1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
|
//===--- CSStep.cpp - Constraint Solver Steps -----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the \c SolverStep class and its related types,
// which is used by constraint solver to do iterative solving.
//
//===----------------------------------------------------------------------===//
#include "CSStep.h"
#include "TypeChecker.h"
#include "swift/AST/Types.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/Sema/ConstraintSystem.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace swift;
using namespace constraints;
ComponentStep::Scope::Scope(ComponentStep &component)
: CS(component.CS), Component(component) {
TypeVars = std::move(CS.TypeVariables);
for (auto *typeVar : component.TypeVars)
CS.addTypeVariable(typeVar);
auto &workList = CS.InactiveConstraints;
workList.splice(workList.end(), *component.Constraints);
SolverScope = new ConstraintSystem::SolverScope(CS);
PrevPartialScope = CS.solverState->PartialSolutionScope;
CS.solverState->PartialSolutionScope = SolverScope;
}
StepResult SplitterStep::take(bool prevFailed) {
// "split" is considered a failure if previous step failed,
// or there is a failure recorded by constraint system, or
// system can't be simplified.
if (prevFailed || CS.failedConstraint || CS.simplify())
return done(/*isSuccess=*/false);
SmallVector<std::unique_ptr<SolverStep>, 4> followup;
// Try to run "connected components" algorithm and split
// type variables and their constraints into independent
// sub-systems to solve.
computeFollowupSteps(followup);
// If there is only one step, there is no reason to
// try to merge solutions, "split" step should be considered
// done and replaced by a single component step.
if (followup.size() < 2)
return replaceWith(std::move(followup.front()));
/// Wait until all of the steps are done.
return suspend(followup);
}
StepResult SplitterStep::resume(bool prevFailed) {
// Restore the state of the constraint system to before split.
CS.CG.setOrphanedConstraints(std::move(OrphanedConstraints));
auto &workList = CS.InactiveConstraints;
for (auto &component : Components)
workList.splice(workList.end(), component);
// If we came back to this step and previous (one of the components)
// failed, it means that we can't solve this step either.
if (prevFailed)
return done(/*isSuccess=*/false);
// Otherwise let's try to merge partial solutions together
// and form a complete solution(s) for this split.
return done(mergePartialSolutions());
}
void SplitterStep::computeFollowupSteps(
SmallVectorImpl<std::unique_ptr<SolverStep>> &steps) {
// Compute next steps based on that connected components
// algorithm tells us is splittable.
auto &CG = CS.getConstraintGraph();
// Contract the edges of the constraint graph.
CG.optimize();
// Compute the connected components of the constraint graph.
auto components = CG.computeConnectedComponents(CS.getTypeVariables());
unsigned numComponents = components.size();
if (numComponents < 2) {
steps.push_back(std::make_unique<ComponentStep>(
CS, 0, &CS.InactiveConstraints, Solutions));
return;
}
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
auto indent = CS.solverState->getCurrentIndent();
// Verify that the constraint graph is valid.
CG.verify();
log.indent(indent) << "---Constraint graph---\n";
CG.print(CS.getTypeVariables(), log);
log.indent(indent) << "---Connected components---\n";
CG.printConnectedComponents(CS.getTypeVariables(), log);
}
// Take the orphaned constraints, because they'll go into a component now.
OrphanedConstraints = CG.takeOrphanedConstraints();
IncludeInMergedResults.resize(numComponents, true);
Components.resize(numComponents);
PartialSolutions = std::unique_ptr<SmallVector<Solution, 4>[]>(
new SmallVector<Solution, 4>[numComponents]);
// Add components.
for (unsigned i : indices(components)) {
unsigned solutionIndex = components[i].solutionIndex;
// If there are no dependencies, build a normal component step.
if (components[i].getDependencies().empty()) {
steps.push_back(std::make_unique<ComponentStep>(
CS, solutionIndex, &Components[i], std::move(components[i]),
PartialSolutions[solutionIndex]));
continue;
}
// Note that the partial results from any dependencies of this component
// need not be included in the final merged results, because they'll
// already be part of the partial results for this component.
for (auto dependsOn : components[i].getDependencies()) {
IncludeInMergedResults[dependsOn] = false;
}
// Otherwise, build a dependent component "splitter" step, which
// handles all combinations of incoming partial solutions.
steps.push_back(std::make_unique<DependentComponentSplitterStep>(
CS, &Components[i], solutionIndex, std::move(components[i]),
llvm::MutableArrayRef(PartialSolutions.get(), numComponents)));
}
assert(CS.InactiveConstraints.empty() && "Missed a constraint");
}
namespace {
/// Retrieve the size of a container.
template<typename Container>
unsigned getSize(const Container &container) {
return container.size();
}
/// Retrieve the size of a container referenced by a pointer.
template<typename Container>
unsigned getSize(const Container *container) {
return container->size();
}
/// Identity getSize() for cases where we are working with a count.
unsigned getSize(unsigned size) {
return size;
}
/// Compute the next combination of indices into the given array of
/// containers.
/// \param containers Containers (each of which must have a `size()`) in
/// which the indices will be generated.
/// \param indices The current indices into the containers, which will
/// be updated to represent the next combination.
/// \returns true to indicate that \c indices contains the next combination,
/// or \c false to indicate that there are no combinations left.
template<typename Container>
bool nextCombination(ArrayRef<Container> containers,
MutableArrayRef<unsigned> indices) {
assert(containers.size() == indices.size() &&
"Indices should have been initialized to the same size with 0s");
unsigned numIndices = containers.size();
for (unsigned n = numIndices; n > 0; --n) {
++indices[n - 1];
// If we haven't run out of solutions yet, we're done.
if (indices[n - 1] < getSize(containers[n - 1]))
break;
// If we ran out of solutions at the first position, we're done.
if (n == 1) {
return false;
}
// Zero out the indices from here to the end.
for (unsigned i = n - 1; i != numIndices; ++i)
indices[i] = 0;
}
return true;
}
}
bool SplitterStep::mergePartialSolutions() const {
assert(Components.size() >= 2);
// Compute the # of partial solutions that will be merged for each
// component. Components that shouldn't be included will get a count of 1,
// an we'll skip them later.
auto numComponents = Components.size();
SmallVector<unsigned, 2> countsVec;
countsVec.reserve(numComponents);
for (unsigned idx : range(numComponents)) {
countsVec.push_back(
IncludeInMergedResults[idx] ? PartialSolutions[idx].size() : 1);
}
// Produce all combinations of partial solutions.
ArrayRef<unsigned> counts = countsVec;
SmallVector<unsigned, 2> indices(numComponents, 0);
bool anySolutions = false;
size_t solutionMemory = 0;
do {
// Create a new solver scope in which we apply all of the relevant partial
// solutions.
ConstraintSystem::SolverScope scope(CS);
for (unsigned i : range(numComponents)) {
if (!IncludeInMergedResults[i])
continue;
CS.applySolution(PartialSolutions[i][indices[i]]);
}
// This solution might be worse than the best solution found so far.
// If so, skip it.
if (!CS.worseThanBestSolution()) {
// Finalize this solution.
auto solution = CS.finalize();
solutionMemory += solution.getTotalMemory();
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << "(composed solution:";
CS.CurrentScore.print(log);
log << ")\n";
}
// Save this solution.
Solutions.push_back(std::move(solution));
anySolutions = true;
}
// Since merging partial solutions can go exponential, make sure we didn't
// pass the "too complex" thresholds including allocated memory and time.
if (CS.isTooComplex(solutionMemory))
return false;
} while (nextCombination(counts, indices));
return anySolutions;
}
StepResult DependentComponentSplitterStep::take(bool prevFailed) {
// "split" is considered a failure if previous step failed,
// or there is a failure recorded by constraint system, or
// system can't be simplified.
if (prevFailed || CS.getFailedConstraint() || CS.simplify())
return done(/*isSuccess=*/false);
// Figure out the sets of partial solutions that this component depends on.
SmallVector<const SmallVector<Solution, 4> *, 2> dependsOnSets;
for (auto index : Component.getDependencies()) {
dependsOnSets.push_back(&AllPartialSolutions[index]);
}
// Produce all combinations of partial solutions for the inputs.
SmallVector<std::unique_ptr<SolverStep>, 4> followup;
SmallVector<unsigned, 2> indices(Component.getDependencies().size(), 0);
auto dependsOnSetsRef = llvm::ArrayRef(dependsOnSets);
do {
// Form the set of input partial solutions.
SmallVector<const Solution *, 2> dependsOnSolutions;
for (auto index : swift::indices(indices)) {
dependsOnSolutions.push_back(&(*dependsOnSets[index])[indices[index]]);
}
ContextualSolutions.push_back(std::make_unique<SmallVector<Solution, 2>>());
followup.push_back(std::make_unique<ComponentStep>(
CS, Index, Constraints, Component, std::move(dependsOnSolutions),
*ContextualSolutions.back()));
} while (nextCombination(dependsOnSetsRef, indices));
/// Wait until all of the component steps are done.
return suspend(followup);
}
StepResult DependentComponentSplitterStep::resume(bool prevFailed) {
for (auto &ComponentStepSolutions : ContextualSolutions) {
Solutions.append(std::make_move_iterator(ComponentStepSolutions->begin()),
std::make_move_iterator(ComponentStepSolutions->end()));
}
return done(/*isSuccess=*/!Solutions.empty());
}
void DependentComponentSplitterStep::print(llvm::raw_ostream &Out) {
Out << "DependentComponentSplitterStep for dependencies on [";
interleave(
Component.getDependencies(), [&](unsigned index) { Out << index; },
[&] { Out << ", "; });
Out << "]\n";
}
StepResult ComponentStep::take(bool prevFailed) {
// One of the previous components created by "split"
// failed, it means that we can't solve this component.
if ((prevFailed && DependsOnPartialSolutions.empty()) ||
CS.isTooComplex(Solutions))
return done(/*isSuccess=*/false);
// Setup active scope, only if previous component didn't fail.
setupScope();
// If there are any dependent partial solutions to compose, do so now.
if (!DependsOnPartialSolutions.empty()) {
for (auto partial : DependsOnPartialSolutions) {
CS.applySolution(*partial);
}
// Activate all of the one-way constraints.
SmallVector<Constraint *, 4> oneWayConstraints;
for (auto &constraint : CS.InactiveConstraints) {
if (constraint.isOneWayConstraint())
oneWayConstraints.push_back(&constraint);
}
for (auto constraint : oneWayConstraints) {
CS.activateConstraint(constraint);
}
// Simplify again.
if (CS.failedConstraint || CS.simplify())
return done(/*isSuccess=*/false);
}
/// Try to figure out what this step is going to be,
/// after the scope has been established.
SmallString<64> potentialBindings;
llvm::raw_svector_ostream bos(potentialBindings);
auto bestBindings = CS.determineBestBindings([&](const BindingSet &bindings) {
if (CS.isDebugMode() && bindings.hasViableBindings()) {
bos.indent(CS.solverState->getCurrentIndent() + 2);
bos << "(";
bindings.dump(bos, CS.solverState->getCurrentIndent() + 2);
bos << ")\n";
}
});
auto *disjunction = CS.selectDisjunction();
auto *conjunction = CS.selectConjunction();
if (CS.isDebugMode()) {
SmallVector<Constraint *, 4> disjunctions;
CS.collectDisjunctions(disjunctions);
std::vector<std::string> overloadDisjunctions;
for (const auto &disjunction : disjunctions) {
PrintOptions PO;
PO.PrintTypesForDebugging = true;
auto constraints = disjunction->getNestedConstraints();
if (constraints[0]->getKind() == ConstraintKind::BindOverload)
overloadDisjunctions.push_back(
constraints[0]->getFirstType()->getString(PO));
}
if (!potentialBindings.empty() || !overloadDisjunctions.empty()) {
auto &log = getDebugLogger();
log << "(Potential Binding(s): " << '\n';
log << potentialBindings;
}
if (!overloadDisjunctions.empty()) {
auto &log = getDebugLogger();
log.indent(CS.solverState->getCurrentIndent() + 2);
log << "Disjunction(s) = [";
interleave(overloadDisjunctions, log, ", ");
log << "]\n";
}
if (!potentialBindings.empty() || !overloadDisjunctions.empty()) {
auto &log = getDebugLogger();
log << ")\n";
}
}
enum class StepKind { Binding, Disjunction, Conjunction };
auto chooseStep = [&]() -> std::optional<StepKind> {
// Bindings usually happen first, but sometimes we want to prioritize a
// disjunction or conjunction.
if (bestBindings) {
if (disjunction && !bestBindings->favoredOverDisjunction(disjunction))
return StepKind::Disjunction;
if (conjunction && !bestBindings->favoredOverConjunction(conjunction))
return StepKind::Conjunction;
return StepKind::Binding;
}
if (disjunction)
return StepKind::Disjunction;
if (conjunction)
return StepKind::Conjunction;
return std::nullopt;
};
if (auto step = chooseStep()) {
switch (*step) {
case StepKind::Binding:
return suspend(
std::make_unique<TypeVariableStep>(*bestBindings, Solutions));
case StepKind::Disjunction:
return suspend(
std::make_unique<DisjunctionStep>(CS, disjunction, Solutions));
case StepKind::Conjunction:
return suspend(
std::make_unique<ConjunctionStep>(CS, conjunction, Solutions));
}
llvm_unreachable("Unhandled case in switch!");
}
if (!CS.solverState->allowsFreeTypeVariables() && CS.hasFreeTypeVariables()) {
// If there are no disjunctions or type variables to bind
// we can't solve this system unless we have free type variables
// allowed in the solution.
return finalize(/*isSuccess=*/false);
}
auto printConstraints = [&](const ConstraintList &constraints) {
for (auto &constraint : constraints)
constraint.print(
getDebugLogger().indent(CS.solverState->getCurrentIndent()),
&CS.getASTContext().SourceMgr, CS.solverState->getCurrentIndent());
};
// If we don't have any disjunction or type variable choices left, we're done
// solving. Make sure we don't have any unsolved constraints left over, using
// report_fatal_error to make sure we trap in debug builds and fail the step
// in release builds.
if (!CS.ActiveConstraints.empty()) {
if (CS.isDebugMode()) {
getDebugLogger() << "(failed due to remaining active constraints:\n";
printConstraints(CS.ActiveConstraints);
getDebugLogger() << ")\n";
}
CS.InvalidState = true;
return finalize(/*isSuccess=*/false);
}
if (!CS.solverState->allowsFreeTypeVariables()) {
if (!CS.InactiveConstraints.empty()) {
if (CS.isDebugMode()) {
getDebugLogger() << "(failed due to remaining inactive constraints:\n";
printConstraints(CS.InactiveConstraints);
getDebugLogger() << ")\n";
}
CS.InvalidState = true;
return finalize(/*isSuccess=*/false);
}
}
// If this solution is worse than the best solution we've seen so far,
// skip it.
if (CS.worseThanBestSolution())
return finalize(/*isSuccess=*/false);
// If we only have relational or member constraints and are allowing
// free type variables, save the solution.
for (auto &constraint : CS.InactiveConstraints) {
switch (constraint.getClassification()) {
case ConstraintClassification::Relational:
case ConstraintClassification::Member:
continue;
default:
return finalize(/*isSuccess=*/false);
}
}
auto solution = CS.finalize();
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << "(found solution:";
getCurrentScore().print(log);
log << ")\n";
}
Solutions.push_back(std::move(solution));
return finalize(/*isSuccess=*/true);
}
StepResult ComponentStep::finalize(bool isSuccess) {
// If this was a single component, there is nothing to be done,
// because it represents the whole constraint system at some
// point of the solver path.
if (IsSingle)
return done(isSuccess);
// Rewind all modifications done to constraint system.
ComponentScope.reset();
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << (isSuccess ? "finished" : "failed") << " component #" << Index
<< ")\n";
}
// If we came either back to this step and previous
// (either disjunction or type var) failed, it means
// that component as a whole has failed.
if (!isSuccess)
return done(/*isSuccess=*/false);
assert(!Solutions.empty() && "No Solutions?");
// For each of the partial solutions, subtract off the current score.
// It doesn't contribute.
for (auto &solution : Solutions)
solution.getFixedScore() -= OriginalScore;
// Restore the original best score.
CS.solverState->BestScore = OriginalBestScore;
// When there are multiple partial solutions for a given connected component,
// rank those solutions to pick the best ones. This limits the number of
// combinations we need to produce; in the common case, down to a single
// combination.
filterSolutions(Solutions, /*minimize=*/true);
return done(/*isSuccess=*/true);
}
void TypeVariableStep::setup() {
++CS.solverState->NumTypeVariablesBound;
}
bool TypeVariableStep::attempt(const TypeVariableBinding &choice) {
++CS.solverState->NumTypeVariableBindings;
if (choice.hasDefaultedProtocol())
SawFirstLiteralConstraint = true;
// Try to solve the system with typeVar := type
return choice.attempt(CS);
}
StepResult TypeVariableStep::resume(bool prevFailed) {
assert(ActiveChoice);
// If there was no failure in the sub-path it means
// that active binding has a solution.
AnySolved |= !prevFailed;
bool shouldStop = shouldStopAfter(ActiveChoice->second);
// Rewind back all of the changes made to constraint system.
ActiveChoice.reset();
if (CS.isDebugMode())
getDebugLogger() << ")\n";
// Let's check if we should stop right before
// attempting any new bindings.
if (shouldStop)
return done(/*isSuccess=*/AnySolved);
// Attempt next type variable binding.
return take(prevFailed);
}
StepResult DisjunctionStep::resume(bool prevFailed) {
// If disjunction step is re-taken and there should be
// active choice, let's see if it has be solved or not.
assert(ActiveChoice);
// If choice (sub-path) has failed, it's okay, other
// choices have to be attempted regardless, since final
// decision could be made only after attempting all
// of the choices, so let's just ignore failed ones.
if (!prevFailed) {
auto &choice = ActiveChoice->second;
auto score = getBestScore(Solutions);
if (!choice.isGenericOperator() && choice.isSymmetricOperator()) {
if (!BestNonGenericScore || score < BestNonGenericScore) {
BestNonGenericScore = score;
if (shouldSkipGenericOperators()) {
// The disjunction choice producer shouldn't do the work
// to partition the generic operator choices if generic
// operators are going to be skipped.
Producer.setNeedsGenericOperatorOrdering(false);
}
}
}
AnySolved = true;
// Remember the last successfully solved choice,
// it would be useful when disjunction is exhausted.
LastSolvedChoice = {choice, *score};
}
// Rewind back the constraint system information.
ActiveChoice.reset();
if (CS.isDebugMode())
getDebugLogger() << ")\n";
// Attempt next disjunction choice (if any left).
return take(prevFailed);
}
bool IsDeclRefinementOfRequest::evaluate(Evaluator &evaluator,
ValueDecl *declA,
ValueDecl *declB) const {
auto *typeA = declA->getInterfaceType()->getAs<GenericFunctionType>();
auto *typeB = declB->getInterfaceType()->getAs<GenericFunctionType>();
if (!typeA || !typeB)
return false;
auto genericSignatureA = typeA->getGenericSignature();
auto genericSignatureB = typeB->getGenericSignature();
// Substitute generic parameters with their archetypes in each generic function.
Type substTypeA = typeA->substGenericArgs(
genericSignatureA.getGenericEnvironment()->getForwardingSubstitutionMap());
Type substTypeB = typeB->substGenericArgs(
genericSignatureB.getGenericEnvironment()->getForwardingSubstitutionMap());
// Attempt to substitute archetypes from the second type with archetypes in the
// same structural position in the first type.
TypeSubstitutionMap substMap;
substTypeB = substTypeB->substituteBindingsTo(substTypeA,
[&](ArchetypeType *origType, CanType substType) -> CanType {
auto interfaceTy =
origType->getInterfaceType()->getCanonicalType()->getAs<SubstitutableType>();
if (!interfaceTy)
return CanType();
// Make sure any duplicate bindings are equal to the one already recorded.
// Otherwise, the substitution has conflicting generic arguments.
auto bound = substMap.find(interfaceTy);
if (bound != substMap.end() && !bound->second->isEqual(substType))
return CanType();
substMap[interfaceTy] = substType;
return substType;
});
if (!substTypeB)
return false;
auto result = checkRequirements(
declA->getDeclContext()->getParentModule(),
genericSignatureB.getRequirements(),
QueryTypeSubstitutionMap{ substMap });
if (result != CheckRequirementsResult::Success)
return false;
return substTypeA->isEqual(substTypeB);
}
bool TypeChecker::isDeclRefinementOf(ValueDecl *declA, ValueDecl *declB) {
return evaluateOrDefault(declA->getASTContext().evaluator,
IsDeclRefinementOfRequest{ declA, declB },
false);
}
bool DisjunctionStep::shouldSkip(const DisjunctionChoice &choice) const {
auto &ctx = CS.getASTContext();
auto skip = [&](std::string reason) -> bool {
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << "(skipping " + reason + " ";
choice.print(log, &ctx.SourceMgr, CS.solverState->getCurrentIndent());
log << ")\n";
}
return true;
};
// Skip disabled overloads in the diagnostic mode if they do not have a
// fix attached to them e.g. overloads where labels didn't match up.
if (choice.isDisabled())
return skip("disabled");
// Skip unavailable overloads (unless in diagnostic mode).
if (choice.isUnavailable() && !CS.shouldAttemptFixes())
return skip("unavailable");
if (ctx.TypeCheckerOpts.DisableConstraintSolverPerformanceHacks)
return false;
// If the solver already found a solution with a better overload choice that
// can be unconditionally substituted by the current choice, skip the current
// choice.
if (LastSolvedChoice && LastSolvedChoice->second == getCurrentScore() &&
choice.isGenericOperator()) {
auto *declA = LastSolvedChoice->first->getOverloadChoice().getDecl();
auto *declB = static_cast<Constraint *>(choice)->getOverloadChoice().getDecl();
if (declA->getBaseIdentifier().isArithmeticOperator() &&
TypeChecker::isDeclRefinementOf(declA, declB)) {
return skip("subtype");
}
}
// Don't attempt to solve for generic operators if we already have
// a non-generic solution.
// FIXME: Less-horrible but still horrible hack to attempt to
// speed things up. Skip the generic operators if we
// already have a solution involving non-generic operators,
// but continue looking for a better non-generic operator
// solution.
if (BestNonGenericScore && choice.isGenericOperator()) {
auto &score = BestNonGenericScore->Data;
// Not all of the unary operators have `CGFloat` overloads,
// so in order to preserve previous behavior (and overall
// best solution) with implicit Double<->CGFloat conversion
// we need to allow attempting generic operators for such cases.
if (score[SK_ImplicitValueConversion] > 0 && choice.isUnaryOperator())
return false;
if (shouldSkipGenericOperators())
return skip("generic");
}
return false;
}
bool DisjunctionStep::shouldStopAt(const DisjunctionChoice &choice) const {
if (!LastSolvedChoice)
return false;
auto *lastChoice = LastSolvedChoice->first;
auto delta = LastSolvedChoice->second - getCurrentScore();
bool hasUnavailableOverloads = delta.Data[SK_Unavailable] > 0;
bool hasFixes = delta.Data[SK_Fix] > 0;
bool hasAsyncMismatch = delta.Data[SK_AsyncInSyncMismatch] > 0;
auto isBeginningOfPartition = choice.isBeginningOfPartition();
// Attempt to short-circuit evaluation of this disjunction only
// if the disjunction choice we are comparing to did not involve:
// 1. selecting unavailable overloads
// 2. result in fixes being applied to reach a solution
// 3. selecting an overload that results in an async/sync mismatch
return !hasUnavailableOverloads && !hasFixes && !hasAsyncMismatch &&
(isBeginningOfPartition ||
shortCircuitDisjunctionAt(choice, lastChoice));
}
bool swift::isSIMDOperator(ValueDecl *value) {
if (!value)
return false;
auto func = dyn_cast<FuncDecl>(value);
if (!func)
return false;
if (!func->isOperator())
return false;
auto nominal = func->getDeclContext()->getSelfNominalTypeDecl();
if (!nominal)
return false;
if (nominal->getName().empty())
return false;
return nominal->getName().str().starts_with_insensitive("simd");
}
bool DisjunctionStep::shortCircuitDisjunctionAt(
Constraint *currentChoice, Constraint *lastSuccessfulChoice) const {
auto &ctx = CS.getASTContext();
// Anything without a fix is better than anything with a fix.
if (currentChoice->getFix() && !lastSuccessfulChoice->getFix())
return true;
if (ctx.TypeCheckerOpts.DisableConstraintSolverPerformanceHacks)
return false;
if (auto restriction = currentChoice->getRestriction()) {
// Non-optional conversions are better than optional-to-optional
// conversions.
if (*restriction == ConversionRestrictionKind::OptionalToOptional)
return true;
// Array-to-pointer conversions are better than inout-to-pointer
// conversions.
if (auto successfulRestriction = lastSuccessfulChoice->getRestriction()) {
if (*successfulRestriction == ConversionRestrictionKind::ArrayToPointer &&
*restriction == ConversionRestrictionKind::InoutToPointer)
return true;
}
}
// Implicit conversions are better than checked casts.
if (currentChoice->getKind() == ConstraintKind::CheckedCast)
return true;
return false;
}
bool DisjunctionStep::attempt(const DisjunctionChoice &choice) {
++CS.solverState->NumDisjunctionTerms;
// If the disjunction requested us to, remember which choice we
// took for it.
if (auto *disjunctionLocator = getLocator()) {
auto index = choice.getIndex();
recordDisjunctionChoice(disjunctionLocator, index);
// Implicit unwraps of optionals are worse solutions than those
// not involving implicit unwraps.
if (!disjunctionLocator->getPath().empty()) {
auto kind = disjunctionLocator->getPath().back().getKind();
if (kind == ConstraintLocator::ImplicitlyUnwrappedDisjunctionChoice ||
kind == ConstraintLocator::DynamicLookupResult) {
assert(index == 0 || index == 1);
if (index == 1)
CS.increaseScore(SK_ForceUnchecked, disjunctionLocator);
}
}
}
return choice.attempt(CS);
}
bool ConjunctionStep::attempt(const ConjunctionElement &element) {
++CS.solverState->NumConjunctionTerms;
// Outside or previous element score doesn't affect
// subsequent elements.
CS.solverState->BestScore.reset();
// Apply solution inferred for all the previous elements
// because this element could reference declarations
// established in previous element(s).
if (!Solutions.empty()) {
assert(Solutions.size() == 1);
// Note that solution is removed here. This is done
// because we want build a single complete solution
// incrementally.
CS.applySolution(Solutions.pop_back_val());
}
// Make sure that element is solved in isolation
// by dropping all scoring information.
CS.CurrentScore = Score();
// Reset the scope counter to avoid "too complex" failures
// when closure has a lot of elements in the body.
CS.CountScopes = 0;
// If timer is enabled, let's reset it so that each element
// (expression) gets a fresh time slice to get solved. This
// is important for closures with large number of statements
// in them.
if (CS.Timer) {
CS.Timer.emplace(element.getLocator(), CS);
}
auto success = element.attempt(CS);
// If element attempt has failed, mark whole conjunction
// as a failure.
if (!success)
markAsFailed();
return success;
}
StepResult ConjunctionStep::resume(bool prevFailed) {
// Return from the follow-up splitter step that
// attempted to apply information gained from the
// isolated constraint to the outer context.
if (Snapshot && Snapshot->isScoped()) {
Snapshot.reset();
if (CS.isDebugMode())
getDebugLogger() << ")\n";
return done(/*isSuccess=*/!prevFailed);
}
// If conjunction step is re-taken and there should be
// active choice, let's see if it has be solved or not.
assert(ActiveChoice);
// Rewind back the constraint system information.
ActiveChoice.reset();
if (CS.isDebugMode())
getDebugLogger() << ")\n";
// Check whether it makes sense to continue solving
// this conjunction. Note that for conjunction constraint
// to be considered a success all of its elements have
// to produce a single solution.
{
auto failConjunction = [&]() {
markAsFailed();
return done(/*isSuccess=*/false);
};
if (prevFailed)
return failConjunction();
// There could be a local ambiguity related to
// the current element, let's try to resolve it.
if (Solutions.size() > 1)
filterSolutions(Solutions, /*minimize=*/true);
// In diagnostic mode we need to stop a conjunction
// but consider it successful if there are:
//
// - More than one solution for this element. Ambiguity
// needs to get propagated back to the outer context
// to be diagnosed.
// - A single solution that requires one or more fixes,
// continuing would result in more errors associated
// with the failed element.
if (CS.shouldAttemptFixes()) {
if (Solutions.size() > 1)
Producer.markExhausted();
if (Solutions.size() == 1) {
auto score = Solutions.front().getFixedScore();
if (score.Data[SK_Fix] > 0 && !CS.isForCodeCompletion())
Producer.markExhausted();
}
} else if (Solutions.size() != 1) {
return failConjunction();
}
// Since there is only one solution, let's
// consider this element as solved.
AnySolved = true;
}
// After all of the elements have been checked, let's
// see if conjunction was successful and if so, continue
// solving along the current path until complete
// solution is reached.
if (Producer.isExhausted()) {
// If one of the elements failed, that means while
// conjunction failed with it.
if (HadFailure)
return done(/*isSuccess=*/false);
// If this was an isolated conjunction solver needs to do
// the following:
//
// a. Return all of the previously out-of-scope constraints;
// b. Apply solution reached for the conjunction;
// c. Continue solving along this path to reach a
// complete solution using type information
// inferred from this step.
if (Conjunction->isIsolated()) {
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << "(applying conjunction result to outer context\n";
}
assert(
Snapshot &&
"Isolated conjunction requires a snapshot of the constraint system");
// In diagnostic mode it's valid for an element to have
// multiple solutions. Ambiguity just needs to be merged
// into the outer context to be property diagnosed.
if (Solutions.size() > 1) {
assert(CS.shouldAttemptFixes());
// Restore all outer type variables, constraints
// and scoring information.
Snapshot.reset();
// Apply all of the information deduced from the
// conjunction (up to the point of ambiguity)
// back to the outer context and form a joined solution.
unsigned numSolutions = 0;
for (auto &solution : Solutions) {
ConstraintSystem::SolverScope scope(CS);
CS.applySolution(solution);
// `applySolution` changes best/current scores
// of the constraint system, so they have to be
// restored right afterwards because score of the
// element does contribute to the overall score.
restoreBestScore();
restoreCurrentScore(solution.getFixedScore());
// Transform all of the unbound outer variables into
// placeholders since we are not going to solve for
// each ambiguous solution.
{
unsigned numHoles = 0;
for (auto *typeVar : CS.getTypeVariables()) {
if (!typeVar->getImpl().hasRepresentativeOrFixed()) {
CS.assignFixedType(
typeVar, PlaceholderType::get(CS.getASTContext(), typeVar));
++numHoles;
}
}
CS.increaseScore(SK_Hole, Conjunction->getLocator(), numHoles);
}
if (CS.worseThanBestSolution())
continue;
// Note that `worseThanBestSolution` isn't checked
// here because `Solutions` were pre-filtered, and
// outer score is the same for all of them.
OuterSolutions.push_back(CS.finalize());
++numSolutions;
}
return done(/*isSuccess=*/numSolutions > 0);
}
auto solution = Solutions.pop_back_val();
auto score = solution.getFixedScore();
// Restore outer type variables and prepare to solve
// constraints associated with outer context together
// with information deduced from the conjunction.
Snapshot->setupOuterContext(std::move(solution));
// Pretend that conjunction never happened.
restoreOuterState(score);
// Now that all of the information from the conjunction has
// been applied, let's attempt to solve the outer scope.
return suspend(std::make_unique<SplitterStep>(CS, OuterSolutions));
}
}
// Attempt next conjunction choice.
return take(prevFailed);
}
void ConjunctionStep::restoreOuterState(const Score &solutionScore) const {
// Restore best/current score, since upcoming step is going to
// work with outer scope in relation to the conjunction.
restoreBestScore();
restoreCurrentScore(solutionScore);
// Active all of the previously out-of-scope constraints
// because conjunction can propagate type information up
// by allowing its elements to reference type variables
// from outer scope (e.g. variable declarations and or captures).
{
CS.ActiveConstraints.splice(CS.ActiveConstraints.end(),
CS.InactiveConstraints);
for (auto &constraint : CS.ActiveConstraints)
constraint.setActive(true);
}
}
void ConjunctionStep::SolverSnapshot::applySolution(const Solution &solution) {
CS.applySolution(solution);
if (!CS.shouldAttemptFixes())
return;
// If inference succeeded, we are done.
auto score = solution.getFixedScore();
if (score.Data[SK_Fix] == 0)
return;
// If this conjunction represents a closure and inference
// has failed, let's bind all of unresolved type variables
// in its interface type to holes to avoid extraneous
// fixes produced by outer context.
auto locator = Conjunction->getLocator();
if (locator->directlyAt<ClosureExpr>()) {
auto closureTy =
CS.getClosureType(castToExpr<ClosureExpr>(locator->getAnchor()));
CS.recordTypeVariablesAsHoles(closureTy);
}
// Same for a SingleValueStmtExpr, turn any unresolved type variables present
// in its type into holes.
if (locator->isForSingleValueStmtConjunction()) {
auto *SVE = castToExpr<SingleValueStmtExpr>(locator->getAnchor());
CS.recordTypeVariablesAsHoles(CS.getType(SVE));
}
}
|