1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
|
//===--- CSFix.cpp - Constraint Fixes -------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the \c ConstraintFix class and its related types,
// which is used by constraint solver to attempt to fix constraints to be
// able to produce a solution which is easily diagnosable.
//
//===----------------------------------------------------------------------===//
#include "CSDiagnostics.h"
#include "TypeCheckConcurrency.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Type.h"
#include "swift/AST/Types.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/RequirementSignature.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Sema/ConstraintLocator.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Sema/CSFix.h"
#include "swift/Sema/OverloadChoice.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
#include <string>
using namespace swift;
using namespace constraints;
ConstraintFix::~ConstraintFix() {}
std::optional<ScoreKind> ConstraintFix::impact() const {
switch (fixBehavior) {
case FixBehavior::AlwaysWarning:
return std::nullopt;
case FixBehavior::Error:
return SK_Fix;
case FixBehavior::DowngradeToWarning:
return SK_DisfavoredOverload;
case FixBehavior::Suppress:
return std::nullopt;
}
}
ASTNode ConstraintFix::getAnchor() const { return getLocator()->getAnchor(); }
void ConstraintFix::print(llvm::raw_ostream &Out) const {
Out << "[fix: ";
Out << getName();
Out << ']';
Out << " @ ";
getLocator()->dump(&CS.getASTContext().SourceMgr, Out);
}
void ConstraintFix::dump() const {print(llvm::errs()); }
std::string ForceDowncast::getName() const {
llvm::SmallString<16> name;
name += "force downcast (";
name += getFromType()->getString();
name += " as! ";
name += getToType()->getString();
name += ")";
return name.c_str();
}
bool ForceDowncast::diagnose(const Solution &solution, bool asNote) const {
MissingExplicitConversionFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
ForceDowncast *ForceDowncast::create(ConstraintSystem &cs, Type fromType,
Type toType, ConstraintLocator *locator) {
return new (cs.getAllocator()) ForceDowncast(cs, fromType, toType, locator);
}
bool ForceOptional::diagnose(const Solution &solution, bool asNote) const {
MissingOptionalUnwrapFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
ForceOptional *ForceOptional::create(ConstraintSystem &cs, Type fromType,
Type toType, ConstraintLocator *locator) {
return new (cs.getAllocator()) ForceOptional(cs, fromType, toType, locator);
}
bool UnwrapOptionalBase::diagnose(const Solution &solution, bool asNote) const {
bool resultIsOptional =
getKind() == FixKind::UnwrapOptionalBaseWithOptionalResult;
MemberAccessOnOptionalBaseFailure failure(solution, getLocator(), MemberName,
MemberBaseType, resultIsOptional);
return failure.diagnose(asNote);
}
UnwrapOptionalBase *UnwrapOptionalBase::create(ConstraintSystem &cs,
DeclNameRef member,
Type memberBaseType,
ConstraintLocator *locator) {
return new (cs.getAllocator()) UnwrapOptionalBase(
cs, FixKind::UnwrapOptionalBase, member, memberBaseType, locator);
}
UnwrapOptionalBase *UnwrapOptionalBase::createWithOptionalResult(
ConstraintSystem &cs, DeclNameRef member, Type memberBaseType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
UnwrapOptionalBase(cs, FixKind::UnwrapOptionalBaseWithOptionalResult,
member, memberBaseType, locator);
}
bool AddAddressOf::diagnose(const Solution &solution, bool asNote) const {
MissingAddressOfFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
AddAddressOf *AddAddressOf::create(ConstraintSystem &cs, Type argTy,
Type paramTy, ConstraintLocator *locator) {
return new (cs.getAllocator()) AddAddressOf(cs, argTy, paramTy, locator);
}
bool TreatRValueAsLValue::diagnose(const Solution &solution,
bool asNote) const {
RValueTreatedAsLValueFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
TreatRValueAsLValue *TreatRValueAsLValue::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
if (locator->isLastElement<LocatorPathElt::ApplyArgToParam>())
locator = cs.getConstraintLocator(
locator, LocatorPathElt::ArgumentAttribute::forInOut());
return new (cs.getAllocator()) TreatRValueAsLValue(cs, locator);
}
bool CoerceToCheckedCast::diagnose(const Solution &solution,
bool asNote) const {
InvalidCoercionFailure failure(solution, getFromType(), getToType(),
UseConditionalCast, getLocator());
return failure.diagnose(asNote);
}
CoerceToCheckedCast *CoerceToCheckedCast::attempt(ConstraintSystem &cs,
Type fromType, Type toType,
bool useConditionalCast,
ConstraintLocator *locator) {
// If any of the types has a type variable, don't add the fix.
if (fromType->hasTypeVariable() || toType->hasTypeVariable())
return nullptr;
auto anchor = locator->getAnchor();
if (auto *assignExpr = getAsExpr<AssignExpr>(anchor))
anchor = assignExpr->getSrc();
auto *coerceExpr = getAsExpr<CoerceExpr>(anchor);
if (!coerceExpr)
return nullptr;
const auto castKind = TypeChecker::typeCheckCheckedCast(
fromType, toType, CheckedCastContextKind::Coercion, cs.DC);
// Invalid cast.
if (castKind == CheckedCastKind::Unresolved)
return nullptr;
return new (cs.getAllocator())
CoerceToCheckedCast(cs, fromType, toType, useConditionalCast, locator);
}
bool TreatArrayLiteralAsDictionary::diagnose(const Solution &solution,
bool asNote) const {
ArrayLiteralToDictionaryConversionFailure failure(solution,
getToType(), getFromType(),
getLocator());
return failure.diagnose(asNote);
}
TreatArrayLiteralAsDictionary *
TreatArrayLiteralAsDictionary::attempt(ConstraintSystem &cs, Type dictionaryTy,
Type arrayTy,
ConstraintLocator *locator) {
if (!arrayTy->isArrayType())
return nullptr;
// Determine the ArrayExpr from the locator.
auto *expr = getAsExpr(simplifyLocatorToAnchor(locator));
if (!expr)
return nullptr;
if (auto *AE = dyn_cast<AssignExpr>(expr))
expr = AE->getSrc();
auto *arrayExpr = dyn_cast<ArrayExpr>(expr);
if (!arrayExpr)
return nullptr;
// This fix only applies if the array is used as a dictionary.
auto unwrappedDict = dictionaryTy->lookThroughAllOptionalTypes();
if (unwrappedDict->isTypeVariableOrMember())
return nullptr;
auto &ctx = cs.getASTContext();
if (auto *proto = ctx.getProtocol(KnownProtocolKind::ExpressibleByDictionaryLiteral))
if (!cs.DC->getParentModule()->lookupConformance(unwrappedDict, proto))
return nullptr;
auto arrayLoc = cs.getConstraintLocator(arrayExpr);
return new (cs.getAllocator())
TreatArrayLiteralAsDictionary(cs, dictionaryTy, arrayTy, arrayLoc);
}
bool MarkExplicitlyEscaping::diagnose(const Solution &solution,
bool asNote) const {
AttributedFuncToTypeConversionFailure failure(
solution, getFromType(), getToType(), getLocator(),
AttributedFuncToTypeConversionFailure::Escaping);
return failure.diagnose(asNote);
}
MarkExplicitlyEscaping *
MarkExplicitlyEscaping::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator) {
if (locator->isLastElement<LocatorPathElt::ApplyArgToParam>())
locator = cs.getConstraintLocator(
locator, LocatorPathElt::ArgumentAttribute::forEscaping());
return new (cs.getAllocator()) MarkExplicitlyEscaping(cs, lhs, rhs, locator);
}
bool MarkGlobalActorFunction::diagnose(const Solution &solution,
bool asNote) const {
DroppedGlobalActorFunctionAttr failure(
solution, getFromType(), getToType(), getLocator(), fixBehavior);
return failure.diagnose(asNote);
}
/// The fix behavior to apply to a concurrency-related diagnostic.
static std::optional<FixBehavior>
getConcurrencyFixBehavior(ConstraintSystem &cs, ConstraintKind constraintKind,
ConstraintLocatorBuilder locator, bool forSendable) {
// We can only handle the downgrade for conversions.
switch (constraintKind) {
case ConstraintKind::Conversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::Subtype:
break;
default:
if (!cs.shouldAttemptFixes())
return std::nullopt;
return FixBehavior::Error;
}
// For a @preconcurrency callee outside of a strict concurrency
// context, ignore.
if (cs.hasPreconcurrencyCallee(locator)) {
// Preconcurrency failures are always downgraded to warnings, even in
// Swift 6 mode.
if (contextRequiresStrictConcurrencyChecking(
cs.DC, GetClosureType{cs}, ClosureIsolatedByPreconcurrency{cs})) {
return FixBehavior::DowngradeToWarning;
}
return FixBehavior::Suppress;
}
// Otherwise, warn until Swift 6.
if (!cs.getASTContext().LangOpts.isSwiftVersionAtLeast(6))
return FixBehavior::DowngradeToWarning;
return FixBehavior::Error;
}
MarkGlobalActorFunction *
MarkGlobalActorFunction::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator,
FixBehavior fixBehavior) {
if (locator->isLastElement<LocatorPathElt::ApplyArgToParam>())
locator = cs.getConstraintLocator(
locator, LocatorPathElt::ArgumentAttribute::forGlobalActor());
return new (cs.getAllocator()) MarkGlobalActorFunction(
cs, lhs, rhs, locator, fixBehavior);
}
bool MarkGlobalActorFunction::attempt(ConstraintSystem &cs,
ConstraintKind constraintKind,
FunctionType *fromType,
FunctionType *toType,
ConstraintLocatorBuilder locator) {
auto fixBehavior = getConcurrencyFixBehavior(
cs, constraintKind, locator, /*forSendable=*/false);
if (!fixBehavior)
return true;
auto *fix = MarkGlobalActorFunction::create(
cs, fromType, toType, cs.getConstraintLocator(locator),
*fixBehavior);
return cs.recordFix(fix);
}
bool AddSendableAttribute::diagnose(const Solution &solution,
bool asNote) const {
AttributedFuncToTypeConversionFailure failure(
solution, getFromType(), getToType(), getLocator(),
AttributedFuncToTypeConversionFailure::Concurrent, fixBehavior);
return failure.diagnose(asNote);
}
AddSendableAttribute *
AddSendableAttribute::create(ConstraintSystem &cs,
FunctionType *fromType,
FunctionType *toType,
ConstraintLocator *locator,
FixBehavior fixBehavior) {
if (locator->isLastElement<LocatorPathElt::ApplyArgToParam>())
locator = cs.getConstraintLocator(
locator, LocatorPathElt::ArgumentAttribute::forConcurrent());
return new (cs.getAllocator()) AddSendableAttribute(
cs, fromType, toType, locator, fixBehavior);
}
bool AddSendableAttribute::attempt(ConstraintSystem &cs,
ConstraintKind constraintKind,
FunctionType *fromType,
FunctionType *toType,
ConstraintLocatorBuilder locator) {
auto fixBehavior = getConcurrencyFixBehavior(
cs, constraintKind, locator, /*forSendable=*/true);
if (!fixBehavior)
return true;
auto *fix = AddSendableAttribute::create(
cs, fromType, toType, cs.getConstraintLocator(locator), *fixBehavior);
return cs.recordFix(fix);
}
bool RelabelArguments::diagnose(const Solution &solution, bool asNote) const {
LabelingFailure failure(solution, getLocator(), getLabels());
return failure.diagnose(asNote);
}
bool RelabelArguments::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
SmallPtrSet<ValueDecl *, 4> overloadChoices;
// First, let's find overload choice associated with each
// re-labeling fix.
for (const auto &fix : commonFixes) {
auto &solution = *fix.first;
auto calleeLocator = solution.getCalleeLocator(getLocator());
if (!calleeLocator)
return false;
auto overloadChoice = solution.getOverloadChoiceIfAvailable(calleeLocator);
if (!overloadChoice)
return false;
auto *decl = overloadChoice->choice.getDeclOrNull();
if (!decl)
return false;
(void)overloadChoices.insert(decl);
}
// If all of the fixes point to the same overload choice then it's
// exactly the same issue since the call site is static.
if (overloadChoices.size() == 1)
return diagnose(*commonFixes.front().first);
return false;
}
RelabelArguments *
RelabelArguments::create(ConstraintSystem &cs,
llvm::ArrayRef<Identifier> correctLabels,
ConstraintLocator *locator) {
unsigned size = totalSizeToAlloc<Identifier>(correctLabels.size());
void *mem = cs.getAllocator().Allocate(size, alignof(RelabelArguments));
return new (mem) RelabelArguments(cs, correctLabels, locator);
}
bool MissingConformance::diagnose(const Solution &solution, bool asNote) const {
auto *locator = getLocator();
if (IsContextual) {
auto &cs = solution.getConstraintSystem();
auto context = cs.getContextualTypePurpose(locator->getAnchor());
MissingContextualConformanceFailure failure(
solution, context, getNonConformingType(), getProtocolType(), locator);
return failure.diagnose(asNote);
}
MissingConformanceFailure failure(
solution, locator,
std::make_pair(getNonConformingType(), getProtocolType()));
return failure.diagnose(asNote);
}
bool RequirementFix::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
auto *primaryFix = commonFixes.front().second;
assert(primaryFix);
if (llvm::all_of(
commonFixes,
[&primaryFix](
const std::pair<const Solution *, const ConstraintFix *> &entry) {
return primaryFix->getLocator() == entry.second->getLocator();
}))
return diagnose(*commonFixes.front().first);
// If the location is the same but there are different requirements
// involved let's not attempt to diagnose that as an ambiguity.
return false;
}
bool MissingConformance::isEqual(const ConstraintFix *other) const {
auto *conformanceFix = other->getAs<MissingConformance>();
if (!conformanceFix)
return false;
return IsContextual == conformanceFix->IsContextual &&
getNonConformingType()->isEqual(
conformanceFix->getNonConformingType()) &&
getProtocolType()->isEqual(conformanceFix->getProtocolType());
}
MissingConformance *
MissingConformance::forContextual(ConstraintSystem &cs, Type type,
Type protocolType,
ConstraintLocator *locator) {
return new (cs.getAllocator()) MissingConformance(
cs, /*isContextual=*/true, type, protocolType, locator);
}
MissingConformance *
MissingConformance::forRequirement(ConstraintSystem &cs, Type type,
Type protocolType,
ConstraintLocator *locator) {
return new (cs.getAllocator()) MissingConformance(
cs, /*isContextual=*/false, type, protocolType, locator);
}
bool SkipSameTypeRequirement::diagnose(const Solution &solution,
bool asNote) const {
SameTypeRequirementFailure failure(solution, LHS, RHS, getLocator());
return failure.diagnose(asNote);
}
SkipSameTypeRequirement *
SkipSameTypeRequirement::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SkipSameTypeRequirement(cs, lhs, rhs, locator);
}
bool SkipSameShapeRequirement::diagnose(const Solution &solution,
bool asNote) const {
if (getLocator()->isLastElement<LocatorPathElt::PackShape>()) {
SameShapeExpansionFailure failure(solution, LHS, RHS, getLocator());
return failure.diagnose(asNote);
}
SameShapeRequirementFailure failure(solution, LHS, RHS, getLocator());
return failure.diagnose(asNote);
}
SkipSameShapeRequirement *
SkipSameShapeRequirement::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SkipSameShapeRequirement(cs, lhs, rhs, locator);
}
bool SkipSuperclassRequirement::diagnose(const Solution &solution,
bool asNote) const {
SuperclassRequirementFailure failure(solution, LHS, RHS, getLocator());
return failure.diagnose(asNote);
}
SkipSuperclassRequirement *
SkipSuperclassRequirement::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator) {
return new (cs.getAllocator())
SkipSuperclassRequirement(cs, lhs, rhs, locator);
}
bool ContextualMismatch::diagnose(const Solution &solution, bool asNote) const {
ContextualFailure failure(solution, getFromType(), getToType(), getLocator());
return failure.diagnose(asNote);
}
bool ContextualMismatch::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
auto getTypes =
[&](const std::pair<const Solution *, const ConstraintFix *> &entry)
-> std::pair<Type, Type> {
auto &solution = *entry.first;
auto *fix = static_cast<const ContextualMismatch *>(entry.second);
return {solution.simplifyType(fix->getFromType()),
solution.simplifyType(fix->getToType())};
};
auto etalonTypes = getTypes(commonFixes.front());
if (llvm::all_of(
commonFixes,
[&](const std::pair<const Solution *, const ConstraintFix *> &entry) {
auto types = getTypes(entry);
return etalonTypes.first->isEqual(types.first) &&
etalonTypes.second->isEqual(types.second);
})) {
const auto &primary = commonFixes.front();
return primary.second->diagnose(*primary.first, /*asNote=*/false);
}
return false;
}
ContextualMismatch *ContextualMismatch::create(ConstraintSystem &cs, Type lhs,
Type rhs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) ContextualMismatch(
cs, lhs, rhs, locator, FixBehavior::Error);
}
bool AllowWrappedValueMismatch::diagnose(const Solution &solution, bool asError) const {
WrappedValueMismatch failure(solution, getFromType(), getToType(), getLocator());
return failure.diagnoseAsError();
}
AllowWrappedValueMismatch *AllowWrappedValueMismatch::create(ConstraintSystem &cs,
Type lhs,
Type rhs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowWrappedValueMismatch(cs, lhs, rhs, locator);
}
/// Computes the contextual type information for a type mismatch of a
/// component in a structural type (tuple or function type).
///
/// \returns A tuple containing the contextual type purpose, the source type,
/// and the contextual type.
static std::optional<std::tuple<ContextualTypePurpose, Type, Type>>
getStructuralTypeContext(const Solution &solution, ConstraintLocator *locator) {
if (auto contextualTypeElt =
locator->findLast<LocatorPathElt::ContextualType>()) {
assert(locator->isLastElement<LocatorPathElt::ContextualType>() ||
locator->isLastElement<LocatorPathElt::FunctionArgument>());
auto &cs = solution.getConstraintSystem();
auto anchor = locator->getAnchor();
auto contextualType = cs.getContextualType(anchor, /*forConstraint=*/false);
auto exprType = cs.getType(anchor);
return std::make_tuple(contextualTypeElt->getPurpose(), exprType,
contextualType);
} else if (auto argApplyInfo = solution.getFunctionArgApplyInfo(locator)) {
Type fromType = argApplyInfo->getArgType();
Type toType = argApplyInfo->getParamType();
// In case locator points to the function result we want the
// argument and param function types result.
if (locator->isLastElement<LocatorPathElt::FunctionResult>()) {
auto fromFnType = fromType->getAs<FunctionType>();
auto toFnType = toType->getAs<FunctionType>();
if (fromFnType && toFnType) {
auto &cs = solution.getConstraintSystem();
return std::make_tuple(
cs.getContextualTypePurpose(locator->getAnchor()),
fromFnType->getResult(), toFnType->getResult());
}
}
return std::make_tuple(CTP_CallArgument, fromType, toType);
} else if (auto *coerceExpr = getAsExpr<CoerceExpr>(locator->getAnchor())) {
return std::make_tuple(CTP_CoerceOperand,
solution.getType(coerceExpr->getSubExpr()),
solution.getType(coerceExpr));
} else if (auto *assignExpr = getAsExpr<AssignExpr>(locator->getAnchor())) {
auto CTP = isa<SubscriptExpr>(assignExpr->getDest()) ? CTP_SubscriptAssignSource
: CTP_AssignSource;
return std::make_tuple(CTP,
solution.getType(assignExpr->getSrc()),
solution.getType(assignExpr->getDest())->getRValueType());
}
return std::nullopt;
}
bool AllowTupleTypeMismatch::coalesceAndDiagnose(
const Solution &solution, ArrayRef<ConstraintFix *> fixes,
bool asNote) const {
llvm::SmallVector<unsigned, 4> indices;
if (isElementMismatch())
indices.push_back(*Index);
for (auto fix : fixes) {
auto *tupleFix = fix->getAs<AllowTupleTypeMismatch>();
if (!tupleFix || !tupleFix->isElementMismatch())
continue;
indices.push_back(*tupleFix->Index);
}
auto *locator = getLocator();
ContextualTypePurpose purpose;
if (isExpr<CoerceExpr>(locator->getAnchor())) {
purpose = CTP_CoerceOperand;
} else if (auto *assignExpr = getAsExpr<AssignExpr>(locator->getAnchor())) {
purpose = isa<SubscriptExpr>(assignExpr->getDest()) ? CTP_SubscriptAssignSource
: CTP_AssignSource;
} else {
auto &cs = getConstraintSystem();
purpose = cs.getContextualTypePurpose(locator->getAnchor());
}
if (!getFromType()->is<TupleType>() || !getToType()->is<TupleType>()) {
return false;
}
TupleContextualFailure failure(solution, purpose, getFromType(), getToType(),
indices, locator);
return failure.diagnose(asNote);
}
bool AllowTupleTypeMismatch::diagnose(const Solution &solution,
bool asNote) const {
return coalesceAndDiagnose(solution, {}, asNote);
}
AllowTupleTypeMismatch *
AllowTupleTypeMismatch::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator,
std::optional<unsigned> index) {
return new (cs.getAllocator())
AllowTupleTypeMismatch(cs, lhs, rhs, locator, index);
}
bool AllowFunctionTypeMismatch::coalesceAndDiagnose(
const Solution &solution, ArrayRef<ConstraintFix *> fixes,
bool asNote) const {
llvm::SmallVector<unsigned, 4> indices{ParamIndex};
for (auto fix : fixes) {
if (auto *fnFix = fix->getAs<AllowFunctionTypeMismatch>())
indices.push_back(fnFix->ParamIndex);
}
auto *locator = getLocator();
ContextualTypePurpose purpose;
Type fromType;
Type toType;
auto contextualTypeInfo = getStructuralTypeContext(solution, locator);
if (!contextualTypeInfo)
return false;
std::tie(purpose, fromType, toType) = *contextualTypeInfo;
FunctionTypeMismatch failure(solution, purpose, fromType, toType, indices,
locator);
return failure.diagnose(asNote);
}
bool AllowFunctionTypeMismatch::diagnose(const Solution &solution,
bool asNote) const {
return coalesceAndDiagnose(solution, {}, asNote);
}
bool AllowFunctionTypeMismatch::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
if (ContextualMismatch::diagnoseForAmbiguity(commonFixes))
return true;
auto *locator = getLocator();
// If this is a mismatch between two function types at argument
// position, there is a tailored diagnostic for that.
if (auto argConv =
locator->getLastElementAs<LocatorPathElt::ApplyArgToParam>()) {
auto &cs = getConstraintSystem();
auto &DE = cs.getASTContext().Diags;
auto &solution = *commonFixes[0].first;
auto info = getStructuralTypeContext(solution, locator);
if (!info)
return false;
auto *argLoc = cs.getConstraintLocator(simplifyLocatorToAnchor(locator));
auto overload = solution.getOverloadChoiceIfAvailable(
solution.getCalleeLocator(argLoc));
if (!overload)
return false;
auto name = overload->choice.getName().getBaseName();
DE.diagnose(getLoc(getAnchor()), diag::no_candidates_match_argument_type,
name.userFacingName(), std::get<2>(*info),
argConv->getParamIdx());
for (auto &entry : commonFixes) {
auto &solution = *entry.first;
auto overload = solution.getOverloadChoiceIfAvailable(
solution.getCalleeLocator(argLoc));
if (!(overload && overload->choice.isDecl()))
continue;
auto *decl = overload->choice.getDecl();
if (decl->getLoc().isValid()) {
DE.diagnose(decl, diag::found_candidate_type,
solution.simplifyType(overload->adjustedOpenedType));
}
}
return true;
}
return false;
}
AllowFunctionTypeMismatch *
AllowFunctionTypeMismatch::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator, unsigned index) {
return new (cs.getAllocator())
AllowFunctionTypeMismatch(cs, lhs, rhs, locator, index);
}
bool GenericArgumentsMismatch::coalesceAndDiagnose(
const Solution &solution, ArrayRef<ConstraintFix *> secondaryFixes,
bool asNote) const {
std::set<unsigned> scratch(getMismatches().begin(), getMismatches().end());
for (auto *fix : secondaryFixes) {
auto *genericArgsFix = fix->castTo<GenericArgumentsMismatch>();
for (auto mismatchIdx : genericArgsFix->getMismatches())
scratch.insert(mismatchIdx);
}
SmallVector<unsigned> mismatches(scratch.begin(), scratch.end());
return diagnose(solution, mismatches, asNote);
}
bool GenericArgumentsMismatch::diagnose(const Solution &solution,
bool asNote) const {
return diagnose(solution, getMismatches(), asNote);
}
bool GenericArgumentsMismatch::diagnose(const Solution &solution,
ArrayRef<unsigned> mismatches,
bool asNote) const {
GenericArgumentsMismatchFailure failure(solution, getFromType(), getToType(),
mismatches, getLocator());
return failure.diagnose(asNote);
}
GenericArgumentsMismatch *GenericArgumentsMismatch::create(
ConstraintSystem &cs, Type actual, Type required,
llvm::ArrayRef<unsigned> mismatches, ConstraintLocator *locator) {
unsigned size = totalSizeToAlloc<unsigned>(mismatches.size());
void *mem =
cs.getAllocator().Allocate(size, alignof(GenericArgumentsMismatch));
return new (mem)
GenericArgumentsMismatch(cs, actual, required, mismatches, locator);
}
bool AutoClosureForwarding::diagnose(const Solution &solution,
bool asNote) const {
AutoClosureForwardingFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
AutoClosureForwarding *AutoClosureForwarding::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AutoClosureForwarding(cs, locator);
}
bool AllowAutoClosurePointerConversion::diagnose(const Solution &solution,
bool asNote) const {
AutoClosurePointerConversionFailure failure(solution, getFromType(),
getToType(), getLocator());
return failure.diagnose(asNote);
}
AllowAutoClosurePointerConversion *
AllowAutoClosurePointerConversion::create(ConstraintSystem &cs, Type pointeeType,
Type pointerType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowAutoClosurePointerConversion(cs, pointeeType, pointerType, locator);
}
bool RemoveUnwrap::diagnose(const Solution &solution, bool asNote) const {
NonOptionalUnwrapFailure failure(solution, BaseType, getLocator());
return failure.diagnose(asNote);
}
RemoveUnwrap *RemoveUnwrap::create(ConstraintSystem &cs, Type baseType,
ConstraintLocator *locator) {
return new (cs.getAllocator()) RemoveUnwrap(cs, baseType, locator);
}
bool InsertExplicitCall::diagnose(const Solution &solution, bool asNote) const {
MissingCallFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
InsertExplicitCall *InsertExplicitCall::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) InsertExplicitCall(cs, locator);
}
bool UsePropertyWrapper::diagnose(const Solution &solution, bool asNote) const {
ExtraneousPropertyWrapperUnwrapFailure failure(
solution, Wrapped, UsingProjection, Base, Wrapper, getLocator());
return failure.diagnose(asNote);
}
UsePropertyWrapper *UsePropertyWrapper::create(ConstraintSystem &cs,
VarDecl *wrapped,
bool usingProjection,
Type base, Type wrapper,
ConstraintLocator *locator) {
return new (cs.getAllocator()) UsePropertyWrapper(
cs, wrapped, usingProjection, base, wrapper, locator);
}
bool UseWrappedValue::diagnose(const Solution &solution, bool asNote) const {
MissingPropertyWrapperUnwrapFailure failure(solution, PropertyWrapper,
usingProjection(), Base,
Wrapper, getLocator());
return failure.diagnose(asNote);
}
UseWrappedValue *UseWrappedValue::create(ConstraintSystem &cs,
VarDecl *propertyWrapper, Type base,
Type wrapper,
ConstraintLocator *locator) {
return new (cs.getAllocator())
UseWrappedValue(cs, propertyWrapper, base, wrapper, locator);
}
bool AllowInvalidPropertyWrapperType::diagnose(const Solution &solution, bool asNote) const {
InvalidPropertyWrapperType failure(solution, wrapperType, getLocator());
return failure.diagnose(asNote);
}
AllowInvalidPropertyWrapperType *
AllowInvalidPropertyWrapperType::create(ConstraintSystem &cs, Type wrapperType,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowInvalidPropertyWrapperType(cs, wrapperType, locator);
}
bool RemoveProjectedValueArgument::diagnose(const Solution &solution, bool asNote) const {
InvalidProjectedValueArgument failure(solution, wrapperType, param, getLocator());
return failure.diagnose(asNote);
}
RemoveProjectedValueArgument *
RemoveProjectedValueArgument::create(ConstraintSystem &cs, Type wrapperType,
ParamDecl *param, ConstraintLocator *locator) {
return new (cs.getAllocator()) RemoveProjectedValueArgument(cs, wrapperType, param, locator);
}
bool UseSubscriptOperator::diagnose(const Solution &solution,
bool asNote) const {
SubscriptMisuseFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
UseSubscriptOperator *UseSubscriptOperator::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) UseSubscriptOperator(cs, locator);
}
bool DefineMemberBasedOnUse::diagnose(const Solution &solution,
bool asNote) const {
MissingMemberFailure failure(solution, BaseType, Name, getLocator());
return AlreadyDiagnosed || failure.diagnose(asNote);
}
bool
DefineMemberBasedOnUse::diagnoseForAmbiguity(CommonFixesArray commonFixes) const {
Type concreteBaseType;
for (const auto &solutionAndFix : commonFixes) {
const auto *solution = solutionAndFix.first;
const auto *fix = solutionAndFix.second->getAs<DefineMemberBasedOnUse>();
auto baseType = solution->simplifyType(fix->BaseType);
if (!concreteBaseType)
concreteBaseType = baseType;
if (concreteBaseType->getCanonicalType() != baseType->getCanonicalType()) {
auto &DE = getConstraintSystem().getASTContext().Diags;
DE.diagnose(getLoc(getAnchor()), diag::unresolved_member_no_inference,
Name);
return true;
}
}
return diagnose(*commonFixes.front().first);
}
DefineMemberBasedOnUse *
DefineMemberBasedOnUse::create(ConstraintSystem &cs, Type baseType,
DeclNameRef member, bool alreadyDiagnosed,
ConstraintLocator *locator) {
return new (cs.getAllocator())
DefineMemberBasedOnUse(cs, baseType, member, alreadyDiagnosed, locator);
}
bool DefineMemberBasedOnUnintendedGenericParam::diagnose(
const Solution &solution, bool asNote) const {
UnintendedExtraGenericParamMemberFailure failure(solution, BaseType, Name,
ParamName, getLocator());
return failure.diagnose(asNote);
}
DefineMemberBasedOnUnintendedGenericParam *
DefineMemberBasedOnUnintendedGenericParam::create(ConstraintSystem &cs,
Type baseType,
DeclNameRef member,
Identifier paramName,
ConstraintLocator *locator) {
return new (cs.getAllocator()) DefineMemberBasedOnUnintendedGenericParam(
cs, baseType, member, paramName, locator);
}
AllowMemberRefOnExistential *
AllowMemberRefOnExistential::create(ConstraintSystem &cs, Type baseType,
ValueDecl *member, DeclNameRef memberName,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowMemberRefOnExistential(cs, baseType, memberName, member, locator);
}
bool AllowMemberRefOnExistential::diagnose(const Solution &solution,
bool asNote) const {
InvalidMemberRefOnExistential failure(solution, getBaseType(),
getMemberName(), getLocator());
return failure.diagnose(asNote);
}
bool AllowInvalidMemberRef::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
auto *primaryFix =
static_cast<const AllowInvalidMemberRef *>(commonFixes.front().second);
Type baseTy = primaryFix->getBaseType();
for (const auto &entry : commonFixes) {
auto *memberFix = static_cast<const AllowInvalidMemberRef *>(entry.second);
if (!baseTy->isEqual(memberFix->getBaseType()))
return false;
}
return diagnose(*commonFixes.front().first);
}
bool AllowTypeOrInstanceMember::diagnose(const Solution &solution,
bool asNote) const {
AllowTypeOrInstanceMemberFailure failure(solution, getBaseType(), getMember(),
getMemberName(), getLocator());
return failure.diagnose(asNote);
}
AllowTypeOrInstanceMember *
AllowTypeOrInstanceMember::create(ConstraintSystem &cs, Type baseType,
ValueDecl *member, DeclNameRef usedName,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowTypeOrInstanceMember(cs, baseType, member, usedName, locator);
}
bool AllowInvalidPartialApplication::diagnose(const Solution &solution,
bool asNote) const {
PartialApplicationFailure failure(isWarning, solution, getLocator());
return failure.diagnose(asNote);
}
AllowInvalidPartialApplication *
AllowInvalidPartialApplication::create(bool isWarning, ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInvalidPartialApplication(isWarning, cs, locator);
}
bool AllowInvalidInitRef::diagnose(const Solution &solution,
bool asNote) const {
switch (Kind) {
case RefKind::DynamicOnMetatype: {
InvalidDynamicInitOnMetatypeFailure failure(solution, BaseType, Init,
BaseRange, getLocator());
return failure.diagnose(asNote);
}
case RefKind::ProtocolMetatype: {
InitOnProtocolMetatypeFailure failure(
solution, BaseType, Init, IsStaticallyDerived, BaseRange, getLocator());
return failure.diagnose(asNote);
}
case RefKind::NonConstMetatype: {
ImplicitInitOnNonConstMetatypeFailure failure(solution, BaseType, Init,
getLocator());
return failure.diagnose(asNote);
}
}
llvm_unreachable("covered switch");
}
AllowInvalidInitRef *AllowInvalidInitRef::dynamicOnMetatype(
ConstraintSystem &cs, Type baseTy, ConstructorDecl *init,
SourceRange baseRange, ConstraintLocator *locator) {
return create(RefKind::DynamicOnMetatype, cs, baseTy, init,
/*isStaticallyDerived=*/false, baseRange, locator);
}
AllowInvalidInitRef *AllowInvalidInitRef::onProtocolMetatype(
ConstraintSystem &cs, Type baseTy, ConstructorDecl *init,
bool isStaticallyDerived, SourceRange baseRange,
ConstraintLocator *locator) {
return create(RefKind::ProtocolMetatype, cs, baseTy, init,
isStaticallyDerived, baseRange, locator);
}
AllowInvalidInitRef *
AllowInvalidInitRef::onNonConstMetatype(ConstraintSystem &cs, Type baseTy,
ConstructorDecl *init,
ConstraintLocator *locator) {
return create(RefKind::NonConstMetatype, cs, baseTy, init,
/*isStaticallyDerived=*/false, SourceRange(), locator);
}
AllowInvalidInitRef *
AllowInvalidInitRef::create(RefKind kind, ConstraintSystem &cs, Type baseTy,
ConstructorDecl *init, bool isStaticallyDerived,
SourceRange baseRange, ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowInvalidInitRef(
cs, kind, baseTy, init, isStaticallyDerived, baseRange, locator);
}
bool AllowClosureParamDestructuring::diagnose(const Solution &solution,
bool asNote) const {
ClosureParamDestructuringFailure failure(solution, ContextualType,
getLocator());
return failure.diagnose(asNote);
}
AllowClosureParamDestructuring *
AllowClosureParamDestructuring::create(ConstraintSystem &cs,
FunctionType *contextualType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowClosureParamDestructuring(cs, contextualType, locator);
}
bool AddMissingArguments::diagnose(const Solution &solution,
bool asNote) const {
MissingArgumentsFailure failure(solution, getSynthesizedArguments(),
getLocator());
return failure.diagnose(asNote);
}
AddMissingArguments *
AddMissingArguments::create(ConstraintSystem &cs,
ArrayRef<SynthesizedArg> synthesizedArgs,
ConstraintLocator *locator) {
unsigned size = totalSizeToAlloc<SynthesizedArg>(synthesizedArgs.size());
void *mem = cs.getAllocator().Allocate(size, alignof(AddMissingArguments));
return new (mem) AddMissingArguments(cs, synthesizedArgs, locator);
}
bool RemoveExtraneousArguments::diagnose(const Solution &solution,
bool asNote) const {
ExtraneousArgumentsFailure failure(solution, ContextualType,
getExtraArguments(), getLocator());
return failure.diagnose(asNote);
}
bool RemoveExtraneousArguments::isMinMaxNameShadowing(
ConstraintSystem &cs, ConstraintLocatorBuilder locator) {
auto *anchor = getAsExpr<CallExpr>(locator.getAnchor());
if (!anchor)
return false;
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchor->getFn())) {
if (auto *baseExpr = dyn_cast<DeclRefExpr>(UDE->getBase())) {
auto *decl = baseExpr->getDecl();
if (baseExpr->isImplicit() && decl &&
decl->getName() == cs.getASTContext().Id_self) {
auto memberName = UDE->getName();
return memberName.isSimpleName("min") || memberName.isSimpleName("max");
}
}
}
return false;
}
RemoveExtraneousArguments *RemoveExtraneousArguments::create(
ConstraintSystem &cs, FunctionType *contextualType,
llvm::ArrayRef<IndexedParam> extraArgs, ConstraintLocator *locator) {
unsigned size = totalSizeToAlloc<IndexedParam>(extraArgs.size());
void *mem = cs.getAllocator().Allocate(size, alignof(RemoveExtraneousArguments));
return new (mem)
RemoveExtraneousArguments(cs, contextualType, extraArgs, locator);
}
bool MoveOutOfOrderArgument::diagnose(const Solution &solution,
bool asNote) const {
OutOfOrderArgumentFailure failure(solution, ArgIdx, PrevArgIdx, Bindings,
getLocator());
return failure.diagnose(asNote);
}
bool MoveOutOfOrderArgument::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
auto *primaryFix =
commonFixes.front().second->getAs<MoveOutOfOrderArgument>();
assert(primaryFix);
if (llvm::all_of(
commonFixes,
[&primaryFix](
const std::pair<const Solution *, const ConstraintFix *> &entry) {
return primaryFix->isEqual(entry.second);
}))
return diagnose(*commonFixes.front().first);
return false;
}
bool MoveOutOfOrderArgument::isEqual(const ConstraintFix *other) const {
auto OoOFix = other->getAs<MoveOutOfOrderArgument>();
return OoOFix ? ArgIdx == OoOFix->ArgIdx && PrevArgIdx == OoOFix->PrevArgIdx
: false;
}
MoveOutOfOrderArgument *MoveOutOfOrderArgument::create(
ConstraintSystem &cs, unsigned argIdx, unsigned prevArgIdx,
ArrayRef<ParamBinding> bindings, ConstraintLocator *locator) {
return new (cs.getAllocator())
MoveOutOfOrderArgument(cs, argIdx, prevArgIdx, bindings, locator);
}
bool AllowInaccessibleMember::diagnose(const Solution &solution,
bool asNote) const {
InaccessibleMemberFailure failure(solution, getMember(), getLocator());
return failure.diagnose(asNote);
}
AllowInaccessibleMember *
AllowInaccessibleMember::create(ConstraintSystem &cs, Type baseType,
ValueDecl *member, DeclNameRef name,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInaccessibleMember(cs, baseType, member, name, locator);
}
bool AllowAnyObjectKeyPathRoot::diagnose(const Solution &solution,
bool asNote) const {
AnyObjectKeyPathRootFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowAnyObjectKeyPathRoot *
AllowAnyObjectKeyPathRoot::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowAnyObjectKeyPathRoot(cs, locator);
}
bool AllowMultiArgFuncKeyPathMismatch::diagnose(const Solution &solution,
bool asNote) const {
MultiArgFuncKeyPathFailure failure(solution, functionType, getLocator());
return failure.diagnose(asNote);
}
AllowMultiArgFuncKeyPathMismatch *
AllowMultiArgFuncKeyPathMismatch::create(ConstraintSystem &cs, Type fnType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowMultiArgFuncKeyPathMismatch(cs, fnType, locator);
}
bool TreatKeyPathSubscriptIndexAsHashable::diagnose(const Solution &solution,
bool asNote) const {
KeyPathSubscriptIndexHashableFailure failure(solution, NonConformingType,
getLocator());
return failure.diagnose(asNote);
}
TreatKeyPathSubscriptIndexAsHashable *
TreatKeyPathSubscriptIndexAsHashable::create(ConstraintSystem &cs, Type type,
ConstraintLocator *locator) {
return new (cs.getAllocator())
TreatKeyPathSubscriptIndexAsHashable(cs, type, locator);
}
bool AllowInvalidRefInKeyPath::diagnose(const Solution &solution,
bool asNote) const {
switch (Kind) {
case RefKind::StaticMember: {
InvalidStaticMemberRefInKeyPath failure(solution, Member, getLocator());
return failure.diagnose(asNote);
}
case RefKind::EnumCase: {
InvalidEnumCaseRefInKeyPath failure(solution, Member, getLocator());
return failure.diagnose(asNote);
}
case RefKind::MutatingGetter: {
InvalidMemberWithMutatingGetterInKeyPath failure(solution, Member,
getLocator());
return failure.diagnose(asNote);
}
case RefKind::Method:
case RefKind::Initializer: {
InvalidMethodRefInKeyPath failure(solution, Member, getLocator());
return failure.diagnose(asNote);
}
}
llvm_unreachable("covered switch");
}
bool AllowInvalidRefInKeyPath::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
auto *primaryFix =
commonFixes.front().second->getAs<AllowInvalidRefInKeyPath>();
assert(primaryFix);
if (llvm::all_of(
commonFixes,
[&primaryFix](
const std::pair<const Solution *, const ConstraintFix *> &entry) {
return primaryFix->isEqual(entry.second);
})) {
return diagnose(*commonFixes.front().first);
}
return false;
}
bool AllowInvalidRefInKeyPath::isEqual(const ConstraintFix *other) const {
auto *refFix = other->getAs<AllowInvalidRefInKeyPath>();
return refFix ? Kind == refFix->Kind && Member == refFix->Member : false;
}
AllowInvalidRefInKeyPath *
AllowInvalidRefInKeyPath::forRef(ConstraintSystem &cs, ValueDecl *member,
ConstraintLocator *locator) {
// Referencing (instance or static) methods in key path is
// not currently allowed.
if (isa<FuncDecl>(member))
return AllowInvalidRefInKeyPath::create(cs, RefKind::Method, member,
locator);
// Referencing enum cases in key path is not currently allowed.
if (isa<EnumElementDecl>(member)) {
return AllowInvalidRefInKeyPath::create(cs, RefKind::EnumCase, member,
locator);
}
// Referencing initializers in key path is not currently allowed.
if (isa<ConstructorDecl>(member))
return AllowInvalidRefInKeyPath::create(cs, RefKind::Initializer,
member, locator);
// Referencing static members in key path is not currently allowed.
if (member->isStatic())
return AllowInvalidRefInKeyPath::create(cs, RefKind::StaticMember, member,
locator);
if (auto *storage = dyn_cast<AbstractStorageDecl>(member)) {
// Referencing members with mutating getters in key path is not
// currently allowed.
if (storage->isGetterMutating())
return AllowInvalidRefInKeyPath::create(cs, RefKind::MutatingGetter,
member, locator);
}
return nullptr;
}
AllowInvalidRefInKeyPath *
AllowInvalidRefInKeyPath::create(ConstraintSystem &cs, RefKind kind,
ValueDecl *member,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInvalidRefInKeyPath(cs, kind, member, locator);
}
bool RemoveAddressOf::diagnose(const Solution &solution, bool asNote) const {
InvalidUseOfAddressOf failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
RemoveAddressOf *RemoveAddressOf::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) RemoveAddressOf(cs, lhs, rhs, locator);
}
RemoveReturn::RemoveReturn(ConstraintSystem &cs, Type resultTy,
ConstraintLocator *locator)
: ContextualMismatch(cs, FixKind::RemoveReturn, resultTy,
cs.getASTContext().TheEmptyTupleType, locator) {}
bool RemoveReturn::diagnose(const Solution &solution, bool asNote) const {
ExtraneousReturnFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
RemoveReturn *RemoveReturn::create(ConstraintSystem &cs, Type resultTy,
ConstraintLocator *locator) {
return new (cs.getAllocator()) RemoveReturn(cs, resultTy, locator);
}
NotCompileTimeConst::NotCompileTimeConst(ConstraintSystem &cs, Type paramTy,
ConstraintLocator *locator):
ContextualMismatch(cs, FixKind::NotCompileTimeConst, paramTy,
cs.getASTContext().TheEmptyTupleType, locator,
FixBehavior::AlwaysWarning) {}
NotCompileTimeConst *
NotCompileTimeConst::create(ConstraintSystem &cs, Type paramTy,
ConstraintLocator *locator) {
return new (cs.getAllocator()) NotCompileTimeConst(cs, paramTy, locator);
}
bool NotCompileTimeConst::diagnose(const Solution &solution, bool asNote) const {
auto *locator = getLocator();
if (auto *E = getAsExpr(locator->getAnchor())) {
auto isAccepted = E->isSemanticallyConstExpr([&](Expr *E) {
if (auto *UMC = dyn_cast<UnresolvedMemberChainResultExpr>(E)) {
E = UMC->getSubExpr();
}
auto locator = solution.getConstraintSystem().getConstraintLocator(E);
// Referencing an enum element directly is considered a compile-time literal.
if (auto *d = solution.resolveLocatorToDecl(locator).getDecl()) {
if (isa<EnumElementDecl>(d)) {
if (!d->hasParameterList()) {
return true;
}
}
}
return false;
});
if (isAccepted)
return true;
}
NotCompileTimeConstFailure failure(solution, locator);
return failure.diagnose(asNote);
}
bool AllowInvalidPackElement::diagnose(const Solution &solution,
bool asNote) const {
InvalidPackElement failure(solution, packElementType, getLocator());
return failure.diagnose(asNote);
}
AllowInvalidPackElement *
AllowInvalidPackElement::create(ConstraintSystem &cs,
Type packElementType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInvalidPackElement(cs, packElementType, locator);
}
bool AllowInvalidPackReference::diagnose(const Solution &solution,
bool asNote) const {
InvalidPackReference failure(solution, packType, getLocator());
return failure.diagnose(asNote);
}
AllowInvalidPackReference *
AllowInvalidPackReference::create(ConstraintSystem &cs, Type packType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInvalidPackReference(cs, packType, locator);
}
bool AllowInvalidPackExpansion::diagnose(const Solution &solution,
bool asNote) const {
InvalidPackExpansion failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowInvalidPackExpansion *
AllowInvalidPackExpansion::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowInvalidPackExpansion(cs, locator);
}
bool IgnoreWhereClauseInPackIteration::diagnose(const Solution &solution,
bool asNote) const {
InvalidWhereClauseInPackIteration failure(solution, getLocator());
return failure.diagnose(asNote);
}
IgnoreWhereClauseInPackIteration *
IgnoreWhereClauseInPackIteration::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) IgnoreWhereClauseInPackIteration(cs, locator);
}
bool CollectionElementContextualMismatch::diagnose(const Solution &solution,
bool asNote) const {
CollectionElementContextualFailure failure(
solution, getElements(), getFromType(), getToType(), getLocator());
return failure.diagnose(asNote);
}
CollectionElementContextualMismatch *
CollectionElementContextualMismatch::create(ConstraintSystem &cs, Type srcType,
Type dstType,
ConstraintLocator *locator) {
// It's common for a single literal element to represent types of other
// literal elements of the same kind, let's check whether that is the case
// here and record all of the affected positions.
SmallVector<Expr *, 4> affected;
{
if (auto *elementLoc = getAsExpr(simplifyLocatorToAnchor(locator))) {
auto *typeVar = cs.getType(elementLoc)->getAs<TypeVariableType>();
if (typeVar && typeVar->getImpl().getAtomicLiteralKind()) {
const auto *node =
cs.getRepresentative(typeVar)->getImpl().getGraphNode();
for (auto *typeVar : node->getEquivalenceClass()) {
auto *locator = typeVar->getImpl().getLocator();
if (auto *eltLoc = getAsExpr(simplifyLocatorToAnchor(locator)))
affected.push_back(eltLoc);
}
}
}
}
unsigned size = totalSizeToAlloc<Expr *>(affected.size());
void *mem = cs.getAllocator().Allocate(
size, alignof(CollectionElementContextualMismatch));
return new (mem) CollectionElementContextualMismatch(cs, affected, srcType,
dstType, locator);
}
bool DefaultGenericArgument::coalesceAndDiagnose(
const Solution &solution, ArrayRef<ConstraintFix *> fixes,
bool asNote) const {
llvm::SmallVector<GenericTypeParamType *, 4> missingParams{Param};
for (auto *otherFix : fixes) {
if (auto *fix = otherFix->getAs<DefaultGenericArgument>())
missingParams.push_back(fix->Param);
}
MissingGenericArgumentsFailure failure(solution, missingParams, getLocator());
return failure.diagnose(asNote);
}
bool DefaultGenericArgument::diagnose(const Solution &solution,
bool asNote) const {
return coalesceAndDiagnose(solution, {}, asNote);
}
DefaultGenericArgument *
DefaultGenericArgument::create(ConstraintSystem &cs, GenericTypeParamType *param,
ConstraintLocator *locator) {
return new (cs.getAllocator()) DefaultGenericArgument(cs, param, locator);
}
SkipUnhandledConstructInResultBuilder *
SkipUnhandledConstructInResultBuilder::create(ConstraintSystem &cs,
UnhandledNode unhandled,
NominalTypeDecl *builder,
ConstraintLocator *locator) {
return new (cs.getAllocator())
SkipUnhandledConstructInResultBuilder(cs, unhandled, builder, locator);
}
bool SkipUnhandledConstructInResultBuilder::diagnose(const Solution &solution,
bool asNote) const {
SkipUnhandledConstructInResultBuilderFailure failure(solution, unhandled,
builder, getLocator());
return failure.diagnose(asNote);
}
bool AllowMutatingMemberOnRValueBase::diagnose(const Solution &solution,
bool asNote) const {
MutatingMemberRefOnImmutableBase failure(solution, getMember(), getLocator());
return failure.diagnose(asNote);
}
AllowMutatingMemberOnRValueBase *
AllowMutatingMemberOnRValueBase::create(ConstraintSystem &cs, Type baseType,
ValueDecl *member, DeclNameRef name,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowMutatingMemberOnRValueBase(cs, baseType, member, name, locator);
}
bool AllowTupleSplatForSingleParameter::diagnose(const Solution &solution,
bool asNote) const {
InvalidTupleSplatWithSingleParameterFailure failure(solution, ParamType,
getLocator());
return failure.diagnose(asNote);
}
bool AllowTupleSplatForSingleParameter::attempt(
ConstraintSystem &cs, SmallVectorImpl<Param> &args, ArrayRef<Param> params,
SmallVectorImpl<SmallVector<unsigned, 1>> &bindings,
ConstraintLocatorBuilder locator) {
if (params.size() != 1 || args.size() <= 1)
return true;
const auto ¶m = params.front();
if (param.isInOut() || param.isVariadic() || param.isAutoClosure())
return true;
auto paramTy = param.getOldType();
// Parameter type has to be either a tuple (with the same arity as
// argument list), or a type variable.
if (!(paramTy->is<TupleType>() &&
paramTy->castTo<TupleType>()->getNumElements() == args.size()))
return true;
SmallVector<TupleTypeElt, 4> argElts;
for (unsigned index : indices(args)) {
const auto &arg = args[index];
auto label = arg.getLabel();
auto flags = arg.getParameterFlags();
// In situations where there is a single labeled parameter
// we need to form a tuple which omits the label e.g.
//
// func foo<T>(x: (T, T)) {}
// foo(x: 0, 1)
//
// We'd want to suggest argument list to be `x: (0, 1)` instead
// of `(x: 0, 1)` which would be incorrect.
if (param.hasLabel() && label == param.getLabel()) {
if (index == 0) {
label = Identifier();
} else {
// If label match anything other than first argument,
// this can't be a tuple splat.
return true;
}
}
// Tuple can't have `inout` elements.
if (flags.isInOut())
return true;
argElts.push_back({arg.getPlainType(), label});
}
bindings[0].clear();
bindings[0].push_back(0);
auto newArgType = TupleType::get(argElts, cs.getASTContext());
args.clear();
args.push_back(AnyFunctionType::Param(newArgType, param.getLabel()));
auto *fix = new (cs.getAllocator()) AllowTupleSplatForSingleParameter(
cs, paramTy, cs.getConstraintLocator(locator));
return cs.recordFix(fix);
}
bool DropThrowsAttribute::diagnose(const Solution &solution,
bool asNote) const {
ThrowingFunctionConversionFailure failure(solution, getFromType(),
getToType(), getLocator());
return failure.diagnose(asNote);
}
DropThrowsAttribute *DropThrowsAttribute::create(ConstraintSystem &cs,
FunctionType *fromType,
FunctionType *toType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
DropThrowsAttribute(cs, fromType, toType, locator);
}
bool IgnoreThrownErrorMismatch::diagnose(const Solution &solution,
bool asNote) const {
ThrownErrorTypeConversionFailure failure(solution, getFromType(),
getToType(), getLocator());
return failure.diagnose(asNote);
}
IgnoreThrownErrorMismatch *IgnoreThrownErrorMismatch::create(ConstraintSystem &cs,
Type fromErrorType,
Type toErrorType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreThrownErrorMismatch(cs, fromErrorType, toErrorType, locator);
}
bool DropAsyncAttribute::diagnose(const Solution &solution,
bool asNote) const {
AsyncFunctionConversionFailure failure(solution, getFromType(),
getToType(), getLocator());
return failure.diagnose(asNote);
}
DropAsyncAttribute *DropAsyncAttribute::create(ConstraintSystem &cs,
FunctionType *fromType,
FunctionType *toType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
DropAsyncAttribute(cs, fromType, toType, locator);
}
bool IgnoreContextualType::diagnose(const Solution &solution,
bool asNote) const {
ContextualFailure failure(solution, getFromType(), getToType(), getLocator());
return failure.diagnose(asNote);
}
IgnoreContextualType *IgnoreContextualType::create(ConstraintSystem &cs,
Type resultTy,
Type specifiedTy,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreContextualType(cs, resultTy, specifiedTy, locator);
}
bool IgnoreAssignmentDestinationType::diagnose(const Solution &solution,
bool asNote) const {
auto &cs = getConstraintSystem();
auto *AE = getAsExpr<AssignExpr>(getAnchor());
assert(AE);
// Let's check whether this is a situation of chained assignment where
// one of the steps in the chain is an assignment to self e.g.
// `let _ = { $0 = $0 = 42 }`. Assignment chaining results in
// type mismatch between result of the previous assignment and the next.
{
llvm::SaveAndRestore<AssignExpr *> anchor(AE);
do {
if (TypeChecker::diagnoseSelfAssignment(AE))
return true;
} while ((AE = dyn_cast_or_null<AssignExpr>(cs.getParentExpr(AE))));
}
auto CTP = isa<SubscriptExpr>(AE->getDest()) ? CTP_SubscriptAssignSource
: CTP_AssignSource;
AssignmentTypeMismatchFailure failure(
solution, CTP, getFromType(), getToType(),
cs.getConstraintLocator(AE->getSrc(),
LocatorPathElt::ContextualType(CTP)));
return failure.diagnose(asNote);
}
bool IgnoreAssignmentDestinationType::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
auto &cs = getConstraintSystem();
// If all of the types are the same let's try to diagnose
// this as if there is no ambiguity.
if (ContextualMismatch::diagnoseForAmbiguity(commonFixes))
return true;
auto *commonLocator = getLocator();
auto *assignment = castToExpr<AssignExpr>(commonLocator->getAnchor());
auto &solution = *commonFixes.front().first;
auto *calleeLocator = solution.getCalleeLocator(
solution.getConstraintLocator(assignment->getSrc()));
auto overload = solution.getOverloadChoiceIfAvailable(calleeLocator);
if (!overload)
return false;
auto memberName = overload->choice.getName().getBaseName();
auto destType = solution.getType(assignment->getDest());
auto &DE = cs.getASTContext().Diags;
// TODO(diagnostics): It might be good to add a tailored diagnostic
// for cases like this instead of using "contextual" one.
DE.diagnose(assignment->getSrc()->getLoc(),
diag::no_candidates_match_result_type,
memberName.userFacingName(),
solution.simplifyType(destType)->getRValueType());
for (auto &entry : commonFixes) {
entry.second->diagnose(*entry.first, /*asNote=*/true);
}
return true;
}
IgnoreAssignmentDestinationType *
IgnoreAssignmentDestinationType::create(ConstraintSystem &cs, Type sourceTy,
Type destTy,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreAssignmentDestinationType(cs, sourceTy, destTy, locator);
}
bool AllowInOutConversion::diagnose(const Solution &solution,
bool asNote) const {
InOutConversionFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
AllowInOutConversion *AllowInOutConversion::create(ConstraintSystem &cs,
Type argType, Type paramType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInOutConversion(cs, argType, paramType, locator);
}
ExpandArrayIntoVarargs *
ExpandArrayIntoVarargs::attempt(ConstraintSystem &cs, Type argType,
Type paramType,
ConstraintLocatorBuilder builder) {
auto *locator = cs.getConstraintLocator(builder);
auto argLoc = locator->getLastElementAs<LocatorPathElt::ApplyArgToParam>();
if (!(argLoc && argLoc->getParameterFlags().isVariadic()))
return nullptr;
auto elementType = argType->isArrayType();
if (!elementType)
return nullptr;
ConstraintSystem::TypeMatchOptions options;
options |= ConstraintSystem::TypeMatchFlags::TMF_ApplyingFix;
options |= ConstraintSystem::TypeMatchFlags::TMF_GenerateConstraints;
auto result = cs.matchTypes(elementType, paramType, ConstraintKind::Subtype,
options, builder);
if (result.isFailure())
return nullptr;
return new (cs.getAllocator())
ExpandArrayIntoVarargs(cs, argType, paramType, locator);
}
bool ExpandArrayIntoVarargs::diagnose(const Solution &solution,
bool asNote) const {
ExpandArrayIntoVarargsFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
bool ExplicitlyConstructRawRepresentable::diagnose(const Solution &solution,
bool asNote) const {
MissingRawRepresentableInitFailure failure(solution, RawReprType,
ExpectedType, getLocator());
return failure.diagnose(asNote);
}
ExplicitlyConstructRawRepresentable *
ExplicitlyConstructRawRepresentable::create(ConstraintSystem &cs,
Type rawReprType, Type expectedType,
ConstraintLocator *locator) {
return new (cs.getAllocator()) ExplicitlyConstructRawRepresentable(
cs, rawReprType, expectedType, locator);
}
bool UseRawValue::diagnose(const Solution &solution, bool asNote) const {
MissingRawValueFailure failure(solution, RawReprType, ExpectedType,
getLocator());
return failure.diagnose(asNote);
}
UseRawValue *UseRawValue::create(ConstraintSystem &cs, Type rawReprType,
Type expectedType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
UseRawValue(cs, rawReprType, expectedType, locator);
}
unsigned AllowArgumentMismatch::getParamIdx() const {
const auto *locator = getLocator();
auto elt = locator->castLastElementTo<LocatorPathElt::ApplyArgToParam>();
return elt.getParamIdx();
}
bool AllowArgumentMismatch::diagnose(const Solution &solution,
bool asNote) const {
ArgumentMismatchFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
AllowArgumentMismatch *
AllowArgumentMismatch::create(ConstraintSystem &cs, Type argType,
Type paramType, ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowArgumentMismatch(cs, argType, paramType, locator);
}
bool RemoveInvalidCall::diagnose(const Solution &solution, bool asNote) const {
ExtraneousCallFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
RemoveInvalidCall *RemoveInvalidCall::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) RemoveInvalidCall(cs, locator);
}
bool TreatEphemeralAsNonEphemeral::diagnose(const Solution &solution,
bool asNote) const {
NonEphemeralConversionFailure failure(solution, getLocator(), getFromType(),
getToType(), ConversionKind,
fixBehavior);
return failure.diagnose(asNote);
}
TreatEphemeralAsNonEphemeral *TreatEphemeralAsNonEphemeral::create(
ConstraintSystem &cs, ConstraintLocator *locator, Type srcType,
Type dstType, ConversionRestrictionKind conversionKind,
bool downgradeToWarning) {
return new (cs.getAllocator()) TreatEphemeralAsNonEphemeral(
cs, locator, srcType, dstType, conversionKind,
downgradeToWarning ? FixBehavior::DowngradeToWarning
: FixBehavior::Error);
}
std::string TreatEphemeralAsNonEphemeral::getName() const {
std::string name;
name += "treat ephemeral as non-ephemeral for ";
name += ::getName(ConversionKind);
return name;
}
bool AllowSendingMismatch::diagnose(const Solution &solution,
bool asNote) const {
switch (kind) {
case Kind::Parameter: {
SendingOnFunctionParameterMismatchFail failure(
solution, getFromType(), getToType(), getLocator(), fixBehavior);
return failure.diagnose(asNote);
}
case Kind::Result: {
SendingOnFunctionResultMismatchFailure failure(
solution, getFromType(), getToType(), getLocator(), fixBehavior);
return failure.diagnose(asNote);
}
}
llvm_unreachable("Covered switch isn't covered?!");
}
AllowSendingMismatch *AllowSendingMismatch::create(ConstraintSystem &cs,
ConstraintLocator *locator,
Type srcType, Type dstType,
Kind kind) {
auto fixBehavior = cs.getASTContext().LangOpts.isSwiftVersionAtLeast(6)
? FixBehavior::Error
: FixBehavior::DowngradeToWarning;
return new (cs.getAllocator())
AllowSendingMismatch(cs, srcType, dstType, locator, kind, fixBehavior);
}
bool SpecifyBaseTypeForContextualMember::diagnose(const Solution &solution,
bool asNote) const {
MissingContextualBaseInMemberRefFailure failure(solution, MemberName,
getLocator());
return failure.diagnose(asNote);
}
SpecifyBaseTypeForContextualMember *SpecifyBaseTypeForContextualMember::create(
ConstraintSystem &cs, DeclNameRef member, ConstraintLocator *locator) {
return new (cs.getAllocator())
SpecifyBaseTypeForContextualMember(cs, member, locator);
}
std::string SpecifyClosureParameterType::getName() const {
std::string name;
llvm::raw_string_ostream OS(name);
auto *closure = castToExpr<ClosureExpr>(getAnchor());
auto paramLoc =
getLocator()->castLastElementTo<LocatorPathElt::TupleElement>();
auto *PD = closure->getParameters()->get(paramLoc.getIndex());
OS << "specify type for parameter ";
OS << "'" << PD->getParameterName() << "'";
return OS.str();
}
bool SpecifyClosureParameterType::diagnose(const Solution &solution,
bool asNote) const {
UnableToInferClosureParameterType failure(solution, getLocator());
return failure.diagnose(asNote);
}
SpecifyClosureParameterType *
SpecifyClosureParameterType::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SpecifyClosureParameterType(cs, locator);
}
bool SpecifyClosureReturnType::diagnose(const Solution &solution,
bool asNote) const {
UnableToInferClosureReturnType failure(solution, getLocator());
return failure.diagnose(asNote);
}
SpecifyClosureReturnType *
SpecifyClosureReturnType::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SpecifyClosureReturnType(cs, locator);
}
bool SpecifyObjectLiteralTypeImport::diagnose(const Solution &solution,
bool asNote) const {
UnableToInferProtocolLiteralType failure(solution, getLocator());
return failure.diagnose(asNote);
}
SpecifyObjectLiteralTypeImport *
SpecifyObjectLiteralTypeImport::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SpecifyObjectLiteralTypeImport(cs, locator);
}
AllowNonClassTypeToConvertToAnyObject::AllowNonClassTypeToConvertToAnyObject(
ConstraintSystem &cs, Type type, ConstraintLocator *locator)
: ContextualMismatch(cs, FixKind::AllowNonClassTypeToConvertToAnyObject,
type, cs.getASTContext().getAnyObjectType(), locator) {
}
bool AllowNonClassTypeToConvertToAnyObject::diagnose(const Solution &solution,
bool asNote) const {
auto *locator = getLocator();
NonClassTypeToAnyObjectConversionFailure failure(solution, getFromType(),
getToType(), locator);
return failure.diagnose(asNote);
}
AllowNonClassTypeToConvertToAnyObject *
AllowNonClassTypeToConvertToAnyObject::create(ConstraintSystem &cs, Type type,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowNonClassTypeToConvertToAnyObject(cs, type, locator);
}
bool SpecifyPackElementType::diagnose(const Solution &solution,
bool asNote) const {
UnableToInferGenericPackElementType failure(solution, getLocator());
return failure.diagnose(asNote);
}
SpecifyPackElementType *
SpecifyPackElementType::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SpecifyPackElementType(cs, locator);
}
bool AddQualifierToAccessTopLevelName::diagnose(const Solution &solution,
bool asNote) const {
MissingQualifierInMemberRefFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
AddQualifierToAccessTopLevelName *
AddQualifierToAccessTopLevelName::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AddQualifierToAccessTopLevelName(cs, locator);
}
bool AllowCoercionToForceCast::diagnose(const Solution &solution,
bool asNote) const {
CoercionAsForceCastFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
AllowCoercionToForceCast *
AllowCoercionToForceCast::create(ConstraintSystem &cs, Type fromType,
Type toType, ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowCoercionToForceCast(cs, fromType, toType, locator);
}
bool AllowKeyPathRootTypeMismatch::diagnose(const Solution &solution,
bool asNote) const {
KeyPathRootTypeMismatchFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
AllowKeyPathRootTypeMismatch *
AllowKeyPathRootTypeMismatch::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowKeyPathRootTypeMismatch(cs, lhs, rhs, locator);
}
SpecifyKeyPathRootType *
SpecifyKeyPathRootType::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator())
SpecifyKeyPathRootType(cs, locator);
}
bool SpecifyKeyPathRootType::diagnose(const Solution &solution,
bool asNote) const {
UnableToInferKeyPathRootFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
bool UnwrapOptionalBaseKeyPathApplication::diagnose(const Solution &solution,
bool asNote) const {
MissingOptionalUnwrapKeyPathFailure failure(solution, getFromType(),
getToType(), getLocator());
return failure.diagnose(asNote);
}
UnwrapOptionalBaseKeyPathApplication *
UnwrapOptionalBaseKeyPathApplication::attempt(ConstraintSystem &cs, Type baseTy,
Type rootTy,
ConstraintLocator *locator) {
if(baseTy->hasTypeVariable() || rootTy->hasTypeVariable())
return nullptr;
if (!isExpr<SubscriptExpr>(locator->getAnchor()))
return nullptr;
// Only diagnose this if base is an optional type and we only have a
// single level of optionality so we can safely suggest unwrapping.
auto nonOptionalTy = baseTy->getOptionalObjectType();
if (!nonOptionalTy || nonOptionalTy->getOptionalObjectType())
return nullptr;
auto result =
cs.matchTypes(nonOptionalTy, rootTy, ConstraintKind::Subtype,
ConstraintSystem::TypeMatchFlags::TMF_ApplyingFix, locator);
if (result.isFailure())
return nullptr;
return new (cs.getAllocator())
UnwrapOptionalBaseKeyPathApplication(cs, baseTy, rootTy, locator);
}
bool SpecifyLabelToAssociateTrailingClosure::diagnose(const Solution &solution,
bool asNote) const {
TrailingClosureRequiresExplicitLabel failure(solution, getLocator());
return failure.diagnose(asNote);
}
SpecifyLabelToAssociateTrailingClosure *
SpecifyLabelToAssociateTrailingClosure::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator())
SpecifyLabelToAssociateTrailingClosure(cs, locator);
}
bool AllowKeyPathWithoutComponents::diagnose(const Solution &solution,
bool asNote) const {
InvalidEmptyKeyPathFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowKeyPathWithoutComponents *
AllowKeyPathWithoutComponents::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowKeyPathWithoutComponents(cs, locator);
}
bool IgnoreInvalidResultBuilderBody::diagnose(const Solution &solution,
bool asNote) const {
return true; // Already diagnosed by `matchResultBuilder`.
}
IgnoreInvalidResultBuilderBody *
IgnoreInvalidResultBuilderBody::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) IgnoreInvalidResultBuilderBody(cs, locator);
}
bool IgnoreInvalidASTNode::diagnose(const Solution &solution,
bool asNote) const {
return true; // Already diagnosed by the producer of ErrorExpr or ErrorType.
}
IgnoreInvalidASTNode *IgnoreInvalidASTNode::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) IgnoreInvalidASTNode(cs, locator);
}
bool IgnoreInvalidPatternInExpr::diagnose(const Solution &solution,
bool asNote) const {
InvalidPatternInExprFailure failure(solution, P, getLocator());
return failure.diagnose(asNote);
}
IgnoreInvalidPatternInExpr *
IgnoreInvalidPatternInExpr::create(ConstraintSystem &cs, Pattern *pattern,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreInvalidPatternInExpr(cs, pattern, locator);
}
bool SpecifyContextualTypeForNil::diagnose(const Solution &solution,
bool asNote) const {
MissingContextualTypeForNil failure(solution, getLocator());
return failure.diagnose(asNote);
}
SpecifyContextualTypeForNil *
SpecifyContextualTypeForNil::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SpecifyContextualTypeForNil(cs, locator);
}
bool SpecifyTypeForPlaceholder::diagnose(const Solution &solution,
bool asNote) const {
CouldNotInferPlaceholderType failure(solution, getLocator());
return failure.diagnose(asNote);
}
SpecifyTypeForPlaceholder *
SpecifyTypeForPlaceholder::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SpecifyTypeForPlaceholder(cs, locator);
}
bool AllowRefToInvalidDecl::diagnose(const Solution &solution,
bool asNote) const {
ReferenceToInvalidDeclaration failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowRefToInvalidDecl *
AllowRefToInvalidDecl::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowRefToInvalidDecl(cs, locator);
}
bool IgnoreResultBuilderWithReturnStmts::diagnose(const Solution &solution,
bool asNote) const {
InvalidReturnInResultBuilderBody failure(solution, BuilderType, getLocator());
return failure.diagnose(asNote);
}
IgnoreResultBuilderWithReturnStmts *
IgnoreResultBuilderWithReturnStmts::create(ConstraintSystem &cs, Type builderTy,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreResultBuilderWithReturnStmts(cs, builderTy, locator);
}
bool IgnoreUnresolvedPatternVar::diagnose(const Solution &solution,
bool asNote) const {
// An unresolved AnyPatternDecl means there was some issue in the match
// that means we couldn't infer the pattern. We don't have a diagnostic to
// emit here, the failure should be diagnosed by the fix for expression.
return false;
}
IgnoreUnresolvedPatternVar *
IgnoreUnresolvedPatternVar::create(ConstraintSystem &cs, Pattern *pattern,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreUnresolvedPatternVar(cs, pattern, locator);
}
bool SpecifyBaseTypeForOptionalUnresolvedMember::diagnose(
const Solution &solution, bool asNote) const {
MemberMissingExplicitBaseTypeFailure failure(solution, MemberName,
getLocator());
return failure.diagnose(asNote);
}
SpecifyBaseTypeForOptionalUnresolvedMember *
SpecifyBaseTypeForOptionalUnresolvedMember::attempt(
ConstraintSystem &cs, ConstraintKind kind, Type baseTy,
DeclNameRef memberName, FunctionRefKind functionRefKind,
MemberLookupResult result, ConstraintLocator *locator) {
if (kind != ConstraintKind::UnresolvedValueMember)
return nullptr;
// None or only one viable candidate, there is no ambiguity.
if (result.ViableCandidates.size() <= 1)
return nullptr;
// Only diagnose those situations for static members.
if (!baseTy->is<MetatypeType>())
return nullptr;
// Don't diagnose for function members e.g. Foo? = .none(0).
if (functionRefKind != FunctionRefKind::Unapplied)
return nullptr;
Type underlyingBaseType = baseTy->getMetatypeInstanceType();
if (!underlyingBaseType->getNominalOrBoundGenericNominal())
return nullptr;
if (!underlyingBaseType->getOptionalObjectType())
return nullptr;
auto unwrappedType = underlyingBaseType->lookThroughAllOptionalTypes();
bool allOptionalBaseCandidates = true;
auto filterViableCandidates =
[&](SmallVector<OverloadChoice, 4> &candidates,
SmallVector<OverloadChoice, 4> &viableCandidates,
bool &allOptionalBase) {
for (OverloadChoice choice : candidates) {
if (!choice.isDecl())
continue;
auto memberDecl = choice.getDecl();
if (isa<FuncDecl>(memberDecl))
continue;
if (memberDecl->isInstanceMember())
continue;
// Disable this warning for ambiguities related to a
// static member lookup in generic context because it's
// possible to declare a member with the same name on
// a concrete type and in an extension of a protocol
// that type conforms to e.g.:
//
// struct S : P { static var test: S { ... }
//
// extension P where Self == S { static var test: { ... } }
//
// And use that in an optional context e.g. passing `.test`
// to a parameter of expecting `S?`.
if (auto *extension =
dyn_cast<ExtensionDecl>(memberDecl->getDeclContext())) {
if (extension->getSelfProtocolDecl()) {
allOptionalBase = false;
break;
}
}
allOptionalBase &= bool(choice.getBaseType()
->getMetatypeInstanceType()
->getOptionalObjectType());
if (auto EED = dyn_cast<EnumElementDecl>(memberDecl)) {
if (!EED->hasAssociatedValues())
viableCandidates.push_back(choice);
} else if (auto VD = dyn_cast<VarDecl>(memberDecl)) {
if (unwrappedType->hasTypeVariable() ||
VD->getInterfaceType()->isEqual(unwrappedType))
viableCandidates.push_back(choice);
}
}
};
SmallVector<OverloadChoice, 4> viableCandidates;
filterViableCandidates(result.ViableCandidates, viableCandidates,
allOptionalBaseCandidates);
// Also none or only one viable candidate after filtering candidates, there is
// no ambiguity.
if (viableCandidates.size() <= 1)
return nullptr;
// Right now, name lookup only unwraps a single layer of optionality, which
// for cases where base type is a multi-optional type e.g. Foo?? it only
// finds optional base candidates. To produce the correct warning we perform
// an extra lookup on unwrapped type.
if (!allOptionalBaseCandidates)
return new (cs.getAllocator())
SpecifyBaseTypeForOptionalUnresolvedMember(cs, memberName, locator);
MemberLookupResult unwrappedResult =
cs.performMemberLookup(kind, memberName, MetatypeType::get(unwrappedType),
functionRefKind, locator,
/*includeInaccessibleMembers*/ false);
SmallVector<OverloadChoice, 4> unwrappedViableCandidates;
filterViableCandidates(unwrappedResult.ViableCandidates,
unwrappedViableCandidates, allOptionalBaseCandidates);
if (unwrappedViableCandidates.empty())
return nullptr;
return new (cs.getAllocator())
SpecifyBaseTypeForOptionalUnresolvedMember(cs, memberName, locator);
}
AllowCheckedCastCoercibleOptionalType *
AllowCheckedCastCoercibleOptionalType::create(ConstraintSystem &cs,
Type fromType, Type toType,
CheckedCastKind kind,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowCheckedCastCoercibleOptionalType(
cs, fromType, toType, kind, locator);
}
bool AllowCheckedCastCoercibleOptionalType::diagnose(const Solution &solution,
bool asNote) const {
CoercibleOptionalCheckedCastFailure failure(
solution, getFromType(), getToType(), CastKind, getLocator());
return failure.diagnose(asNote);
}
AllowNoopCheckedCast *AllowNoopCheckedCast::create(ConstraintSystem &cs,
Type fromType, Type toType,
CheckedCastKind kind,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowNoopCheckedCast(cs, fromType, toType, kind, locator);
}
bool AllowNoopCheckedCast::diagnose(const Solution &solution,
bool asNote) const {
NoopCheckedCast warning(solution, getFromType(), getToType(), CastKind,
getLocator());
return warning.diagnose(asNote);
}
AllowNoopExistentialToCFTypeCheckedCast *
AllowNoopExistentialToCFTypeCheckedCast::attempt(ConstraintSystem &cs,
Type fromType, Type toType,
CheckedCastKind kind,
ConstraintLocator *locator) {
if (!isExpr<IsExpr>(locator->getAnchor()))
return nullptr;
if (!fromType->isExistentialType())
return nullptr;
const auto *cls = toType->getAs<ClassType>();
if (!(cls && cls->getDecl()->getForeignClassKind() ==
ClassDecl::ForeignKind::CFType))
return nullptr;
return new (cs.getAllocator()) AllowNoopExistentialToCFTypeCheckedCast(
cs, fromType, toType, kind, locator);
}
bool AllowNoopExistentialToCFTypeCheckedCast::diagnose(const Solution &solution,
bool asNote) const {
NoopExistentialToCFTypeCheckedCast warning(
solution, getFromType(), getToType(), CastKind, getLocator());
return warning.diagnose(asNote);
}
// Although function types maybe compile-time convertible because
// compiler can emit thunks at SIL to handle the conversion when
// required, only conversions that are supported by the runtime are
// when types are trivially equal or non-throwing from type is equal
// to throwing to type without throwing clause conversions are not
// possible at runtime.
bool AllowUnsupportedRuntimeCheckedCast::runtimeSupportedFunctionTypeCast(
FunctionType *fnFromType, FunctionType *fnToType) {
if (fnFromType->isEqual(fnToType)) {
return true;
} else if (!fnFromType->isThrowing() && fnToType->isThrowing()) {
return fnFromType->isEqual(
fnToType->getWithoutThrowing()->castTo<FunctionType>());
}
// Runtime cannot perform such conversion.
return false;
}
AllowUnsupportedRuntimeCheckedCast *
AllowUnsupportedRuntimeCheckedCast::attempt(ConstraintSystem &cs, Type fromType,
Type toType, CheckedCastKind kind,
ConstraintLocator *locator) {
auto fnFromType = fromType->getAs<FunctionType>();
auto fnToType = toType->getAs<FunctionType>();
if (!(fnFromType && fnToType))
return nullptr;
if (runtimeSupportedFunctionTypeCast(fnFromType, fnToType))
return nullptr;
return new (cs.getAllocator())
AllowUnsupportedRuntimeCheckedCast(cs, fromType, toType, kind, locator);
}
bool AllowUnsupportedRuntimeCheckedCast::diagnose(const Solution &solution,
bool asNote) const {
UnsupportedRuntimeCheckedCastFailure failure(
solution, getFromType(), getToType(), CastKind, getLocator());
return failure.diagnose(asNote);
}
AllowCheckedCastToUnrelated *
AllowCheckedCastToUnrelated::attempt(ConstraintSystem &cs, Type fromType,
Type toType, CheckedCastKind kind,
ConstraintLocator *locator) {
// Explicit optional-to-optional casts always succeed because a nil
// value of any optional type can be cast to any other optional type.
if (fromType->getOptionalObjectType() && toType->getOptionalObjectType()) {
return nullptr;
}
return new (cs.getAllocator())
AllowCheckedCastToUnrelated(cs, fromType, toType, kind, locator);
}
bool AllowCheckedCastToUnrelated::diagnose(const Solution &solution,
bool asNote) const {
CheckedCastToUnrelatedFailure warning(solution, getFromType(), getToType(),
CastKind, getLocator());
return warning.diagnose(asNote);
}
bool AllowInvalidStaticMemberRefOnProtocolMetatype::diagnose(
const Solution &solution, bool asNote) const {
InvalidMemberRefOnProtocolMetatype failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowInvalidStaticMemberRefOnProtocolMetatype *
AllowInvalidStaticMemberRefOnProtocolMetatype::create(
ConstraintSystem &cs, ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInvalidStaticMemberRefOnProtocolMetatype(cs, locator);
}
bool AllowNonOptionalWeak::diagnose(const Solution &solution,
bool asNote) const {
InvalidWeakAttributeUse failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowNonOptionalWeak *AllowNonOptionalWeak::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowNonOptionalWeak(cs, locator);
}
AllowTupleLabelMismatch *
AllowTupleLabelMismatch::create(ConstraintSystem &cs, Type fromType,
Type toType, ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowTupleLabelMismatch(cs, fromType, toType, locator);
}
bool AllowTupleLabelMismatch::diagnose(const Solution &solution,
bool asNote) const {
TupleLabelMismatchWarning warning(solution, getFromType(), getToType(),
getLocator());
return warning.diagnose(asNote);
}
AllowAssociatedValueMismatch *
AllowAssociatedValueMismatch::create(ConstraintSystem &cs, Type fromType,
Type toType, ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowAssociatedValueMismatch(cs, fromType, toType, locator);
}
bool AllowAssociatedValueMismatch::diagnose(const Solution &solution,
bool asNote) const {
AssociatedValueMismatchFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
bool AllowSwiftToCPointerConversion::diagnose(const Solution &solution,
bool asNote) const {
SwiftToCPointerConversionInInvalidContext failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowSwiftToCPointerConversion *
AllowSwiftToCPointerConversion::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowSwiftToCPointerConversion(cs, locator);
}
bool IgnoreDefaultExprTypeMismatch::diagnose(const Solution &solution,
bool asNote) const {
DefaultExprTypeMismatch failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
IgnoreDefaultExprTypeMismatch *
IgnoreDefaultExprTypeMismatch::create(ConstraintSystem &cs, Type argType,
Type paramType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreDefaultExprTypeMismatch(cs, argType, paramType, locator);
}
bool RenameConflictingPatternVariables::diagnose(const Solution &solution,
bool asNote) const {
ConflictingPatternVariables failure(solution, ExpectedType,
getConflictingVars(), getLocator());
return failure.diagnose(asNote);
}
RenameConflictingPatternVariables *
RenameConflictingPatternVariables::create(ConstraintSystem &cs, Type expectedTy,
ArrayRef<VarDecl *> conflicts,
ConstraintLocator *locator) {
unsigned size = totalSizeToAlloc<VarDecl *>(conflicts.size());
void *mem = cs.getAllocator().Allocate(
size, alignof(RenameConflictingPatternVariables));
return new (mem)
RenameConflictingPatternVariables(cs, expectedTy, conflicts, locator);
}
bool MacroMissingPound::diagnose(const Solution &solution,
bool asNote) const {
AddMissingMacroPound failure(solution, macro, getLocator());
return failure.diagnose(asNote);
}
MacroMissingPound *
MacroMissingPound::create(ConstraintSystem &cs, MacroDecl *macro,
ConstraintLocator *locator) {
return new (cs.getAllocator()) MacroMissingPound(cs, macro, locator);
}
bool AllowGlobalActorMismatch::diagnose(const Solution &solution,
bool asNote) const {
GlobalActorFunctionMismatchFailure failure(solution, getFromType(),
getToType(), getLocator());
return failure.diagnose(asNote);
}
AllowGlobalActorMismatch *
AllowGlobalActorMismatch::create(ConstraintSystem &cs, Type fromType,
Type toType, ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowGlobalActorMismatch(cs, fromType, toType, locator);
}
bool DestructureTupleToMatchPackExpansionParameter::diagnose(
const Solution &solution, bool asNote) const {
DestructureTupleToUseWithPackExpansionParameter failure(solution, ParamShape,
getLocator());
return failure.diagnose(asNote);
}
DestructureTupleToMatchPackExpansionParameter *
DestructureTupleToMatchPackExpansionParameter::create(
ConstraintSystem &cs, PackType *paramShapeTy, ConstraintLocator *locator) {
return new (cs.getAllocator())
DestructureTupleToMatchPackExpansionParameter(cs, paramShapeTy, locator);
}
bool AllowValueExpansionWithoutPackReferences::diagnose(
const Solution &solution, bool asNote) const {
ValuePackExpansionWithoutPackReferences failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowValueExpansionWithoutPackReferences *
AllowValueExpansionWithoutPackReferences::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowValueExpansionWithoutPackReferences(cs, locator);
}
bool IgnoreMissingEachKeyword::diagnose(const Solution &solution,
bool asNote) const {
MissingEachForValuePackReference failure(solution, ValuePackType,
getLocator());
return failure.diagnose(asNote);
}
IgnoreMissingEachKeyword *
IgnoreMissingEachKeyword::create(ConstraintSystem &cs, Type valuePackTy,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreMissingEachKeyword(cs, valuePackTy, locator);
}
bool AllowInvalidMemberReferenceInInitAccessor::diagnose(
const Solution &solution, bool asNote) const {
InvalidMemberReferenceWithinInitAccessor failure(solution, MemberName,
getLocator());
return failure.diagnose(asNote);
}
AllowInvalidMemberReferenceInInitAccessor *
AllowInvalidMemberReferenceInInitAccessor::create(ConstraintSystem &cs,
DeclNameRef memberName,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInvalidMemberReferenceInInitAccessor(cs, memberName, locator);
}
bool AllowConcreteTypeSpecialization::diagnose(const Solution &solution,
bool asNote) const {
ConcreteTypeSpecialization failure(solution, ConcreteType, getLocator());
return failure.diagnose(asNote);
}
AllowConcreteTypeSpecialization *
AllowConcreteTypeSpecialization::create(ConstraintSystem &cs, Type concreteTy,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowConcreteTypeSpecialization(cs, concreteTy, locator);
}
bool IgnoreOutOfPlaceThenStmt::diagnose(const Solution &solution,
bool asNote) const {
OutOfPlaceThenStmtFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
IgnoreOutOfPlaceThenStmt *
IgnoreOutOfPlaceThenStmt::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) IgnoreOutOfPlaceThenStmt(cs, locator);
}
bool IgnoreGenericSpecializationArityMismatch::diagnose(
const Solution &solution, bool asNote) const {
InvalidTypeSpecializationArity failure(solution, D, NumParams, NumArgs,
HasParameterPack, getLocator());
return failure.diagnose(asNote);
}
IgnoreGenericSpecializationArityMismatch *
IgnoreGenericSpecializationArityMismatch::create(ConstraintSystem &cs,
ValueDecl *decl,
unsigned numParams,
unsigned numArgs,
bool hasParameterPack,
ConstraintLocator *locator) {
return new (cs.getAllocator()) IgnoreGenericSpecializationArityMismatch(
cs, decl, numParams, numArgs, hasParameterPack, locator);
}
bool IgnoreKeyPathSubscriptIndexMismatch::diagnose(const Solution &solution,
bool asNote) const {
InvalidTypeAsKeyPathSubscriptIndex failure(solution, ArgType, getLocator());
return failure.diagnose(asNote);
}
IgnoreKeyPathSubscriptIndexMismatch *
IgnoreKeyPathSubscriptIndexMismatch::create(ConstraintSystem &cs, Type argType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreKeyPathSubscriptIndexMismatch(cs, argType, locator);
}
|