptionalToOptional:
      return coerceOptionalToOptional(expr, toType, locator);

    case ConversionRestrictionKind::ArrayUpcast: {
      // Build the value conversion.
      return buildCollectionUpcastExpr(expr, toType, /*bridged=*/false,
                                       locator);
    }

    case ConversionRestrictionKind::HashableToAnyHashable: {
      // We want to check conformance on the rvalue, as that's what has
      // the Hashable conformance
      expr = cs.coerceToRValue(expr);

      // Find the conformance of the source type to Hashable.
      auto hashable = ctx.getProtocol(KnownProtocolKind::Hashable);
      auto conformance =
        dc->getParentModule()->checkConformance(
                        cs.getType(expr), hashable);
      assert(conformance && "must conform to Hashable");

      return cs.cacheType(
          new (ctx) AnyHashableErasureExpr(expr, toType, conformance));
    }

    case ConversionRestrictionKind::DictionaryUpcast: {
      // Build the value conversion.
      return buildCollectionUpcastExpr(expr, toType, /*bridged=*/false,
                                       locator);
    }

    case ConversionRestrictionKind::SetUpcast: {
      // Build the value conversion.
      return buildCollectionUpcastExpr(expr, toType, /*bridged=*/false, locator);
    }

    case ConversionRestrictionKind::InoutToPointer:
    case ConversionRestrictionKind::InoutToCPointer: {
      bool isOptional = false;
      Type unwrappedTy = toType;
      if (Type unwrapped = toType->getOptionalObjectType()) {
        isOptional = true;
        unwrappedTy = unwrapped;
      }
      PointerTypeKind pointerKind;
      auto toEltType = unwrappedTy->getAnyPointerElementType(pointerKind);
      assert(toEltType && "not a pointer type?"); (void) toEltType;

      TypeChecker::requirePointerArgumentIntrinsics(ctx, expr->getLoc());
      Expr *result =
          cs.cacheType(new (ctx) InOutToPointerExpr(expr, unwrappedTy));
      if (isOptional)
        result = cs.cacheType(new (ctx) InjectIntoOptionalExpr(result, toType));
      return result;
    }

    case ConversionRestrictionKind::ArrayToPointer:
    case ConversionRestrictionKind::ArrayToCPointer: {
      bool isOptional = false;
      Type unwrappedTy = toType;
      if (Type unwrapped = toType->getOptionalObjectType()) {
        isOptional = true;
        unwrappedTy = unwrapped;
      }

      TypeChecker::requirePointerArgumentIntrinsics(ctx, expr->getLoc());
      Expr *result =
          cs.cacheType(new (ctx) ArrayToPointerExpr(expr, unwrappedTy));
      if (isOptional)
        result = cs.cacheType(new (ctx) InjectIntoOptionalExpr(result, toType));
      return result;
    }
    
    case ConversionRestrictionKind::StringToPointer: {
      bool isOptional = false;
      Type unwrappedTy = toType;
      if (Type unwrapped = toType->getOptionalObjectType()) {
        isOptional = true;
        unwrappedTy = unwrapped;
      }

      TypeChecker::requirePointerArgumentIntrinsics(ctx, expr->getLoc());
      Expr *result =
          cs.cacheType(new (ctx) StringToPointerExpr(expr, unwrappedTy));
      if (isOptional)
        result = cs.cacheType(new (ctx) InjectIntoOptionalExpr(result, toType));
      return result;
    }
    
    case ConversionRestrictionKind::PointerToPointer:
    case ConversionRestrictionKind::PointerToCPointer: {
      TypeChecker::requirePointerArgumentIntrinsics(ctx, expr->getLoc());
      Type unwrappedToTy = toType->getOptionalObjectType();

      // Optional to optional.
      if (Type unwrappedFromTy = cs.getType(expr)->getOptionalObjectType()) {
        assert(unwrappedToTy && "converting optional to non-optional");
        Expr *boundOptional = cs.cacheType(
            new (ctx) BindOptionalExpr(expr, SourceLoc(),
                                       /*depth*/ 0, unwrappedFromTy));
        Expr *converted = cs.cacheType(
            new (ctx) PointerToPointerExpr(boundOptional, unwrappedToTy));
        Expr *rewrapped =
            cs.cacheType(new (ctx) InjectIntoOptionalExpr(converted, toType));
        return cs.cacheType(new (ctx)
                                OptionalEvaluationExpr(rewrapped, toType));
      }

      // Non-optional to optional.
      if (unwrappedToTy) {
        Expr *converted =
            cs.cacheType(new (ctx) PointerToPointerExpr(expr, unwrappedToTy));
        return cs.cacheType(new (ctx)
                                InjectIntoOptionalExpr(converted, toType));
      }

      // Non-optional to non-optional.
      return cs.cacheType(new (ctx) PointerToPointerExpr(expr, toType));
    }

    case ConversionRestrictionKind::CFTollFreeBridgeToObjC: {
      auto foreignClass = fromType->getClassOrBoundGenericClass();
      auto objcType = foreignClass->getAttrs().getAttribute<ObjCBridgedAttr>()
                        ->getObjCClass()->getDeclaredInterfaceType();
      auto asObjCClass =
          cs.cacheType(new (ctx) ForeignObjectConversionExpr(expr, objcType));
      return coerceToType(asObjCClass, toType, locator);
    }

    case ConversionRestrictionKind::ObjCTollFreeBridgeToCF: {
      auto foreignClass = toType->getClassOrBoundGenericClass();
      auto objcType = foreignClass->getAttrs().getAttribute<ObjCBridgedAttr>()
                        ->getObjCClass()->getDeclaredInterfaceType();
      Expr *result = coerceToType(expr, objcType, locator);
      if (!result)
        return nullptr;

      return cs.cacheType(new (ctx)
                              ForeignObjectConversionExpr(result, toType));
    }

    case ConversionRestrictionKind::CGFloatToDouble:
    case ConversionRestrictionKind::DoubleToCGFloat: {
      auto conversionKind = knownRestriction->second;

      auto shouldUseCoercedExpr = [&]() {
        // If conversion wraps the whole body of a single-expression closure,
        // let's use the passed-in expression since the closure itself doesn't
        // get updated until coercion is done.
        if (locator.endsWith<LocatorPathElt::ClosureBody>())
          return true;

        // Contextual type locator always uses the original version of
        // expression (before any coercions have been applied) because
        // otherwise it wouldn't be possible to find the overload choice.
        if (locator.endsWith<LocatorPathElt::ContextualType>())
          return true;

        // In all other cases use the expression associated with locator.
        return false;
      };

      auto *argExpr =
          shouldUseCoercedExpr() ? expr : locator.trySimplifyToExpr();
      assert(argExpr);

      // Source requires implicit conversion to match destination
      // type but the conversion itself is recorded on assignment.
      if (auto *assignment = dyn_cast<AssignExpr>(argExpr))
        argExpr = assignment->getSrc();

      // Load the value for conversion.
      argExpr = cs.coerceToRValue(argExpr);

      auto *argList = ArgumentList::forImplicitUnlabeled(ctx, {argExpr});
      auto *implicitInit = CallExpr::createImplicit(
          ctx, TypeExpr::createImplicit(toType, ctx), argList);

      cs.cacheExprTypes(implicitInit->getFn());
      cs.setType(argExpr, fromType);

      auto *callLocator = cs.getConstraintLocator(
          implicitInit, LocatorPathElt::ImplicitConversion(conversionKind));

      // HACK: Temporarily push the call expr onto the expr stack to make sure
      // we don't try to prematurely close an existential when applying the
      // curried member ref. This can be removed once existential opening is
      // refactored not to rely on the shape of the AST prior to rewriting.
      ExprStack.push_back(implicitInit);
      SWIFT_DEFER { ExprStack.pop_back(); };

      // We need to take information recorded for all conversions of this
      // kind and move it to a specific location where restriction is applied.
      {
        auto *memberLoc = solution.getConstraintLocator(
            callLocator, {ConstraintLocator::ApplyFunction,
                          ConstraintLocator::ConstructorMember});

        ConstraintLocator *baseLoc =
            cs.getImplicitValueConversionLocator(locator, conversionKind);

        auto overload =
            solution.getOverloadChoice(solution.getConstraintLocator(
                baseLoc, {ConstraintLocator::ApplyFunction,
                          ConstraintLocator::ConstructorMember}));

        solution.overloadChoices.insert({memberLoc, overload});
      }

      // Record the implicit call's parameter bindings and match direction.
      solution.recordSingleArgMatchingChoice(callLocator);

      finishApply(implicitInit, toType, callLocator, callLocator);
      return implicitInit;
    }
    }
  }

  // Use an opaque type to abstract a value of the underlying concrete type.
  // The full check here would be that `toType` and `fromType` are structurally
  // equal except in any position where `toType` has an opaque archetype. The
  // below is just an approximate check since the above would be expensive to
  // verify and still relies on the type checker ensuing `fromType` is
  // compatible with any opaque archetypes.
  if (toType->getCanonicalType()->hasOpaqueArchetype() &&
      cs.getConstraintLocator(locator)->isForContextualType()) {
    // Find the opaque type declaration. We need its generic signature.
    OpaqueTypeDecl *opaqueDecl = nullptr;
    bool found = toType->getCanonicalType().findIf([&](Type type) {
      if (auto opaqueType = type->getAs<OpaqueTypeArchetypeType>()) {
        opaqueDecl = opaqueType->getDecl();
        return true;
      }

      return false;
    });
    (void)found;
    assert(found && "No opaque type archetype?");

    // Compute the substitutions for the opaque type declaration.
    auto opaqueLocator = solution.getConstraintSystem().getOpenOpaqueLocator(
        locator, opaqueDecl);
    SubstitutionMap substitutions = solution.computeSubstitutions(
        opaqueDecl, opaqueDecl->getOpaqueInterfaceGenericSignature(),
        opaqueLocator);

    // If we don't have substitutions, this is an opaque archetype from
    // another declaration being manipulated, and not an erasure of a
    // concrete type to an opaque type inside its defining declaration.
    if (!substitutions.empty()) {
      // Compute the underlying type by replacing all opaque archetypes with
      // the fixed type of their opened type.
      auto underlyingType = toType.subst(
        [&](SubstitutableType *type) -> Type {
          if (auto *opaqueType = type->getAs<OpaqueTypeArchetypeType>()) {
            if (opaqueType->getDecl() == opaqueDecl) {
              return opaqueType->getInterfaceType().subst(substitutions);
            }
          }
          return type;
        },
        LookUpConformanceInModule(cs.DC->getParentModule()),
        SubstFlags::SubstituteOpaqueArchetypes);

      // Coerce the result expression to the underlying type.
      // FIXME: Wrong locator?
      auto *subExpr = coerceToType(expr, underlyingType, locator);

      return cs.cacheType(
          new (ctx) UnderlyingToOpaqueExpr(subExpr, toType, substitutions));
    }
  }

  // Handle "from specific" coercions before "catch all" coercions.
  auto desugaredFromType = fromType->getDesugaredType();
  switch (desugaredFromType->getKind()) {
  // Coercions from an lvalue: load or perform implicit address-of. We perform
  // these coercions first because they are often the first step in a multi-step
  // coercion.
  case TypeKind::LValue: {
    auto fromLValue = cast<LValueType>(desugaredFromType);
    auto toIO = toType->getAs<InOutType>();
    if (!toIO)
      return coerceToType(cs.addImplicitLoadExpr(expr), toType, locator);

    // In an 'inout' operator like "i += 1", the operand is converted from
    // an implicit lvalue to an inout argument.
    assert(toIO->getObjectType()->isEqual(fromLValue->getObjectType()));
    return cs.cacheType(new (ctx) InOutExpr(expr->getStartLoc(), expr,
                                            toIO->getObjectType(),
                                            /*isImplicit*/ true));
  }

  case TypeKind::Pack:
  case TypeKind::PackElement: {
    llvm_unreachable("Unimplemented!");
  }

  case TypeKind::PackExpansion: {
    auto toExpansionType = toType->getAs<PackExpansionType>();
    auto *expansion = dyn_cast<PackExpansionExpr>(expr);

    auto *elementEnv = expansion->getGenericEnvironment();
    auto toElementType = elementEnv->mapContextualPackTypeIntoElementContext(
        toExpansionType->getPatternType());

    auto *pattern = coerceToType(expansion->getPatternExpr(),
                                 toElementType, locator);
    auto *packEnv = cs.DC->getGenericEnvironmentOfContext();
    auto patternType = packEnv->mapElementTypeIntoPackContext(toElementType);
    auto shapeType = toExpansionType->getCountType();
    auto expansionTy = PackExpansionType::get(patternType, shapeType);

    expansion->setPatternExpr(pattern);
    expansion->setType(expansionTy);
    return cs.cacheType(expansion);
  }

  case TypeKind::BuiltinTuple:
    llvm_unreachable("BuiltinTupleType should not show up here");

  // Coerce from a tuple to a tuple.
  case TypeKind::Tuple: {
    auto fromTuple = cast<TupleType>(desugaredFromType);
    auto toTuple = toType->getAs<TupleType>();
    if (!toTuple)
      break;

    if (fromTuple->hasLValueType() && !toTuple->hasLValueType())
      return coerceToType(cs.coerceToRValue(expr), toType, locator);

    SmallVector<unsigned, 4> sources;
    if (!computeTupleShuffle(fromTuple, toTuple, sources)) {
      return coerceTupleToTuple(expr, fromTuple, toTuple,
                                locator, sources);
    }
    break;
  }

  case TypeKind::PrimaryArchetype:
  case TypeKind::OpenedArchetype:
  case TypeKind::OpaqueTypeArchetype:
  case TypeKind::PackArchetype:
  case TypeKind::ElementArchetype:
    if (!cast<ArchetypeType>(desugaredFromType)->requiresClass())
      break;
    LLVM_FALLTHROUGH;

  // Coercion from a subclass to a superclass.
  //
  // FIXME: Can we rig things up so that we always have a Superclass
  // conversion restriction in this case?
  case TypeKind::DynamicSelf:
  case TypeKind::BoundGenericClass:
  case TypeKind::Class: {
    if (!toType->getClassOrBoundGenericClass())
      break;
    for (auto fromSuperClass = fromType->getSuperclass();
         fromSuperClass;
         fromSuperClass = fromSuperClass->getSuperclass()) {
      if (fromSuperClass->isEqual(toType)) {
        return coerceSuperclass(expr, toType);
      }
    }
    break;
  }

  // Coercion from one function type to another, this produces a
  // FunctionConversionExpr in its full generality.
  case TypeKind::Function: {
    auto fromFunc = cast<FunctionType>(desugaredFromType);
    auto toFunc = toType->getAs<FunctionType>();
    if (!toFunc)
      break;

    // Default argument generator must return escaping functions. Therefore, we
    // leave an explicit escape to noescape cast here such that SILGen can skip
    // the cast and emit a code for the escaping function.
    bool isInDefaultArgumentContext = false;
    if (auto initializerCtx = dyn_cast<Initializer>(dc))
      isInDefaultArgumentContext = (initializerCtx->getInitializerKind() ==
                                    InitializerKind::DefaultArgument);
    auto toEI = toFunc->getExtInfo();
    assert(toType->is<FunctionType>());

    // Handle implicit conversions between non-@differentiable and
    // @differentiable functions.
    {
      auto fromEI = fromFunc->getExtInfo();
      auto isFromDifferentiable = fromEI.isDifferentiable();
      auto isToDifferentiable = toEI.isDifferentiable();
      // Handle implicit conversion from @differentiable.
      if (isFromDifferentiable && !isToDifferentiable) {
        fromFunc = fromFunc->getWithoutDifferentiability()
            ->castTo<FunctionType>();
        switch (fromEI.getDifferentiabilityKind()) {
        // TODO: Ban `Normal` and `Forward` cases.
        case DifferentiabilityKind::Normal:
        case DifferentiabilityKind::Forward:
        case DifferentiabilityKind::Reverse:
          expr = cs.cacheType(new (ctx)
              DifferentiableFunctionExtractOriginalExpr(expr, fromFunc));
          break;
        case DifferentiabilityKind::Linear:
          expr = cs.cacheType(new (ctx)
              LinearFunctionExtractOriginalExpr(expr, fromFunc));
          break;
        case DifferentiabilityKind::NonDifferentiable:
          llvm_unreachable("Cannot be NonDifferentiable");
        }
      }
      // Handle implicit conversion from non-@differentiable to @differentiable.
      maybeDiagnoseUnsupportedDifferentiableConversion(cs, expr, toFunc);
      if (!isFromDifferentiable && isToDifferentiable) {
        auto newEI =
            fromEI.intoBuilder()
                .withDifferentiabilityKind(toEI.getDifferentiabilityKind())
                .build();
        fromFunc = FunctionType::get(toFunc->getParams(), fromFunc->getResult(),
                                     newEI);
        switch (toEI.getDifferentiabilityKind()) {
        // TODO: Ban `Normal` and `Forward` cases.
        case DifferentiabilityKind::Normal:
        case DifferentiabilityKind::Forward:
        case DifferentiabilityKind::Reverse:
          expr = cs.cacheType(new (ctx)
                              DifferentiableFunctionExpr(expr, fromFunc));
          break;
        case DifferentiabilityKind::Linear:
          expr = cs.cacheType(new (ctx) LinearFunctionExpr(expr, fromFunc));
          break;
        case DifferentiabilityKind::NonDifferentiable:
          llvm_unreachable("Cannot be NonDifferentiable");
        }
      }
    }

    // If we have a ClosureExpr, then we can safely propagate @Sendable
    // to the closure without invalidating prior analysis.
    auto fromEI = fromFunc->getExtInfo();
    if (toEI.isSendable() && !fromEI.isSendable()) {
      auto newFromFuncType = fromFunc->withExtInfo(fromEI.withSendable());
      if (applyTypeToClosureExpr(cs, expr, newFromFuncType)) {
        fromFunc = newFromFuncType->castTo<FunctionType>();

        // Propagating the 'concurrent' bit might have satisfied the entire
        // conversion. If so, we're done, otherwise keep converting.
        if (fromFunc->isEqual(toType))
          return expr;
      }
    }

    // If we have a ClosureExpr, then we can safely propagate a global actor
    // to the closure without invalidating prior analysis.
    fromEI = fromFunc->getExtInfo();
    if (toEI.getGlobalActor() && !fromEI.getGlobalActor()) {
      auto newFromFuncType = fromFunc->withExtInfo(
          fromEI.withGlobalActor(toEI.getGlobalActor()));
      if (applyTypeToClosureExpr(cs, expr, newFromFuncType)) {
        fromFunc = newFromFuncType->castTo<FunctionType>();

        // Propagating the global actor bit might have satisfied the entire
        // conversion. If so, we're done, otherwise keep converting.
        if (fromFunc->isEqual(toType))
          return expr;
      }
    }

    /// Whether the given effect is polymorphic at this location.
    auto isEffectPolymorphic = [&](EffectKind kind) -> bool {
      if (!locator.endsWith<LocatorPathElt::ApplyArgToParam>())
        return false;

      if (auto *call = getAsExpr<ApplyExpr>(locator.getAnchor())) {
        if (auto *declRef = dyn_cast<DeclRefExpr>(call->getFn())) {
          if (auto *fn = dyn_cast<AbstractFunctionDecl>(declRef->getDecl()))
            return fn->hasPolymorphicEffect(kind);
        }
      }

      return false;
    };

    // If we have a ClosureExpr, and we can safely propagate 'async' to the
    // closure, do that here.
    fromEI = fromFunc->getExtInfo();
    bool shouldPropagateAsync =
        !isEffectPolymorphic(EffectKind::Async) || closureInheritsActorContext(expr);
    if (toEI.isAsync() && !fromEI.isAsync() && shouldPropagateAsync) {
      auto newFromFuncType = fromFunc->withExtInfo(fromEI.withAsync());
      if (applyTypeToClosureExpr(cs, expr, newFromFuncType)) {
        fromFunc = newFromFuncType->castTo<FunctionType>();

        // Propagating 'async' might have satisfied the entire conversion.
        // If so, we're done, otherwise keep converting.
        if (fromFunc->isEqual(toType))
          return expr;
      }
    }

    // If we have a ClosureExpr, then we can safely propagate the 'no escape'
    // bit to the closure without invalidating prior analysis.
    fromEI = fromFunc->getExtInfo();
    if (toEI.isNoEscape() && !fromEI.isNoEscape()) {
      auto newFromFuncType = fromFunc->withExtInfo(fromEI.withNoEscape());
      if (!isInDefaultArgumentContext &&
          applyTypeToClosureExpr(cs, expr, newFromFuncType)) {
        fromFunc = newFromFuncType->castTo<FunctionType>();
        // Propagating the 'no escape' bit might have satisfied the entire
        // conversion.  If so, we're done, otherwise keep converting.
        if (fromFunc->isEqual(toType))
          return expr;
      } else if (isInDefaultArgumentContext) {
        // First apply the conversion *without* noescape attribute.
        if (!newFromFuncType->isEqual(toType)) {
          auto escapingToFuncTy =
              toFunc->withExtInfo(toEI.withNoEscape(false));
          maybeDiagnoseUnsupportedFunctionConversion(cs, expr, toFunc);
          expr = cs.cacheType(
              new (ctx) FunctionConversionExpr(expr, escapingToFuncTy));
        }
        // Apply an explicit function conversion *only* for the escape to
        // noescape conversion. This conversion will be stripped by the
        // default argument generator. (We can't return a @noescape function)
        auto newExpr =
            cs.cacheType(new (ctx) FunctionConversionExpr(expr, toFunc));
        return newExpr;
      }
    }

    if (ctx.LangOpts.isDynamicActorIsolationCheckingEnabled()) {
      // Passing a synchronous global actor-isolated function value and
      // parameter that expects a synchronous non-isolated function type could
      // require a runtime check to ensure that function is always called in
      // expected context.
      if (!toEI.getGlobalActor() && fromEI.getGlobalActor() &&
          !toEI.isAsync()) {
        // Runtime check is required when isolation function value
        // is passed to an API that comes from a module that doesn't
        // have full static concurrency checking enabled.
        auto requiresRuntimeCheck = [&]() {
          if (!locator.endsWith<LocatorPathElt::ApplyArgToParam>())
            return false;

          ConstraintLocator *calleeLoc = nullptr;
          if (auto *call = getAsExpr<ApplyExpr>(locator.getAnchor())) {
            calleeLoc = CalleeLocators[call];
          } else {
            calleeLoc =
                solution.getCalleeLocator(cs.getConstraintLocator(locator));
          }

          auto overload = solution.getOverloadChoiceIfAvailable(calleeLoc);
          if (!(overload && overload->choice.isDecl()))
            return false;

          auto *decl = overload->choice.getDecl();
          // Function values passed to C/ObjC APIs are already thunked
          // and that's where the check is going to go.
          if (decl->hasClangNode())
            return false;

          auto declaredIn = decl->findImport(dc);
          if (!declaredIn)
            return false;

          return !declaredIn->module.importedModule->isConcurrencyChecked();
        };

        if (requiresRuntimeCheck()) {
          auto isolatedToType =
              FunctionType::get(toFunc->getParams(), toFunc->getResult(),
                                toEI.withGlobalActor(fromEI.getGlobalActor()));

          // Global actor might not be the only difference, let's introduce
          // a function conversion first but with matching isolation.
          expr = cs.cacheType(new (ctx)
                                  FunctionConversionExpr(expr, isolatedToType));

          return cs.cacheType(new (ctx)
                                  ActorIsolationErasureExpr(expr, toType));
        }
      }
    }

    maybeDiagnoseUnsupportedFunctionConversion(cs, expr, toFunc);

    return cs.cacheType(new (ctx) FunctionConversionExpr(expr, toType));
  }

  // Coercions from one metatype to another.
  case TypeKind::Metatype: {
    if (auto toMeta = toType->getAs<MetatypeType>())
      return cs.cacheType(new (ctx) MetatypeConversionExpr(expr, toMeta));
    LLVM_FALLTHROUGH;
  }
  // Coercions from metatype to objects.
  case TypeKind::ExistentialMetatype: {
    auto fromMeta = cast<AnyMetatypeType>(desugaredFromType);
    if (toType->isAnyObject()) {
      assert(cs.getASTContext().LangOpts.EnableObjCInterop
             && "metatype-to-object conversion requires objc interop");
      if (fromMeta->is<MetatypeType>()) {
        assert(fromMeta->getInstanceType()->mayHaveSuperclass()
               && "metatype-to-object input should be a class metatype");
        return cs.cacheType(new (ctx) ClassMetatypeToObjectExpr(expr, toType));
      }
      
      if (fromMeta->is<ExistentialMetatypeType>()) {
        assert(fromMeta->getInstanceType()->getCanonicalType()
                       ->getExistentialLayout().requiresClass()
               && "metatype-to-object input should be a class metatype");
        return cs.cacheType(new (ctx)
                                ExistentialMetatypeToObjectExpr(expr, toType));
      }
      
      llvm_unreachable("unhandled metatype kind");
    }
    
    if (auto toClass = toType->getClassOrBoundGenericClass()) {
      if (toClass->getName() == cs.getASTContext().Id_Protocol
          && toClass->getModuleContext()->getName()
              == cs.getASTContext().Id_ObjectiveC) {
        assert(cs.getASTContext().LangOpts.EnableObjCInterop
               && "metatype-to-object conversion requires objc interop");
        assert(fromMeta->is<MetatypeType>()
               && fromMeta->getInstanceType()->is<ProtocolType>()
               && "protocol-metatype-to-Protocol only works for single "
                  "protocols");
        return cs.cacheType(new (ctx)
                                ProtocolMetatypeToObjectExpr(expr, toType));
      }
    }

    break;
  }

#define SUGARED_TYPE(Name, Parent) case TypeKind::Name:
#define BUILTIN_TYPE(Name, Parent) case TypeKind::Name:
#define UNCHECKED_TYPE(Name, Parent) case TypeKind::Name:
#define ARTIFICIAL_TYPE(Name, Parent) case TypeKind::Name:
#define TYPE(Name, Parent)
#include "swift/AST/TypeNodes.def"
  case TypeKind::Error:
  case TypeKind::InOut:
  case TypeKind::Module:
  case TypeKind::Enum:
  case TypeKind::Struct:
  case TypeKind::Protocol:
  case TypeKind::ProtocolComposition:
  case TypeKind::ParameterizedProtocol:
  case TypeKind::Existential:
  case TypeKind::BoundGenericEnum:
  case TypeKind::BoundGenericStruct:
  case TypeKind::GenericFunction:
  case TypeKind::GenericTypeParam:
  case TypeKind::DependentMember:
    break;
  }

  // Uninhabited types can be coerced to any other type via an UnreachableExpr.
  if (fromType->isUninhabited())
    return cs.cacheType(UnreachableExpr::create(ctx, expr, toType));

  // "Catch all" coercions.
  auto desugaredToType = toType->getDesugaredType();
  switch (desugaredToType->getKind()) {
  // Coercions from a type to an existential type.
  case TypeKind::Existential:
  case TypeKind::ExistentialMetatype:
  case TypeKind::ProtocolComposition:
  case TypeKind::ParameterizedProtocol:
  case TypeKind::Protocol:
    return coerceExistential(expr, toType, locator);

  // Coercion to Optional<T>.
  case TypeKind::BoundGenericEnum: {
    auto toGenericType = cast<BoundGenericEnumType>(desugaredToType);
    if (!toGenericType->getDecl()->isOptionalDecl())
      break;
    TypeChecker::requireOptionalIntrinsics(ctx, expr->getLoc());

    if (cs.getType(expr)->getOptionalObjectType())
      return coerceOptionalToOptional(expr, toType, locator);

    Type valueType = toGenericType->getGenericArgs()[0];
    expr = coerceToType(expr, valueType, locator);
    if (!expr) return nullptr;

    auto *result = cs.cacheType(new (ctx) InjectIntoOptionalExpr(expr, toType));
    diagnoseOptionalInjection(result, locator);
    return result;
  }

  case TypeKind::BoundGenericStruct: {
    auto toStruct = cast<BoundGenericStructType>(desugaredToType);
    if (!toStruct->isArray() && !toStruct->isDictionary())
      break;

    if (toStruct->getDecl() == cs.getType(expr)->getAnyNominal())
      return buildCollectionUpcastExpr(expr, toType, /*bridged=*/false,
                                       locator);

    break;
  }

#define SUGARED_TYPE(Name, Parent) case TypeKind::Name:
#define BUILTIN_TYPE(Name, Parent) case TypeKind::Name:
#define UNCHECKED_TYPE(Name, Parent) case TypeKind::Name:
#define ARTIFICIAL_TYPE(Name, Parent) case TypeKind::Name:
#define TYPE(Name, Parent)
#include "swift/AST/TypeNodes.def"
  case TypeKind::Error:
  case TypeKind::Module:
  case TypeKind::Tuple:
  case TypeKind::Enum:
  case TypeKind::Struct:
  case TypeKind::Class:
  case TypeKind::BoundGenericClass:
  case TypeKind::Metatype:
  case TypeKind::DynamicSelf:
  case TypeKind::PrimaryArchetype:
  case TypeKind::OpenedArchetype:
  case TypeKind::OpaqueTypeArchetype:
  case TypeKind::PackArchetype:
  case TypeKind::ElementArchetype:
  case TypeKind::GenericTypeParam:
  case TypeKind::DependentMember:
  case TypeKind::Function:
  case TypeKind::GenericFunction:
  case TypeKind::LValue:
  case TypeKind::InOut:
  case TypeKind::Pack:
  case TypeKind::PackExpansion:
  case TypeKind::PackElement:
    break;

  case TypeKind::BuiltinTuple:
    llvm_unreachable("BuiltinTupleType should not show up here");
  }

  // Allow existential-to-supertype conversion if all protocol
  // bounds are marker protocols. Normally this requires a
  // conversion restriction but there are situations related
  // to `@preconcurrency` where the `& Sendable` would be stripped
  // transparently to the solver.
  if (auto *existential = fromType->getAs<ExistentialType>()) {
    if (auto *PCT = existential->getConstraintType()
                        ->getAs<ProtocolCompositionType>()) {
      if (PCT->withoutMarkerProtocols()->isEqual(toType)) {
        return coerceSuperclass(expr, toType);
      }
    }
  }

  // Unresolved types come up in diagnostics for lvalue and inout types.
  if (fromType->hasUnresolvedType() || toType->hasUnresolvedType())
    return cs.cacheType(new (ctx) UnresolvedTypeConversionExpr(expr, toType));

  llvm::errs() << "Unhandled coercion:\n";
  fromType->dump(llvm::errs());
  toType->dump(llvm::errs());
  abort();
}

static bool isSelfRefInInitializer(Expr *baseExpr,
                                   DeclContext *useDC) {
  auto *CD = dyn_cast<ConstructorDecl>(useDC);
  return CD && baseExpr->isSelfExprOf(CD);
}

/// Detect whether an assignment to \c baseExpr.member in the given
/// decl context can potentially be initialization of a property wrapper.
static bool isPotentialPropertyWrapperInit(Expr *baseExpr,
                                           ValueDecl *member,
                                           DeclContext *UseDC) {
  // Member is not a wrapped property
  auto *VD = dyn_cast<VarDecl>(member);
  if (!(VD && VD->hasAttachedPropertyWrapper()))
    return false;

  // Assignment to a wrapped property can only be re-written to
  // initialization in an init.
  return isSelfRefInInitializer(baseExpr, UseDC);
}

/// Detect whether an assignment to \c baseExpr.member in the given
/// decl context can potentially be initialization via an init accessor.
static bool isPotentialInitViaInitAccessor(Expr *baseExpr,
                                           ValueDecl *member,
                                           DeclContext *useDC) {
  auto *VD = dyn_cast<VarDecl>(member);
  if (!(VD && VD->hasInitAccessor()))
    return false;

  return isSelfRefInInitializer(baseExpr, useDC);
}

/// Adjust the given type to become the self type when referring to
/// the given member.
static Type adjustSelfTypeForMember(Expr *baseExpr,
                                    Type baseTy, ValueDecl *member,
                                    DeclContext *UseDC) {
  assert(!baseTy->is<LValueType>());

  auto inOutTy = baseTy->getAs<InOutType>();
  if (!inOutTy)
    return baseTy;

  auto baseObjectTy = inOutTy->getObjectType();

  if (isa<ConstructorDecl>(member))
    return baseObjectTy;

  if (auto func = dyn_cast<FuncDecl>(member)) {
    // If 'self' is an inout type, turn the base type into an lvalue
    // type with the same qualifiers.
    if (func->isMutating())
      return baseTy;

    // Otherwise, return the rvalue type.
    return baseObjectTy;
  }

  // If the base of the access is mutable, then we may be invoking a getter or
  // setter that requires the base to be mutable.
  auto *SD = cast<AbstractStorageDecl>(member);
  bool isSettableFromHere =
      SD->isSettable(UseDC) && SD->isSetterAccessibleFrom(UseDC);

  // If neither the property's getter nor its setter are mutating,
  // the base can be an rvalue unless the assignment is potentially
  // initializing a property wrapper or using init accessor. If the
  // assignment can be re-written to property wrapper or init accessor
  // initialization, the base type should be an lvalue.
  if (!SD->isGetterMutating() &&
      (!isSettableFromHere || !SD->isSetterMutating()) &&
      !isPotentialPropertyWrapperInit(baseExpr, member, UseDC) &&
      !isPotentialInitViaInitAccessor(baseExpr, member, UseDC))
    return baseObjectTy;

  if (isa<SubscriptDecl>(member))
    return baseTy;

  return LValueType::get(baseObjectTy);
}

Expr *
ExprRewriter::coerceSelfArgumentToType(Expr *expr,
                                       Type baseTy, ValueDecl *member,
                                       ConstraintLocatorBuilder locator) {
  Type toType = adjustSelfTypeForMember(expr, baseTy, member, dc);

  // If our expression already has the right type, we're done.
  Type fromType = cs.getType(expr);
  if (fromType->isEqual(toType))
    return expr;

  // If we're coercing to an rvalue type, just do it.
  auto toInOutTy = toType->getAs<InOutType>();
  if (!toInOutTy)
    return coerceToType(expr, toType, locator);

  assert(fromType->is<LValueType>() && "Can only convert lvalues to inout");

  auto &ctx = cs.getASTContext();

  // Use InOutExpr to convert it to an explicit inout argument for the
  // receiver.
  return cs.cacheType(new (ctx) InOutExpr(expr->getStartLoc(), expr, 
                                          toInOutTy->getInOutObjectType(),
                                          /*isImplicit*/ true));
}

Expr *ExprRewriter::convertLiteralInPlace(
    LiteralExpr *literal, Type type, ProtocolDecl *protocol,
    Identifier literalType, DeclName literalFuncName,
    ProtocolDecl *builtinProtocol, DeclName builtinLiteralFuncName,
    Diag<> brokenProtocolDiag, Diag<> brokenBuiltinProtocolDiag) {
  // If coercing a literal to an unresolved type, we don't try to look up the
  // witness members, just do it.
  if (type->is<UnresolvedType>()) {
    cs.setType(literal, type);
    return literal;
  }

  // Check whether this literal type conforms to the builtin protocol. If so,
  // initialize via the builtin protocol.
  if (builtinProtocol) {
    auto builtinConformance = dc->getParentModule()->checkConformance(
        type, builtinProtocol);
    if (builtinConformance) {
      // Find the witness that we'll use to initialize the type via a builtin
      // literal.
      auto witness = builtinConformance.getWitnessByName(
          type->getRValueType(), builtinLiteralFuncName);
      if (!witness || !isa<AbstractFunctionDecl>(witness.getDecl()))
        return nullptr;

      // Form a reference to the builtin conversion function.

      // Set the builtin initializer.
      dyn_cast<BuiltinLiteralExpr>(literal)->setBuiltinInitializer(witness);

      // The literal expression has this type.
      cs.setType(literal, type);

      return literal;
    }
  }

  // This literal type must conform to the (non-builtin) protocol.
  assert(protocol && "requirements should have stopped recursion");
  auto conformance = dc->getParentModule()->checkConformance(type, protocol);
  assert(conformance && "must conform to literal protocol");

  // Dig out the literal type and perform a builtin literal conversion to it.
  if (!literalType.empty()) {
    // Extract the literal type.
    Type builtinLiteralType =
        conformance.getTypeWitnessByName(type, literalType);
    if (builtinLiteralType->hasError())
      return nullptr;

    // Perform the builtin conversion.
    if (!convertLiteralInPlace(literal, builtinLiteralType, nullptr,
                               Identifier(), DeclName(), builtinProtocol,
                               builtinLiteralFuncName, brokenProtocolDiag,
                               brokenBuiltinProtocolDiag))
      return nullptr;
  }

  // Find the witness that we'll use to initialize the literal value.
  auto witness =
      conformance.getWitnessByName(type->getRValueType(), literalFuncName);
  if (!witness || !isa<AbstractFunctionDecl>(witness.getDecl()))
    return nullptr;

  // Set the initializer.
  literal->setInitializer(witness);

  // The literal expression has this type.
  cs.setType(literal, type);

  return literal;
}

// Returns true if the given method and method type are a valid
// `@dynamicCallable` required `func dynamicallyCall` method.
static bool isValidDynamicCallableMethod(FuncDecl *method,
                                         AnyFunctionType *methodType) {
  auto &ctx = method->getASTContext();
  if (method->getBaseIdentifier() != ctx.Id_dynamicallyCall)
    return false;
  if (methodType->getParams().size() != 1)
    return false;
  auto argumentLabel = methodType->getParams()[0].getLabel();
  if (argumentLabel != ctx.Id_withArguments &&
      argumentLabel != ctx.Id_withKeywordArguments)
    return false;
  return true;
}

// Build a reference to a `callAsFunction` method.
static Expr *buildCallAsFunctionMethodRef(
    ExprRewriter &rewriter, ApplyExpr *apply, SelectedOverload selected,
    ConstraintLocator *calleeLoc) {
  assert(calleeLoc->isLastElement<LocatorPathElt::ImplicitCallAsFunction>());
  assert(cast<FuncDecl>(selected.choice.getDecl())->isCallAsFunctionMethod());

  // Create direct reference to `callAsFunction` method.
  auto *fn = apply->getFn();
  auto *args = apply->getArgs();

  // HACK: Temporarily push the fn expr onto the expr stack to make sure we
  // don't try to prematurely close an existential when applying the curried
  // member ref. This can be removed once existential opening is refactored not
  // to rely on the shape of the AST prior to rewriting.
  rewriter.ExprStack.push_back(fn);
  SWIFT_DEFER {
    rewriter.ExprStack.pop_back();
  };

  auto *declRef = rewriter.buildMemberRef(
      fn, /*dotLoc*/ SourceLoc(), selected, DeclNameLoc(args->getStartLoc()),
      calleeLoc, calleeLoc, /*implicit*/ true, AccessSemantics::Ordinary);
  if (!declRef)
    return nullptr;
  declRef->setImplicit(apply->isImplicit());
  return declRef;
}

// Resolve `@dynamicCallable` applications.
std::pair<Expr *, ArgumentList *> ExprRewriter::buildDynamicCallable(
    ApplyExpr *apply, SelectedOverload selected, FuncDecl *method,
    AnyFunctionType *methodType, ConstraintLocatorBuilder loc) {
  auto &ctx = cs.getASTContext();
  auto *fn = apply->getFn();

  auto *args = apply->getArgs();

  // Get resolved `dynamicallyCall` method and verify it.
  assert(isValidDynamicCallableMethod(method, methodType));
  auto params = methodType->getParams();
  auto argumentType = params[0].getParameterType();

  // Determine which method was resolved: a `withArguments` method or a
  // `withKeywordArguments` method.
  auto argumentLabel = methodType->getParams()[0].getLabel();
  bool useKwargsMethod = argumentLabel == ctx.Id_withKeywordArguments;

  // HACK: Temporarily push the fn expr onto the expr stack to make sure we
  // don't try to prematurely close an existential when applying the curried
  // member ref. This can be removed once existential opening is refactored not
  // to rely on the shape of the AST prior to rewriting.
  ExprStack.push_back(fn);
  SWIFT_DEFER {
    ExprStack.pop_back();
  };

  // Construct expression referencing the `dynamicallyCall` method.
  auto member = buildMemberRef(fn, SourceLoc(), selected,
                               DeclNameLoc(), loc, loc,
                               /*implicit=*/true, AccessSemantics::Ordinary);

  // Construct argument to the method (either an array or dictionary
  // expression).
  Expr *argExpr = nullptr;
  if (!useKwargsMethod) {
    argExpr = ArrayExpr::create(ctx, SourceLoc(), args->getArgExprs(), {},
                                SourceLoc());
    cs.setType(argExpr, argumentType);
    finishArrayExpr(cast<ArrayExpr>(argExpr));
  } else {
    auto dictLitProto =
        ctx.getProtocol(KnownProtocolKind::ExpressibleByDictionaryLiteral);
    auto conformance =
        dc->getParentModule()->checkConformance(argumentType, dictLitProto);
    auto keyType = conformance.getTypeWitnessByName(argumentType, ctx.Id_Key);
    auto valueType =
        conformance.getTypeWitnessByName(argumentType, ctx.Id_Value);
    SmallVector<Identifier, 4> names;
    SmallVector<Expr *, 4> dictElements;
    for (auto arg : *args) {
      Expr *labelExpr =
        new (ctx) StringLiteralExpr(arg.getLabel().get(), arg.getLabelLoc(),
                                    /*Implicit*/ true);
      cs.setType(labelExpr, keyType);
      handleStringLiteralExpr(cast<LiteralExpr>(labelExpr));

      Expr *valueExpr = coerceToType(arg.getExpr(), valueType, loc);
      assert(valueExpr && "Failed to coerce?");
      Expr *pair = TupleExpr::createImplicit(ctx, {labelExpr, valueExpr}, {});
      auto eltTypes = { TupleTypeElt(keyType), TupleTypeElt(valueType) };
      cs.setType(pair, TupleType::get(eltTypes, ctx));
      dictElements.push_back(pair);
    }
    argExpr = DictionaryExpr::create(ctx, SourceLoc(), dictElements, {},
                                     SourceLoc());
    cs.setType(argExpr, argumentType);
    finishDictionaryExpr(cast<DictionaryExpr>(argExpr));
  }
  argExpr->setImplicit();

  auto *argList = ArgumentList::forImplicitSingle(ctx, argumentLabel, argExpr);
  return std::make_pair(member, argList);
}

Expr *ExprRewriter::finishApply(ApplyExpr *apply, Type openedType,
                                ConstraintLocatorBuilder locator,
                                ConstraintLocatorBuilder calleeLocator) {
  auto &ctx = cs.getASTContext();

  auto args = apply->getArgs();
  auto *fn = apply->getFn();

  auto finishApplyOfDeclWithSpecialTypeCheckingSemantics
    = [&](ApplyExpr *apply,
          ConcreteDeclRef declRef,
          Type openedType) -> Expr* {
      switch (TypeChecker::getDeclTypeCheckingSemantics(declRef.getDecl())) {
      case DeclTypeCheckingSemantics::TypeOf: {
        // Resolve into a DynamicTypeExpr.
        auto args = apply->getArgs();

        auto &appliedWrappers = solution.appliedPropertyWrappers[calleeLocator.getAnchor()];
        auto fnType = cs.getType(fn)->getAs<FunctionType>();
        args = coerceCallArguments(
            args, fnType, declRef, apply,
            locator.withPathElement(ConstraintLocator::ApplyArgument),
            appliedWrappers);
        if (!args)
          return nullptr;

        auto replacement = new (ctx)
            DynamicTypeExpr(apply->getFn()->getLoc(), args->getStartLoc(),
                            args->getExpr(0), args->getEndLoc(), Type());
        cs.setType(replacement, simplifyType(openedType));
        return replacement;
      }
      
      case DeclTypeCheckingSemantics::WithoutActuallyEscaping: {
        // Resolve into a MakeTemporarilyEscapableExpr.
        auto *args = apply->getArgs();
        assert(args->size() == 2 && "should have two arguments");
        auto *nonescaping = args->getExpr(0);
        auto *body = args->getExpr(1);
        auto bodyTy = cs.getType(body)->getWithoutSpecifierType();
        auto bodyFnTy = bodyTy->castTo<FunctionType>();
        auto resultType = bodyFnTy->getResult();
        
        // The body is immediately called, so is obviously noescape.
        // Coerce the argument function to be escaping even if it happens to
        // be nonescaping, since we need the dynamic state of the escaping
        // closure to do the dynamic noescape check.
        auto bodyArgFnTy = bodyFnTy->getParams()[0].getPlainType()
          ->castTo<FunctionType>();
          
        bodyArgFnTy = cast<FunctionType>(
          bodyArgFnTy->withExtInfo(bodyArgFnTy->getExtInfo().withNoEscape(false)));
        bodyFnTy = cast<FunctionType>(
          FunctionType::get(bodyFnTy->getParams()[0].withType(bodyArgFnTy),
                            bodyFnTy->getResult())
            ->withExtInfo(bodyFnTy->getExtInfo().withNoEscape()));
        body = coerceToType(body, bodyFnTy, locator);
        assert(body && "can't make nonescaping?!");

        auto escapable = new (ctx)
            OpaqueValueExpr(apply->getFn()->getSourceRange(), Type());
        cs.setType(escapable, bodyArgFnTy);

        auto *argList = ArgumentList::forImplicitUnlabeled(ctx, {escapable});
        auto callSubExpr = CallExpr::createImplicit(ctx, body, argList);
        cs.cacheSubExprTypes(callSubExpr);
        cs.setType(callSubExpr, resultType);
        
        auto replacement = new (ctx)
          MakeTemporarilyEscapableExpr(apply->getFn()->getLoc(),
                                       apply->getArgs()->getStartLoc(),
                                       nonescaping,
                                       callSubExpr,
                                       apply->getArgs()->getEndLoc(),
                                       escapable,
                                       apply);
        cs.setType(replacement, resultType);
        return replacement;
      }
      
      case DeclTypeCheckingSemantics::OpenExistential: {
        // Resolve into an OpenExistentialExpr.
        auto *args = apply->getArgs();
        assert(args->size() == 2 && "should have two arguments");

        auto *existential = cs.coerceToRValue(args->getExpr(0));
        auto *body = cs.coerceToRValue(args->getExpr(1));

        auto bodyFnTy = cs.getType(body)->castTo<FunctionType>();
        auto openedTy = getBaseType(bodyFnTy, /*wantsRValue*/ false);
        auto resultTy = bodyFnTy->getResult();

        // The body is immediately called, so is obviously noescape.
        bodyFnTy = cast<FunctionType>(
          bodyFnTy->withExtInfo(bodyFnTy->getExtInfo().withNoEscape()));
        body = coerceToType(body, bodyFnTy, locator);
        assert(body && "can't make nonescaping?!");

        auto openedInstanceTy = openedTy;
        auto existentialInstanceTy = cs.getType(existential);
        if (auto metaTy = openedTy->getAs<MetatypeType>()) {
          openedInstanceTy = metaTy->getInstanceType();
          existentialInstanceTy = existentialInstanceTy
            ->castTo<ExistentialMetatypeType>()
            ->getExistentialInstanceType();
        }
        assert(openedInstanceTy->castTo<OpenedArchetypeType>()
                   ->getExistentialType()
                   ->isEqual(existentialInstanceTy));

        auto opaqueValue =
            new (ctx) OpaqueValueExpr(apply->getSourceRange(), openedTy);
        cs.setType(opaqueValue, openedTy);

        auto *argList = ArgumentList::forImplicitUnlabeled(ctx, {opaqueValue});
        auto callSubExpr = CallExpr::createImplicit(ctx, body, argList);
        cs.cacheSubExprTypes(callSubExpr);
        cs.setType(callSubExpr, resultTy);
        
        auto replacement = new (ctx)
          OpenExistentialExpr(existential, opaqueValue, callSubExpr,
                              resultTy);
        cs.setType(replacement, resultTy);
        return replacement;
      }
      
      case DeclTypeCheckingSemantics::Normal:
        return nullptr;
      }

      llvm_unreachable("Unhandled DeclTypeCheckingSemantics in switch.");
    };

  // Resolve the callee for the application if we have one.
  ConcreteDeclRef callee;
  auto *calleeLoc = cs.getConstraintLocator(calleeLocator);
  auto overload = solution.getOverloadChoiceIfAvailable(calleeLoc);
  if (overload) {
    auto *decl = overload->choice.getDeclOrNull();
    callee = resolveConcreteDeclRef(decl, calleeLoc);
  }

  // Make sure we have a function type that is callable. This helps ensure
  // Type::mayBeCallable stays up-to-date.
  auto fnRValueTy = cs.getType(fn)->getRValueType();
  assert(fnRValueTy->mayBeCallable(dc));

  // If this is an implicit call to a `callAsFunction` method, build the
  // appropriate member reference.
  if (fnRValueTy->isCallAsFunctionType(dc)) {
    fn = buildCallAsFunctionMethodRef(*this, apply, *overload, calleeLoc);
    if (!fn)
      return nullptr;
  }

  // Resolve a `@dynamicCallable` application.
  auto applyFunctionLoc =
      locator.withPathElement(ConstraintLocator::ApplyFunction);
  if (auto selected = solution.getOverloadChoiceIfAvailable(
          cs.getConstraintLocator(applyFunctionLoc))) {
    auto *method = dyn_cast<FuncDecl>(selected->choice.getDecl());
    auto methodType =
        simplifyType(selected->adjustedOpenedType)->getAs<AnyFunctionType>();
    if (method && methodType) {
      // Handle a call to a @dynamicCallable method.
      if (isValidDynamicCallableMethod(method, methodType))
        std::tie(fn, args) = buildDynamicCallable(apply, *selected, method,
                                                  methodType, applyFunctionLoc);
    }
  }

  // The function is always an rvalue.
  fn = cs.coerceToRValue(fn);

  // Resolve applications of decls with special semantics.
  if (auto declRef =
      dyn_cast<DeclRefExpr>(getSemanticExprForDeclOrMemberRef(fn))) {
    if (auto special =
        finishApplyOfDeclWithSpecialTypeCheckingSemantics(apply,
                                                          declRef->getDeclRef(),
                                                          openedType)) {
      return special;
    }
  }

  // If we're applying a function that resulted from a covariant
  // function conversion, strip off that conversion.
  // FIXME: It would be nicer if we could build the ASTs properly in the
  // first shot.
  Type covariantResultType;
  if (auto covariant = dyn_cast<CovariantFunctionConversionExpr>(fn)) {
    // Strip off one layer of application from the covariant result.
    covariantResultType
      = cs.getType(covariant)->castTo<AnyFunctionType>()->getResult();
   
    // Use the subexpression as the function.
    fn = covariant->getSubExpr();
  }

  // An immediate application of a closure literal is always noescape.
  if (isClosureLiteralExpr(fn)) {
    if (auto fnTy = cs.getType(fn)->getAs<FunctionType>()) {
      fnTy = cast<FunctionType>(
        fnTy->withExtInfo(fnTy->getExtInfo().withNoEscape()));
      fn = coerceToType(fn, fnTy, locator);
    }
  }

  apply->setFn(fn);

  // For function application, convert the argument to the input type of
  // the function.
  if (auto fnType = cs.getType(fn)->getAs<FunctionType>()) {
    auto &appliedWrappers = solution.appliedPropertyWrappers[calleeLocator.getAnchor()];
    args = coerceCallArguments(
        args, fnType, callee, apply,
        locator.withPathElement(ConstraintLocator::ApplyArgument),
        appliedWrappers);
    if (!args)
      return nullptr;

    apply->setArgs(args);
    cs.setType(apply, fnType->getResult());

    // If this is a call to a distributed method thunk,
    // let's mark the call as implicitly throwing.
    if (isDistributedThunk(callee, apply->getFn())) {
      auto *FD = cast<AbstractFunctionDecl>(callee.getDecl());
      if (!FD->hasThrows())
        apply->setImplicitlyThrows(true);
    }

    solution.setExprTypes(apply);
    Expr *result = TypeChecker::substituteInputSugarTypeForResult(apply);
    cs.cacheExprTypes(result);

    // If we have a covariant result type, perform the conversion now.
    if (covariantResultType) {
      if (covariantResultType->is<FunctionType>())
        result = cs.cacheType(new (ctx) CovariantFunctionConversionExpr(
            result, covariantResultType));
      else
        result = cs.cacheType(new (ctx) CovariantReturnConversionExpr(
            result, covariantResultType));
    }

    // Try closing existentials, if there are any.
    closeExistentials(result, locator);

    // We may also need to force the result for an IUO. We don't apply this on
    // SelfApplyExprs, as the force unwraps should be inserted at the result of
    // main application, not on the curried member reference.
    if (!isa<SelfApplyExpr>(apply)) {
      result = forceUnwrapIfExpected(result, calleeLocator,
                                     IUOReferenceKind::ReturnValue);
    }
    return result;
  }

  // FIXME: Handle unwrapping everywhere else.

  // If this is an UnresolvedType in the system, preserve it.
  if (cs.getType(fn)->is<UnresolvedType>()) {
    cs.setType(apply, cs.getType(fn));
    return apply;
  }

  // We have a type constructor.
  auto metaTy = cs.getType(fn)->castTo<AnyMetatypeType>();
  auto ty = metaTy->getInstanceType();

  // If we're "constructing" a tuple type, it's simply a conversion.
  if (auto tupleTy = ty->getAs<TupleType>()) {
    auto *packed = apply->getArgs()->packIntoImplicitTupleOrParen(
        ctx, [&](Expr *E) { return cs.getType(E); });
    cs.cacheType(packed);
    auto *result = coerceToType(packed, tupleTy, cs.getConstraintLocator(packed));
    // Resetting the types of tuple is necessary because
    // `packIntoImplicitTupleOrParen` sets types in AST
    // where `coerceToType` only updates constraint system
    // cache. This creates a mismatch that would not be
    // corrected by `setExprTypes` if this tuple is used
    // as an argument that is wrapped in an autoclosure.
    solution.setExprTypes(result);
    return result;
  }

  // We're constructing a value of nominal type. Look for the constructor or
  // enum element to use.
  auto *ctorLocator =
      cs.getConstraintLocator(locator, {ConstraintLocator::ApplyFunction,
                                        ConstraintLocator::ConstructorMember});
  auto selected = solution.getOverloadChoiceIfAvailable(ctorLocator);
  if (!selected) {
    assert(ty->hasError() || ty->hasUnresolvedType());
    cs.setType(apply, ty);
    return apply;
  }

  assert(ty->getNominalOrBoundGenericNominal() || ty->is<DynamicSelfType>() ||
         ty->isExistentialType() || ty->is<ArchetypeType>());

  // Consider the constructor decl reference expr 'implicit', but the
  // constructor call expr itself has the apply's 'implicitness'.
  Expr *declRef = buildMemberRef(fn, /*dotLoc=*/SourceLoc(), *selected,
                                 DeclNameLoc(fn->getEndLoc()), locator,
                                 ctorLocator, /*implicit=*/true,
                                 AccessSemantics::Ordinary);
  if (!declRef)
    return nullptr;
  declRef->setImplicit(apply->isImplicit());
  apply->setFn(declRef);

  // Tail-recur to actually call the constructor.
  auto *ctorCall = finishApply(apply, openedType, locator, ctorLocator);

  // Check whether this is a situation like `T(...) { ... }` where `T` is
  // a callable type and trailing closure(s) are associated with implicit
  // `.callAsFunction` instead of constructor.
  {
    auto callAsFunction =
        solution.ImplicitCallAsFunctionRoots.find(ctorLocator);
    if (callAsFunction != solution.ImplicitCallAsFunctionRoots.end()) {
      auto *dotExpr = callAsFunction->second;
      auto resultTy = solution.getResolvedType(dotExpr);

      auto *implicitCall = CallExpr::createImplicit(
          cs.getASTContext(), ctorCall,
          solution.getArgumentList(cs.getConstraintLocator(
              dotExpr, ConstraintLocator::ApplyArgument)));

      implicitCall->setType(resultTy);
      cs.cacheType(implicitCall);

      auto *memberCalleeLoc =
          cs.getConstraintLocator(dotExpr,
                                  {ConstraintLocator::ApplyFunction,
                                   ConstraintLocator::ImplicitCallAsFunction},
                                  /*summaryFlags=*/0);

      return finishApply(implicitCall, resultTy, cs.getConstraintLocator(dotExpr),
                         memberCalleeLoc);
    }
  }

  return ctorCall;
}

bool ExprRewriter::isDistributedThunk(ConcreteDeclRef ref, Expr *context) {
  auto *FD = dyn_cast_or_null<AbstractFunctionDecl>(ref.getDecl());

  if (!(FD && FD->isInstanceMember() && FD->isDistributed()))
    return false;

  if (!isa<SelfApplyExpr>(context))
    return false;

  auto *actor = getReferencedParamOrCapture(
      cast<SelfApplyExpr>(context)->getBase(),
      [&](OpaqueValueExpr *opaqueValue) -> Expr * {
        for (const auto &existential : OpenedExistentials) {
          if (existential.OpaqueValue == opaqueValue)
            return existential.ExistentialValue;
        }
        return nullptr;
      },
      []() -> VarDecl * {
        // FIXME: Need to communicate this.
        return nullptr;
      });

  if (!actor)
    return false;

  // If this is a method reference on an potentially isolated
  // actor then it cannot be a remote thunk.
  bool isPotentiallyIsolated = isPotentiallyIsolatedActor(
      actor,
    [&](ParamDecl *P) {
    return P->isIsolated() ||
           llvm::is_contained(solution.isolatedParams, P);
  });

  // Adjust the declaration context to the innermost context that is neither
  // a local function nor a closure, so that the actor reference is checked
  auto referenceDC = dc;
  while (true) {
    switch (referenceDC->getContextKind()) {
    case DeclContextKind::AbstractClosureExpr:
    case DeclContextKind::SerializedAbstractClosure:
    case DeclContextKind::Initializer:
      referenceDC = referenceDC->getParent();
      continue;

      case DeclContextKind::AbstractFunctionDecl:
      case DeclContextKind::GenericTypeDecl:
      case DeclContextKind::SubscriptDecl:
        if (auto value = dyn_cast<ValueDecl>(referenceDC->getAsDecl())) {
          if (value->isLocalCapture()) {
            referenceDC = referenceDC->getParent();
            continue;
          }
        }
        break;

      case DeclContextKind::EnumElementDecl:
      case DeclContextKind::ExtensionDecl:
      case DeclContextKind::FileUnit:
      case DeclContextKind::Package:
      case DeclContextKind::Module:
      case DeclContextKind::TopLevelCodeDecl:
      case DeclContextKind::SerializedTopLevelCodeDecl:
      case DeclContextKind::MacroDecl:
        break;
    }

    break;
  }

  // Create a simple actor reference, assuming that we might be in a
  // non-isolated context but knowing whether it's potentially isolated.
  // We only care about the "distributed" flag.
  ReferencedActor actorRef = ReferencedActor(
      actor, isPotentiallyIsolated, ReferencedActor::NonIsolatedContext);
  auto refResult = ActorReferenceResult::forReference(
      ref, context->getLoc(), referenceDC, std::nullopt, actorRef);
  switch (refResult) {
  case ActorReferenceResult::ExitsActorToNonisolated:
  case ActorReferenceResult::SameConcurrencyDomain:
    return false;

  case ActorReferenceResult::EntersActor:
    return refResult.options.contains(ActorReferenceResult::Flags::Distributed);
  }
}

// Return the precedence-yielding parent of 'expr', along with the index of
// 'expr' as the child of that parent. The precedence-yielding parent is the
// nearest ancestor of 'expr' which imposes a minimum precedence on 'expr'.
static std::pair<Expr *, unsigned> getPrecedenceParentAndIndex(
    Expr *expr, llvm::function_ref<Expr *(const Expr *)> getParent) {
  auto *parent = getParent(expr);
  if (!parent)
    return { nullptr, 0 };

  // Look through an unresolved chain wrappers, try, and await exprs, as they
  // have no effect on precedence; they will associate the same with any parent
  // operator as their sub-expression would.
  while (isa<UnresolvedMemberChainResultExpr>(parent) ||
         isa<AnyTryExpr>(parent) || isa<AwaitExpr>(parent)) {
    expr = parent;
    parent = getParent(parent);
    if (!parent)
      return { nullptr, 0 };
  }

  // Handle all cases where the answer isn't just going to be { parent, 0 }.
  if (auto tuple = dyn_cast<TupleExpr>(parent)) {
    // Get index of expression in tuple.
    auto tupleElems = tuple->getElements();
    auto elemIt = std::find(tupleElems.begin(), tupleElems.end(), expr);
    assert(elemIt != tupleElems.end() && "expr not found in parent TupleExpr");
    unsigned index = elemIt - tupleElems.begin();
    return { tuple, index };
  } else if (auto *BE = dyn_cast<BinaryExpr>(parent)) {
    if (BE->getLHS() == expr)
      return {parent, 0};
    if (BE->getRHS() == expr)
      return {parent, 1};
  } else if (auto *ternary = dyn_cast<TernaryExpr>(parent)) {
    unsigned index;
    if (expr == ternary->getCondExpr()) {
      index = 0;
    } else if (expr == ternary->getThenExpr()) {
      index = 1;
    } else if (expr == ternary->getElseExpr()) {
      index = 2;
    } else {
      llvm_unreachable("expr not found in parent TernaryExpr");
    }
    return { ternary, index };
  } else if (auto assignExpr = dyn_cast<AssignExpr>(parent)) {
    unsigned index;
    if (expr == assignExpr->getSrc()) {
      index = 0;
    } else if (expr == assignExpr->getDest()) {
      index = 1;
    } else {
      llvm_unreachable("expr not found in parent AssignExpr");
    }
    return { assignExpr, index };
  }

  return { parent, 0 };
}

/// Return true if, when replacing "<expr>" with "<expr> op <something>",
/// parentheses must be added around "<expr>" to allow the new operator
/// to bind correctly.
bool swift::exprNeedsParensInsideFollowingOperator(
    DeclContext *DC, Expr *expr,
    PrecedenceGroupDecl *followingPG) {
  if (expr->isInfixOperator()) {
    auto exprPG = TypeChecker::lookupPrecedenceGroupForInfixOperator(
        DC, expr, /*diagnose=*/false);
    if (!exprPG) return true;

    return DC->getASTContext().associateInfixOperators(exprPG, followingPG)
             != Associativity::Left;
  }

  // We want to parenthesize a 'try?' on the LHS, but we don't care about
  // capturing the new operator inside a 'try' or 'try!'.
  if (isa<OptionalTryExpr>(expr))
    return true;

  return false;
}

/// Return true if, when replacing "<expr>" with "<expr> op <something>"
/// within the given root expression, parentheses must be added around
/// the new operator to prevent it from binding incorrectly in the
/// surrounding context.
bool swift::exprNeedsParensOutsideFollowingOperator(
    DeclContext *DC, Expr *expr, PrecedenceGroupDecl *followingPG,
    llvm::function_ref<Expr *(const Expr *)> getParent) {
  Expr *parent;
  unsigned index;
  std::tie(parent, index) = getPrecedenceParentAndIndex(expr, getParent);
  if (!parent)
    return false;

  // If this is a call argument, no parens are needed.
  if (auto *args = parent->getArgs()) {
    if (!args->isImplicit() && args->findArgumentExpr(expr))
      return false;
  }

  // If this is a key-path, no parens needed if it's an arg of one of the
  // components.
  if (auto *KP = dyn_cast<KeyPathExpr>(parent)) {
    if (KP->findComponentWithSubscriptArg(expr))
      return false;
  }

  if (isa<ParenExpr>(parent) || isa<TupleExpr>(parent)) {
    if (!parent->isImplicit())
      return false;
  }

  if (isa<ClosureExpr>(parent) || isa<CollectionExpr>(parent))
    return false;

  if (parent->isInfixOperator()) {
    auto parentPG = TypeChecker::lookupPrecedenceGroupForInfixOperator(
        DC, parent, /*diagnose=*/false);
    if (!parentPG) return true;

    // If the index is 0, this is on the LHS of the parent.
    auto &Context = DC->getASTContext();
    if (index == 0) {
      return Context.associateInfixOperators(followingPG, parentPG)
               != Associativity::Left;
    } else {
      return Context.associateInfixOperators(parentPG, followingPG)
               != Associativity::Right;
    }
  }

  return true;
}

bool swift::exprNeedsParensBeforeAddingNilCoalescing(DeclContext *DC,
                                                     Expr *expr) {
  auto &ctx = DC->getASTContext();
  auto asPG = TypeChecker::lookupPrecedenceGroup(
                  DC, ctx.Id_NilCoalescingPrecedence, SourceLoc())
                  .getSingle();
  if (!asPG)
    return true;
  return exprNeedsParensInsideFollowingOperator(DC, expr, asPG);
}

bool swift::exprNeedsParensAfterAddingNilCoalescing(
    DeclContext *DC, Expr *expr,
    llvm::function_ref<Expr *(const Expr *)> getParent) {
  auto &ctx = DC->getASTContext();
  auto asPG = TypeChecker::lookupPrecedenceGroup(
                  DC, ctx.Id_NilCoalescingPrecedence, SourceLoc())
                  .getSingle();
  if (!asPG)
    return true;
  return exprNeedsParensOutsideFollowingOperator(DC, expr, asPG, getParent);
}

namespace {
  class SetExprTypes : public ASTWalker {
    const Solution &solution;

  public:
    explicit SetExprTypes(const Solution &solution)
        : solution(solution) {}

    MacroWalking getMacroWalkingBehavior() const override {
      return MacroWalking::ArgumentsAndExpansion;
    }

    PostWalkResult<Expr *> walkToExprPost(Expr *expr) override {
      auto &cs = solution.getConstraintSystem();
      auto exprType = cs.getType(expr);
      exprType = solution.simplifyType(exprType);
      // assert((!expr->getType() || expr->getType()->isEqual(exprType)) &&
      //       "Mismatched types!");
      assert(!exprType->getRecursiveProperties().isSolverAllocated() &&
             "Should not write solver allocated type into expression!");
      assert(!exprType->hasPlaceholder() &&
             "Should not write type placeholders into expression!");
      expr->setType(exprType);

      if (auto kp = dyn_cast<KeyPathExpr>(expr)) {
        for (auto i : indices(kp->getComponents())) {
          Type componentType;
          if (cs.hasType(kp, i)) {
            componentType = solution.simplifyType(cs.getType(kp, i));
            assert(
                !componentType->getRecursiveProperties().isSolverAllocated() &&
                "Should not write solver allocated type into key-path "
                "component!");
            assert(!componentType->hasPlaceholder() &&
                   "Should not write type placeholder into key-path component");
            kp->getMutableComponents()[i].setComponentType(componentType);
          }
        }
      }

      return Action::Continue(expr);
    }

    /// Ignore statements.
    PreWalkResult<Stmt *> walkToStmtPre(Stmt *stmt) override {
      return Action::SkipNode(stmt);
    }

    /// Ignore declarations.
    PreWalkAction walkToDeclPre(Decl *decl) override {
      return Action::SkipNode();
    }
  };

  class ExprWalker : public ASTWalker {
    ExprRewriter &Rewriter;
    SmallVector<ClosureExpr *, 4> ClosuresToTypeCheck;

  public:
    ExprWalker(ExprRewriter &Rewriter) : Rewriter(Rewriter) { }

    ~ExprWalker() { assert(ClosuresToTypeCheck.empty()); }

    bool shouldWalkIntoPropertyWrapperPlaceholderValue() override {
      // Property wrapper placeholder underlying values are filled in
      // with already-type-checked expressions. Don't walk into them.
      return false;
    }

    /// Check if there are any closures or tap expressions left to process separately.
    bool hasDelayedTasks() { return !ClosuresToTypeCheck.empty(); }

    /// Process delayed closure bodies and `Tap` expressions.
    ///
    /// \returns true if any part of the processing fails.
    bool processDelayed() {
      bool hadError = false;
      auto &solution = Rewriter.solution;
      auto &cs = solution.getConstraintSystem();

      while (!ClosuresToTypeCheck.empty()) {
        auto *closure = ClosuresToTypeCheck.pop_back_val();
        // If experimental multi-statement closure support
        // is enabled, solution should have all of required
        // information.
        //
        // Note that in this mode `ClosuresToTypeCheck` acts
        // as a stack because multi-statement closures could
        // have other multi-statement closures in the body.
        if (cs.participatesInInference(closure)) {
          hadError |= cs.applySolutionToBody(
              solution, closure, Rewriter.dc,
              [&](SyntacticElementTarget target) {
                auto resultTarget = rewriteTarget(target);
                if (resultTarget) {
                  if (auto expr = resultTarget->getAsExpr())
                    solution.setExprTypes(expr);
                }

                return resultTarget;
              });

          if (!hadError) {
            TypeChecker::checkClosureAttributes(closure);
            TypeChecker::checkParameterList(closure->getParameters(), closure);
          }

          continue;
        }

        hadError |= TypeChecker::typeCheckClosureBody(closure);
      }

      return hadError;
    }

    MacroWalking getMacroWalkingBehavior() const override {
      return MacroWalking::Arguments;
    }

    PreWalkResult<Expr *> walkToExprPre(Expr *expr) override {
      // For closures, update the parameter types and check the body.
      if (auto closure = dyn_cast<ClosureExpr>(expr)) {
        rewriteFunction(closure);

        if (AnyFunctionRef(closure).hasExternalPropertyWrapperParameters()) {
          return Action::SkipNode(rewriteClosure(closure));
        }

        return Action::SkipNode(closure);
      }

      if (auto *SVE = dyn_cast<SingleValueStmtExpr>(expr)) {
        rewriteSingleValueStmtExpr(SVE);
        return Action::SkipNode(SVE);
      }

      if (auto tap = dyn_cast_or_null<TapExpr>(expr)) {
        rewriteTapExpr(tap);
        return Action::SkipNode(tap);
      }

      if (auto captureList = dyn_cast<CaptureListExpr>(expr)) {
        // Rewrite captures.
        for (const auto &capture : captureList->getCaptureList()) {
          (void)rewriteTarget(SyntacticElementTarget(capture.PBD));
        }
      }

      Rewriter.walkToExprPre(expr);
      return Action::Continue(expr);
    }

    PostWalkResult<Expr *> walkToExprPost(Expr *expr) override {
      auto *result = Rewriter.walkToExprPost(expr);
      if (!result)
        return Action::Stop();

      return Action::Continue(result);
    }

    /// Ignore statements.
    PreWalkResult<Stmt *> walkToStmtPre(Stmt *stmt) override {
      return Action::SkipNode(stmt);
    }

    /// Ignore declarations.
    PreWalkAction walkToDeclPre(Decl *decl) override {
      return Action::SkipNode();
    }

    NullablePtr<Pattern>
    rewritePattern(Pattern *pattern, DeclContext *DC);

    /// Rewrite the target, producing a new target.
    std::optional<SyntacticElementTarget>
    rewriteTarget(SyntacticElementTarget target);

    AutoClosureExpr *rewriteClosure(ClosureExpr *closure) {
      auto &solution = Rewriter.solution;

      // Apply types to synthesized property wrapper vars.
      for (auto *param : *closure->getParameters()) {
        if (!param->hasAttachedPropertyWrapper())
          continue;

        // Set the interface type of each property wrapper synthesized var
        auto *backingVar = param->getPropertyWrapperBackingProperty();
        auto backingType =
            solution.simplifyType(solution.getType(backingVar))->mapTypeOutOfContext();
        backingVar->setInterfaceType(backingType);

        if (auto *projectionVar = param->getPropertyWrapperProjectionVar()) {
          projectionVar->setInterfaceType(
              solution.simplifyType(solution.getType(projectionVar))->mapTypeOutOfContext());
        }

        auto *wrappedValueVar = param->getPropertyWrapperWrappedValueVar();
        auto wrappedValueType =
            solution.simplifyType(solution.getType(wrappedValueVar))->mapTypeOutOfContext();
        wrappedValueVar->setInterfaceType(wrappedValueType->getWithoutSpecifierType());

        if (param->hasImplicitPropertyWrapper()) {
          if (wrappedValueType->is<LValueType>())
            wrappedValueVar->setImplInfo(StorageImplInfo::getMutableComputed());

          // Add an explicit property wrapper attribute, which is needed for
          // synthesizing the accessors.
          auto &context = wrappedValueVar->getASTContext();
          auto *typeExpr = TypeExpr::createImplicit(backingType, context);
          auto *attr = CustomAttr::create(context, SourceLoc(), typeExpr, /*implicit=*/true);
          wrappedValueVar->getAttrs().add(attr);
        }
      }

      TypeChecker::checkParameterList(closure->getParameters(), closure);

      return Rewriter.buildSingleCurryThunk(
          closure, closure, Rewriter.cs.getConstraintLocator(closure));
    }

    /// Rewrite the function for the given solution.
    ///
    /// \returns true if an error occurred.
    bool rewriteFunction(AnyFunctionRef fn) {
      auto result = Rewriter.cs.applySolution(
          Rewriter.solution, fn, Rewriter.dc,
          [&](SyntacticElementTarget target) {
            auto resultTarget = rewriteTarget(target);
            if (resultTarget) {
              if (auto expr = resultTarget->getAsExpr())
                Rewriter.solution.setExprTypes(expr);
            }

            return resultTarget;
          });

      switch (result) {
      case SolutionApplicationToFunctionResult::Success: {
        if (auto closure = dyn_cast_or_null<ClosureExpr>(
                fn.getAbstractClosureExpr()))
          TypeChecker::checkClosureAttributes(closure);
        return false;
      }

      case SolutionApplicationToFunctionResult::Failure:
        return true;

      case SolutionApplicationToFunctionResult::Delay: {
        auto closure = cast<ClosureExpr>(fn.getAbstractClosureExpr());
        ClosuresToTypeCheck.push_back(closure);
        return false;
      }
      }
    }

    bool rewriteSingleValueStmtExpr(SingleValueStmtExpr *SVE) {
      auto &solution = Rewriter.solution;
      auto resultTy = solution.getResolvedType(SVE);
      Rewriter.cs.setType(SVE, resultTy);

      return Rewriter.cs.applySolutionToSingleValueStmt(
          solution, SVE, solution.getDC(), [&](SyntacticElementTarget target) {
            auto resultTarget = rewriteTarget(target);
            if (!resultTarget)
              return resultTarget;

            if (auto expr = resultTarget->getAsExpr())
              solution.setExprTypes(expr);

            return resultTarget;
         });
    }

    void rewriteTapExpr(TapExpr *tap) {
      auto &solution = Rewriter.solution;

      // First, let's visit the tap expression itself
      // and set all of the inferred types.
      Rewriter.visitTapExpr(tap);

      // Now, let's apply solution to the body
      (void)Rewriter.cs.applySolutionToBody(
          solution, tap, Rewriter.dc, [&](SyntacticElementTarget target) {
            auto resultTarget = rewriteTarget(target);
            if (resultTarget) {
              if (auto expr = resultTarget->getAsExpr())
                solution.setExprTypes(expr);
            }

            return resultTarget;
          });
    }
  };
} // end anonymous namespace

Expr *ConstraintSystem::coerceToRValue(Expr *expr) {
  return TypeChecker::coerceToRValue(
      getASTContext(), expr, [&](Expr *expr) { return getType(expr); },
      [&](Expr *expr, Type type) { setType(expr, type); });
}

namespace {
  /// Function object to compare source locations, putting invalid
  /// locations at the end.
  class CompareExprSourceLocs {
    SourceManager &sourceMgr;

  public:
    explicit CompareExprSourceLocs(SourceManager &sourceMgr)
      : sourceMgr(sourceMgr) { }

    bool operator()(ASTNode lhs, ASTNode rhs) const {
      if (static_cast<bool>(lhs) != static_cast<bool>(rhs)) {
        return static_cast<bool>(lhs);
      }

      auto lhsLoc = getLoc(lhs);
      auto rhsLoc = getLoc(rhs);
      if (lhsLoc.isValid() != rhsLoc.isValid())
        return lhsLoc.isValid();

      return sourceMgr.isBeforeInBuffer(lhsLoc, rhsLoc);
    }
  };

}

/// Emit the fixes computed as part of the solution, returning true if we were
/// able to emit an error message, or false if none of the fixits worked out.
bool ConstraintSystem::applySolutionFixes(const Solution &solution) {
  /// Collect the fixes on a per-expression basis.
  llvm::SmallDenseMap<ASTNode, SmallVector<ConstraintFix *, 4>> fixesPerAnchor;
  for (auto *fix : solution.Fixes) {
    fixesPerAnchor[fix->getAnchor()].push_back(fix);
  }

  // Collect all of the expressions that have fixes, and sort them by
  // source ordering.
  SmallVector<ASTNode, 4> orderedAnchors;
  for (const auto &fix : fixesPerAnchor) {
    orderedAnchors.push_back(fix.getFirst());
  }
  std::sort(orderedAnchors.begin(), orderedAnchors.end(),
            CompareExprSourceLocs(Context.SourceMgr));

  // Walk over each of the expressions, diagnosing fixes.
  bool diagnosedAnyErrors = false;

  for (auto anchor : orderedAnchors) {
    // Coalesce fixes with the same locator to avoid duplicating notes.
    auto fixes = fixesPerAnchor[anchor];

    using ConstraintFixVector = llvm::SmallVector<ConstraintFix *, 4>;
    llvm::SmallMapVector<ConstraintLocator *,
        llvm::SmallMapVector<FixKind, ConstraintFixVector, 4>, 4> aggregatedFixes;
    for (auto *fix : fixes)
      aggregatedFixes[fix->getLocator()][fix->getKind()].push_back(fix);

    for (auto fixesPerLocator : aggregatedFixes) {
      for (auto fixesPerKind : fixesPerLocator.second) {
        auto fixes = fixesPerKind.second;
        auto *primaryFix = fixes[0];
        ArrayRef<ConstraintFix *> secondaryFixes{fixes.begin() + 1, fixes.end()};

        auto diagnosed =
            primaryFix->coalesceAndDiagnose(solution, secondaryFixes);
        if (!primaryFix->isFatal()) {
          assert(diagnosed && "warnings should always be diagnosed");
          (void)diagnosed;
        } else {
          diagnosedAnyErrors |= diagnosed;
        }
      }
    }
  }

  return diagnosedAnyErrors;
}

/// Pattern match if an initializer has as its value a callee that returns
/// a sent value.
static bool isSendingInitializer(Expr *initializer) {
  auto *await = dyn_cast<AwaitExpr>(initializer);
  if (!await)
    return false;

  auto *call = dyn_cast<CallExpr>(await->getSubExpr());
  if (!call)
    return false;

  auto *fType = call->getFn()->getType()->getAs<AnyFunctionType>();
  if (!fType)
    return false;

  return fType->hasSendingResult();
}

/// For the initializer of an `async let`, wrap it in an autoclosure and then
/// a call to that autoclosure, so that the code for the child task is captured
/// entirely within the autoclosure. This captures the semantics of the
/// operation but not the timing, e.g., the call itself will actually occur
/// when one of the variables in the async let is referenced.
static Expr *wrapAsyncLetInitializer(
      ConstraintSystem &cs, Expr *initializer, DeclContext *dc) {
  // Form the autoclosure type. It is always 'async', and will be 'throws'.
  Type initializerType = initializer->getType();
  bool throws = TypeChecker::canThrow(cs.getASTContext(), initializer)
                  .has_value();
  bool hasSendingeResult = isSendingInitializer(initializer);
  bool isSendable =
      !cs.getASTContext().LangOpts.hasFeature(Feature::RegionBasedIsolation);
  assert((isSendable || cs.getASTContext().LangOpts.hasFeature(
                            Feature::SendingArgsAndResults)) &&
         "Region Isolation should imply SendingArgsAndResults");
  auto extInfo = ASTExtInfoBuilder()
                     .withAsync()
                     .withThrows(throws, /*FIXME:*/ Type())
                     .withSendable(isSendable)
                     .withSendingResult(hasSendingeResult)
                     .build();

  // Form the autoclosure expression. The actual closure here encapsulates the
  // child task.
  auto closureType = FunctionType::get({ }, initializerType, extInfo);
  ASTContext &ctx = dc->getASTContext();
  Expr *autoclosureExpr = cs.buildAutoClosureExpr(
      initializer, closureType, dc, /*isDefaultWrappedValue=*/false,
      /*isAsyncLetWrapper=*/true);

  // Call the autoclosure so that the AST types line up. SILGen will ignore the
  // actual calls and translate them into a different mechanism.
  auto autoclosureCall = CallExpr::createImplicitEmpty(ctx, autoclosureExpr);
  autoclosureCall->setType(initializerType);
  // FIXME: Use thrown type from above.
  if (throws) {
    autoclosureCall->setThrows(
        ThrownErrorDestination::forMatchingContextType(
          ctx.getErrorExistentialType()));
  } else {
    autoclosureCall->setThrows(nullptr);
  }

  // For a throwing expression, wrap the call in a 'try'.
  Expr *resultInit = autoclosureCall;
  if (throws) {
    resultInit = new (ctx) TryExpr(
        SourceLoc(), resultInit, initializerType, /*implicit=*/true);
  }

  // Wrap the call in an 'await'.
  resultInit = new (ctx) AwaitExpr(
      SourceLoc(), resultInit, initializerType, /*implicit=*/true);

  cs.cacheExprTypes(resultInit);
  return resultInit;
}

static Pattern *rewriteExprPattern(const SyntacticElementTarget &matchTarget,
                                   Type patternTy,
                                   RewriteTargetFn rewriteTarget) {
  auto *EP = matchTarget.getExprPattern();

  // See if we can simplify to another kind of pattern.
  if (auto simplified = TypeChecker::trySimplifyExprPattern(EP, patternTy))
    return simplified.get();

  auto resultTarget = rewriteTarget(matchTarget);
  if (!resultTarget)
    return nullptr;

  EP->setMatchExpr(resultTarget->getAsExpr());
  EP->getMatchVar()->setInterfaceType(patternTy->mapTypeOutOfContext());
  EP->setType(patternTy);
  return EP;
}

/// Attempt to rewrite either an ExprPattern, or a pattern that was solved as
/// an ExprPattern, e.g an EnumElementPattern that could not refer to an enum
/// case.
static std::optional<Pattern *>
tryRewriteExprPattern(Pattern *P, Solution &solution, Type patternTy,
                      RewriteTargetFn rewriteTarget) {
  // See if we have a match expression target.
  auto matchTarget = solution.getTargetFor(P);
  if (!matchTarget)
    return std::nullopt;

  return rewriteExprPattern(*matchTarget, patternTy, rewriteTarget);
}

NullablePtr<Pattern> ExprWalker::rewritePattern(Pattern *pattern,
                                                DeclContext *DC) {
  auto &solution = Rewriter.solution;

  // Figure out the pattern type.
  auto patternTy = solution.getResolvedType(pattern);
  patternTy = patternTy->reconstituteSugar(/*recursive=*/false);

  // Coerce the pattern to its appropriate type.
  TypeResolutionOptions patternOptions(TypeResolverContext::InExpression);
  patternOptions |= TypeResolutionFlags::OverrideType;

  auto tryRewritePattern = [&](Pattern *EP, Type ty) {
    return ::tryRewriteExprPattern(
        EP, solution, ty, [&](auto target) { return rewriteTarget(target); });
  };

  auto contextualPattern = ContextualPattern::forRawPattern(pattern, DC);
  return TypeChecker::coercePatternToType(contextualPattern, patternTy,
                                          patternOptions, tryRewritePattern);
}

/// Apply the given solution to the initialization target.
///
/// \returns the resulting initialization expression.
static std::optional<SyntacticElementTarget>
applySolutionToInitialization(Solution &solution, SyntacticElementTarget target,
                              Expr *initializer,
                              RewriteTargetFn rewriteTarget) {
  auto wrappedVar = target.getInitializationWrappedVar();
  Type initType;
  if (wrappedVar) {
    initType = solution.getType(initializer);
  } else {
    initType = solution.getType(target.getInitializationPattern());
  }

  {
    // Figure out what type the constraints decided on.
    auto ty = solution.simplifyType(initType);
    initType = ty->getRValueType()->reconstituteSugar(/*recursive =*/false);
  }

  // Convert the initializer to the type of the pattern.
  auto &cs = solution.getConstraintSystem();
  auto locator = cs.getConstraintLocator(
      target.getAsExpr(), LocatorPathElt::ContextualType(CTP_Initialization));
  initializer = solution.coerceToType(initializer, initType, locator);
  if (!initializer)
    return std::nullopt;

  SyntacticElementTarget resultTarget = target;
  resultTarget.setExpr(initializer);

  // Record the property wrapper type and note that the initializer has
  // been subsumed by the backing property.
  if (wrappedVar) {
    ASTContext &ctx = cs.getASTContext();
    ctx.setSideCachedPropertyWrapperBackingPropertyType(
        wrappedVar, initType->mapTypeOutOfContext());

    // Record the semantic initializer on the outermost property wrapper.
    wrappedVar->getOutermostAttachedPropertyWrapper()->setSemanticInit(
        initializer);

    // If this is a wrapped parameter, we're done.
    if (isa<ParamDecl>(wrappedVar))
      return resultTarget;

    wrappedVar->getParentPatternBinding()->setInitializerSubsumed(0);
  }

  // Coerce the pattern to the type of the initializer.
  TypeResolutionOptions options =
      isa<EditorPlaceholderExpr>(initializer->getSemanticsProvidingExpr())
      ? TypeResolverContext::EditorPlaceholderExpr
      : target.getInitializationPatternBindingDecl()
        ? TypeResolverContext::PatternBindingDecl
        : TypeResolverContext::InExpression;
  options |= TypeResolutionFlags::OverrideType;

  // Determine the type of the pattern.
  Type finalPatternType = initializer->getType();
  if (wrappedVar) {
    if (!finalPatternType->hasError() && !finalPatternType->is<TypeVariableType>())
      finalPatternType = computeWrappedValueType(wrappedVar, finalPatternType);
  }

  if (finalPatternType->hasDependentMember())
    return std::nullopt;

  finalPatternType = finalPatternType->reconstituteSugar(/*recursive =*/false);

  auto tryRewritePattern = [&](Pattern *EP, Type ty) {
    return ::tryRewriteExprPattern(EP, solution, ty, rewriteTarget);
  };

  // Apply the solution to the pattern as well.
  auto contextualPattern = target.getContextualPattern();
  if (auto coercedPattern = TypeChecker::coercePatternToType(
          contextualPattern, finalPatternType, options, tryRewritePattern)) {
    resultTarget.setPattern(coercedPattern);
  } else {
    return std::nullopt;
  }

  // For an async let, wrap the initializer appropriately to make it a child
  // task.
  if (target.isAsyncLetInitializer()) {
    resultTarget.setExpr(wrapAsyncLetInitializer(
        cs, resultTarget.getAsExpr(), resultTarget.getDeclContext()));
  }

  // If this property has an opaque result type, set the underlying type
  // substitutions based on the initializer.
  if (auto var = resultTarget.getInitializationPattern()->getSingleVar()) {
    SubstitutionMap substitutions;
    if (auto opaque = var->getOpaqueResultTypeDecl()) {
      resultTarget.getAsExpr()->forEachChildExpr([&](Expr *expr) -> Expr * {
        if (auto coercionExpr = dyn_cast<UnderlyingToOpaqueExpr>(expr)) {
          auto newSubstitutions =
              coercionExpr->substitutions.mapReplacementTypesOutOfContext();
          if (substitutions.empty()) {
            substitutions = newSubstitutions;
          } else {
            assert(substitutions.getCanonical() ==
                       newSubstitutions.getCanonical());
          }
        }
        return expr;
      });

      opaque->setUniqueUnderlyingTypeSubstitutions(substitutions);
    }
  }


  return resultTarget;
}

static std::optional<SequenceIterationInfo> applySolutionToForEachStmt(
    Solution &solution, ForEachStmt *stmt, SequenceIterationInfo info,
    DeclContext *dc,
    llvm::function_ref<
        std::optional<SyntacticElementTarget>(SyntacticElementTarget)>
        rewriteTarget) {
  auto &cs = solution.getConstraintSystem();

  auto *parsedSequence = stmt->getParsedSequence();
  bool isAsync = stmt->getAwaitLoc().isValid();

  // Simplify the various types.
  info.sequenceType = solution.simplifyType(info.sequenceType);
  info.elementType = solution.simplifyType(info.elementType);
  info.initType = solution.simplifyType(info.initType);

  // First, let's apply the solution to the expression.
  auto *makeIteratorVar = info.makeIteratorVar;

  auto makeIteratorTarget = *cs.getTargetFor({makeIteratorVar, /*index=*/0});

  auto rewrittenTarget = rewriteTarget(makeIteratorTarget);
  if (!rewrittenTarget)
    return std::nullopt;

  // Set type-checked initializer and mark it as such.
  {
    makeIteratorVar->setInit(/*index=*/0, rewrittenTarget->getAsExpr());
    makeIteratorVar->setInitializerChecked(/*index=*/0);
  }

  stmt->setIteratorVar(makeIteratorVar);

  // Now, `$iterator.next()` call.
  {
    auto nextTarget = *cs.getTargetFor(info.nextCall);

    auto rewrittenTarget = rewriteTarget(nextTarget);
    if (!rewrittenTarget)
      return std::nullopt;

    Expr *nextCall = rewrittenTarget->getAsExpr();
    // Wrap a call to `next()` into `try await` since `AsyncIteratorProtocol`
    // witness could be `async throws`.
    if (isAsync) {
      // Cannot use `forEachChildExpr` here because we need to
      // to wrap a call in `try` and then stop immediately after.
      struct TryInjector : ASTWalker {
        ASTContext &C;
        const Solution &S;

        bool ShouldStop = false;

        TryInjector(ASTContext &ctx, const Solution &solution)
            : C(ctx), S(solution) {}

        MacroWalking getMacroWalkingBehavior() const override {
          return MacroWalking::Expansion;
        }

        PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
          if (ShouldStop)
            return Action::Stop();

          if (auto *call = dyn_cast<CallExpr>(E)) {
            // There is a single call expression in `nextCall`.
            ShouldStop = true;

            auto nextRefType =
                S.getResolvedType(call->getFn())->castTo<FunctionType>();

            // If the inferred witness is throwing, we need to wrap the call
            // into `try` expression.
            if (nextRefType->isThrowing()) {
              auto *tryExpr = TryExpr::createImplicit(
                  C, /*tryLoc=*/call->getStartLoc(), call, call->getType());
              // Cannot stop here because we need to make sure that
              // the new expression gets injected into AST.
              return Action::SkipNode(tryExpr);
            }
          }

          return Action::Continue(E);
        }
      };

      nextCall->walk(TryInjector(cs.getASTContext(), solution));
    }

    stmt->setNextCall(nextCall);
  }

  // Convert that std::optional<Element> value to the type of the pattern.
  auto optPatternType = OptionalType::get(info.initType);
  Type nextResultType = OptionalType::get(info.elementType);
  if (!optPatternType->isEqual(nextResultType)) {
    ASTContext &ctx = cs.getASTContext();
    OpaqueValueExpr *elementExpr = new (ctx) OpaqueValueExpr(
        stmt->getInLoc(), nextResultType->getOptionalObjectType(),
        /*isPlaceholder=*/true);
    Expr *convertElementExpr = elementExpr;
    if (TypeChecker::typeCheckExpression(convertElementExpr, dc,
                                         /*contextualInfo=*/
                                         {info.initType, CTP_CoerceOperand})
            .isNull()) {
      return std::nullopt;
    }
    elementExpr->setIsPlaceholder(false);
    stmt->setElementExpr(elementExpr);
    stmt->setConvertElementExpr(convertElementExpr);
  }

  // Get the conformance of the sequence type to the Sequence protocol.
  auto sequenceProto = TypeChecker::getProtocol(
      cs.getASTContext(), stmt->getForLoc(),
      stmt->getAwaitLoc().isValid() ? KnownProtocolKind::AsyncSequence
                                    : KnownProtocolKind::Sequence);

  auto type = info.sequenceType->getRValueType();
  if (type->isExistentialType()) {
    auto *contextualLoc = solution.getConstraintLocator(
        parsedSequence, LocatorPathElt::ContextualType(CTP_ForEachSequence));
    type = Type(solution.OpenedExistentialTypes[contextualLoc]);
  }
  auto sequenceConformance = dc->getParentModule()->checkConformance(
      type, sequenceProto);
  assert(!sequenceConformance.isInvalid() &&
         "Couldn't find sequence conformance");
  stmt->setSequenceConformance(type, sequenceConformance);

  // Apply the solution to the filtering condition, if there is one.
  if (auto *whereExpr = stmt->getWhere()) {
    auto whereTarget = *cs.getTargetFor(whereExpr);

    auto rewrittenTarget = rewriteTarget(whereTarget);
    if (!rewrittenTarget)
      return std::nullopt;

    stmt->setWhere(rewrittenTarget->getAsExpr());
  }

  return info;
}

static std::optional<PackIterationInfo> applySolutionToForEachStmt(
    Solution &solution, ForEachStmt *stmt, PackIterationInfo info,
    llvm::function_ref<
        std::optional<SyntacticElementTarget>(SyntacticElementTarget)>
        rewriteTarget) {

  auto &cs = solution.getConstraintSystem();
  auto *sequenceExpr = stmt->getParsedSequence();
  PackExpansionExpr *expansion = cast<PackExpansionExpr>(sequenceExpr);

  // First, let's apply the solution to the pack expansion.
  auto makeExpansionTarget = *cs.getTargetFor(expansion);
  auto rewrittenTarget = rewriteTarget(makeExpansionTarget);
  if (!rewrittenTarget)
    return std::nullopt;

  // Simplify the pattern type of the pack expansion.
  info.patternType = solution.simplifyType(info.patternType);

  return info;
}

/// Apply the given solution to the for-each statement target.
///
/// \returns the resulting initialization expression.
static std::optional<SyntacticElementTarget> applySolutionToForEachStmt(
    Solution &solution, SyntacticElementTarget target,
    llvm::function_ref<
        std::optional<SyntacticElementTarget>(SyntacticElementTarget)>
        rewriteTarget) {
  auto resultTarget = target;
  auto &forEachStmtInfo = resultTarget.getForEachStmtInfo();
  auto *stmt = target.getAsForEachStmt();

  Type rewrittenPatternType;

  if (auto *info = forEachStmtInfo.dyn_cast<SequenceIterationInfo>()) {
    auto resultInfo = applySolutionToForEachStmt(
        solution, stmt, *info, target.getDeclContext(), rewriteTarget);
    if (!resultInfo) {
      return std::nullopt;
    }

    forEachStmtInfo = *resultInfo;
    rewrittenPatternType = resultInfo->initType;
  } else {
    auto resultInfo = applySolutionToForEachStmt(
        solution, stmt, forEachStmtInfo.get<PackIterationInfo>(),
        rewriteTarget);
    if (!resultInfo) {
      return std::nullopt;
    }

    forEachStmtInfo = *resultInfo;
    rewrittenPatternType = resultInfo->patternType;
  }

  // Coerce the pattern to the element type.
  {
    TypeResolutionOptions options(TypeResolverContext::ForEachStmt);
    options |= TypeResolutionFlags::OverrideType;

    auto tryRewritePattern = [&](Pattern *EP, Type ty) {
      return ::tryRewriteExprPattern(EP, solution, ty, rewriteTarget);
    };

    // Apply the solution to the pattern as well.
    auto contextualPattern = target.getContextualPattern();
    auto coercedPattern = TypeChecker::coercePatternToType(
        contextualPattern, rewrittenPatternType, options, tryRewritePattern);
    if (!coercedPattern)
      return std::nullopt;

    stmt->setPattern(coercedPattern);
    resultTarget.setPattern(coercedPattern);
  }

  return resultTarget;
}

std::optional<SyntacticElementTarget>
ExprWalker::rewriteTarget(SyntacticElementTarget target) {
  // Rewriting the target might abort in case one of visit methods returns
  // nullptr. In this case, no more walkToExprPost calls are issues and thus
  // nodes which were pushed on the Rewriter's ExprStack in walkToExprPre are
  // not popped of the stack again in walkTokExprPost. Usually, that's not an
  // issue if rewriting completely terminates because the ExprStack is never
  // used again. Here, however, we recover from a rewriting failure and continue
  // using the Rewriter. To make sure we don't continue with an ExprStack that
  // is still in the state when rewriting was aborted, save it here and restore
  // it once rewriting this target has finished.
  llvm::SaveAndRestore<SmallVector<Expr *, 8>> RestoreExprStack(
      Rewriter.ExprStack);
  auto &solution = Rewriter.solution;

  // Apply the solution to the target.
  SyntacticElementTarget result = target;
  if (auto expr = target.getAsExpr()) {
    Expr *rewrittenExpr = expr->walk(*this);
    if (!rewrittenExpr)
      return std::nullopt;

    /// Handle special cases for expressions.
    switch (target.getExprContextualTypePurpose()) {
    case CTP_Initialization: {
      auto initResultTarget = applySolutionToInitialization(
          solution, target, rewrittenExpr,
          [&](auto target) { return rewriteTarget(target); });
      if (!initResultTarget)
        return std::nullopt;

      result = *initResultTarget;
      break;
    }

    case CTP_Unused:
    case CTP_CaseStmt:
    case CTP_ReturnStmt:
    case CTP_ExprPattern:
    case CTP_ForEachStmt:
    case CTP_ForEachSequence:
    case CTP_YieldByValue:
    case CTP_YieldByReference:
    case CTP_ThrowStmt:
    case CTP_DiscardStmt:
    case CTP_EnumCaseRawValue:
    case CTP_DefaultParameter:
    case CTP_AutoclosureDefaultParameter:
    case CTP_CalleeResult:
    case CTP_CallArgument:
    case CTP_ClosureResult:
    case CTP_ArrayElement:
    case CTP_DictionaryKey:
    case CTP_DictionaryValue:
    case CTP_CoerceOperand:
    case CTP_AssignSource:
    case CTP_SubscriptAssignSource:
    case CTP_Condition:
    case CTP_WrappedProperty:
    case CTP_ComposedPropertyWrapper:
    case CTP_CannotFail:
    case CTP_SingleValueStmtBranch:
      result.setExpr(rewrittenExpr);
      break;
    }
  } else if (auto stmtCondition = target.getAsStmtCondition()) {
    auto &cs = solution.getConstraintSystem();

    for (auto &condElement : *stmtCondition) {
      switch (condElement.getKind()) {
      case StmtConditionElement::CK_Availability:
        continue;

      case StmtConditionElement::CK_HasSymbol: {
        auto info = condElement.getHasSymbolInfo();
        auto target = *cs.getTargetFor(&condElement);
        auto resolvedTarget = rewriteTarget(target);
        if (!resolvedTarget) {
          info->setInvalid();
          return std::nullopt;
        }

        auto rewrittenExpr = resolvedTarget->getAsExpr();
        info->setSymbolExpr(rewrittenExpr);
        info->setReferencedDecl(
            TypeChecker::getReferencedDeclForHasSymbolCondition(rewrittenExpr));
        continue;
      }

      case StmtConditionElement::CK_Boolean: {
        auto target = *cs.getTargetFor(&condElement);
        auto resolvedTarget = rewriteTarget(target);
        if (!resolvedTarget)
          return std::nullopt;

        condElement.setBoolean(resolvedTarget->getAsExpr());
        continue;
      }

      case StmtConditionElement::CK_PatternBinding: {
        auto target = *cs.getTargetFor(&condElement);
        auto resolvedTarget = rewriteTarget(target);
        if (!resolvedTarget)
          return std::nullopt;

        condElement.setInitializer(resolvedTarget->getAsExpr());
        condElement.setPattern(resolvedTarget->getInitializationPattern());
        continue;
      }
      }
    }

    return target;
  } else if (auto caseLabelItem = target.getAsCaseLabelItem()) {
    ConstraintSystem &cs = solution.getConstraintSystem();
    auto info = *cs.getCaseLabelItemInfo(*caseLabelItem);

    auto pattern = rewritePattern(info.pattern, target.getDeclContext());
    if (!pattern)
      return std::nullopt;

    (*caseLabelItem)->setPattern(pattern.get(), /*resolved=*/true);

    // If there is a guard expression, coerce that.
    if (auto *guardExpr = info.guardExpr) {
      auto target = *cs.getTargetFor(guardExpr);
      auto resultTarget = rewriteTarget(target);
      if (!resultTarget)
        return std::nullopt;

      (*caseLabelItem)->setGuardExpr(resultTarget->getAsExpr());
    }

    return target;
  } else if (auto patternBinding = target.getAsPatternBinding()) {
    ConstraintSystem &cs = solution.getConstraintSystem();
    for (unsigned index : range(patternBinding->getNumPatternEntries())) {
      if (patternBinding->isInitializerChecked(index))
        continue;

      // Find the target for this.
      auto knownTarget = *cs.getTargetFor({patternBinding, index});

      // Rewrite the target.
      auto resultTarget = rewriteTarget(knownTarget);
      if (!resultTarget)
        return std::nullopt;

      auto *pattern = resultTarget->getInitializationPattern();
      // Record that the pattern has been fully validated,
      // this is important for subsequent call to typeCheckDecl
      // because otherwise it would try to re-typecheck pattern.
      patternBinding->setPattern(index, pattern,
                                 /*isFullyValidated=*/true);

      if (patternBinding->isExplicitlyInitialized(index) ||
          (patternBinding->isDefaultInitializable(index) &&
           pattern->hasStorage())) {
        patternBinding->setInit(index, resultTarget->getAsExpr());
        patternBinding->setInitializerChecked(index);
      }
    }

    return target;
  } else if (auto *wrappedVar = target.getAsUninitializedWrappedVar()) {
    // Get the outermost wrapper type from the solution
    auto outermostWrapper = wrappedVar->getOutermostAttachedPropertyWrapper();
    auto backingType = solution.simplifyType(
        solution.getType(outermostWrapper->getTypeExpr()));

    auto &ctx = solution.getConstraintSystem().getASTContext();
    ctx.setSideCachedPropertyWrapperBackingPropertyType(
        wrappedVar, backingType->mapTypeOutOfContext());

    return target;
  } else if (auto *pattern = target.getAsUninitializedVar()) {
    TypeResolutionOptions options(TypeResolverContext::PatternBindingDecl);

    auto contextualPattern = target.getContextualPattern();
    auto patternType = target.getTypeOfUninitializedVar();
    auto *PB = target.getPatternBindingOfUninitializedVar();

    // If this is a placeholder variable, let's override its type with
    // inferred one.
    if (isPlaceholderVar(PB)) {
      patternType = solution.getResolvedType(PB->getSingleVar());
      options |= TypeResolutionFlags::OverrideType;
    }

    auto tryRewritePattern = [&](Pattern *EP, Type ty) {
      return ::tryRewriteExprPattern(
          EP, solution, ty, [&](auto target) { return rewriteTarget(target); });
    };

    if (auto coercedPattern = TypeChecker::coercePatternToType(
            contextualPattern, patternType, options, tryRewritePattern)) {
      auto resultTarget = target;
      resultTarget.setPattern(coercedPattern);
      return resultTarget;
    }

    return std::nullopt;
  } else if (auto *forEach = target.getAsForEachStmt()) {
    auto forEachResultTarget = applySolutionToForEachStmt(
        solution, target, [&](SyntacticElementTarget target) {
          auto resultTarget = rewriteTarget(target);
          if (resultTarget) {
            if (auto expr = resultTarget->getAsExpr())
              solution.setExprTypes(expr);
          }

          return resultTarget;
        });
    if (!forEachResultTarget)
      return std::nullopt;

    result = *forEachResultTarget;
  } else {
    auto fn = *target.getAsFunction();
    if (rewriteFunction(fn))
      return std::nullopt;

    result.setFunctionBody(fn.getBody());
  }

  // Follow-up tasks.
  auto &cs = solution.getConstraintSystem();
  if (auto resultExpr = result.getAsExpr()) {
    Expr *expr = target.getAsExpr();
    assert(expr && "Can't have expression result without expression target");

    // We are supposed to use contextual type only if it is present and
    // this expression doesn't represent the implicit return of the single
    // expression function which got deduced to be `Never`.
    Type convertType = target.getExprConversionType();
    auto shouldCoerceToContextualType = [&]() {
      if (!convertType)
        return false;

      if (convertType->hasPlaceholder())
        return false;

      if (target.isOptionalSomePatternInit())
        return false;

      if (solution.simplifyType(convertType)->isVoid()) {
        auto contextPurpose = cs.getContextualTypePurpose(target.getAsExpr());
        if (contextPurpose == CTP_ClosureResult ||
            contextPurpose == CTP_SingleValueStmtBranch) {
          return false;
        }
      }
      return true;
    };

    // If we're supposed to convert the expression to some particular type,
    // do so now.
    if (shouldCoerceToContextualType()) {
      auto contextualTypePurpose = target.getExprContextualTypePurpose();

      auto *locator = target.getExprConvertTypeLocator();
      if (!locator) {
        locator = cs.getConstraintLocator(
            expr, LocatorPathElt::ContextualType(contextualTypePurpose));
      }
      assert(locator);

      resultExpr = Rewriter.coerceToType(
          resultExpr, solution.simplifyType(convertType), locator);
    } else if (cs.getType(resultExpr)->hasLValueType() &&
               !target.isDiscardedExpr()) {
      // We referenced an lvalue. Load it.
      resultExpr = Rewriter.coerceToType(
          resultExpr, cs.getType(resultExpr)->getRValueType(),
          cs.getConstraintLocator(expr,
                                  LocatorPathElt::ContextualType(
                                      target.getExprContextualTypePurpose())));
    }

    if (!resultExpr)
      return std::nullopt;

    // For an @autoclosure default parameter type, add the autoclosure
    // conversion.
    if (FunctionType *autoclosureParamType =
            target.getAsAutoclosureParamType()) {
      resultExpr = cs.buildAutoClosureExpr(resultExpr, autoclosureParamType,
                                           target.getDeclContext());
    }

    solution.setExprTypes(resultExpr);
    result.setExpr(resultExpr);

    if (cs.isDebugMode()) {
      // If target is a multi-statement closure or
      // a tap expression, expression will not be fully
      // type checked until these expressions are visited in
      // processDelayed().
      bool isPartial = false;
      resultExpr->forEachChildExpr([&](Expr *child) -> Expr * {
        if (auto *closure = dyn_cast<ClosureExpr>(child)) {
          if (!closure->hasSingleExpressionBody()) {
            isPartial = true;
            return nullptr;
          }
        }
        if (isa<TapExpr>(child)) {
          isPartial = true;
          return nullptr;
        }
      return child;
      });
      
      auto &log = llvm::errs();
      if (isPartial) {
        log << "\n---Partially type-checked expression---\n";
      } else {
        log << "\n---Type-checked expression---\n";
      }
      resultExpr->dump(log);
      log << "\n";
    }
  }

  return result;
}

/// Apply a given solution to the expression, producing a fully
/// type-checked expression.
std::optional<SyntacticElementTarget>
ConstraintSystem::applySolution(Solution &solution,
                                SyntacticElementTarget target) {
  // If any fixes needed to be applied to arrive at this solution, resolve
  // them to specific expressions.
  unsigned numResolvableFixes = 0;
  if (!solution.Fixes.empty()) {
    if (shouldSuppressDiagnostics())
      return std::nullopt;

    bool diagnosedErrorsViaFixes = applySolutionFixes(solution);
    bool canApplySolution = true;
    for (const auto fix : solution.Fixes) {
      if (fix->isFatal())
        canApplySolution = false;
      if (fix->impact() == SK_Fix && !fix->isFatal())
        ++numResolvableFixes;
    }

    // If all of the available fixes would result in a warning,
    // we can go ahead and apply this solution to AST.
    if (!canApplySolution) {
      // If we already diagnosed any errors via fixes, that's it.
      if (diagnosedErrorsViaFixes)
        return std::nullopt;

      // If we didn't manage to diagnose anything well, so fall back to
      // diagnosing mining the system to construct a reasonable error message.
      diagnoseFailureFor(target);
      return std::nullopt;
    }
  }

  // If there are no fixes recorded but score indicates that there
  // should have been at least one, let's fail application and
  // produce a fallback diagnostic to highlight the problem.
  {
    const auto &score = solution.getFixedScore();
    if (score.Data[SK_Fix] > numResolvableFixes || score.Data[SK_Hole] > 0) {
      maybeProduceFallbackDiagnostic(target);
      return std::nullopt;
    }
  }

  ExprRewriter rewriter(*this, solution, target, shouldSuppressDiagnostics());
  ExprWalker walker(rewriter);
  auto resultTarget = walker.rewriteTarget(target);
  if (!resultTarget)
    return std::nullopt;

  auto needsPostProcessing = walker.hasDelayedTasks();
  
  // Visit closures that have non-single expression bodies, tap expressions,
  // and possibly other types of AST nodes which could only be processed
  // after contextual expression.
  bool hadError = walker.processDelayed();

  // If any of them failed to type check, bail.
  if (hadError)
    return std::nullopt;

  if (isDebugMode()) {
    // If we had partially type-checked expressions, lets print
    // fully type-checked target after processDelayed is done.
    auto node = target.getAsASTNode();
    if (node && needsPostProcessing) {
      auto &log = llvm::errs();
      log << "\n---Fully type-checked target---\n";
      node.dump(log);
      log << "\n";
    }
  }
  
  rewriter.finalize();

  return resultTarget;
}

Expr *
Solution::coerceToType(Expr *expr, Type toType, ConstraintLocator *locator) {
  auto &cs = getConstraintSystem();
  ExprRewriter rewriter(cs, *this, std::nullopt, /*suppressDiagnostics=*/false);
  Expr *result = rewriter.coerceToType(expr, toType, locator);
  if (!result)
    return nullptr;

  setExprTypes(result);
  rewriter.finalize();
  return result;
}

bool Solution::hasType(ASTNode node) const {
  auto result = nodeTypes.find(node);
  if (result != nodeTypes.end())
    return true;

  auto &cs = getConstraintSystem();
  return cs.hasType(node);
}

bool Solution::hasType(const KeyPathExpr *KP, unsigned ComponentIndex) const {
  assert(KP && "Expected non-null key path parameter!");
  return keyPathComponentTypes.find(std::make_pair(KP, ComponentIndex))
            != keyPathComponentTypes.end();
}

Type Solution::getType(ASTNode node) const {
  auto result = nodeTypes.find(node);
  if (result != nodeTypes.end())
    return result->second;

  auto &cs = getConstraintSystem();
  return cs.getType(node);
}

Type Solution::getType(const KeyPathExpr *KP, unsigned I) const {
  assert(hasType(KP, I) && "Expected type to have been set!");
  return keyPathComponentTypes.find(std::make_pair(KP, I))->second;
}

TypeVariableType *
Solution::getKeyPathRootType(const KeyPathExpr *keyPath) const {
  auto result = getKeyPathRootTypeIfAvailable(keyPath);
  assert(result);
  return result;
}

TypeVariableType *
Solution::getKeyPathRootTypeIfAvailable(const KeyPathExpr *keyPath) const {
  auto result = KeyPaths.find(keyPath);
  if (result != KeyPaths.end())
    return std::get<0>(result->second);
  return nullptr;
}

Type Solution::getResolvedType(ASTNode node) const {
  return simplifyType(getType(node));
}

void Solution::setExprTypes(Expr *expr) const {
  if (!expr)
    return;

  SetExprTypes SET(*this);
  expr->walk(SET);
}

/// MARK: SolutionResult implementation.

SolutionResult SolutionResult::forSolved(Solution &&solution) {
  SolutionResult result(Kind::Success);
  void *memory = malloc(sizeof(Solution));
  result.solutions = new (memory) Solution(std::move(solution));
  result.numSolutions = 1;
  return result;
}

SolutionResult SolutionResult::forAmbiguous(
    MutableArrayRef<Solution> solutions) {
  assert(solutions.size() > 1 && "Not actually ambiguous");
  SolutionResult result(Kind::Ambiguous);
  result.solutions =
      (Solution *)malloc(sizeof(Solution) * solutions.size());
  result.numSolutions = solutions.size();
  std::uninitialized_copy(std::make_move_iterator(solutions.begin()),
                          std::make_move_iterator(solutions.end()),
                          result.solutions);
  return result;
}

SolutionResult
SolutionResult::forTooComplex(std::optional<SourceRange> affected) {
  SolutionResult result(Kind::TooComplex);
  result.TooComplexAt = affected;
  return result;
}

SolutionResult::~SolutionResult() {
  assert((!requiresDiagnostic() || emittedDiagnostic) &&
         "SolutionResult was destroyed without emitting a diagnostic");

  for (unsigned i : range(numSolutions)) {
    solutions[i].~Solution();
  }
  free(solutions);
}

const Solution &SolutionResult::getSolution() const {
  assert(numSolutions == 1 && "Wrong number of solutions");
  return solutions[0];
}

Solution &&SolutionResult::takeSolution() && {
  assert(numSolutions == 1 && "Wrong number of solutions");
  return std::move(solutions[0]);
}

ArrayRef<Solution> SolutionResult::getAmbiguousSolutions() const {
  assert(getKind() == Ambiguous);
  return llvm::ArrayRef(solutions, numSolutions);
}

MutableArrayRef<Solution> SolutionResult::takeAmbiguousSolutions() && {
  assert(getKind() == Ambiguous);
  markAsDiagnosed();
  return MutableArrayRef<Solution>(solutions, numSolutions);
}