1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
|
//===--- CSRanking.cpp - Constraint System Ranking ------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements solution ranking heuristics for the
// constraint-based type checker.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Sema/ConstraintSystem.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
using namespace swift;
using namespace constraints;
//===----------------------------------------------------------------------===//
// Statistics
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "Constraint solver overall"
STATISTIC(NumDiscardedSolutions, "Number of solutions discarded");
/// Returns \c true if \p expr takes a code completion expression as an
/// argument.
static bool exprHasCodeCompletionAsArgument(Expr *expr, ConstraintSystem &cs) {
if (auto args = expr->getArgs()) {
for (auto arg : *args) {
if (isa<CodeCompletionExpr>(arg.getExpr())) {
return true;
}
}
}
return false;
}
static bool shouldIgnoreScoreIncreaseForCodeCompletion(
ScoreKind kind, ConstraintLocatorBuilder Locator, ConstraintSystem &cs) {
if (kind < SK_SyncInAsync) {
// We don't want to ignore score kinds that make the code invalid.
return false;
}
auto expr = Locator.trySimplifyToExpr();
if (!expr) {
return false;
}
// These are a few hand-picked examples in which we don't want to increase the
// score in code completion mode. Technically, to get all valid results, we
// would like to not increase the score if the expression contains the code
// completion token anywhere but that's not possible for performance reasons.
// Thus, just special case the most common cases.
// The code completion token itself.
if (isa<CodeCompletionExpr>(expr)) {
return true;
}
// An assignment where the LHS or RHS contains the code completion token (e.g.
// an optional conversion).
// E.g.
// x[#^COMPLETE^#] = foo
// let a = foo(#^COMPLETE^#)
if (auto assign = dyn_cast<AssignExpr>(expr)) {
if (exprHasCodeCompletionAsArgument(assign->getSrc(), cs)) {
return true;
} else if (exprHasCodeCompletionAsArgument(assign->getDest(), cs)) {
return true;
}
}
// If the function call takes the code completion token as an argument, the
// call also shouldn't increase the score.
// E.g. `foo` in
// foo(#^COMPLETE^#)
if (exprHasCodeCompletionAsArgument(expr, cs)) {
return true;
}
if (auto parent = cs.getParentExpr(expr)) {
// The sibling argument is the code completion expression, this allows e.g.
// non-default literal values in sibling arguments.
// E.g. we allow a 1 to be a double in
// foo(1, #^COMPLETE^#)
if (exprHasCodeCompletionAsArgument(parent, cs)) {
return true;
}
// If we are completing a member of a literal, consider completion results
// for all possible literal types. E.g. show completion results for `let a:
// Double = 1.#^COMPLETE^#
if (isa_and_nonnull<CodeCompletionExpr>(parent) &&
kind == SK_NonDefaultLiteral) {
return true;
}
}
return false;
}
void ConstraintSystem::increaseScore(ScoreKind kind,
ConstraintLocatorBuilder Locator,
unsigned value) {
if (isForCodeCompletion() &&
shouldIgnoreScoreIncreaseForCodeCompletion(kind, Locator, *this)) {
if (isDebugMode() && value > 0) {
if (solverState)
llvm::errs().indent(solverState->getCurrentIndent());
llvm::errs() << "(not increasing '" << Score::getNameFor(kind)
<< "' score by " << value
<< " because of proximity to code completion token";
Locator.dump(&getASTContext().SourceMgr, llvm::errs());
llvm::errs() << ")\n";
}
return;
}
if (isDebugMode() && value > 0) {
if (solverState)
llvm::errs().indent(solverState->getCurrentIndent());
llvm::errs() << "(increasing '" << Score::getNameFor(kind) << "' score by "
<< value << " @ ";
Locator.dump(&getASTContext().SourceMgr, llvm::errs());
llvm::errs() << ")\n";
}
unsigned index = static_cast<unsigned>(kind);
CurrentScore.Data[index] += value;
}
bool ConstraintSystem::worseThanBestSolution() const {
if (getASTContext().TypeCheckerOpts.DisableConstraintSolverPerformanceHacks)
return false;
if (!solverState || !solverState->BestScore ||
CurrentScore <= *solverState->BestScore)
return false;
if (isDebugMode()) {
llvm::errs().indent(solverState->getCurrentIndent())
<< "(solution is worse than the best solution)\n";
}
return true;
}
llvm::raw_ostream &constraints::operator<<(llvm::raw_ostream &out,
const Score &score) {
for (unsigned i = 0; i != NumScoreKinds; ++i) {
if (i) out << ' ';
out << score.Data[i];
}
return out;
}
///\ brief Compare two declarations for equality when they are used.
///
static bool sameDecl(Decl *decl1, Decl *decl2) {
if (decl1 == decl2)
return true;
// All types considered identical.
// FIXME: This is a hack. What we really want is to have substituted the
// base type into the declaration reference, so that we can compare the
// actual types to which two type declarations resolve. If those types are
// equivalent, then it doesn't matter which declaration is chosen.
if (isa<TypeDecl>(decl1) && isa<TypeDecl>(decl2))
return true;
if (decl1->getKind() != decl2->getKind())
return false;
return false;
}
/// Compare two overload choices for equality.
static bool sameOverloadChoice(const OverloadChoice &x,
const OverloadChoice &y) {
if (x.getKind() != y.getKind())
return false;
switch (x.getKind()) {
case OverloadChoiceKind::KeyPathApplication:
// FIXME: Compare base types after substitution?
return true;
case OverloadChoiceKind::Decl:
case OverloadChoiceKind::DeclViaDynamic:
case OverloadChoiceKind::DeclViaBridge:
case OverloadChoiceKind::DeclViaUnwrappedOptional:
case OverloadChoiceKind::DynamicMemberLookup:
case OverloadChoiceKind::KeyPathDynamicMemberLookup:
return sameDecl(x.getDecl(), y.getDecl());
case OverloadChoiceKind::TupleIndex:
return x.getTupleIndex() == y.getTupleIndex();
case OverloadChoiceKind::MaterializePack:
case OverloadChoiceKind::ExtractFunctionIsolation:
return true;
}
llvm_unreachable("Unhandled OverloadChoiceKind in switch.");
}
namespace {
/// Describes the relationship between the context types for two declarations.
enum class SelfTypeRelationship {
/// The types are unrelated; ignore the bases entirely.
Unrelated,
/// The types are equivalent.
Equivalent,
/// The first type is a subclass of the second.
Subclass,
/// The second type is a subclass of the first.
Superclass,
/// The first type conforms to the second
ConformsTo,
/// The second type conforms to the first.
ConformedToBy
};
} // end anonymous namespace
/// Determines whether the first type is nominally a superclass of the second
/// type, ignore generic arguments.
static bool isNominallySuperclassOf(Type type1, Type type2) {
auto nominal1 = type1->getAnyNominal();
if (!nominal1)
return false;
for (auto super2 = type2; super2; super2 = super2->getSuperclass()) {
if (super2->getAnyNominal() == nominal1)
return true;
}
return false;
}
/// Determine the relationship between the self types of the given declaration
/// contexts..
static std::pair<SelfTypeRelationship, ProtocolConformanceRef>
computeSelfTypeRelationship(DeclContext *dc, ValueDecl *decl1,
ValueDecl *decl2) {
// If both declarations are operators, even through they
// might have Self such types are unrelated.
if (decl1->isOperator() && decl2->isOperator())
return {SelfTypeRelationship::Unrelated, ProtocolConformanceRef()};
auto *dc1 = decl1->getDeclContext();
auto *dc2 = decl2->getDeclContext();
// If at least one of the contexts is a non-type context, the two are
// unrelated.
if (!dc1->isTypeContext() || !dc2->isTypeContext())
return {SelfTypeRelationship::Unrelated, ProtocolConformanceRef()};
Type type1 = dc1->getDeclaredInterfaceType();
Type type2 = dc2->getDeclaredInterfaceType();
// If the types are equal, the answer is simple.
if (type1->isEqual(type2))
return {SelfTypeRelationship::Equivalent, ProtocolConformanceRef()};
// If both types can have superclasses, which whether one is a superclass
// of the other. The subclass is the common base type.
if (type1->mayHaveSuperclass() && type2->mayHaveSuperclass()) {
if (isNominallySuperclassOf(type1, type2))
return {SelfTypeRelationship::Superclass, ProtocolConformanceRef()};
if (isNominallySuperclassOf(type2, type1))
return {SelfTypeRelationship::Subclass, ProtocolConformanceRef()};
return {SelfTypeRelationship::Unrelated, ProtocolConformanceRef()};
}
// If neither or both are protocol types, consider the bases unrelated.
bool isProtocol1 = isa<ProtocolDecl>(dc1);
bool isProtocol2 = isa<ProtocolDecl>(dc2);
if (isProtocol1 == isProtocol2)
return {SelfTypeRelationship::Unrelated, ProtocolConformanceRef()};
// Just one of the two is a protocol. Check whether the other conforms to
// that protocol.
Type protoTy = isProtocol1? type1 : type2;
Type modelTy = isProtocol1? type2 : type1;
auto proto = protoTy->castTo<ProtocolType>()->getDecl();
// If the model type does not conform to the protocol, the bases are
// unrelated.
auto conformance = dc->getParentModule()->lookupConformance(modelTy, proto);
if (conformance.isInvalid())
return {SelfTypeRelationship::Unrelated, conformance};
if (isProtocol1)
return {SelfTypeRelationship::ConformedToBy, conformance};
return {SelfTypeRelationship::ConformsTo, conformance};
}
/// Given two generic function declarations, signal if the first is more
/// "constrained" than the second by comparing the number of constraints
/// applied to each type parameter.
/// Note that this is not a subtype or conversion check - that takes place
/// in isDeclAsSpecializedAs.
static bool isDeclMoreConstrainedThan(ValueDecl *decl1, ValueDecl *decl2) {
if (decl1->getKind() != decl2->getKind() || isa<TypeDecl>(decl1))
return false;
bool bothGeneric = false;
GenericSignature sig1, sig2;
auto func1 = dyn_cast<FuncDecl>(decl1);
auto func2 = dyn_cast<FuncDecl>(decl2);
if (func1 && func2) {
bothGeneric = func1->isGeneric() && func2->isGeneric();
sig1 = func1->getGenericSignature();
sig2 = func2->getGenericSignature();
}
auto subscript1 = dyn_cast<SubscriptDecl>(decl1);
auto subscript2 = dyn_cast<SubscriptDecl>(decl2);
if (subscript1 && subscript2) {
bothGeneric = subscript1->isGeneric() && subscript2->isGeneric();
sig1 = subscript1->getGenericSignature();
sig2 = subscript2->getGenericSignature();
}
if (bothGeneric) {
auto params1 = sig1.getInnermostGenericParams();
auto params2 = sig2.getInnermostGenericParams();
if (params1.size() == params2.size()) {
for (size_t i = 0; i < params1.size(); i++) {
auto p1 = params1[i];
auto p2 = params2[i];
int np1 =
llvm::count_if(sig1->getRequiredProtocols(p1), [](const auto *P) {
return !P->getInvertibleProtocolKind();
});
int np2 =
llvm::count_if(sig2->getRequiredProtocols(p2), [](const auto *P) {
return !P->getInvertibleProtocolKind();
});
int aDelta = np1 - np2;
if (aDelta)
return aDelta > 0;
}
}
}
return false;
}
/// Determine whether one protocol extension is at least as specialized as
/// another.
static bool isProtocolExtensionAsSpecializedAs(DeclContext *dc1,
DeclContext *dc2) {
assert(dc1->getExtendedProtocolDecl());
assert(dc2->getExtendedProtocolDecl());
// If one of the protocols being extended inherits the other, prefer the
// more specialized protocol.
auto proto1 = dc1->getExtendedProtocolDecl();
auto proto2 = dc2->getExtendedProtocolDecl();
if (proto1 != proto2) {
if (proto1->inheritsFrom(proto2))
return true;
if (proto2->inheritsFrom(proto1))
return false;
}
// If the two generic signatures are identical, neither is as specialized
// as the other.
GenericSignature sig1 = dc1->getGenericSignatureOfContext();
GenericSignature sig2 = dc2->getGenericSignatureOfContext();
if (sig1.getCanonicalSignature() == sig2.getCanonicalSignature())
return false;
// Form a constraint system where we've opened up all of the requirements of
// the second protocol extension.
ConstraintSystem cs(dc1, std::nullopt);
OpenedTypeMap replacements;
cs.openGeneric(dc2, sig2, ConstraintLocatorBuilder(nullptr), replacements);
// Bind the 'Self' type from the first extension to the type parameter from
// opening 'Self' of the second extension.
Type selfType1 = sig1.getGenericParams()[0];
Type selfType2 = sig2.getGenericParams()[0];
cs.addConstraint(ConstraintKind::Bind,
replacements[cast<GenericTypeParamType>(selfType2->getCanonicalType())],
dc1->mapTypeIntoContext(selfType1),
nullptr);
// Solve the system. If the first extension is at least as specialized as the
// second, we're done.
return cs.solveSingle().has_value();
}
/// Retrieve the adjusted parameter type for overloading purposes.
static Type getAdjustedParamType(const AnyFunctionType::Param ¶m) {
auto type = param.getOldType();
if (param.isAutoClosure())
return type->castTo<FunctionType>()->getResult();
return type;
}
// Is a particular parameter of a function or subscript declaration
// declared to be an IUO?
static bool paramIsIUO(const ValueDecl *decl, int paramNum) {
return swift::getParameterAt(decl, paramNum)
->isImplicitlyUnwrappedOptional();
}
/// Determine whether the first declaration is as "specialized" as
/// the second declaration.
///
/// "Specialized" is essentially a form of subtyping, defined below.
static bool isDeclAsSpecializedAs(DeclContext *dc, ValueDecl *decl1,
ValueDecl *decl2,
bool isDynamicOverloadComparison = false,
bool allowMissingConformances = true) {
return evaluateOrDefault(decl1->getASTContext().evaluator,
CompareDeclSpecializationRequest{
dc, decl1, decl2, isDynamicOverloadComparison,
allowMissingConformances},
false);
}
bool CompareDeclSpecializationRequest::evaluate(
Evaluator &eval, DeclContext *dc, ValueDecl *decl1, ValueDecl *decl2,
bool isDynamicOverloadComparison, bool allowMissingConformances) const {
auto &C = decl1->getASTContext();
// Construct a constraint system to compare the two declarations.
ConstraintSystem cs(dc, ConstraintSystemOptions());
if (cs.isDebugMode()) {
llvm::errs() << "Comparing declarations\n";
decl1->print(llvm::errs());
llvm::errs() << "\nand\n";
decl2->print(llvm::errs());
llvm::errs() << "\n(isDynamicOverloadComparison: ";
llvm::errs() << isDynamicOverloadComparison;
llvm::errs() << ")\n";
}
auto completeResult = [&cs](bool result) {
if (cs.isDebugMode()) {
llvm::errs() << "comparison result: "
<< (result ? "better" : "not better")
<< "\n";
}
return result;
};
auto *innerDC1 = decl1->getInnermostDeclContext();
auto *innerDC2 = decl2->getInnermostDeclContext();
auto *outerDC1 = decl1->getDeclContext();
auto *outerDC2 = decl2->getDeclContext();
// If the kinds are different, there's nothing we can do.
// FIXME: This is wrong for type declarations, which we're skipping
// entirely.
if (decl1->getKind() != decl2->getKind() || isa<TypeDecl>(decl1))
return completeResult(false);
// A non-generic declaration is more specialized than a generic declaration.
if (auto func1 = dyn_cast<AbstractFunctionDecl>(decl1)) {
auto func2 = cast<AbstractFunctionDecl>(decl2);
if (func1->isGeneric() != func2->isGeneric())
return completeResult(func2->isGeneric());
}
if (auto subscript1 = dyn_cast<SubscriptDecl>(decl1)) {
auto subscript2 = cast<SubscriptDecl>(decl2);
if (subscript1->isGeneric() != subscript2->isGeneric())
return completeResult(subscript2->isGeneric());
}
// Members of protocol extensions have special overloading rules.
ProtocolDecl *inProtocolExtension1 = outerDC1->getExtendedProtocolDecl();
ProtocolDecl *inProtocolExtension2 = outerDC2->getExtendedProtocolDecl();
if (inProtocolExtension1 && inProtocolExtension2) {
// Both members are in protocol extensions.
// Determine whether the 'Self' type from the first protocol extension
// satisfies all of the requirements of the second protocol extension.
bool better1 = isProtocolExtensionAsSpecializedAs(outerDC1, outerDC2);
bool better2 = isProtocolExtensionAsSpecializedAs(outerDC2, outerDC1);
if (better1 != better2) {
return completeResult(better1);
}
} else if (inProtocolExtension1 || inProtocolExtension2) {
// One member is in a protocol extension, the other is in a concrete type.
// Prefer the member in the concrete type.
return completeResult(inProtocolExtension2);
}
// A concrete type member is always more specialised than a protocol
// member (bearing in mind that we have already handled the case where
// exactly one member is in a protocol extension). Only apply this rule in
// Swift 5 mode to better maintain source compatibility under Swift 4
// mode.
//
// Don't apply this rule when comparing two overloads found through
// dynamic lookup to ensure we keep cases like this ambiguous:
//
// @objc protocol P {
// var i: String { get }
// }
// class C {
// @objc var i: Int { return 0 }
// }
// func foo(_ x: AnyObject) {
// x.i // ensure ambiguous.
// }
//
if (C.isSwiftVersionAtLeast(5) && !isDynamicOverloadComparison) {
auto inProto1 = isa<ProtocolDecl>(outerDC1);
auto inProto2 = isa<ProtocolDecl>(outerDC2);
if (inProto1 != inProto2)
return completeResult(inProto2);
}
Type type1 = decl1->getInterfaceType();
Type type2 = decl2->getInterfaceType();
// Add curried 'self' types if necessary.
if (!decl1->hasCurriedSelf())
type1 = type1->addCurriedSelfType(outerDC1);
if (!decl2->hasCurriedSelf())
type2 = type2->addCurriedSelfType(outerDC2);
auto openType = [&](ConstraintSystem &cs, DeclContext *innerDC,
DeclContext *outerDC, Type type,
OpenedTypeMap &replacements,
ConstraintLocator *locator) -> Type {
if (auto *funcType = type->getAs<AnyFunctionType>()) {
return cs.openFunctionType(funcType, locator, replacements, outerDC);
}
cs.openGeneric(outerDC, innerDC->getGenericSignatureOfContext(), locator,
replacements);
return cs.openType(type, replacements, locator);
};
bool knownNonSubtype = false;
auto *locator = cs.getConstraintLocator({});
// FIXME: Locator when anchored on a declaration.
// Get the type of a reference to the second declaration.
OpenedTypeMap unused, replacements;
auto openedType2 = openType(cs, innerDC1, outerDC2, type2, unused, locator);
auto openedType1 =
openType(cs, innerDC2, outerDC1, type1, replacements, locator);
for (const auto &replacement : replacements) {
if (auto mapped = innerDC1->mapTypeIntoContext(replacement.first)) {
cs.addConstraint(ConstraintKind::Bind, replacement.second, mapped,
locator);
}
}
// Extract the self types from the declarations, if they have them.
auto getSelfType = [](AnyFunctionType *fnType) -> Type {
auto params = fnType->getParams();
assert(params.size() == 1);
return params.front().getPlainType()->getMetatypeInstanceType();
};
Type selfTy1;
Type selfTy2;
if (outerDC1->isTypeContext()) {
auto funcTy1 = openedType1->castTo<FunctionType>();
selfTy1 = getSelfType(funcTy1);
openedType1 = funcTy1->getResult();
}
if (outerDC2->isTypeContext()) {
auto funcTy2 = openedType2->castTo<FunctionType>();
selfTy2 = getSelfType(funcTy2);
openedType2 = funcTy2->getResult();
}
// Determine the relationship between the 'self' types and add the
// appropriate constraints. The constraints themselves never fail, but
// they help deduce type variables that were opened.
auto selfTypeRelationship = computeSelfTypeRelationship(dc, decl1, decl2);
auto relationshipKind = selfTypeRelationship.first;
auto conformance = selfTypeRelationship.second;
(void)conformance;
switch (relationshipKind) {
case SelfTypeRelationship::Unrelated:
// Skip the self types parameter entirely.
break;
case SelfTypeRelationship::Equivalent:
cs.addConstraint(ConstraintKind::Bind, selfTy1, selfTy2, locator);
break;
case SelfTypeRelationship::Subclass:
cs.addConstraint(ConstraintKind::Subtype, selfTy1, selfTy2, locator);
break;
case SelfTypeRelationship::Superclass:
cs.addConstraint(ConstraintKind::Subtype, selfTy2, selfTy1, locator);
break;
case SelfTypeRelationship::ConformsTo:
assert(conformance);
cs.addConstraint(ConstraintKind::ConformsTo, selfTy1,
cast<ProtocolDecl>(outerDC2)->getDeclaredInterfaceType(),
locator);
break;
case SelfTypeRelationship::ConformedToBy:
assert(conformance);
cs.addConstraint(ConstraintKind::ConformsTo, selfTy2,
cast<ProtocolDecl>(outerDC1)->getDeclaredInterfaceType(),
locator);
break;
}
bool fewerEffectiveParameters = false;
if (!decl1->hasParameterList() && !decl2->hasParameterList()) {
// If neither decl has a parameter list, simply check whether the first
// type is a subtype of the second.
cs.addConstraint(ConstraintKind::Subtype, openedType1, openedType2,
locator);
} else if (decl1->hasParameterList() && decl2->hasParameterList()) {
// Otherwise, check whether the first function type's input is a subtype
// of the second type's inputs, i.e., can we forward the arguments?
auto funcTy1 = openedType1->castTo<FunctionType>();
auto funcTy2 = openedType2->castTo<FunctionType>();
auto params1 = funcTy1->getParams();
auto params2 = funcTy2->getParams();
// TODO: We should consider merging these two branches together in
// the future instead of re-implementing `matchCallArguments`.
if (containsPackExpansionType(params1) ||
containsPackExpansionType(params2)) {
ParameterListInfo paramListInfo(params2, decl2, decl2->hasCurriedSelf());
MatchCallArgumentListener listener;
SmallVector<AnyFunctionType::Param> args(params1);
auto matching = matchCallArguments(
args, params2, paramListInfo, std::nullopt,
/*allowFixes=*/false, listener, TrailingClosureMatching::Forward);
if (!matching)
return completeResult(false);
for (unsigned paramIdx = 0,
numParams = matching->parameterBindings.size();
paramIdx != numParams; ++paramIdx) {
const auto ¶m = params2[paramIdx];
auto paramTy = param.getOldType();
if (paramListInfo.isVariadicGenericParameter(paramIdx) &&
isPackExpansionType(paramTy)) {
SmallVector<Type, 2> argTypes;
for (auto argIdx : matching->parameterBindings[paramIdx]) {
// Don't prefer `T...` over `repeat each T`.
if (args[argIdx].isVariadic())
return completeResult(false);
argTypes.push_back(args[argIdx].getPlainType());
}
auto *argPack = PackType::get(cs.getASTContext(), argTypes);
cs.addConstraint(ConstraintKind::Subtype,
PackExpansionType::get(argPack, argPack), paramTy,
locator);
continue;
}
for (auto argIdx : matching->parameterBindings[paramIdx]) {
const auto &arg = args[argIdx];
// Always prefer non-variadic version when possible.
if (arg.isVariadic())
return completeResult(false);
cs.addConstraint(ConstraintKind::Subtype, arg.getOldType(),
paramTy, locator);
}
}
} else {
unsigned numParams1 = params1.size();
unsigned numParams2 = params2.size();
if (numParams1 > numParams2)
return completeResult(false);
// If they both have trailing closures, compare those separately.
bool compareTrailingClosureParamsSeparately = false;
if (numParams1 > 0 && numParams2 > 0 &&
params1.back().getParameterType()->is<AnyFunctionType>() &&
params2.back().getParameterType()->is<AnyFunctionType>()) {
compareTrailingClosureParamsSeparately = true;
}
auto maybeAddSubtypeConstraint =
[&](const AnyFunctionType::Param ¶m1,
const AnyFunctionType::Param ¶m2) -> bool {
// If one parameter is variadic and the other is not...
if (param1.isVariadic() != param2.isVariadic()) {
// If the first parameter is the variadic one, it's not
// more specialized.
if (param1.isVariadic())
return false;
fewerEffectiveParameters = true;
}
Type paramType1 = getAdjustedParamType(param1);
Type paramType2 = getAdjustedParamType(param2);
// Check whether the first parameter is a subtype of the second.
cs.addConstraint(ConstraintKind::Subtype, paramType1, paramType2,
locator);
return true;
};
auto pairMatcher = [&](unsigned idx1, unsigned idx2) -> bool {
// Emulate behavior from when IUO was a type, where IUOs
// were considered subtypes of plain optionals, but not
// vice-versa. This wouldn't normally happen, but there are
// cases where we can rename imported APIs so that we have a
// name collision, and where the parameter type(s) are the
// same except for details of the kind of optional declared.
auto param1IsIUO = paramIsIUO(decl1, idx1);
auto param2IsIUO = paramIsIUO(decl2, idx2);
if (param2IsIUO && !param1IsIUO)
return false;
if (!maybeAddSubtypeConstraint(params1[idx1], params2[idx2]))
return false;
return true;
};
ParameterListInfo paramInfo(params2, decl2, decl2->hasCurriedSelf());
auto params2ForMatching = params2;
if (compareTrailingClosureParamsSeparately) {
--numParams1;
params2ForMatching = params2.drop_back();
}
InputMatcher IM(params2ForMatching, paramInfo);
if (IM.match(numParams1, pairMatcher) != InputMatcher::IM_Succeeded)
return completeResult(false);
fewerEffectiveParameters |= (IM.getNumSkippedParameters() != 0);
if (compareTrailingClosureParamsSeparately)
if (!maybeAddSubtypeConstraint(params1.back(), params2.back()))
knownNonSubtype = true;
}
}
if (!knownNonSubtype) {
// Solve the system.
auto solution = cs.solveSingle(FreeTypeVariableBinding::Allow);
if (solution) {
auto score = solution->getFixedScore();
// Ban value-to-optional conversions and
// missing conformances if they are disallowed.
if (score.Data[SK_ValueToOptional] == 0 &&
(allowMissingConformances ||
score.Data[SK_MissingSynthesizableConformance] == 0))
return completeResult(true);
}
}
// If the first function has fewer effective parameters than the
// second, it is more specialized.
if (fewerEffectiveParameters)
return completeResult(true);
return completeResult(false);
}
Comparison TypeChecker::compareDeclarations(DeclContext *dc,
ValueDecl *decl1,
ValueDecl *decl2){
bool decl1Better = isDeclAsSpecializedAs(dc, decl1, decl2);
bool decl2Better = isDeclAsSpecializedAs(dc, decl2, decl1);
if (decl1Better == decl2Better)
return Comparison::Unordered;
return decl1Better ? Comparison::Better : Comparison::Worse;
}
static Type getUnlabeledType(Type type, ASTContext &ctx) {
return type.transform([&](Type type) -> Type {
if (auto *tupleType = dyn_cast<TupleType>(type.getPointer())) {
if (tupleType->getNumElements() == 1)
return ParenType::get(ctx, tupleType->getElementType(0));
SmallVector<TupleTypeElt, 8> elts;
for (auto elt : tupleType->getElements()) {
elts.push_back(elt.getWithoutName());
}
return TupleType::get(elts, ctx);
}
return type;
});
}
static void addKeyPathDynamicMemberOverloads(
ArrayRef<Solution> solutions, unsigned idx1, unsigned idx2,
SmallVectorImpl<SolutionDiff::OverloadDiff> &overloadDiff) {
const auto &overloads1 = solutions[idx1].overloadChoices;
const auto &overloads2 = solutions[idx2].overloadChoices;
for (auto &entry : overloads1) {
auto *locator = entry.first;
if (!locator->isForKeyPathDynamicMemberLookup())
continue;
auto overload2 = overloads2.find(locator);
if (overload2 == overloads2.end())
continue;
auto &overloadChoice1 = entry.second.choice;
auto &overloadChoice2 = overload2->second.choice;
SmallVector<OverloadChoice, 4> choices;
choices.resize(solutions.size());
choices[idx1] = overloadChoice1;
choices[idx2] = overloadChoice2;
overloadDiff.push_back(
SolutionDiff::OverloadDiff{locator, std::move(choices)});
}
}
namespace {
/// A set of type variable bindings to compare for ranking.
struct TypeBindingsToCompare {
Type Type1;
Type Type2;
// These bits are used in the case where we need to compare a lone unlabeled
// parameter with a labeled parameter, and allow us to prefer the unlabeled
// one.
bool Type1WasLabeled = false;
bool Type2WasLabeled = false;
TypeBindingsToCompare(Type type1, Type type2)
: Type1(type1), Type2(type2) {}
/// Whether the type bindings to compare are known to be the same.
bool areSameTypes() const {
return !Type1WasLabeled && !Type2WasLabeled && Type1->isEqual(Type2);
}
};
} // end anonymous namespace
/// Given the bound types of two constructor overloads, returns their parameter
/// list types as tuples to compare for solution ranking, or \c None if they
/// shouldn't be compared.
static std::optional<TypeBindingsToCompare>
getConstructorParamsAsTuples(ASTContext &ctx, Type boundTy1, Type boundTy2) {
auto choiceTy1 =
boundTy1->lookThroughAllOptionalTypes()->getAs<FunctionType>();
auto choiceTy2 =
boundTy2->lookThroughAllOptionalTypes()->getAs<FunctionType>();
// If the type variables haven't been bound to functions yet, let's not try
// and rank them.
if (!choiceTy1 || !choiceTy2)
return std::nullopt;
auto initParams1 = choiceTy1->getParams();
auto initParams2 = choiceTy2->getParams();
if (initParams1.size() != initParams2.size())
return std::nullopt;
// Don't compare if there are variadic differences. This preserves the
// behavior of when we'd compare through matchTupleTypes with the parameter
// flags intact.
for (auto idx : indices(initParams1)) {
if (initParams1[idx].isVariadic() != initParams2[idx].isVariadic())
return std::nullopt;
}
// Awful hack needed to preserve source compatibility: If we have single
// variadic parameters to compare, where one has a label and the other does
// not, e.g (x: Int...) and (Int...), compare the parameter types by
// themselves, and make a note of which one has the label.
//
// This is needed because previously we would build a TupleType for a single
// unlabeled variadic parameter (Int...), which would let us compare it with
// a labeled parameter (x: Int...) and prefer the unlabeled version. With the
// parameter flags stripped however, (Int...) would become a paren type,
// which we wouldn't compare with the tuple type (x: Int...). To preserve the
// previous behavior in this case, just do a type comparison for the param
// types, and record where we stripped a label. The ranking logic can then use
// this to prefer the unlabeled variant. This is only needed in the single
// parameter case, as other cases will compare as tuples the same as before.
// In cases where variadics aren't used, we may end up trying to compare
// parens with tuples, but that's consistent with what we previously did.
//
// Note we can just do checks on initParams1, as we've already established
// sizes and variadic bits are consistent.
if (initParams1.size() == 1 && initParams1[0].isVariadic() &&
initParams1[0].hasLabel() != initParams2[0].hasLabel()) {
TypeBindingsToCompare bindings(initParams1[0].getParameterType(),
initParams2[0].getParameterType());
if (initParams1[0].hasLabel()) {
bindings.Type1WasLabeled = true;
} else {
bindings.Type2WasLabeled = true;
}
return bindings;
}
auto tuple1 = AnyFunctionType::composeTuple(
ctx, initParams1, ParameterFlagHandling::IgnoreNonEmpty);
auto tuple2 = AnyFunctionType::composeTuple(
ctx, initParams2, ParameterFlagHandling::IgnoreNonEmpty);
return TypeBindingsToCompare(tuple1, tuple2);
}
SolutionCompareResult ConstraintSystem::compareSolutions(
ConstraintSystem &cs, ArrayRef<Solution> solutions,
const SolutionDiff &diff, unsigned idx1, unsigned idx2) {
if (cs.isDebugMode()) {
llvm::errs().indent(cs.solverState->getCurrentIndent())
<< "comparing solutions " << idx1 << " and " << idx2 << "\n";
}
// Whether the solutions are identical.
bool identical = true;
// Compare the fixed scores by themselves.
if (solutions[idx1].getFixedScore() != solutions[idx2].getFixedScore()) {
return solutions[idx1].getFixedScore() < solutions[idx2].getFixedScore()
? SolutionCompareResult::Better
: SolutionCompareResult::Worse;
}
// Compute relative score.
unsigned score1 = 0;
unsigned score2 = 0;
auto foundRefinement1 = false;
auto foundRefinement2 = false;
bool isStdlibOptionalMPlusOperator1 = false;
bool isStdlibOptionalMPlusOperator2 = false;
bool isVarAndNotProtocol1 = false;
bool isVarAndNotProtocol2 = false;
auto getWeight = [&](ConstraintLocator *locator) -> unsigned {
if (auto *anchor = locator->getAnchor().dyn_cast<Expr *>()) {
auto weight = cs.getExprDepth(anchor);
if (weight)
return *weight + 1;
}
return 1;
};
SmallVector<SolutionDiff::OverloadDiff, 4> overloadDiff(diff.overloads);
// Single type of keypath dynamic member lookup could refer to different
// member overloads, we have to do a pair-wise comparison in such cases
// otherwise ranking would miss some viable information e.g.
// `_ = arr[0..<3]` could refer to subscript through writable or read-only
// key path and each of them could also pick overload which returns `Slice<T>`
// or `ArraySlice<T>` (assuming that `arr` is something like `Box<[Int]>`).
addKeyPathDynamicMemberOverloads(solutions, idx1, idx2, overloadDiff);
// Compare overload sets.
for (auto &overload : overloadDiff) {
unsigned weight = getWeight(overload.locator);
auto choice1 = overload.choices[idx1];
auto choice2 = overload.choices[idx2];
// If the systems made the same choice, there's nothing interesting here.
if (sameOverloadChoice(choice1, choice2))
continue;
// If constraint system is underconstrained e.g. because there are
// editor placeholders, it's possible to end up with multiple solutions
// where each ambiguous declaration is going to have its own overload kind:
//
// func foo(_: Int) -> [Int] { ... }
// func foo(_: Double) -> (result: String, count: Int) { ... }
//
// _ = foo(<#arg#>).count
//
// In this case solver would produce 2 solutions: one where `count`
// is a property reference on `[Int]` and another one is tuple access
// for a `count:` element.
if (choice1.isDecl() != choice2.isDecl())
return SolutionCompareResult::Incomparable;
auto decl1 = choice1.getDecl();
auto dc1 = decl1->getDeclContext();
auto decl2 = choice2.getDecl();
auto dc2 = decl2->getDeclContext();
// The two systems are not identical. If the decls in question are distinct
// protocol members, let the checks below determine if the two choices are
// 'identical' or not. This allows us to structurally unify disparate
// protocol members during overload resolution.
// FIXME: Along with the FIXME below, this is a hack to work around
// problems with restating requirements in protocols.
identical = false;
if (cs.isForCodeCompletion()) {
// Don't rank based on overload choices of function calls that contain the
// code completion token.
if (auto anchor = simplifyLocatorToAnchor(overload.locator)) {
if (cs.containsIDEInspectionTarget(cs.includingParentApply(anchor)))
continue;
}
}
bool decl1InSubprotocol = false;
bool decl2InSubprotocol = false;
if (dc1->getContextKind() == DeclContextKind::GenericTypeDecl &&
dc1->getContextKind() == dc2->getContextKind()) {
auto pd1 = dyn_cast<ProtocolDecl>(dc1);
auto pd2 = dyn_cast<ProtocolDecl>(dc2);
// FIXME: This hack tells us to prefer members of subprotocols over
// those of the protocols they inherit, if all else fails.
// If we were properly handling overrides of protocol members when
// requirements get restated, it would not be necessary.
if (pd1 && pd2 && pd1 != pd2) {
identical = true;
decl1InSubprotocol = pd1->inheritsFrom(pd2);
decl2InSubprotocol = pd2->inheritsFrom(pd1);
}
}
// If the kinds of overload choice don't match...
if (choice1.getKind() != choice2.getKind()) {
identical = false;
// A declaration found directly beats any declaration found via dynamic
// lookup, bridging, or optional unwrapping.
if ((choice1.getKind() == OverloadChoiceKind::Decl) &&
(choice2.getKind() == OverloadChoiceKind::DeclViaDynamic ||
choice2.getKind() == OverloadChoiceKind::DeclViaBridge ||
choice2.getKind() == OverloadChoiceKind::DeclViaUnwrappedOptional)) {
score1 += weight;
continue;
}
if ((choice1.getKind() == OverloadChoiceKind::DeclViaDynamic ||
choice1.getKind() == OverloadChoiceKind::DeclViaBridge ||
choice1.getKind() == OverloadChoiceKind::DeclViaUnwrappedOptional) &&
choice2.getKind() == OverloadChoiceKind::Decl) {
score2 += weight;
continue;
}
if (choice1.getKind() == OverloadChoiceKind::KeyPathDynamicMemberLookup) {
if (choice2.getKind() == OverloadChoiceKind::DynamicMemberLookup)
// Dynamic member lookup through a keypath is better than one using
// string because it carries more type information.
score1 += weight;
else
// Otherwise let's prefer non-dynamic declaration.
score2 += weight;
continue;
}
if (choice2.getKind() == OverloadChoiceKind::KeyPathDynamicMemberLookup) {
if (choice1.getKind() == OverloadChoiceKind::DynamicMemberLookup)
// Dynamic member lookup through a keypath is better than one using
// string because it carries more type information.
score2 += weight;
else
// Otherwise let's prefer non-dynamic declaration.
score1 += weight;
continue;
}
continue;
}
// The kinds of overload choice match, but the contents don't.
switch (choice1.getKind()) {
case OverloadChoiceKind::TupleIndex:
case OverloadChoiceKind::MaterializePack:
case OverloadChoiceKind::ExtractFunctionIsolation:
continue;
case OverloadChoiceKind::KeyPathApplication:
llvm_unreachable("Never considered different");
case OverloadChoiceKind::DeclViaDynamic:
case OverloadChoiceKind::Decl:
case OverloadChoiceKind::DeclViaBridge:
case OverloadChoiceKind::DeclViaUnwrappedOptional:
case OverloadChoiceKind::DynamicMemberLookup:
case OverloadChoiceKind::KeyPathDynamicMemberLookup:
break;
}
// We don't apply some ranking rules to overloads found through dynamic
// lookup in order to keep a few potentially ill-formed cases ambiguous.
bool isDynamicOverloadComparison =
choice1.getKind() == OverloadChoiceKind::DeclViaDynamic &&
choice2.getKind() == OverloadChoiceKind::DeclViaDynamic;
// Determine whether one declaration is more specialized than the other.
bool firstAsSpecializedAs = false;
bool secondAsSpecializedAs = false;
if (isDeclAsSpecializedAs(cs.DC, decl1, decl2,
isDynamicOverloadComparison,
/*allowMissingConformances=*/false)) {
score1 += weight;
firstAsSpecializedAs = true;
}
if (isDeclAsSpecializedAs(cs.DC, decl2, decl1,
isDynamicOverloadComparison,
/*allowMissingConformances=*/false)) {
score2 += weight;
secondAsSpecializedAs = true;
}
// If each is as specialized as the other, and both are constructors,
// check the constructor kind.
if (firstAsSpecializedAs && secondAsSpecializedAs) {
if (auto ctor1 = dyn_cast<ConstructorDecl>(decl1)) {
if (auto ctor2 = dyn_cast<ConstructorDecl>(decl2)) {
if (ctor1->getInitKind() != ctor2->getInitKind()) {
if (ctor1->getInitKind() < ctor2->getInitKind())
score1 += weight;
else
score2 += weight;
} else if (ctor1->getInitKind() ==
CtorInitializerKind::Convenience) {
// If both are convenience initializers, and the instance type of
// one is a subtype of the other's, favor the subtype constructor.
auto resType1 = ctor1->mapTypeIntoContext(
ctor1->getResultInterfaceType());
auto resType2 = ctor2->mapTypeIntoContext(
ctor2->getResultInterfaceType());
if (!resType1->isEqual(resType2)) {
if (TypeChecker::isSubtypeOf(resType1, resType2, cs.DC)) {
score1 += weight;
} else if (TypeChecker::isSubtypeOf(resType2, resType1, cs.DC)) {
score2 += weight;
}
}
}
}
}
}
// If both declarations come from Clang, and one is a type and the other
// is a function, prefer the function.
if (decl1->hasClangNode() &&
decl2->hasClangNode() &&
((isa<TypeDecl>(decl1) &&
isa<AbstractFunctionDecl>(decl2)) ||
(isa<AbstractFunctionDecl>(decl1) &&
isa<TypeDecl>(decl2)))) {
if (isa<TypeDecl>(decl1))
score2 += weight;
else
score1 += weight;
}
// A class member is always better than a curried instance member.
// If the members agree on instance-ness, a property is better than a
// method (because a method is usually immediately invoked).
if (!decl1->isInstanceMember() && decl2->isInstanceMember())
score1 += weight;
else if (!decl2->isInstanceMember() && decl1->isInstanceMember())
score2 += weight;
else if (isa<VarDecl>(decl1) && isa<FuncDecl>(decl2))
score1 += weight;
else if (isa<VarDecl>(decl2) && isa<FuncDecl>(decl1))
score2 += weight;
// If both are class properties with the same name, prefer
// the one attached to the subclass because it could only be
// found if requested directly.
if (!decl1->isInstanceMember() && !decl2->isInstanceMember()) {
if (isa<VarDecl>(decl1) && isa<VarDecl>(decl2)) {
auto *nominal1 = dc1->getSelfNominalTypeDecl();
auto *nominal2 = dc2->getSelfNominalTypeDecl();
if (nominal1 && nominal2 && nominal1 != nominal2) {
auto base1 = nominal1->getDeclaredType();
auto base2 = nominal2->getDeclaredType();
if (isNominallySuperclassOf(base1, base2))
score2 += weight;
if (isNominallySuperclassOf(base2, base1))
score1 += weight;
}
}
}
// If we haven't found a refinement, record whether one overload is in
// any way more constrained than another. We'll only utilize this
// information in the case of a potential ambiguity.
if (!(foundRefinement1 && foundRefinement2)) {
if (isDeclMoreConstrainedThan(decl1, decl2)) {
foundRefinement1 = true;
}
if (isDeclMoreConstrainedThan(decl2, decl1)) {
foundRefinement2 = true;
}
}
// FIXME: The rest of the hack for restating requirements.
if (!(foundRefinement1 && foundRefinement2)) {
if (identical && decl1InSubprotocol != decl2InSubprotocol) {
foundRefinement1 = decl1InSubprotocol;
foundRefinement2 = decl2InSubprotocol;
}
}
// Swift 4.1 compatibility hack: If everything else is considered equal,
// favour a property on a concrete type over a protocol property member.
//
// This hack is required due to changes in shadowing behaviour where a
// protocol property member will no longer shadow a property on a concrete
// type, which created unintentional ambiguities in 4.2. This hack ensures
// we at least keep these cases unambiguous in Swift 5 under Swift 4
// compatibility mode. Don't however apply this hack for decls found through
// dynamic lookup, as we want the user to have to disambiguate those.
//
// This is intentionally narrow in order to best preserve source
// compatibility under Swift 4 mode by ensuring we don't introduce any new
// ambiguities. This will become a more general "is more specialised" rule
// in Swift 5 mode.
if (!cs.getASTContext().isSwiftVersionAtLeast(5) &&
choice1.getKind() != OverloadChoiceKind::DeclViaDynamic &&
choice2.getKind() != OverloadChoiceKind::DeclViaDynamic &&
isa<VarDecl>(decl1) && isa<VarDecl>(decl2)) {
auto *nominal1 = dc1->getSelfNominalTypeDecl();
auto *nominal2 = dc2->getSelfNominalTypeDecl();
if (nominal1 && nominal2 && nominal1 != nominal2) {
isVarAndNotProtocol1 = !isa<ProtocolDecl>(nominal1);
isVarAndNotProtocol2 = !isa<ProtocolDecl>(nominal2);
}
}
// FIXME: Lousy hack for ?? to prefer the catamorphism (flattening)
// over the mplus (non-flattening) overload if all else is equal.
if (decl1->getBaseName() == "??") {
assert(decl2->getBaseName() == "??");
auto check = [](const ValueDecl *VD) -> bool {
if (!VD->getModuleContext()->isStdlibModule())
return false;
auto fnTy = VD->getInterfaceType()->castTo<AnyFunctionType>();
if (!fnTy->getResult()->getOptionalObjectType())
return false;
// Check that the standard library hasn't added another overload of
// the ?? operator.
auto params = fnTy->getParams();
assert(params.size() == 2);
auto param1 = params[0].getParameterType();
auto param2 = params[1].getParameterType()->castTo<AnyFunctionType>();
assert(param1->getOptionalObjectType());
assert(params[1].isAutoClosure());
assert(param2->getResult()->getOptionalObjectType());
(void) param1;
(void) param2;
return true;
};
isStdlibOptionalMPlusOperator1 = check(decl1);
isStdlibOptionalMPlusOperator2 = check(decl2);
}
}
// Compare the type variable bindings.
llvm::DenseMap<TypeVariableType *, TypeBindingsToCompare> typeDiff;
const auto &bindings1 = solutions[idx1].typeBindings;
const auto &bindings2 = solutions[idx2].typeBindings;
for (const auto &binding1 : bindings1) {
auto *typeVar = binding1.first;
auto *loc = typeVar->getImpl().getLocator();
// Check whether this is the overload type for a short-form init call
// 'X(...)' or 'self.init(...)' call.
auto isShortFormOrSelfDelegatingConstructorBinding = false;
if (auto initMemberTypeElt =
loc->getLastElementAs<LocatorPathElt::ConstructorMemberType>()) {
isShortFormOrSelfDelegatingConstructorBinding =
initMemberTypeElt->isShortFormOrSelfDelegatingConstructor();
}
// If the type variable isn't one for which we should be looking at the
// bindings, don't.
if (!typeVar->getImpl().prefersSubtypeBinding() &&
!isShortFormOrSelfDelegatingConstructorBinding) {
continue;
}
// If both solutions have a binding for this type variable
// let's consider it.
auto binding2 = bindings2.find(typeVar);
if (binding2 == bindings2.end())
continue;
TypeBindingsToCompare typesToCompare(binding1.second, binding2->second);
// For short-form and self-delegating init calls, we want to prefer
// parameter lists with subtypes over supertypes. To do this, compose tuples
// for the bound parameter lists, and compare them in the type diff. This
// logic preserves the behavior of when we used to bind the parameter list
// as a tuple to a TVO_PrefersSubtypeBinding type variable for such calls.
// FIXME: We should come up with a better way of doing this, though note we
// have some ranking and subtyping rules specific to tuples that we may need
// to preserve to avoid breaking source.
if (isShortFormOrSelfDelegatingConstructorBinding) {
auto diffs = getConstructorParamsAsTuples(
cs.getASTContext(), typesToCompare.Type1, typesToCompare.Type2);
if (!diffs)
continue;
typesToCompare = *diffs;
}
if (!typesToCompare.areSameTypes())
typeDiff.insert({typeVar, typesToCompare});
}
for (auto &binding : typeDiff) {
auto types = binding.second;
auto type1 = types.Type1;
auto type2 = types.Type2;
// If either of the types still contains type variables, we can't
// compare them.
// FIXME: This is really unfortunate. More type variable sharing
// (when it's sound) would help us do much better here.
if (type1->hasTypeVariable() || type2->hasTypeVariable()) {
identical = false;
continue;
}
// With introduction of holes it's currently possible to form solutions
// with UnresolvedType bindings, we need to account for that in
// ranking. If one solution has a hole for a given type variable
// it's always worse than any non-hole type other solution might have.
if (type1->is<UnresolvedType>() || type2->is<UnresolvedType>()) {
if (type1->is<UnresolvedType>()) {
++score2;
} else {
++score1;
}
identical = false;
continue;
}
// If one type is a subtype of the other, but not vice-versa,
// we prefer the system with the more-constrained type.
// FIXME: Collapse this check into the second check.
auto type1Better = TypeChecker::isSubtypeOf(type1, type2, cs.DC);
auto type2Better = TypeChecker::isSubtypeOf(type2, type1, cs.DC);
if (type1Better || type2Better) {
if (type1Better)
++score1;
if (type2Better)
++score2;
// Prefer the unlabeled form of a type.
auto unlabeled1 = getUnlabeledType(type1, cs.getASTContext());
auto unlabeled2 = getUnlabeledType(type2, cs.getASTContext());
if (unlabeled1->isEqual(unlabeled2)) {
if (type1->isEqual(unlabeled1) && !types.Type1WasLabeled) {
++score1;
continue;
}
if (type2->isEqual(unlabeled2) && !types.Type2WasLabeled) {
++score2;
continue;
}
}
identical = false;
continue;
}
// The systems are not considered equivalent.
identical = false;
// Archetypes are worse than concrete types (i.e. non-placeholder and
// non-archetype)
// FIXME: Total hack.
if (type1->is<ArchetypeType>() && !type2->is<ArchetypeType>() &&
!type2->is<PlaceholderType>()) {
++score2;
continue;
} else if (type2->is<ArchetypeType>() && !type1->is<ArchetypeType>() &&
!type1->is<PlaceholderType>()) {
++score1;
continue;
}
// FIXME:
// This terrible hack is in place to support equality comparisons of non-
// equatable option types to 'nil'. Until we have a way to constrain a type
// variable on "!Equatable", if all other aspects of the overload choices
// are equal, favor the overload that does not require an implicit literal
// argument conversion to 'nil'.
// Post-1.0, we'll need to remove this hack in favor of richer constraint
// declarations.
if (!(score1 || score2)) {
if (auto nominalType2 = type2->getNominalOrBoundGenericNominal()) {
if ((nominalType2->getName() ==
cs.getASTContext().Id_OptionalNilComparisonType)) {
++score2;
}
}
if (auto nominalType1 = type1->getNominalOrBoundGenericNominal()) {
if ((nominalType1->getName() ==
cs.getASTContext().Id_OptionalNilComparisonType)) {
++score1;
}
}
}
}
// All other things considered equal, if any overload choice is more
// more constrained than the other, increment the score.
if (score1 == score2) {
if (foundRefinement1) {
++score1;
}
if (foundRefinement2) {
++score2;
}
}
// FIXME: All other things being equal, prefer the catamorphism (flattening)
// overload of ?? over the mplus (non-flattening) overload.
if (score1 == score2) {
// This is correct: we want to /disprefer/ the mplus.
score2 += isStdlibOptionalMPlusOperator1;
score1 += isStdlibOptionalMPlusOperator2;
}
// All other things being equal, apply the Swift 4.1 compatibility hack for
// preferring var members in concrete types over a protocol requirement
// (see the comment above for the rationale of this hack).
if (!cs.getASTContext().isSwiftVersionAtLeast(5) && score1 == score2) {
score1 += isVarAndNotProtocol1;
score2 += isVarAndNotProtocol2;
}
// FIXME: There are type variables and overloads not common to both solutions
// that haven't been considered. They make the systems different, but don't
// affect ranking. We need to handle this.
// If the scores are different, we have a winner.
if (score1 != score2) {
return score1 > score2? SolutionCompareResult::Better
: SolutionCompareResult::Worse;
}
// Neither system wins; report whether they were identical or not.
return identical? SolutionCompareResult::Identical
: SolutionCompareResult::Incomparable;
}
std::optional<unsigned>
ConstraintSystem::findBestSolution(SmallVectorImpl<Solution> &viable,
bool minimize) {
// Don't spend time filtering solutions if we already hit a threshold.
if (isTooComplex(viable))
return std::nullopt;
if (viable.empty())
return std::nullopt;
if (viable.size() == 1)
return 0;
if (isDebugMode()) {
auto indent = solverState->getCurrentIndent();
auto &log = llvm::errs();
log.indent(indent) << "Comparing " << viable.size()
<< " viable solutions\n";
for (unsigned i = 0, n = viable.size(); i != n; ++i) {
log << "\n";
log.indent(indent) << "--- Solution #" << i << " ---\n";
viable[i].dump(llvm::errs(), indent);
}
}
SolutionDiff diff(viable);
// Find a potential best.
SmallVector<bool, 16> losers(viable.size(), false);
Score bestScore = viable.front().getFixedScore();
unsigned bestIdx = 0;
for (unsigned i = 1, n = viable.size(); i != n; ++i) {
auto currScore = viable[i].getFixedScore();
if (currScore < bestScore)
bestScore = currScore;
switch (compareSolutions(*this, viable, diff, i, bestIdx)) {
case SolutionCompareResult::Identical:
// FIXME: Might want to warn about this in debug builds, so we can
// find a way to eliminate the redundancy in the search space.
case SolutionCompareResult::Incomparable:
break;
case SolutionCompareResult::Worse:
losers[i] = true;
break;
case SolutionCompareResult::Better:
losers[bestIdx] = true;
bestIdx = i;
break;
}
// Give up if we're out of time.
if (isTooComplex(/*solutions=*/{}))
return std::nullopt;
}
// Make sure that our current best is better than all of the solved systems.
bool ambiguous = false;
for (unsigned i = 0, n = viable.size(); i != n && !ambiguous; ++i) {
if (i == bestIdx)
continue;
switch (compareSolutions(*this, viable, diff, bestIdx, i)) {
case SolutionCompareResult::Identical:
// FIXME: Might want to warn about this in debug builds, so we can
// find a way to eliminate the redundancy in the search space.
break;
case SolutionCompareResult::Better:
losers[i] = true;
break;
case SolutionCompareResult::Worse:
losers[bestIdx] = true;
LLVM_FALLTHROUGH;
case SolutionCompareResult::Incomparable:
// If we're not supposed to minimize the result set, just return eagerly.
if (!minimize)
return std::nullopt;
ambiguous = true;
break;
}
// Give up if we're out of time.
if (isTooComplex(/*solutions=*/{}))
return std::nullopt;
}
// If the result was not ambiguous, we're done.
if (!ambiguous) {
NumDiscardedSolutions += viable.size() - 1;
return bestIdx;
}
if (!minimize)
return std::nullopt;
// Remove any solution that is worse than some other solution.
unsigned outIndex = 0;
for (unsigned i = 0, n = viable.size(); i != n; ++i) {
// Skip over the losing solutions.
if (viable[i].getFixedScore() > bestScore)
continue;
// If we have skipped any solutions, move this solution into the next
// open position.
if (outIndex < i)
viable[outIndex] = std::move(viable[i]);
++outIndex;
}
viable.erase(viable.begin() + outIndex, viable.end());
NumDiscardedSolutions += viable.size() - outIndex;
return std::nullopt;
}
SolutionDiff::SolutionDiff(ArrayRef<Solution> solutions) {
if (solutions.size() <= 1)
return;
// Populate the overload choices with the first solution.
llvm::DenseMap<ConstraintLocator *, SmallVector<OverloadChoice, 2>>
overloadChoices;
for (auto choice : solutions[0].overloadChoices) {
overloadChoices[choice.first].push_back(choice.second.choice);
}
// Find the type variables and overload locators common to all of the
// solutions.
for (auto &solution : solutions.slice(1)) {
// For each overload locator for which we have an overload choice in
// all of the previous solutions. Check whether we have an overload choice
// in this solution.
SmallVector<ConstraintLocator *, 4> removeOverloadChoices;
for (auto &overloadChoice : overloadChoices) {
auto known = solution.overloadChoices.find(overloadChoice.first);
if (known == solution.overloadChoices.end()) {
removeOverloadChoices.push_back(overloadChoice.first);
continue;
}
// Add this solution's overload choice to the results.
overloadChoice.second.push_back(known->second.choice);
}
// Remove those overload locators for which this solution did not have
// an overload choice.
for (auto overloadChoice : removeOverloadChoices) {
overloadChoices.erase(overloadChoice);
}
}
for (auto &overloadChoice : overloadChoices) {
OverloadChoice singleChoice = overloadChoice.second[0];
for (auto choice : overloadChoice.second) {
if (sameOverloadChoice(singleChoice, choice))
continue;
// We have a difference. Add this set of overload choices to the diff.
this->overloads.push_back(SolutionDiff::OverloadDiff{
overloadChoice.first, std::move(overloadChoice.second)});
break;
}
}
}
InputMatcher::InputMatcher(const ArrayRef<AnyFunctionType::Param> params,
const ParameterListInfo ¶mInfo)
: NumSkippedParameters(0), ParamInfo(paramInfo),
Params(params) {}
InputMatcher::Result
InputMatcher::match(int numInputs,
std::function<bool(unsigned, unsigned)> pairMatcher) {
int inputIdx = 0;
int numParams = Params.size();
for (int i = 0; i < numParams; ++i) {
// If we've claimed all of the inputs, the rest of the parameters should
// be either default or variadic.
if (inputIdx == numInputs) {
if (!ParamInfo.hasDefaultArgument(i) && !Params[i].isVariadic())
return IM_HasUnmatchedParam;
++NumSkippedParameters;
continue;
}
// If there is a default for parameter, while there are still some
// input left unclaimed, it could only mean that default parameters
// are intermixed e.g.
//
// inputs: (a: Int)
// params: (q: String = "", a: Int)
//
// or
// inputs: (a: Int, c: Int)
// params: (a: Int, b: Int = 0, c: Int)
//
// and we shouldn't claim any input and just skip such parameter.
if ((numInputs - inputIdx) < (numParams - i) &&
ParamInfo.hasDefaultArgument(i)) {
++NumSkippedParameters;
continue;
}
// Call custom function to match the input-parameter pair.
if (!pairMatcher(inputIdx, i))
return IM_CustomPairMatcherFailed;
// claim the input as used.
++inputIdx;
}
if (inputIdx < numInputs)
return IM_HasUnclaimedInput;
return IM_Succeeded;
}
|