1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
|
//===--- CSBindings.cpp - Constraint Solver -------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements selection of bindings for type variables.
//
//===----------------------------------------------------------------------===//
#include "swift/Sema/CSBindings.h"
#include "TypeChecker.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/Sema/ConstraintGraph.h"
#include "swift/Sema/ConstraintSystem.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/raw_ostream.h"
#include <tuple>
using namespace swift;
using namespace constraints;
using namespace inference;
static std::optional<Type> checkTypeOfBinding(TypeVariableType *typeVar,
Type type);
bool BindingSet::forClosureResult() const {
return Info.TypeVar->getImpl().isClosureResultType();
}
bool BindingSet::forGenericParameter() const {
return bool(Info.TypeVar->getImpl().getGenericParameter());
}
bool BindingSet::canBeNil() const {
auto &ctx = CS.getASTContext();
return Literals.count(
ctx.getProtocol(KnownProtocolKind::ExpressibleByNilLiteral));
}
bool BindingSet::isDirectHole() const {
// Direct holes are only allowed in "diagnostic mode".
if (!CS.shouldAttemptFixes())
return false;
return Bindings.empty() && getNumViableLiteralBindings() == 0 &&
Defaults.empty() && Info.TypeVar->getImpl().canBindToHole();
}
bool PotentialBindings::isGenericParameter() const {
auto *locator = TypeVar->getImpl().getLocator();
return locator && locator->isLastElement<LocatorPathElt::GenericParameter>();
}
bool PotentialBinding::isViableForJoin() const {
return Kind == AllowedBindingKind::Supertypes &&
!BindingType->hasLValueType() &&
!BindingType->hasUnresolvedType() &&
!BindingType->hasTypeVariable() &&
!BindingType->hasPlaceholder() &&
!BindingType->hasUnboundGenericType() &&
!hasDefaultedLiteralProtocol() &&
!isDefaultableBinding();
}
bool BindingSet::isDelayed() const {
if (auto *locator = TypeVar->getImpl().getLocator()) {
if (locator->isLastElement<LocatorPathElt::MemberRefBase>()) {
// If first binding is a "fallback" to a protocol type,
// it means that this type variable should be delayed
// until it either gains more contextual information, or
// there are no other type variables to attempt to make
// forward progress.
if (Bindings.empty())
return true;
if (Bindings[0].BindingType->is<ProtocolType>())
return true;
}
// Since force unwrap preserves l-valueness, resulting
// type variable has to be delayed until either l-value
// binding becomes available or there are no other
// variables to attempt.
if (locator->directlyAt<ForceValueExpr>() &&
TypeVar->getImpl().canBindToLValue()) {
return llvm::none_of(Bindings, [](const PotentialBinding &binding) {
return binding.BindingType->is<LValueType>();
});
}
}
// Delay key path literal type binding until there is at least
// one contextual binding (or default is promoted into a binding).
if (TypeVar->getImpl().isKeyPathType() && !Defaults.empty())
return true;
if (isHole()) {
auto *locator = TypeVar->getImpl().getLocator();
assert(locator && "a hole without locator?");
// Delay resolution of the code completion expression until
// the very end to give it a chance to be bound to some
// contextual type even if it's a hole.
if (locator->directlyAt<CodeCompletionExpr>())
return true;
// Delay resolution of the `nil` literal to a hole until
// the very end to give it a change to be bound to some
// other type, just like code completion expression which
// relies solely on contextual information.
if (locator->directlyAt<NilLiteralExpr>())
return true;
// When inferring the type of a variable in a pattern, delay its resolution
// so that we resolve type variables inside the expression as placeholders
// instead of marking the type of the variable itself as a placeholder. This
// allows us to produce more specific errors because the type variable in
// the expression that introduced the placeholder might be diagnosable using
// fixForHole.
if (locator->isLastElement<LocatorPathElt::PatternDecl>()) {
return true;
}
// It's possible that type of member couldn't be determined,
// and if so it would be beneficial to bind member to a hole
// early to propagate that information down to arguments,
// result type of a call that references such a member.
//
// Note: This is done here instead of during binding inference,
// because it's possible that variable is marked as a "hole"
// (or that status is propagated to it) after constraints
// mentioned below are recorded.
return llvm::any_of(Info.DelayedBy, [&](Constraint *constraint) {
switch (constraint->getKind()) {
case ConstraintKind::ApplicableFunction:
case ConstraintKind::DynamicCallableApplicableFunction:
case ConstraintKind::BindOverload: {
return !ConstraintSystem::typeVarOccursInType(
TypeVar, CS.simplifyType(constraint->getSecondType()));
}
default:
return true;
}
});
}
return !Info.DelayedBy.empty();
}
bool BindingSet::involvesTypeVariables() const {
// This type variable always depends on a pack expansion variable
// which should be inferred first if possible.
if (TypeVar->getImpl().getGenericParameter() &&
TypeVar->getImpl().canBindToPack())
return true;
// This is effectively O(1) right now since bindings are re-computed
// on each step of the solver, but once bindings are computed
// incrementally it becomes more important to double-check that
// any adjacent type variables found previously are still unresolved.
return llvm::any_of(AdjacentVars, [](TypeVariableType *typeVar) {
return !typeVar->getImpl().getFixedType(/*record=*/nullptr);
});
}
bool BindingSet::isPotentiallyIncomplete() const {
// Generic parameters are always potentially incomplete.
if (Info.isGenericParameter())
return true;
// Key path literal type is incomplete until there is a
// contextual type or key path is resolved enough to infer
// capability and promote default into a binding.
if (TypeVar->getImpl().isKeyPathType())
return !Defaults.empty();
// If current type variable is associated with a code completion token
// it's possible that it doesn't have enough contextual information
// to be resolved to anything so let's delay considering it until everything
// else is resolved.
if (Info.AssociatedCodeCompletionToken)
return true;
auto *locator = TypeVar->getImpl().getLocator();
if (!locator)
return false;
if (locator->isLastElement<LocatorPathElt::MemberRefBase>() &&
!Bindings.empty()) {
// If the base of the unresolved member reference like `.foo`
// couldn't be resolved we'd want to bind it to a hole at the
// very last moment possible, just like generic parameters.
if (isHole())
return true;
auto &binding = Bindings.front();
// If base type of a member chain is inferred to be a protocol type,
// let's consider this binding set to be potentially incomplete since
// that's done as a last resort effort at resolving first member.
if (auto *constraint = binding.getSource()) {
if (binding.BindingType->is<ProtocolType>() &&
constraint->getKind() == ConstraintKind::ConformsTo)
return true;
}
}
if (locator->isLastElement<LocatorPathElt::UnresolvedMemberChainResult>()) {
// If subtyping is allowed and this is a result of an implicit member chain,
// let's delay binding it to an optional until its object type resolved too or
// it has been determined that there is no possibility to resolve it. Otherwise
// we might end up missing solutions since it's allowed to implicitly unwrap
// base type of the chain but it can't be done early - type variable
// representing chain's result type has a different l-valueness comparing
// to generic parameter of the optional.
if (llvm::any_of(Bindings, [&](const PotentialBinding &binding) {
if (binding.Kind != AllowedBindingKind::Subtypes)
return false;
auto objectType = binding.BindingType->getOptionalObjectType();
return objectType && objectType->isTypeVariableOrMember();
}))
return true;
}
if (isHole()) {
// Delay resolution of the code completion expression until
// the very end to give it a chance to be bound to some
// contextual type even if it's a hole.
if (locator->directlyAt<CodeCompletionExpr>())
return true;
// Delay resolution of the `nil` literal to a hole until
// the very end to give it a change to be bound to some
// other type, just like code completion expression which
// relies solely on contextual information.
if (locator->directlyAt<NilLiteralExpr>())
return true;
}
// If there is a `bind param` constraint associated with
// current type variable, result should be aware of that
// fact. Binding set might be incomplete until
// this constraint is resolved, because we currently don't
// look-through constraints expect to `subtype` to try and
// find related bindings.
// This only affects type variable that appears one the
// right-hand side of the `bind param` constraint and
// represents result type of the closure body, because
// left-hand side gets types from overload choices.
if (llvm::any_of(
Info.EquivalentTo,
[&](const std::pair<TypeVariableType *, Constraint *> &equivalence) {
auto *constraint = equivalence.second;
return constraint->getKind() == ConstraintKind::BindParam &&
constraint->getSecondType()->isEqual(TypeVar);
}))
return true;
return false;
}
void BindingSet::inferTransitiveProtocolRequirements(
llvm::SmallDenseMap<TypeVariableType *, BindingSet> &inferredBindings) {
if (TransitiveProtocols)
return;
llvm::SmallVector<std::pair<TypeVariableType *, TypeVariableType *>, 4>
workList;
llvm::SmallPtrSet<TypeVariableType *, 4> visitedRelations;
llvm::SmallDenseMap<TypeVariableType *, SmallPtrSet<Constraint *, 4>, 4>
protocols;
auto addToWorkList = [&](TypeVariableType *parent,
TypeVariableType *typeVar) {
if (visitedRelations.insert(typeVar).second)
workList.push_back({parent, typeVar});
};
auto propagateProtocolsTo =
[&protocols](TypeVariableType *dstVar,
const ArrayRef<Constraint *> &direct,
const SmallPtrSetImpl<Constraint *> &transitive) {
auto &destination = protocols[dstVar];
if (direct.size() > 0)
destination.insert(direct.begin(), direct.end());
if (transitive.size() > 0)
destination.insert(transitive.begin(), transitive.end());
};
addToWorkList(nullptr, TypeVar);
do {
auto *currentVar = workList.back().second;
auto cachedBindings = inferredBindings.find(currentVar);
if (cachedBindings == inferredBindings.end()) {
workList.pop_back();
continue;
}
auto &bindings = cachedBindings->getSecond();
// If current variable already has transitive protocol
// conformances inferred, there is no need to look deeper
// into subtype/equivalence chain.
if (bindings.TransitiveProtocols) {
TypeVariableType *parent = nullptr;
std::tie(parent, currentVar) = workList.pop_back_val();
assert(parent);
propagateProtocolsTo(parent, bindings.getConformanceRequirements(),
*bindings.TransitiveProtocols);
continue;
}
for (const auto &entry : bindings.Info.SubtypeOf)
addToWorkList(currentVar, entry.first);
// If current type variable is part of an equivalence
// class, make it a "representative" and let it infer
// supertypes and direct protocol requirements from
// other members and their equivalence classes.
llvm::SmallSetVector<TypeVariableType *, 4> equivalenceClass;
{
SmallVector<TypeVariableType *, 4> workList;
workList.push_back(currentVar);
do {
auto *typeVar = workList.pop_back_val();
if (!equivalenceClass.insert(typeVar))
continue;
auto bindingSet = inferredBindings.find(typeVar);
if (bindingSet == inferredBindings.end())
continue;
auto &equivalences = bindingSet->getSecond().Info.EquivalentTo;
for (const auto &eqVar : equivalences) {
workList.push_back(eqVar.first);
}
} while (!workList.empty());
}
for (const auto &memberVar : equivalenceClass) {
if (memberVar == currentVar)
continue;
auto eqBindings = inferredBindings.find(memberVar);
if (eqBindings == inferredBindings.end())
continue;
const auto &bindings = eqBindings->getSecond();
llvm::SmallPtrSet<Constraint *, 2> placeholder;
// Add any direct protocols from members of the
// equivalence class, so they could be propagated
// to all of the members.
propagateProtocolsTo(currentVar, bindings.getConformanceRequirements(),
placeholder);
// Since type variables are equal, current type variable
// becomes a subtype to any supertype found in the current
// equivalence class.
for (const auto &eqEntry : bindings.Info.SubtypeOf)
addToWorkList(currentVar, eqEntry.first);
}
// More subtype/equivalences relations have been added.
if (workList.back().second != currentVar)
continue;
TypeVariableType *parent = nullptr;
std::tie(parent, currentVar) = workList.pop_back_val();
// At all of the protocols associated with current type variable
// are transitive to its parent, propagate them down the subtype/equivalence
// chain.
if (parent) {
propagateProtocolsTo(parent, bindings.getConformanceRequirements(),
protocols[currentVar]);
}
auto &inferredProtocols = protocols[currentVar];
llvm::SmallPtrSet<Constraint *, 4> protocolsForEquivalence;
// Equivalence class should contain both:
// - direct protocol requirements of the current type
// variable;
// - all of the transitive protocols inferred through
// the members of the equivalence class.
{
auto directRequirements = bindings.getConformanceRequirements();
protocolsForEquivalence.insert(directRequirements.begin(),
directRequirements.end());
protocolsForEquivalence.insert(inferredProtocols.begin(),
inferredProtocols.end());
}
// Propagate inferred protocols to all of the members of the
// equivalence class.
for (const auto &equivalence : bindings.Info.EquivalentTo) {
auto eqBindings = inferredBindings.find(equivalence.first);
if (eqBindings != inferredBindings.end()) {
auto &bindings = eqBindings->getSecond();
bindings.TransitiveProtocols.emplace(protocolsForEquivalence.begin(),
protocolsForEquivalence.end());
}
}
// Update the bindings associated with current type variable,
// to avoid repeating this inference process.
bindings.TransitiveProtocols.emplace(inferredProtocols.begin(),
inferredProtocols.end());
} while (!workList.empty());
}
void BindingSet::inferTransitiveBindings(
const llvm::SmallDenseMap<TypeVariableType *, BindingSet>
&inferredBindings) {
using BindingKind = AllowedBindingKind;
// If the current type variable represents a key path root type
// let's try to transitively infer its type through bindings of
// a key path type.
if (TypeVar->getImpl().isKeyPathRoot()) {
auto *locator = TypeVar->getImpl().getLocator();
if (auto *keyPathTy =
CS.getType(locator->getAnchor())->getAs<TypeVariableType>()) {
auto keyPathBindings = inferredBindings.find(keyPathTy);
if (keyPathBindings != inferredBindings.end()) {
auto &bindings = keyPathBindings->getSecond();
for (auto &binding : bindings.Bindings) {
auto bindingTy = binding.BindingType->lookThroughAllOptionalTypes();
Type inferredRootTy;
if (isKnownKeyPathType(bindingTy)) {
// AnyKeyPath doesn't have a root type.
if (bindingTy->isAnyKeyPath())
continue;
auto *BGT = bindingTy->castTo<BoundGenericType>();
inferredRootTy = BGT->getGenericArgs()[0];
} else if (auto *fnType = bindingTy->getAs<FunctionType>()) {
if (fnType->getNumParams() == 1)
inferredRootTy = fnType->getParams()[0].getParameterType();
}
if (inferredRootTy) {
// If contextual root is not yet resolved, let's try to see if
// there are any bindings in its set. The bindings could be
// transitively used because conversions between generic arguments
// are not allowed.
if (auto *contextualRootVar = inferredRootTy->getAs<TypeVariableType>()) {
auto rootBindings = inferredBindings.find(contextualRootVar);
if (rootBindings != inferredBindings.end()) {
auto &bindings = rootBindings->getSecond();
// Don't infer if root is not yet fully resolved.
if (bindings.isDelayed())
continue;
// Copy the bindings over to the root.
for (const auto &binding : bindings.Bindings)
addBinding(binding, /*isTransitive=*/true);
// Make a note that the key path root is transitively adjacent
// to contextual root type variable and all of its variables.
// This is important for ranking.
AdjacentVars.insert(contextualRootVar);
AdjacentVars.insert(bindings.AdjacentVars.begin(),
bindings.AdjacentVars.end());
}
} else {
addBinding(
binding.withSameSource(inferredRootTy, BindingKind::Exact),
/*isTransitive=*/true);
}
}
}
}
}
}
for (const auto &entry : Info.SupertypeOf) {
auto relatedBindings = inferredBindings.find(entry.first);
if (relatedBindings == inferredBindings.end())
continue;
auto &bindings = relatedBindings->getSecond();
// FIXME: This is a workaround necessary because solver doesn't filter
// bindings based on protocol requirements placed on a type variable.
//
// Forward propagate (subtype -> supertype) only literal conformance
// requirements since that helps solver to infer more types at
// parameter positions.
//
// \code
// func foo<T: ExpressibleByStringLiteral>(_: String, _: T) -> T {
// fatalError()
// }
//
// func bar(_: Any?) {}
//
// func test() {
// bar(foo("", ""))
// }
// \endcode
//
// If one of the literal arguments doesn't propagate its
// `ExpressibleByStringLiteral` conformance, we'd end up picking
// `T` with only one type `Any?` which is incorrect.
for (const auto &literal : bindings.Literals)
addLiteralRequirement(literal.second.getSource());
// Infer transitive defaults.
for (const auto &def : bindings.Defaults) {
if (def.getSecond()->getKind() == ConstraintKind::FallbackType)
continue;
addDefault(def.second);
}
// TODO: We shouldn't need this in the future.
if (entry.second->getKind() != ConstraintKind::Subtype)
continue;
for (auto &binding : bindings.Bindings) {
// We need the binding kind for the potential binding to
// either be Exact or Supertypes in order for it to make sense
// to add Supertype bindings based on the relationship between
// our type variables.
if (binding.Kind != BindingKind::Exact &&
binding.Kind != BindingKind::Supertypes)
continue;
auto type = binding.BindingType;
if (type->isPlaceholder())
continue;
if (ConstraintSystem::typeVarOccursInType(TypeVar, type))
continue;
addBinding(binding.withSameSource(type, BindingKind::Supertypes),
/*isTransitive=*/true);
}
}
}
static Type getKeyPathType(ASTContext &ctx, KeyPathCapability capability,
Type rootType, Type valueType) {
KeyPathMutability mutability;
bool isSendable;
std::tie(mutability, isSendable) = capability;
Type keyPathTy;
switch (mutability) {
case KeyPathMutability::ReadOnly:
keyPathTy = BoundGenericType::get(ctx.getKeyPathDecl(), /*parent=*/Type(),
{rootType, valueType});
break;
case KeyPathMutability::Writable:
keyPathTy = BoundGenericType::get(ctx.getWritableKeyPathDecl(),
/*parent=*/Type(), {rootType, valueType});
break;
case KeyPathMutability::ReferenceWritable:
keyPathTy = BoundGenericType::get(ctx.getReferenceWritableKeyPathDecl(),
/*parent=*/Type(), {rootType, valueType});
break;
}
if (isSendable &&
ctx.LangOpts.hasFeature(Feature::InferSendableFromCaptures)) {
auto *sendable = ctx.getProtocol(KnownProtocolKind::Sendable);
keyPathTy = ProtocolCompositionType::get(
ctx, {keyPathTy, sendable->getDeclaredInterfaceType()},
/*inverses=*/{}, /*hasExplicitAnyObject=*/false);
return ExistentialType::get(keyPathTy);
}
return keyPathTy;
}
bool BindingSet::finalize(
llvm::SmallDenseMap<TypeVariableType *, BindingSet> &inferredBindings) {
inferTransitiveBindings(inferredBindings);
determineLiteralCoverage();
if (auto *locator = TypeVar->getImpl().getLocator()) {
if (locator->isLastElement<LocatorPathElt::MemberRefBase>()) {
// If this is a base of an unresolved member chain, as a last
// resort effort let's infer base to be a protocol type based
// on contextual conformance requirements.
//
// This allows us to find solutions in cases like this:
//
// \code
// func foo<T: P>(_: T) {}
// foo(.bar) <- `.bar` should be a static member of `P`.
// \endcode
if (!hasViableBindings()) {
inferTransitiveProtocolRequirements(inferredBindings);
if (TransitiveProtocols.has_value()) {
for (auto *constraint : *TransitiveProtocols) {
Type protocolTy = constraint->getSecondType();
// Compiler-known marker protocols cannot be extended with members,
// so do not consider them.
if (auto p = protocolTy->getAs<ProtocolType>()) {
if (ProtocolDecl *decl = p->getDecl())
if (decl->getKnownProtocolKind() && decl->isMarkerProtocol())
continue;
}
addBinding({protocolTy, AllowedBindingKind::Exact, constraint},
/*isTransitive=*/false);
}
}
}
}
if (TypeVar->getImpl().isKeyPathType()) {
auto &ctx = CS.getASTContext();
auto *keyPathLoc = TypeVar->getImpl().getLocator();
auto *keyPath = castToExpr<KeyPathExpr>(keyPathLoc->getAnchor());
bool isValid;
std::optional<KeyPathCapability> capability;
std::tie(isValid, capability) = CS.inferKeyPathLiteralCapability(TypeVar);
// Key path literal is not yet sufficiently resolved, this binding
// set is not viable.
if (isValid && !capability)
return false;
// If the key path is sufficiently resolved we can add inferred binding
// to the set.
SmallSetVector<PotentialBinding, 4> updatedBindings;
for (const auto &binding : Bindings) {
auto bindingTy = binding.BindingType->lookThroughAllOptionalTypes();
assert(isKnownKeyPathType(bindingTy) || bindingTy->is<FunctionType>());
// Functions don't have capability so we can simply add them.
if (auto *fnType = bindingTy->getAs<FunctionType>()) {
auto extInfo = fnType->getExtInfo();
bool isKeyPathSendable = capability && capability->second;
if (!isKeyPathSendable && extInfo.isSendable()) {
fnType = FunctionType::get(fnType->getParams(), fnType->getResult(),
extInfo.withSendable(false));
}
updatedBindings.insert(binding.withType(fnType));
}
}
// Note that even though key path literal maybe be invalid it's
// still the best course of action to use contextual function type
// bindings because they allow to propagate type information from
// the key path into the context, so key path bindings are addded
// only if there is absolutely no other choice.
if (updatedBindings.empty()) {
auto rootTy = CS.getKeyPathRootType(keyPath);
// A valid key path literal.
if (capability) {
// Note that the binding is formed using root & value
// type variables produced during constraint generation
// because at this point root is already known (otherwise
// inference wouldn't been able to determine key path's
// capability) and we always want to infer value from
// the key path and match it to a contextual type to produce
// better diagnostics.
auto keyPathTy = getKeyPathType(ctx, *capability, rootTy,
CS.getKeyPathValueType(keyPath));
updatedBindings.insert(
{keyPathTy, AllowedBindingKind::Exact, keyPathLoc});
} else if (CS.shouldAttemptFixes()) {
auto fixedRootTy = CS.getFixedType(rootTy);
// If key path is structurally correct and has a resolved root
// type, let's promote the fallback type into a binding because
// root would have been inferred from explicit type already and
// it's benefitial for diagnostics to assign a non-placeholder
// type to key path literal to propagate root/value to the context.
if (!keyPath->hasSingleInvalidComponent() &&
(keyPath->getParsedRoot() ||
(fixedRootTy && !fixedRootTy->isTypeVariableOrMember()))) {
auto fallback = llvm::find_if(Defaults, [](const auto &entry) {
return entry.second->getKind() == ConstraintKind::FallbackType;
});
assert(fallback != Defaults.end());
updatedBindings.insert(
{fallback->first, AllowedBindingKind::Exact, fallback->second});
} else {
updatedBindings.insert(PotentialBinding::forHole(
TypeVar, CS.getConstraintLocator(
keyPath, ConstraintLocator::FallbackType)));
}
}
}
Bindings = std::move(updatedBindings);
Defaults.clear();
return true;
}
if (CS.shouldAttemptFixes() &&
locator->isLastElement<LocatorPathElt::UnresolvedMemberChainResult>()) {
// Let's see whether this chain is valid, if it isn't then to avoid
// diagnosing the same issue multiple different ways, let's infer
// result of the chain to be a hole.
auto *resultExpr =
castToExpr<UnresolvedMemberChainResultExpr>(locator->getAnchor());
auto *baseLocator = CS.getConstraintLocator(
resultExpr->getChainBase(), ConstraintLocator::UnresolvedMember);
if (CS.hasFixFor(
baseLocator,
FixKind::AllowInvalidStaticMemberRefOnProtocolMetatype)) {
CS.recordPotentialHole(TypeVar);
// Clear all of the previously collected bindings which are inferred
// from inside of a member chain.
Bindings.remove_if([](const PotentialBinding &binding) {
return binding.Kind == AllowedBindingKind::Supertypes;
});
}
}
}
return true;
}
void BindingSet::addBinding(PotentialBinding binding, bool isTransitive) {
if (Bindings.count(binding))
return;
if (!isViable(binding, isTransitive))
return;
SmallPtrSet<TypeVariableType *, 4> referencedTypeVars;
binding.BindingType->getTypeVariables(referencedTypeVars);
// If type variable is not allowed to bind to `lvalue`,
// let's check if type of potential binding has any
// type variables, which are allowed to bind to `lvalue`,
// and postpone such type from consideration.
//
// This check is done here and not in `checkTypeOfBinding`
// because the l-valueness of the variable might change during
// solving and that would not be reflected in the graph.
if (!TypeVar->getImpl().canBindToLValue()) {
for (auto *typeVar : referencedTypeVars) {
if (typeVar->getImpl().canBindToLValue())
return;
}
}
// Since Double and CGFloat are effectively the same type due to an
// implicit conversion between them, always prefer Double over CGFloat
// when possible.
//
// Note: This optimization can't be performed for closure parameters
// because their type could be converted only at the point of
// use in the closure body.
if (!TypeVar->getImpl().isClosureParameterType()) {
auto type = binding.BindingType;
if (type->isCGFloat() &&
llvm::any_of(Bindings, [](const PotentialBinding &binding) {
return binding.BindingType->isDouble();
}))
return;
if (type->isDouble()) {
auto inferredCGFloat =
llvm::find_if(Bindings, [](const PotentialBinding &binding) {
return binding.BindingType->isCGFloat();
});
if (inferredCGFloat != Bindings.end()) {
Bindings.erase(inferredCGFloat);
Bindings.insert(inferredCGFloat->withType(type));
return;
}
}
}
// If this is a non-defaulted supertype binding,
// check whether we can combine it with another
// supertype binding by computing the 'join' of the types.
if (binding.isViableForJoin()) {
auto isAcceptableJoin = [](Type type) {
return !type->isAny() && (!type->getOptionalObjectType() ||
!type->getOptionalObjectType()->isAny());
};
SmallVector<PotentialBinding, 4> joined;
for (auto existingBinding = Bindings.begin();
existingBinding != Bindings.end();) {
if (existingBinding->isViableForJoin()) {
auto join =
Type::join(existingBinding->BindingType, binding.BindingType);
if (join && isAcceptableJoin(*join)) {
// Result of the join has to use new binding because it refers
// to the constraint that triggered the join that replaced the
// existing binding.
joined.push_back(binding.withType(*join));
// Remove existing binding from the set.
// It has to be re-introduced later, since its type has been changed.
existingBinding = Bindings.erase(existingBinding);
continue;
}
}
++existingBinding;
}
for (const auto &binding : joined)
(void)Bindings.insert(binding);
// If new binding has been joined with at least one of existing
// bindings, there is no reason to include it into the set.
if (!joined.empty())
return;
}
for (auto *adjacentVar : referencedTypeVars)
AdjacentVars.insert(adjacentVar);
(void)Bindings.insert(std::move(binding));
}
void BindingSet::determineLiteralCoverage() {
if (Literals.empty())
return;
bool allowsNil = canBeNil();
for (auto &entry : Literals) {
auto &literal = entry.second;
if (!literal.viableAsBinding())
continue;
for (auto binding = Bindings.begin(); binding != Bindings.end();
++binding) {
bool isCovered = false;
Type adjustedTy;
std::tie(isCovered, adjustedTy) =
literal.isCoveredBy(*binding, allowsNil, CS);
if (!isCovered)
continue;
literal.setCoveredBy(binding->getSource());
if (adjustedTy) {
Bindings.erase(binding);
Bindings.insert(binding->withType(adjustedTy));
}
break;
}
}
}
void BindingSet::addLiteralRequirement(Constraint *constraint) {
auto isDirectRequirement = [&](Constraint *constraint) -> bool {
if (auto *typeVar = constraint->getFirstType()->getAs<TypeVariableType>()) {
auto *repr = CS.getRepresentative(typeVar);
return repr == TypeVar;
}
return false;
};
auto *protocol = constraint->getProtocol();
// Let's try to coalesce integer and floating point literal protocols
// if they appear together because the only possible default type that
// could satisfy both requirements is `Double`.
{
if (protocol->isSpecificProtocol(
KnownProtocolKind::ExpressibleByIntegerLiteral)) {
auto *floatLiteral = CS.getASTContext().getProtocol(
KnownProtocolKind::ExpressibleByFloatLiteral);
if (Literals.count(floatLiteral))
return;
}
if (protocol->isSpecificProtocol(
KnownProtocolKind::ExpressibleByFloatLiteral)) {
auto *intLiteral = CS.getASTContext().getProtocol(
KnownProtocolKind::ExpressibleByIntegerLiteral);
Literals.erase(intLiteral);
}
}
if (Literals.count(protocol) > 0)
return;
bool isDirect = isDirectRequirement(constraint);
// Coverage is not applicable to `ExpressibleByNilLiteral` since it
// doesn't have a default type.
if (protocol->isSpecificProtocol(
KnownProtocolKind::ExpressibleByNilLiteral)) {
Literals.insert(
{protocol, LiteralRequirement(constraint,
/*DefaultType=*/Type(), isDirect)});
return;
}
// Check whether any of the existing bindings covers this literal
// protocol.
LiteralRequirement literal(
constraint, TypeChecker::getDefaultType(protocol, CS.DC), isDirect);
Literals.insert({protocol, std::move(literal)});
}
BindingSet::BindingScore BindingSet::formBindingScore(const BindingSet &b) {
// If there are no bindings available but this type
// variable represents a closure - let's consider it
// as having a single non-default binding - that would
// be a type inferred based on context.
// It's considered to be non-default for purposes of
// ranking because we'd like to prioritize resolving
// closures to gain more information from their bodies.
unsigned numBindings = b.Bindings.size() + b.getNumViableLiteralBindings();
auto numNonDefaultableBindings = numBindings > 0 ? numBindings
: b.TypeVar->getImpl().isClosureType() ? 1
: 0;
return std::make_tuple(b.isHole(), numNonDefaultableBindings == 0,
b.isDelayed(), b.isSubtypeOfExistentialType(),
b.involvesTypeVariables(),
static_cast<unsigned char>(b.getLiteralForScore()),
-numNonDefaultableBindings);
}
std::optional<BindingSet> ConstraintSystem::determineBestBindings(
llvm::function_ref<void(const BindingSet &)> onCandidate) {
// Look for potential type variable bindings.
std::optional<BindingSet> bestBindings;
llvm::SmallDenseMap<TypeVariableType *, BindingSet> cache;
// First, let's collect all of the possible bindings.
for (auto *typeVar : getTypeVariables()) {
if (!typeVar->getImpl().hasRepresentativeOrFixed()) {
cache.insert({typeVar, getBindingsFor(typeVar, /*finalize=*/false)});
}
}
// Determine whether given type variable with its set of bindings is
// viable to be attempted on the next step of the solver. If type variable
// has no "direct" bindings of any kind e.g. direct bindings to concrete
// types, default types from "defaultable" constraints or literal
// conformances, such type variable is not viable to be evaluated to be
// attempted next.
auto isViableForRanking = [this](const BindingSet &bindings) -> bool {
auto *typeVar = bindings.getTypeVariable();
// Key path root type variable is always viable because it can be
// transitively inferred from key path type during binding set
// finalization.
if (typeVar->getImpl().isKeyPathRoot())
return true;
// Type variable representing a base of unresolved member chain should
// always be considered viable for ranking since it's allow to infer
// types from transitive protocol requirements.
if (auto *locator = typeVar->getImpl().getLocator()) {
if (locator->isLastElement<LocatorPathElt::MemberRefBase>())
return true;
}
// If type variable is marked as a potential hole there is always going
// to be at least one binding available for it.
if (shouldAttemptFixes() && typeVar->getImpl().canBindToHole())
return true;
return bool(bindings);
};
// Now let's see if we could infer something for related type
// variables based on other bindings.
for (auto *typeVar : getTypeVariables()) {
auto cachedBindings = cache.find(typeVar);
if (cachedBindings == cache.end())
continue;
auto &bindings = cachedBindings->getSecond();
// Before attempting to infer transitive bindings let's check
// whether there are any viable "direct" bindings associated with
// current type variable, if there are none - it means that this type
// variable could only be used to transitively infer bindings for
// other type variables and can't participate in ranking.
//
// Viable bindings include - any types inferred from constraints
// associated with given type variable, any default constraints,
// or any conformance requirements to literal protocols with can
// produce a default type.
bool isViable = isViableForRanking(bindings);
if (!bindings.finalize(cache))
continue;
if (!bindings || !isViable)
continue;
onCandidate(bindings);
// If these are the first bindings, or they are better than what
// we saw before, use them instead.
if (!bestBindings || bindings < *bestBindings)
bestBindings.emplace(bindings);
}
return bestBindings;
}
/// Find the set of type variables that are inferable from the given type.
///
/// \param type The type to search.
/// \param typeVars Collects the type variables that are inferable from the
/// given type. This set is not cleared, so that multiple types can be explored
/// and introduce their results into the same set.
static void
findInferableTypeVars(Type type,
SmallPtrSetImpl<TypeVariableType *> &typeVars) {
type = type->getCanonicalType();
if (!type->hasTypeVariable())
return;
class Walker : public TypeWalker {
SmallPtrSetImpl<TypeVariableType *> &typeVars;
public:
explicit Walker(SmallPtrSetImpl<TypeVariableType *> &typeVars)
: typeVars(typeVars) {}
Action walkToTypePre(Type ty) override {
if (ty->is<DependentMemberType>())
return Action::SkipNode;
if (auto typeVar = ty->getAs<TypeVariableType>())
typeVars.insert(typeVar);
return Action::Continue;
}
};
type.walk(Walker(typeVars));
}
void PotentialBindings::addDefault(Constraint *constraint) {
Defaults.insert(constraint);
}
void BindingSet::addDefault(Constraint *constraint) {
auto defaultTy = constraint->getSecondType();
Defaults.insert({defaultTy->getCanonicalType(), constraint});
}
bool LiteralRequirement::isCoveredBy(Type type, ConstraintSystem &CS) const {
auto coversDefaultType = [](Type type, Type defaultType) -> bool {
if (!defaultType->hasUnboundGenericType())
return type->isEqual(defaultType);
// For generic literal types, check whether we already have a
// specialization of this generic within our list.
// FIXME: This assumes that, e.g., the default literal
// int/float/char/string types are never generic.
auto nominal = defaultType->getAnyNominal();
if (!nominal)
return false;
// FIXME: Check parents?
return nominal == type->getAnyNominal();
};
if (hasDefaultType() && coversDefaultType(type, getDefaultType()))
return true;
return bool(CS.lookupConformance(type, getProtocol()));
}
std::pair<bool, Type>
LiteralRequirement::isCoveredBy(const PotentialBinding &binding, bool canBeNil,
ConstraintSystem &CS) const {
auto type = binding.BindingType;
switch (binding.Kind) {
case AllowedBindingKind::Exact:
type = binding.BindingType;
break;
case AllowedBindingKind::Subtypes:
case AllowedBindingKind::Supertypes:
type = binding.BindingType->getRValueType();
break;
}
bool requiresUnwrap = false;
do {
// Conformance check on type variable would always return true,
// but type variable can't cover anything until it's bound.
if (type->isTypeVariableOrMember() || type->isPlaceholder())
return std::make_pair(false, Type());
if (isCoveredBy(type, CS)) {
return std::make_pair(true, requiresUnwrap ? type : binding.BindingType);
}
// Can't unwrap optionals if there is `ExpressibleByNilLiteral`
// conformance requirement placed on the type variable.
if (canBeNil)
return std::make_pair(false, Type());
// If this literal protocol is not a direct requirement it
// would not be possible to change optionality while inferring
// bindings for a supertype, so this hack doesn't apply.
if (!isDirectRequirement())
return std::make_pair(false, Type());
// If we're allowed to bind to subtypes, look through optionals.
// FIXME: This is really crappy special case of computing a reasonable
// result based on the given constraints.
if (binding.Kind == AllowedBindingKind::Subtypes) {
if (auto objTy = type->getOptionalObjectType()) {
requiresUnwrap = true;
type = objTy;
continue;
}
}
return std::make_pair(false, Type());
} while (true);
}
void PotentialBindings::addPotentialBinding(PotentialBinding binding) {
assert(!binding.BindingType->is<ErrorType>());
// If the type variable can't bind to an lvalue, make sure the
// type we pick isn't an lvalue.
if (!TypeVar->getImpl().canBindToLValue() &&
binding.BindingType->hasLValueType()) {
binding = binding.withType(binding.BindingType->getRValueType());
}
Bindings.push_back(std::move(binding));
}
void PotentialBindings::addLiteral(Constraint *constraint) {
Literals.insert(constraint);
}
bool BindingSet::isViable(PotentialBinding &binding, bool isTransitive) {
// Prevent against checking against the same opened nominal type
// over and over again. Doing so means redundant work in the best
// case. In the worst case, we'll produce lots of duplicate solutions
// for this constraint system, which is problematic for overload
// resolution.
auto type = binding.BindingType;
if (isTransitive && !checkTypeOfBinding(TypeVar, type))
return false;
auto *NTD = type->getAnyNominal();
if (!NTD)
return true;
for (auto existing = Bindings.begin(); existing != Bindings.end();
++existing) {
auto existingType = existing->BindingType;
auto *existingNTD = existingType->getAnyNominal();
if (!existingNTD || NTD != existingNTD)
continue;
// If new type has a type variable it shouldn't
// be considered viable.
if (type->hasTypeVariable())
return false;
// If new type doesn't have any type variables,
// but existing binding does, let's replace existing
// binding with new one.
if (existingType->hasTypeVariable()) {
// First, let's remove all of the adjacent type
// variables associated with this binding.
{
SmallPtrSet<TypeVariableType *, 4> referencedVars;
existingType->getTypeVariables(referencedVars);
for (auto *var : referencedVars)
AdjacentVars.erase(var);
}
// And now let's remove the binding itself.
Bindings.erase(existing);
break;
}
}
return true;
}
bool BindingSet::favoredOverDisjunction(Constraint *disjunction) const {
if (isHole())
return false;
if (llvm::any_of(Bindings, [&](const PotentialBinding &binding) {
if (binding.Kind == AllowedBindingKind::Supertypes)
return false;
auto type = binding.BindingType;
if (CS.shouldAttemptFixes())
return false;
if (type->isAnyHashable() || type->isDouble() || type->isCGFloat())
return false;
{
PointerTypeKind pointerKind;
if (type->getAnyPointerElementType(pointerKind)) {
switch (pointerKind) {
case PTK_UnsafeRawPointer:
case PTK_UnsafeMutableRawPointer:
return false;
default:
break;
}
}
}
return type->is<StructType>() || type->is<EnumType>() ||
type->is<BuiltinType>();
})) {
// Result type of subscript could be l-value so we can't bind it early.
if (!TypeVar->getImpl().isSubscriptResultType() &&
llvm::none_of(Info.DelayedBy, [](const Constraint *constraint) {
return constraint->getKind() == ConstraintKind::Disjunction ||
constraint->getKind() == ConstraintKind::ValueMember;
}))
return true;
}
if (isDelayed())
return false;
// If this bindings are for a closure and there are no holes,
// it shouldn't matter whether it there are any type variables
// or not because e.g. parameter type can have type variables,
// but we still want to resolve closure body early (instead of
// attempting any disjunction) to gain additional contextual
// information.
if (TypeVar->getImpl().isClosureType()) {
auto boundType = disjunction->getNestedConstraints()[0]->getFirstType();
// If disjunction is attempting to bind a type variable, let's
// favor closure because it would add additional context, otherwise
// if it's something like a collection (where it has to pick
// between a conversion and bridging conversion) or concrete
// type let's prefer the disjunction.
//
// We are looking through optionals here because it could be
// a situation where disjunction is formed to match optionals
// either as deep equality or optional-to-optional conversion.
// Such type variables might be connected to closure as well
// e.g. when result type is optional, so it makes sense to
// open closure before attempting such disjunction.
return boundType->lookThroughAllOptionalTypes()->is<TypeVariableType>();
}
// If this is a collection literal type, it's preferrable to bind it
// early (unless it's delayed) to connect all of its elements even
// if it doesn't have any bindings.
if (TypeVar->getImpl().isCollectionLiteralType())
return !involvesTypeVariables();
// Don't prioritize type variables that don't have any direct bindings.
if (Bindings.empty())
return false;
// Always prefer key path type if it has bindings and is not delayed
// because that means that it was possible to infer its capability.
if (TypeVar->getImpl().isKeyPathType())
return true;
return !involvesTypeVariables();
}
bool BindingSet::favoredOverConjunction(Constraint *conjunction) const {
if (CS.shouldAttemptFixes() && isHole()) {
if (forClosureResult() || forGenericParameter())
return false;
}
auto *locator = conjunction->getLocator();
if (locator->directlyAt<ClosureExpr>()) {
auto *closure = castToExpr<ClosureExpr>(locator->getAnchor());
if (auto transform = CS.getAppliedResultBuilderTransform(closure)) {
// Conjunctions that represent closures with result builder transformed
// bodies could be attempted right after their resolution if they meet
// all of the following criteria:
//
// - Builder type doesn't have any unresolved generic parameters;
// - Closure doesn't have any parameters;
// - The contextual result type is either concrete or opaque type.
auto contextualType = transform->contextualType;
if (!(contextualType && contextualType->is<FunctionType>()))
return true;
auto *contextualFnType =
CS.simplifyType(contextualType)->castTo<FunctionType>();
{
auto resultType = contextualFnType->getResult();
if (resultType->hasTypeVariable()) {
auto *typeVar = resultType->getAs<TypeVariableType>();
// If contextual result type is represented by an opaque type,
// it's a strong indication that body is self-contained, otherwise
// closure might rely on external types flowing into the body for
// disambiguation of `build{Partial}Block` or `buildFinalResult`
// calls.
if (!(typeVar && typeVar->getImpl().isOpaqueType()))
return true;
}
}
// If some of the closure parameters are unresolved, the conjunction
// has to be delayed to give them a chance to be inferred.
if (llvm::any_of(contextualFnType->getParams(), [](const auto ¶m) {
return param.getPlainType()->hasTypeVariable();
}))
return true;
// Check whether conjunction has any unresolved type variables
// besides the variable that represents the closure.
//
// Conjunction could refer to declarations from outer context
// (i.e. a variable declared in the outer closure) or generic
// parameters of the builder type), if any of such references
// are not yet inferred the conjunction has to be delayed.
auto *closureType = CS.getType(closure)->castTo<TypeVariableType>();
return llvm::any_of(
conjunction->getTypeVariables(), [&](TypeVariableType *typeVar) {
return !(typeVar == closureType || CS.getFixedType(typeVar));
});
}
}
// If key path capability is not yet determined it cannot be favored
// over a conjunction because:
// 1. There could be no other bindings and that would mean that
// key path would be selected even though it's not yet ready.
// 2. A conjunction could be the source of type context for the key path.
if (TypeVar->getImpl().isKeyPathType() && isDelayed())
return false;
return true;
}
BindingSet ConstraintSystem::getBindingsFor(TypeVariableType *typeVar,
bool finalize) {
assert(typeVar->getImpl().getRepresentative(nullptr) == typeVar &&
"not a representative");
assert(!typeVar->getImpl().getFixedType(nullptr) && "has a fixed type");
BindingSet bindings{CG[typeVar].getCurrentBindings()};
if (finalize) {
llvm::SmallDenseMap<TypeVariableType *, BindingSet> cache;
bindings.finalize(cache);
}
return bindings;
}
/// Check whether the given type can be used as a binding for the given
/// type variable.
///
/// \returns the type to bind to, if the binding is okay.
static std::optional<Type> checkTypeOfBinding(TypeVariableType *typeVar,
Type type) {
// If the type references the type variable, don't permit the binding.
if (type->hasTypeVariable()) {
SmallPtrSet<TypeVariableType *, 4> referencedTypeVars;
type->getTypeVariables(referencedTypeVars);
if (referencedTypeVars.count(typeVar))
return std::nullopt;
}
{
auto objType = type->getWithoutSpecifierType();
// If the type is a type variable itself, don't permit the binding.
if (objType->is<TypeVariableType>())
return std::nullopt;
// Don't bind to a dependent member type, even if it's currently
// wrapped in any number of optionals, because binding producer
// might unwrap and try to attempt it directly later.
if (objType->lookThroughAllOptionalTypes()->is<DependentMemberType>())
return std::nullopt;
}
// Okay, allow the binding (with the simplified type).
return type;
}
std::optional<PotentialBinding>
PotentialBindings::inferFromRelational(Constraint *constraint) {
assert(constraint->getClassification() ==
ConstraintClassification::Relational &&
"only relational constraints handled here");
auto first = CS.simplifyType(constraint->getFirstType());
auto second = CS.simplifyType(constraint->getSecondType());
if (first->is<TypeVariableType>() && first->isEqual(second))
return std::nullopt;
Type type;
AllowedBindingKind kind;
if (first->getAs<TypeVariableType>() == TypeVar) {
// Upper bound for this type variable.
type = second;
kind = AllowedBindingKind::Subtypes;
} else if (second->getAs<TypeVariableType>() == TypeVar) {
// Lower bound for this type variable.
type = first;
kind = AllowedBindingKind::Supertypes;
} else {
// If the left-hand side of a relational constraint is a
// type variable representing a closure type, let's delay
// attempting any bindings related to any type variables
// on the other side since it could only be either a closure
// parameter or a result type, and we can't get a full set
// of bindings for them until closure's body is opened.
if (auto *typeVar = first->getAs<TypeVariableType>()) {
if (typeVar->getImpl().isClosureType()) {
DelayedBy.push_back(constraint);
return std::nullopt;
}
}
// Check whether both this type and another type variable are
// inferable.
SmallPtrSet<TypeVariableType *, 4> typeVars;
findInferableTypeVars(first, typeVars);
findInferableTypeVars(second, typeVars);
if (typeVars.erase(TypeVar)) {
for (auto *typeVar : typeVars)
AdjacentVars.insert({typeVar, constraint});
}
return std::nullopt;
}
// Do not attempt to bind to ErrorType.
if (type->hasError())
return std::nullopt;
if (TypeVar->getImpl().isKeyPathType()) {
auto objectTy = type->lookThroughAllOptionalTypes();
// If contextual type is an existential with a superclass
// constraint, let's try to infer a key path type from it.
if (kind == AllowedBindingKind::Subtypes) {
if (type->isExistentialType()) {
auto layout = type->getExistentialLayout();
if (auto superclass = layout.explicitSuperclass) {
if (isKnownKeyPathType(superclass)) {
type = superclass;
objectTy = superclass;
}
}
}
}
if (!(isKnownKeyPathType(objectTy) || objectTy->is<AnyFunctionType>()))
return std::nullopt;
}
if (TypeVar->getImpl().isKeyPathSubscriptIndex()) {
// Key path subscript index can only be a r-value non-optional
// type that is a subtype of a known KeyPath type.
type = type->getRValueType()->lookThroughAllOptionalTypes();
// If argument to a key path subscript is an existential,
// we can erase it to superclass (if any) here and solver
// will perform the opening if supertype turns out to be
// a valid key path type of its subtype.
if (kind == AllowedBindingKind::Supertypes) {
if (type->isExistentialType()) {
auto layout = type->getExistentialLayout();
if (auto superclass = layout.explicitSuperclass) {
type = superclass;
} else if (!CS.shouldAttemptFixes()) {
return std::nullopt;
}
}
}
}
if (auto *locator = TypeVar->getImpl().getLocator()) {
// Don't allow a protocol type to get propagated from the base to the result
// type of a chain, Result should always be a concrete type which conforms
// to the protocol inferred for the base.
if (constraint->getKind() == ConstraintKind::UnresolvedMemberChainBase &&
kind == AllowedBindingKind::Subtypes && type->is<ProtocolType>())
return std::nullopt;
}
// If the source of the binding is 'OptionalObject' constraint
// and type variable is on the left-hand side, that means
// that it _has_ to be of optional type, since the right-hand
// side of the constraint is object type of the optional.
if (constraint->getKind() == ConstraintKind::OptionalObject &&
kind == AllowedBindingKind::Subtypes) {
type = OptionalType::get(type);
}
// If the type we'd be binding to is a dependent member, don't try to
// resolve this type variable yet.
if (type->getWithoutSpecifierType()
->lookThroughAllOptionalTypes()
->is<DependentMemberType>()) {
llvm::SmallPtrSet<TypeVariableType *, 4> referencedVars;
type->getTypeVariables(referencedVars);
bool containsSelf = false;
for (auto *var : referencedVars) {
// Add all type variables encountered in the type except
// to the current type variable.
if (var != TypeVar) {
AdjacentVars.insert({var, constraint});
continue;
}
containsSelf = true;
}
// If inferred type doesn't contain the current type variable,
// let's mark bindings as delayed until dependent member type
// is resolved.
if (!containsSelf)
DelayedBy.push_back(constraint);
return std::nullopt;
}
// If our binding choice is a function type and we're attempting
// to bind to a type variable that is the result of opening a
// generic parameter, strip the noescape bit so that we only allow
// bindings of escaping functions in this position. We do this
// because within the generic function we have no indication of
// whether the parameter is a function type and if so whether it
// should be allowed to escape. As a result we allow anything
// passed in to escape.
if (auto *fnTy = type->getAs<AnyFunctionType>()) {
// Since inference now happens during constraint generation,
// this hack should be allowed in both `Solving`
// (during non-diagnostic mode) and `ConstraintGeneration` phases.
if (isGenericParameter() &&
(!CS.shouldAttemptFixes() ||
CS.getPhase() == ConstraintSystemPhase::ConstraintGeneration)) {
type = fnTy->withExtInfo(fnTy->getExtInfo().withNoEscape(false));
}
}
// Check whether we can perform this binding.
if (auto boundType = checkTypeOfBinding(TypeVar, type)) {
type = *boundType;
} else {
auto *bindingTypeVar = type->getRValueType()->getAs<TypeVariableType>();
if (!bindingTypeVar)
return std::nullopt;
// If current type variable is associated with a code completion token
// it's possible that it doesn't have enough contextual information
// to be resolved to anything, so let's note that fact in the potential
// bindings and use it when forming a hole if there are no other bindings
// available.
if (auto *locator = bindingTypeVar->getImpl().getLocator()) {
if (locator->directlyAt<CodeCompletionExpr>())
AssociatedCodeCompletionToken = locator->getAnchor();
}
switch (constraint->getKind()) {
case ConstraintKind::Subtype:
case ConstraintKind::SubclassOf:
case ConstraintKind::Conversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::OperatorArgumentConversion: {
if (kind == AllowedBindingKind::Subtypes) {
SubtypeOf.insert({bindingTypeVar, constraint});
} else {
assert(kind == AllowedBindingKind::Supertypes);
SupertypeOf.insert({bindingTypeVar, constraint});
}
AdjacentVars.insert({bindingTypeVar, constraint});
break;
}
case ConstraintKind::Bind:
case ConstraintKind::BindParam:
case ConstraintKind::Equal: {
EquivalentTo.insert({bindingTypeVar, constraint});
AdjacentVars.insert({bindingTypeVar, constraint});
break;
}
case ConstraintKind::UnresolvedMemberChainBase: {
EquivalentTo.insert({bindingTypeVar, constraint});
// Don't record adjacency between base and result types,
// this is just an auxiliary constraint to enforce ordering.
break;
}
case ConstraintKind::OptionalObject: {
// Type variable that represents an object type of
// an un-inferred optional is adjacent to a type
// variable that presents such optional (`bindingTypeVar`
// in this case).
if (kind == AllowedBindingKind::Supertypes)
AdjacentVars.insert({bindingTypeVar, constraint});
break;
}
default:
break;
}
return std::nullopt;
}
// Make sure we aren't trying to equate type variables with different
// lvalue-binding rules.
if (auto otherTypeVar = type->getAs<TypeVariableType>()) {
if (TypeVar->getImpl().canBindToLValue() !=
otherTypeVar->getImpl().canBindToLValue())
return std::nullopt;
}
if (type->is<InOutType>() && !TypeVar->getImpl().canBindToInOut())
type = LValueType::get(type->getInOutObjectType());
if (type->is<LValueType>() && !TypeVar->getImpl().canBindToLValue())
type = type->getRValueType();
// BindParam constraints are not reflexive and must be treated specially.
if (constraint->getKind() == ConstraintKind::BindParam) {
if (kind == AllowedBindingKind::Subtypes) {
if (auto *lvt = type->getAs<LValueType>()) {
type = InOutType::get(lvt->getObjectType());
}
} else if (kind == AllowedBindingKind::Supertypes) {
if (auto *iot = type->getAs<InOutType>()) {
type = LValueType::get(iot->getObjectType());
}
}
kind = AllowedBindingKind::Exact;
}
return PotentialBinding{type, kind, constraint};
}
/// Retrieve the set of potential type bindings for the given
/// representative type variable, along with flags indicating whether
/// those types should be opened.
void PotentialBindings::infer(Constraint *constraint) {
switch (constraint->getKind()) {
case ConstraintKind::Bind:
case ConstraintKind::Equal:
case ConstraintKind::BindParam:
case ConstraintKind::BindToPointerType:
case ConstraintKind::Subtype:
case ConstraintKind::SubclassOf:
case ConstraintKind::Conversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::OperatorArgumentConversion:
case ConstraintKind::OptionalObject:
case ConstraintKind::UnresolvedMemberChainBase: {
auto binding = inferFromRelational(constraint);
if (!binding)
break;
addPotentialBinding(*binding);
break;
}
case ConstraintKind::KeyPathApplication: {
// If this variable is in the application projected result type, delay
// binding until we've bound other type variables in the key-path
// application constraint. This ensures we try to bind the key path type
// first, which can allow us to discover additional bindings for the result
// type.
SmallPtrSet<TypeVariableType *, 4> typeVars;
findInferableTypeVars(CS.simplifyType(constraint->getThirdType()),
typeVars);
if (typeVars.count(TypeVar)) {
DelayedBy.push_back(constraint);
}
break;
}
case ConstraintKind::BridgingConversion:
case ConstraintKind::CheckedCast:
case ConstraintKind::EscapableFunctionOf:
case ConstraintKind::OpenedExistentialOf:
case ConstraintKind::KeyPath:
case ConstraintKind::SyntacticElement:
case ConstraintKind::Conjunction:
case ConstraintKind::BindTupleOfFunctionParams:
case ConstraintKind::ShapeOf:
case ConstraintKind::ExplicitGenericArguments:
case ConstraintKind::PackElementOf:
case ConstraintKind::SameShape:
case ConstraintKind::MaterializePackExpansion:
// Constraints from which we can't do anything.
break;
// For now let's avoid inferring protocol requirements from
// this constraint, but in the future we could do that to
// to filter bindings.
case ConstraintKind::TransitivelyConformsTo:
break;
case ConstraintKind::DynamicTypeOf: {
// Direct binding of the left-hand side could result
// in `DynamicTypeOf` failure if right-hand side is
// bound (because 'Bind' requires equal types to
// succeed), or left is bound to Any which is not an
// [existential] metatype.
auto dynamicType = constraint->getFirstType();
if (auto *tv = dynamicType->getAs<TypeVariableType>()) {
if (tv->getImpl().getRepresentative(nullptr) == TypeVar) {
DelayedBy.push_back(constraint);
break;
}
}
// This is right-hand side, let's continue.
break;
}
case ConstraintKind::Defaultable:
case ConstraintKind::FallbackType:
// Do these in a separate pass.
if (CS.getFixedTypeRecursive(constraint->getFirstType(), true)
->getAs<TypeVariableType>() == TypeVar) {
addDefault(constraint);
}
break;
case ConstraintKind::Disjunction:
// If there is additional context available via disjunction
// associated with closure literal (e.g. coercion to some other
// type) let's delay resolving the closure until the disjunction
// is attempted.
DelayedBy.push_back(constraint);
break;
case ConstraintKind::ConformsTo:
case ConstraintKind::SelfObjectOfProtocol: {
auto protocolTy = constraint->getSecondType();
if (protocolTy->is<ProtocolType>())
Protocols.push_back(constraint);
break;
}
case ConstraintKind::LiteralConformsTo: {
// Record constraint where protocol requirement originated
// this is useful to use for the binding later.
addLiteral(constraint);
break;
}
case ConstraintKind::ApplicableFunction:
case ConstraintKind::DynamicCallableApplicableFunction: {
auto overloadTy = constraint->getSecondType();
// If current type variable represents an overload set
// being applied to the arguments, it can't be delayed
// by application constraints, because it doesn't
// depend on argument/result types being resolved first.
if (overloadTy->isEqual(TypeVar))
break;
LLVM_FALLTHROUGH;
}
case ConstraintKind::BindOverload: {
DelayedBy.push_back(constraint);
break;
}
case ConstraintKind::ValueMember:
case ConstraintKind::UnresolvedValueMember:
case ConstraintKind::ValueWitness:
case ConstraintKind::PropertyWrapper: {
// If current type variable represents a member type of some reference,
// it would be bound once member is resolved either to a actual member
// type or to a hole if member couldn't be found.
auto memberTy = constraint->getSecondType()->castTo<TypeVariableType>();
if (memberTy->getImpl().hasRepresentativeOrFixed()) {
if (auto type = memberTy->getImpl().getFixedType(/*record=*/nullptr)) {
// It's possible that member has been bound to some other type variable
// instead of merged with it because it's wrapped in an l-value type.
if (type->getWithoutSpecifierType()->isEqual(TypeVar)) {
DelayedBy.push_back(constraint);
break;
}
} else {
memberTy = memberTy->getImpl().getRepresentative(/*record=*/nullptr);
}
}
if (memberTy == TypeVar)
DelayedBy.push_back(constraint);
break;
}
case ConstraintKind::OneWayEqual:
case ConstraintKind::OneWayBindParam: {
// Don't produce any bindings if this type variable is on the left-hand
// side of a one-way binding.
auto firstType = constraint->getFirstType();
if (auto *tv = firstType->getAs<TypeVariableType>()) {
if (tv->getImpl().getRepresentative(nullptr) == TypeVar) {
DelayedBy.push_back(constraint);
break;
}
}
break;
}
}
}
void PotentialBindings::retract(Constraint *constraint) {
Bindings.erase(
llvm::remove_if(Bindings,
[&constraint](const PotentialBinding &binding) {
return binding.getSource() == constraint;
}),
Bindings.end());
auto isMatchingConstraint = [&constraint](Constraint *existing) {
return existing == constraint;
};
auto hasMatchingSource =
[&constraint](
const std::pair<TypeVariableType *, Constraint *> &adjacency) {
return adjacency.second == constraint;
};
switch (constraint->getKind()) {
case ConstraintKind::ConformsTo:
case ConstraintKind::SelfObjectOfProtocol:
Protocols.erase(llvm::remove_if(Protocols, isMatchingConstraint),
Protocols.end());
break;
case ConstraintKind::LiteralConformsTo:
Literals.erase(constraint);
break;
case ConstraintKind::Defaultable:
case ConstraintKind::FallbackType: {
Defaults.erase(constraint);
break;
}
default:
break;
}
{
llvm::SmallPtrSet<TypeVariableType *, 2> unviable;
for (const auto &adjacent : AdjacentVars) {
if (adjacent.second == constraint)
unviable.insert(adjacent.first);
}
for (auto *adjacentVar : unviable)
AdjacentVars.erase(std::make_pair(adjacentVar, constraint));
}
DelayedBy.erase(llvm::remove_if(DelayedBy, isMatchingConstraint),
DelayedBy.end());
SubtypeOf.remove_if(hasMatchingSource);
SupertypeOf.remove_if(hasMatchingSource);
EquivalentTo.remove_if(hasMatchingSource);
}
void BindingSet::forEachLiteralRequirement(
llvm::function_ref<void(KnownProtocolKind)> callback) const {
for (const auto &literal : Literals) {
auto *protocol = literal.first;
const auto &info = literal.second;
// Only uncovered defaultable literal protocols participate.
if (!info.viableAsBinding())
continue;
if (auto protocolKind = protocol->getKnownProtocolKind())
callback(*protocolKind);
}
}
LiteralBindingKind BindingSet::getLiteralForScore() const {
LiteralBindingKind kind = LiteralBindingKind::None;
forEachLiteralRequirement([&](KnownProtocolKind protocolKind) {
switch (protocolKind) {
case KnownProtocolKind::ExpressibleByDictionaryLiteral:
case KnownProtocolKind::ExpressibleByArrayLiteral:
case KnownProtocolKind::ExpressibleByStringInterpolation:
kind = LiteralBindingKind::Collection;
break;
case KnownProtocolKind::ExpressibleByFloatLiteral:
kind = LiteralBindingKind::Float;
break;
default:
if (kind != LiteralBindingKind::Collection)
kind = LiteralBindingKind::Atom;
break;
}
});
return kind;
}
unsigned BindingSet::getNumViableLiteralBindings() const {
return llvm::count_if(Literals, [&](const auto &literal) {
return literal.second.viableAsBinding();
});
}
/// Return string for atomic literal kinds (integer, string, & boolean) for
/// printing in debug output.
static std::string getAtomLiteralAsString(ExprKind EK) {
#define ENTRY(Kind, String) \
case ExprKind::Kind: \
return String
switch (EK) {
ENTRY(IntegerLiteral, "integer");
ENTRY(StringLiteral, "string");
ENTRY(BooleanLiteral, "boolean");
ENTRY(NilLiteral, "nil");
default:
return "";
}
#undef ENTRY
}
/// Return string for collection literal kinds (interpolated string, array,
/// dictionary) for printing in debug output.
static std::string getCollectionLiteralAsString(KnownProtocolKind KPK) {
#define ENTRY(Kind, String) \
case KnownProtocolKind::Kind: \
return String
switch (KPK) {
ENTRY(ExpressibleByDictionaryLiteral, "dictionary");
ENTRY(ExpressibleByArrayLiteral, "array");
ENTRY(ExpressibleByStringInterpolation, "interpolated string");
default:
return "";
}
#undef ENTRY
}
void BindingSet::dump(llvm::raw_ostream &out, unsigned indent) const {
PrintOptions PO;
PO.PrintTypesForDebugging = true;
if (auto typeVar = getTypeVariable()) {
typeVar->getImpl().print(out);
out << " ";
}
std::vector<std::string> attributes;
if (isDirectHole())
attributes.push_back("hole");
if (isPotentiallyIncomplete())
attributes.push_back("potentially_incomplete");
if (isDelayed())
attributes.push_back("delayed");
if (isSubtypeOfExistentialType())
attributes.push_back("subtype_of_existential");
if (!attributes.empty()) {
out << "[attributes: ";
interleave(attributes, out, ", ");
}
auto literalKind = getLiteralForScore();
if (literalKind != LiteralBindingKind::None) {
if (!attributes.empty()) {
out << ", ";
} else {
out << "[attributes: ";
}
out << "[literal: ";
switch (literalKind) {
case LiteralBindingKind::Atom: {
if (auto atomKind = TypeVar->getImpl().getAtomicLiteralKind()) {
out << getAtomLiteralAsString(*atomKind);
}
break;
}
case LiteralBindingKind::Collection: {
std::vector<std::string> collectionLiterals;
forEachLiteralRequirement([&](KnownProtocolKind protocolKind) {
collectionLiterals.push_back(
getCollectionLiteralAsString(protocolKind));
});
interleave(collectionLiterals, out, ", ");
break;
}
case LiteralBindingKind::Float:
case LiteralBindingKind::None:
out << getLiteralBindingKind(literalKind).str();
break;
}
if (attributes.empty()) {
out << "]] ";
} else {
out << "]";
}
}
if (!attributes.empty())
out << "] ";
if (involvesTypeVariables()) {
out << "[involves_type_vars: ";
interleave(AdjacentVars,
[&](const auto *typeVar) { out << typeVar->getString(PO); },
[&out]() { out << ", "; });
out << "] ";
}
auto numDefaultable = getNumViableDefaultableBindings();
if (numDefaultable > 0)
out << "[#defaultable_bindings: " << numDefaultable << "] ";
struct PrintableBinding {
private:
enum class BindingKind { Exact, Subtypes, Supertypes, Literal };
BindingKind Kind;
Type BindingType;
PrintableBinding(BindingKind kind, Type bindingType)
: Kind(kind), BindingType(bindingType) {}
public:
static PrintableBinding supertypesOf(Type binding) {
return PrintableBinding{BindingKind::Supertypes, binding};
}
static PrintableBinding subtypesOf(Type binding) {
return PrintableBinding{BindingKind::Subtypes, binding};
}
static PrintableBinding exact(Type binding) {
return PrintableBinding{BindingKind::Exact, binding};
}
static PrintableBinding literalDefaultType(Type binding) {
return PrintableBinding{BindingKind::Literal, binding};
}
void print(llvm::raw_ostream &out, const PrintOptions &PO,
unsigned indent = 0) const {
switch (Kind) {
case BindingKind::Exact:
break;
case BindingKind::Subtypes:
out << "(subtypes of) ";
break;
case BindingKind::Supertypes:
out << "(supertypes of) ";
break;
case BindingKind::Literal:
out << "(default type of literal) ";
break;
}
BindingType.print(out, PO);
}
};
out << "[with possible bindings: ";
SmallVector<PrintableBinding, 2> potentialBindings;
for (const auto &binding : Bindings) {
switch (binding.Kind) {
case AllowedBindingKind::Exact:
potentialBindings.push_back(PrintableBinding::exact(binding.BindingType));
break;
case AllowedBindingKind::Supertypes:
potentialBindings.push_back(
PrintableBinding::supertypesOf(binding.BindingType));
break;
case AllowedBindingKind::Subtypes:
potentialBindings.push_back(
PrintableBinding::subtypesOf(binding.BindingType));
break;
}
}
for (const auto &literal : Literals) {
if (literal.second.viableAsBinding()) {
potentialBindings.push_back(PrintableBinding::literalDefaultType(
literal.second.getDefaultType()));
}
}
if (potentialBindings.empty()) {
out << "<empty>";
} else {
interleave(
potentialBindings,
[&](const PrintableBinding &binding) { binding.print(out, PO); },
[&] { out << ", "; });
}
out << "]";
if (!Defaults.empty()) {
out << " [defaults: ";
interleave(
Defaults,
[&](const auto &entry) {
auto *constraint = entry.second;
auto defaultBinding =
PrintableBinding::exact(constraint->getSecondType());
defaultBinding.print(out, PO);
},
[&] { out << ", "; });
out << "]";
}
}
// Given a possibly-Optional type, return the direct superclass of the
// (underlying) type wrapped in the same number of optional levels as
// type.
static Type getOptionalSuperclass(Type type) {
int optionalLevels = 0;
while (auto underlying = type->getOptionalObjectType()) {
++optionalLevels;
type = underlying;
}
Type superclass;
if (auto *existential = type->getAs<ExistentialType>()) {
auto constraintTy = existential->getConstraintType();
if (auto *compositionTy = constraintTy->getAs<ProtocolCompositionType>()) {
SmallVector<Type, 2> members;
bool found = false;
// Preserve all of the protocol requirements of the type i.e.
// if the type was `any B & P` where `B : A` the supertype is
// going to be `any A & P`.
//
// This is especially important for Sendable key paths because
// to reserve sendability of the original type.
for (auto member : compositionTy->getMembers()) {
if (member->getClassOrBoundGenericClass()) {
member = member->getSuperclass();
if (!member)
return Type();
found = true;
}
members.push_back(member);
}
if (!found)
return Type();
superclass = ExistentialType::get(
ProtocolCompositionType::get(type->getASTContext(), members,
compositionTy->getInverses(),
compositionTy->hasExplicitAnyObject()));
} else {
// Avoid producing superclass for situations like `any P` where `P` is
// `protocol P : C`.
return Type();
}
} else {
superclass = type->getSuperclass();
}
if (!superclass)
return Type();
while (optionalLevels--)
superclass = OptionalType::get(superclass);
return superclass;
}
/// Enumerates all of the 'direct' supertypes of the given type.
///
/// The direct supertype S of a type T is a supertype of T (e.g., T < S)
/// such that there is no type U where T < U and U < S.
static SmallVector<Type, 4> enumerateDirectSupertypes(Type type) {
SmallVector<Type, 4> result;
if (type->is<InOutType>() || type->is<LValueType>()) {
type = type->getWithoutSpecifierType();
result.push_back(type);
}
if (auto superclass = getOptionalSuperclass(type)) {
// FIXME: Can also weaken to the set of protocol constraints, but only
// if there are any protocols that the type conforms to but the superclass
// does not.
result.push_back(superclass);
}
// FIXME: lots of other cases to consider!
return result;
}
bool TypeVarBindingProducer::computeNext() {
SmallVector<Binding, 4> newBindings;
auto addNewBinding = [&](Binding binding) {
auto type = binding.BindingType;
// If we've already tried this binding, move on.
if (!BoundTypes.insert(type.getPointer()).second)
return;
if (!ExploredTypes.insert(type->getCanonicalType()).second)
return;
newBindings.push_back(std::move(binding));
};
// Let's attempt only directly inferrable bindings for
// a type variable representing a closure type because
// such type variables are handled specially and only
// bound to a type inferred from their expression, having
// contextual bindings is just a trigger for that to
// happen.
if (TypeVar->getImpl().isClosureType())
return false;
for (auto &binding : Bindings) {
const auto type = binding.BindingType;
assert(!type->hasError());
// If we have a protocol with a default type, look for alternative
// types to the default.
if (NumTries == 0 && binding.hasDefaultedLiteralProtocol()) {
auto knownKind =
*(binding.getDefaultedLiteralProtocol()->getKnownProtocolKind());
SmallVector<Type, 2> scratch;
for (auto altType : CS.getAlternativeLiteralTypes(knownKind, scratch)) {
addNewBinding(binding.withSameSource(altType, BindingKind::Subtypes));
}
}
if (getLocator()->directlyAt<ForceValueExpr>() &&
TypeVar->getImpl().canBindToLValue() &&
!binding.BindingType->is<LValueType>()) {
// Result of force unwrap is always connected to its base
// optional type via `OptionalObject` constraint which
// preserves l-valueness, so in case where object type got
// inferred before optional type (because it got the
// type from context e.g. parameter type of a function call),
// we need to test type with and without l-value after
// delaying bindings for as long as possible.
addNewBinding(binding.withType(LValueType::get(binding.BindingType)));
}
// There is a tailored fix for optional key path root references,
// let's not create ambiguity by attempting unwrap when it's
// not allowed.
if (binding.Kind != BindingKind::Subtypes &&
getLocator()->isKeyPathRoot() && type->getOptionalObjectType())
continue;
// Allow solving for T even for a binding kind where that's invalid
// if fixes are allowed, because that gives us the opportunity to
// match T? values to the T binding by adding an unwrap fix.
if (binding.Kind == BindingKind::Subtypes || CS.shouldAttemptFixes()) {
// If we were unsuccessful solving for T?, try solving for T.
if (auto objTy = type->getOptionalObjectType()) {
// If T is a type variable, only attempt this if both the
// type variable we are trying bindings for, and the type
// variable we will attempt to bind, both have the same
// polarity with respect to being able to bind lvalues.
if (auto otherTypeVar = objTy->getAs<TypeVariableType>()) {
if (TypeVar->getImpl().canBindToLValue() ==
otherTypeVar->getImpl().canBindToLValue()) {
addNewBinding(binding.withSameSource(objTy, binding.Kind));
}
} else {
addNewBinding(binding.withSameSource(objTy, binding.Kind));
}
}
}
auto srcLocator = binding.getLocator();
if (srcLocator &&
(srcLocator->isLastElement<LocatorPathElt::ApplyArgToParam>() ||
srcLocator->isLastElement<LocatorPathElt::AutoclosureResult>()) &&
!type->hasTypeVariable() && type->isKnownStdlibCollectionType()) {
// If the type binding comes from the argument conversion, let's
// instead of binding collection types directly, try to bind
// using temporary type variables substituted for element
// types, that's going to ensure that subtype relationship is
// always preserved.
auto *BGT = type->castTo<BoundGenericType>();
auto dstLocator = TypeVar->getImpl().getLocator();
auto newType =
CS.openUnboundGenericType(BGT->getDecl(), BGT->getParent(),
dstLocator, /*isTypeResolution=*/false)
->reconstituteSugar(/*recursive=*/false);
addNewBinding(binding.withType(newType));
}
if (binding.Kind == BindingKind::Supertypes) {
// If this is a type variable representing closure result,
// which is on the right-side of some relational constraint
// let's have it try `Void` as well because there is an
// implicit conversion `() -> T` to `() -> Void` and this
// helps to avoid creating a thunk to support it.
if (getLocator()->isLastElement<LocatorPathElt::ClosureResult>() &&
binding.Kind == AllowedBindingKind::Supertypes) {
auto voidType = CS.getASTContext().TheEmptyTupleType;
addNewBinding(binding.withSameSource(voidType, BindingKind::Exact));
}
for (auto supertype : enumerateDirectSupertypes(type)) {
// If we're not allowed to try this binding, skip it.
if (auto simplifiedSuper = checkTypeOfBinding(TypeVar, supertype)) {
auto supertype = *simplifiedSuper;
// A key path type cannot be bound to type-erased key path variants.
if (TypeVar->getImpl().isKeyPathType() &&
isTypeErasedKeyPathType(supertype))
continue;
addNewBinding(binding.withType(supertype));
}
}
}
}
if (newBindings.empty()) {
// If key path type had contextual types, let's not attempt fallback.
if (TypeVar->getImpl().isKeyPathType() && !ExploredTypes.empty())
return false;
// Add defaultable constraints (if any).
for (auto *constraint : DelayedDefaults) {
if (constraint->getKind() == ConstraintKind::FallbackType) {
// If there are no other possible bindings for this variable
// let's default it to the fallback type, otherwise we should
// only attempt contextual types.
if (!ExploredTypes.empty())
continue;
}
addNewBinding(getDefaultBinding(constraint));
}
// Drop all of the default since we have converted them into bindings.
DelayedDefaults.clear();
}
if (newBindings.empty())
return false;
Index = 0;
++NumTries;
Bindings = std::move(newBindings);
return true;
}
std::optional<std::pair<ConstraintFix *, unsigned>>
TypeVariableBinding::fixForHole(ConstraintSystem &cs) const {
auto *dstLocator = TypeVar->getImpl().getLocator();
auto *srcLocator = Binding.getLocator();
// FIXME: This check could be turned into an assert once
// all code completion kinds are ported to use
// `TypeChecker::typeCheckForCodeCompletion` API.
if (cs.isForCodeCompletion()) {
// If the hole is originated from code completion expression
// let's not try to fix this, anything connected to a
// code completion is allowed to be a hole because presence
// of a code completion token makes constraint system
// under-constrained due to e.g. lack of expressions on the
// right-hand side of the token, which are required for a
// regular type-check.
if (dstLocator->directlyAt<CodeCompletionExpr>() ||
srcLocator->directlyAt<CodeCompletionExpr>())
return std::nullopt;
}
unsigned defaultImpact = 1;
if (auto *GP = TypeVar->getImpl().getGenericParameter()) {
// If it is representative for a key path root, let's emit a more
// specific diagnostic.
auto *keyPathRoot =
cs.isRepresentativeFor(TypeVar, ConstraintLocator::KeyPathRoot);
if (keyPathRoot) {
ConstraintFix *fix = SpecifyKeyPathRootType::create(
cs, keyPathRoot->getImpl().getLocator());
return std::make_pair(fix, defaultImpact);
} else {
auto path = dstLocator->getPath();
// Drop `generic parameter` locator element so that all missing
// generic parameters related to the same path can be coalesced later.
ConstraintFix *fix = DefaultGenericArgument::create(
cs, GP,
cs.getConstraintLocator(dstLocator->getAnchor(), path.drop_back()));
return std::make_pair(fix, defaultImpact);
}
}
if (TypeVar->getImpl().isClosureParameterType()) {
ConstraintFix *fix = SpecifyClosureParameterType::create(cs, dstLocator);
return std::make_pair(fix, defaultImpact);
}
if (TypeVar->getImpl().isClosureResultType()) {
auto *closure = castToExpr<ClosureExpr>(dstLocator->getAnchor());
// If the whole body is being ignored due to a pre-check failure,
// let's not record a fix about result type since there is
// just not enough context to infer it without a body.
auto *closureLoc = cs.getConstraintLocator(closure);
if (cs.hasFixFor(closureLoc, FixKind::IgnoreInvalidResultBuilderBody) ||
cs.hasFixFor(closureLoc, FixKind::IgnoreResultBuilderWithReturnStmts))
return std::nullopt;
ConstraintFix *fix = SpecifyClosureReturnType::create(cs, dstLocator);
return std::make_pair(fix, defaultImpact);
}
if (srcLocator->directlyAt<ObjectLiteralExpr>()) {
ConstraintFix *fix = SpecifyObjectLiteralTypeImport::create(cs, dstLocator);
return std::make_pair(fix, defaultImpact);
}
if (srcLocator->isKeyPathRoot()) {
// If we recorded an invalid key path fix, let's skip this specify root
// type fix because it wouldn't produce a useful diagnostic.
auto *kpLocator = cs.getConstraintLocator(srcLocator->getAnchor());
if (cs.hasFixFor(kpLocator, FixKind::AllowKeyPathWithoutComponents))
return std::nullopt;
// If key path has any invalid component, let's just skip fix because the
// invalid component would be already diagnosed.
auto keyPath = castToExpr<KeyPathExpr>(srcLocator->getAnchor());
if (llvm::any_of(keyPath->getComponents(),
[](KeyPathExpr::Component component) {
return !component.isValid();
}))
return std::nullopt;
ConstraintFix *fix = SpecifyKeyPathRootType::create(cs, dstLocator);
return std::make_pair(fix, defaultImpact);
}
if (srcLocator->isLastElement<LocatorPathElt::PlaceholderType>()) {
// When a 'nil' has a placeholder as contextual type there is not enough
// information to resolve it, so let's record a specify contextual type for
// nil fix.
if (isExpr<NilLiteralExpr>(srcLocator->getAnchor())) {
ConstraintFix *fix = SpecifyContextualTypeForNil::create(cs, dstLocator);
return std::make_pair(fix, /*impact=*/(unsigned)10);
}
ConstraintFix *fix = SpecifyTypeForPlaceholder::create(cs, srcLocator);
return std::make_pair(fix, defaultImpact);
}
if (dstLocator->directlyAt<NilLiteralExpr>()) {
// This is a dramatic event, it means that there is absolutely
// no contextual information to resolve type of `nil`.
ConstraintFix *fix = SpecifyContextualTypeForNil::create(cs, dstLocator);
return std::make_pair(fix, /*impact=*/(unsigned)10);
}
if (auto pattern = dstLocator->getPatternMatch()) {
if (dstLocator->isLastElement<LocatorPathElt::PatternDecl>()) {
// If this is the pattern in a for loop, and we have a mismatch of the
// element type, then we don't have any useful contextual information
// for the pattern, and can just bind to a hole without needing to penalize
// the solution further.
auto *seqLoc = cs.getConstraintLocator(
dstLocator->getAnchor(), ConstraintLocator::SequenceElementType);
if (cs.hasFixFor(seqLoc,
FixKind::IgnoreCollectionElementContextualMismatch)) {
return std::nullopt;
}
if (dstLocator->getAnchor().isExpr(ExprKind::CodeCompletion)) {
// Ignore the hole if it is because the right-hand-side of the pattern
// match is a code completion token. Assigning a high fix score to this
// mismatch won't help. In fact, it can harm because we might have a
// different exploration path in the constraint system that gives up
// earlier (eg. because code completion is in a closure that doesn't
// match the expected parameter of a function call) and might thus get a
// better score, despite not having any information about the code
// completion token at all.
return std::nullopt;
}
// Not being able to infer the type of a variable in a pattern binding
// decl is more dramatic than anything that could happen inside the
// expression because we want to preferrably point the diagnostic to a
// part of the expression that caused us to be unable to infer the
// variable's type.
ConstraintFix *fix =
IgnoreUnresolvedPatternVar::create(cs, pattern.get(), dstLocator);
return std::make_pair(fix, /*impact=*/(unsigned)100);
}
}
if (srcLocator->isLastElement<LocatorPathElt::MemberRefBase>()) {
auto *baseExpr = castToExpr<UnresolvedMemberExpr>(srcLocator->getAnchor());
ConstraintFix *fix = SpecifyBaseTypeForContextualMember::create(
cs, baseExpr->getName(), srcLocator);
return std::make_pair(fix, defaultImpact);
}
if (dstLocator->isLastElement<LocatorPathElt::PackElement>()) {
// A hole appears as an element of generic pack params
ConstraintFix *Fix = SpecifyPackElementType::create(cs, dstLocator);
return std::make_pair(Fix, defaultImpact);
}
return std::nullopt;
}
bool TypeVariableBinding::attempt(ConstraintSystem &cs) const {
auto type = Binding.BindingType;
auto *srcLocator = Binding.getLocator();
auto *dstLocator = TypeVar->getImpl().getLocator();
if (Binding.hasDefaultedLiteralProtocol()) {
type = cs.replaceInferableTypesWithTypeVars(type, dstLocator);
type = type->reconstituteSugar(/*recursive=*/false);
}
// If type variable has been marked as a possible hole due to
// e.g. reference to a missing member. Let's propagate that
// information to the object type of the optional type it's
// about to be bound to.
//
// In some situations like pattern bindings e.g. `if let x = base?.member`
// - if `member` doesn't exist, `x` cannot be determined either, which
// leaves `OptionalEvaluationExpr` representing outer type of `base?.member`
// without any contextual information, so even though `x` would get
// bound to result type of the chain, underlying type variable wouldn't
// be resolved, so we need to propagate holes up the conversion chain.
// Also propagate in code completion mode because in some cases code
// completion relies on type variable being a potential hole.
if (TypeVar->getImpl().canBindToHole()) {
if (srcLocator->directlyAt<OptionalEvaluationExpr>() ||
cs.isForCodeCompletion()) {
if (auto objectTy = type->getOptionalObjectType()) {
if (auto *typeVar = objectTy->getAs<TypeVariableType>()) {
cs.recordPotentialHole(typeVar);
}
}
}
}
ConstraintSystem::TypeMatchOptions options;
options |= ConstraintSystem::TMF_GenerateConstraints;
options |= ConstraintSystem::TMF_BindingTypeVariable;
auto result =
cs.matchTypes(TypeVar, type, ConstraintKind::Bind, options, srcLocator);
if (result.isFailure()) {
if (cs.isDebugMode()) {
PrintOptions PO;
PO.PrintTypesForDebugging = true;
llvm::errs().indent(cs.solverState->getCurrentIndent())
<< "(failed to establish binding " << TypeVar->getString(PO)
<< " := " << type->getString(PO) << ")\n";
}
return false;
}
auto reportHole = [&]() {
if (cs.isForCodeCompletion()) {
// Don't penalize solutions with unresolved generics.
if (TypeVar->getImpl().getGenericParameter())
return false;
// Don't penalize solutions if we couldn't determine the type of the code
// completion token. We still want to examine the surrounding types in
// that case.
if (TypeVar->getImpl().isCodeCompletionToken())
return false;
// Don't penalize solutions with holes due to missing arguments after the
// code completion position.
auto argLoc = srcLocator->findLast<LocatorPathElt::SynthesizedArgument>();
if (argLoc && argLoc->isAfterCodeCompletionLoc())
return false;
// Don't penalize solutions that have holes for ignored arguments.
if (cs.hasArgumentsIgnoredForCodeCompletion()) {
// Avoid simplifying the locator if the constraint system didn't ignore
// any arguments.
auto argExpr = simplifyLocatorToAnchor(TypeVar->getImpl().getLocator());
if (cs.isArgumentIgnoredForCodeCompletion(argExpr.dyn_cast<Expr *>())) {
return false;
}
}
}
// Reflect in the score that this type variable couldn't be
// resolved and had to be bound to a placeholder "hole" type.
cs.increaseScore(SK_Hole, srcLocator);
if (auto fix = fixForHole(cs)) {
if (cs.recordFix(/*fix=*/fix->first, /*impact=*/fix->second))
return true;
}
return false;
};
// If this was from a defaultable binding note that.
if (Binding.isDefaultableBinding()) {
cs.DefaultedConstraints.insert(srcLocator);
// Fail if hole reporting fails.
if (type->isPlaceholder() && reportHole())
return false;
}
if (cs.simplify())
return false;
// If all of the re-activated constraints where simplified,
// let's notify binding inference about the fact that type
// variable has been bound successfully.
{
auto &CG = cs.getConstraintGraph();
CG[TypeVar].introduceToInference(type);
}
return true;
}
|