1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
|
//===--- CSStep.h - Constraint Solver Steps -------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the \c SolverStep class and its related types,
// which is used by constraint solver to do iterative solving.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SEMA_CSSTEP_H
#define SWIFT_SEMA_CSSTEP_H
#include "swift/AST/Types.h"
#include "swift/Sema/Constraint.h"
#include "swift/Sema/ConstraintGraph.h"
#include "swift/Sema/ConstraintSystem.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
#include <optional>
using namespace llvm;
namespace swift {
namespace constraints {
class SolverStep;
class ComponentStep;
/// Represents available states which every
/// given step could be in during it's lifetime.
enum class StepState { Setup, Ready, Running, Suspended, Done };
/// Represents result of the step execution,
/// and can only be constructed by `SolverStep`.
struct StepResult {
using Kind = ConstraintSystem::SolutionKind;
friend class SolverStep;
private:
Kind ResultKind;
SmallVector<std::unique_ptr<SolverStep>, 4> NextSteps;
StepResult(Kind kind) : ResultKind(kind) {}
StepResult(Kind kind, std::unique_ptr<SolverStep> step) : ResultKind(kind) {
NextSteps.push_back(std::move(step));
}
StepResult(Kind kind, SmallVectorImpl<std::unique_ptr<SolverStep>> &followup)
: ResultKind(kind), NextSteps(std::move(followup)) {}
public:
StepResult() = delete;
Kind getKind() const { return ResultKind; }
void transfer(SmallVectorImpl<std::unique_ptr<SolverStep>> &workList) {
workList.reserve(NextSteps.size());
for (auto &step : NextSteps)
workList.push_back(std::move(step));
}
private:
static StepResult success() { return StepResult(Kind::Solved); }
static StepResult failure() { return StepResult(Kind::Error); }
static StepResult unsolved(std::unique_ptr<SolverStep> singleStep) {
return StepResult(Kind::Unsolved, std::move(singleStep));
}
static StepResult
unsolved(SmallVectorImpl<std::unique_ptr<SolverStep>> &followup) {
return StepResult(Kind::Unsolved, followup);
}
};
/// Represents a single independently solvable part of
/// the constraint system. And is a base class for all
/// different types of steps there are.
class SolverStep {
friend class ConstraintSystem;
protected:
ConstraintSystem &CS;
StepState State = StepState::Setup;
/// Once step is complete this is a container to hold finalized solutions.
SmallVectorImpl<Solution> &Solutions;
public:
explicit SolverStep(ConstraintSystem &cs,
SmallVectorImpl<Solution> &solutions)
: CS(cs), Solutions(solutions) {}
virtual ~SolverStep() {}
/// \returns The current state of this step.
StepState getState() const { return State; }
/// Run preliminary setup (if needed) right
/// before taking this step for the first time.
virtual void setup() {}
/// Try to move solver forward by simplifying constraints if possible.
/// Such simplification might lead to either producing a solution, or
/// creating a set of "follow-up" more granular steps to execute.
///
/// \param prevFailed Indicate whether previous step
/// has failed (returned StepResult::Kind = Error),
/// this is useful to propagate failures when
/// unsolved steps are re-taken.
///
/// \returns status and any follow-up steps to take before considering
/// this step solved or failed.
virtual StepResult take(bool prevFailed) = 0;
/// Try to resume previously suspended step.
///
/// This happens after "follow-up" steps are done
/// and all of the required information should be
/// available to re-take this step.
///
/// \param prevFailed Indicate whether previous step
/// has failed (returned StepResult::Kind = Error),
/// this is useful to propagate failures when
/// unsolved steps are re-taken.
///
/// \returns status and any follow-up steps to take before considering
/// this step solved or failed.
virtual StepResult resume(bool prevFailed) = 0;
virtual void print(llvm::raw_ostream &Out) = 0;
protected:
/// Transition this step into one of the available states.
///
/// This is primarily driven by execution of the step itself and
/// the solver, while it executes the work list.
///
/// \param newState The new state this step should be in.
void transitionTo(StepState newState) {
#ifndef NDEBUG
// Make sure that ordering of the state transitions is correct,
// because `setup -> ready -> running [-> suspended]* -> done`
// is the only reasonable state transition path.
switch (State) {
case StepState::Setup:
assert(newState == StepState::Ready);
break;
case StepState::Ready:
assert(newState == StepState::Running);
break;
case StepState::Running:
assert(newState == StepState::Suspended || newState == StepState::Done);
break;
case StepState::Suspended:
assert(newState == StepState::Running);
break;
case StepState::Done:
llvm_unreachable("step is already done.");
}
#endif
State = newState;
}
StepResult done(bool isSuccess) {
transitionTo(StepState::Done);
return isSuccess ? StepResult::success() : StepResult::failure();
}
StepResult replaceWith(std::unique_ptr<SolverStep> replacement) {
transitionTo(StepState::Done);
return StepResult(StepResult::Kind::Solved, std::move(replacement));
}
StepResult suspend(std::unique_ptr<SolverStep> followup) {
transitionTo(StepState::Suspended);
return StepResult::unsolved(std::move(followup));
}
StepResult suspend(SmallVectorImpl<std::unique_ptr<SolverStep>> &followup) {
transitionTo(StepState::Suspended);
return StepResult::unsolved(followup);
}
/// Erase constraint from the constraint system (include constraint graph)
/// and return the constraint which follows it.
ConstraintList::iterator erase(Constraint *constraint) {
CS.CG.removeConstraint(constraint);
return CS.InactiveConstraints.erase(constraint);
}
void restore(ConstraintList::iterator &iterator, Constraint *constraint) {
CS.InactiveConstraints.insert(iterator, constraint);
CS.CG.addConstraint(constraint);
}
void recordDisjunctionChoice(ConstraintLocator *disjunctionLocator,
unsigned index) const {
CS.recordDisjunctionChoice(disjunctionLocator, index);
}
Score getCurrentScore() const { return CS.CurrentScore; }
std::optional<Score> getBestScore() const {
return CS.solverState->BestScore;
}
void filterSolutions(SmallVectorImpl<Solution> &solutions, bool minimize) {
CS.filterSolutions(solutions, minimize);
}
llvm::raw_ostream &getDebugLogger(bool indent = true) const {
auto &log = llvm::errs();
return indent ? log.indent(CS.solverState->getCurrentIndent()) : log;
}
};
/// `SplitterStep` is responsible for running connected components
/// algorithm to determine how many independent sub-systems there are.
/// Once that's done it would create one `ComponentStep` per such
/// sub-system, and move to try to solve each and then merge partial
/// solutions produced by components into complete solution(s).
class SplitterStep final : public SolverStep {
// Set of constraints associated with each component, after
// component steps are complete, all of the constraints are
// returned back to the work-list in their original order.
SmallVector<ConstraintList, 4> Components;
// Partial solutions associated with given step, each element
// of the array presents a disjoint component (or follow-up step)
// that current step has been split into.
std::unique_ptr<SmallVector<Solution, 4>[]> PartialSolutions = nullptr;
SmallVector<Constraint *, 4> OrphanedConstraints;
/// Whether to include the partial results of this component in the final
/// merged results.
SmallVector<bool, 4> IncludeInMergedResults;
public:
SplitterStep(ConstraintSystem &cs, SmallVectorImpl<Solution> &solutions)
: SolverStep(cs, solutions) {}
StepResult take(bool prevFailed) override;
StepResult resume(bool prevFailed) override;
void print(llvm::raw_ostream &Out) override {
Out << "SplitterStep with #" << Components.size() << " components\n";
}
private:
/// If current step needs follow-up steps to get completely solved,
/// let's compute them using connected components algorithm.
void computeFollowupSteps(
SmallVectorImpl<std::unique_ptr<SolverStep>> &steps);
/// Once all of the follow-up steps are complete, let's try
/// to merge resulting solutions together, to form final solution(s)
/// for this step.
///
/// \returns true if there are any solutions, false otherwise.
bool mergePartialSolutions() const;
};
/// `DependentComponentSplitterStep` is responsible for composing the partial
/// solutions from other components (on which this component depends) into
/// the inputs based on which we can solve a particular component.
class DependentComponentSplitterStep final : public SolverStep {
/// Constraints "in scope" of this step.
ConstraintList *Constraints;
/// Index into the parent splitter step.
unsigned Index;
/// The component that has dependencies.
ConstraintGraph::Component Component;
/// Array containing all of the partial solutions for the parent split.
MutableArrayRef<SmallVector<Solution, 4>> AllPartialSolutions;
/// The solutions computed the \c ComponentSteps created for each partial
/// solution combinations. Will be merged into the final \c Solutions vector
/// in \c resume.
std::vector<std::unique_ptr<SmallVector<Solution, 2>>> ContextualSolutions;
/// Take all of the constraints in this component and put them into
/// \c Constraints.
void injectConstraints() {
for (auto constraint : Component.getConstraints()) {
Constraints->erase(constraint);
Constraints->push_back(constraint);
}
}
public:
DependentComponentSplitterStep(
ConstraintSystem &cs,
ConstraintList *constraints,
unsigned index,
ConstraintGraph::Component &&component,
MutableArrayRef<SmallVector<Solution, 4>> allPartialSolutions)
: SolverStep(cs, allPartialSolutions[index]), Constraints(constraints),
Index(index), Component(std::move(component)),
AllPartialSolutions(allPartialSolutions) {
assert(!Component.getDependencies().empty() && "Should use ComponentStep");
injectConstraints();
}
StepResult take(bool prevFailed) override;
StepResult resume(bool prevFailed) override;
void print(llvm::raw_ostream &Out) override;
};
/// `ComponentStep` represents a set of type variables and related
/// constraints which could be solved independently. It's further
/// simplified into "binding" steps which attempt type variable and
/// disjunction choices.
class ComponentStep final : public SolverStep {
class Scope {
ConstraintSystem &CS;
ConstraintSystem::SolverScope *SolverScope;
SetVector<TypeVariableType *> TypeVars;
ConstraintSystem::SolverScope *PrevPartialScope = nullptr;
// The component this scope is associated with.
ComponentStep &Component;
public:
Scope(ComponentStep &component);
~Scope() {
delete SolverScope; // rewind back all of the changes.
CS.solverState->PartialSolutionScope = PrevPartialScope;
// return all of the saved type variables back to the system.
CS.TypeVariables = std::move(TypeVars);
// return all of the saved constraints back to the component.
auto &constraints = *Component.Constraints;
constraints.splice(constraints.end(), CS.InactiveConstraints);
}
};
/// The position of the component in the set of
/// components produced by "split" step.
unsigned Index;
/// Indicates whether this is only component produced
/// by "split" step. This information opens optimization
/// opportunity, because if there are no other components,
/// constraint system doesn't have to pruned from
/// unrelated type variables and their constraints.
bool IsSingle;
/// The score associated with constraint system before
/// the component step is taken.
Score OriginalScore;
/// The original best score computed before any of the
/// component steps belonging to the same "split" are taken.
std::optional<Score> OriginalBestScore;
/// If this step depends on other smaller steps to be solved first
/// we need to keep active scope until all of the work is done.
std::unique_ptr<Scope> ComponentScope = nullptr;
/// Type variables and constraints "in scope" of this step.
TinyPtrVector<TypeVariableType *> TypeVars;
/// Constraints "in scope" of this step.
ConstraintList *Constraints;
/// The set of partial solutions that should be composed before evaluating
/// this component.
SmallVector<const Solution *, 2> DependsOnPartialSolutions;
/// Constraint which doesn't have any free type variables associated
/// with it, which makes it disconnected in the graph.
Constraint *OrphanedConstraint = nullptr;
public:
/// Create a single component step.
ComponentStep(ConstraintSystem &cs, unsigned index,
ConstraintList *constraints,
SmallVectorImpl<Solution> &solutions)
: SolverStep(cs, solutions), Index(index), IsSingle(true),
OriginalScore(getCurrentScore()), OriginalBestScore(getBestScore()),
Constraints(constraints) {}
/// Create a component step from a constraint graph component.
ComponentStep(ConstraintSystem &cs, unsigned index,
ConstraintList *constraints,
ConstraintGraph::Component &&component,
SmallVectorImpl<Solution> &solutions)
: SolverStep(cs, solutions), Index(index), IsSingle(false),
OriginalScore(getCurrentScore()), OriginalBestScore(getBestScore()),
Constraints(constraints) {
if (component.isOrphaned()) {
assert(component.getConstraints().size() == 1);
OrphanedConstraint = component.getConstraints().front();
} else {
assert(component.typeVars.size() > 0);
}
TypeVars = std::move(component.typeVars);
for (auto constraint : component.getConstraints()) {
constraints->erase(constraint);
Constraints->push_back(constraint);
}
assert(component.getDependencies().empty());
}
/// Create a component step that composes existing partial solutions before
/// solving constraints.
ComponentStep(
ConstraintSystem &cs, unsigned index,
ConstraintList *constraints,
const ConstraintGraph::Component &component,
llvm::SmallVectorImpl<const Solution *> &&dependsOnPartialSolutions,
SmallVectorImpl<Solution> &solutions)
: SolverStep(cs, solutions), Index(index), IsSingle(false),
OriginalScore(getCurrentScore()), OriginalBestScore(getBestScore()),
Constraints(constraints),
DependsOnPartialSolutions(std::move(dependsOnPartialSolutions)) {
TypeVars = component.typeVars;
assert(DependsOnPartialSolutions.size() ==
component.getDependencies().size());
for (auto constraint : component.getConstraints()) {
constraints->erase(constraint);
Constraints->push_back(constraint);
}
}
StepResult take(bool prevFailed) override;
StepResult resume(bool prevFailed) override { return finalize(!prevFailed); }
void print(llvm::raw_ostream &Out) override {
Out << "ComponentStep with at #" << Index << '\n';
}
private:
void setupScope() {
// If this is a single component, there is no need
// to preliminary modify constraint system or log anything.
if (IsSingle)
return;
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << "(solving component #" << Index << '\n';
}
ComponentScope = std::make_unique<Scope>(*this);
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << "Type variables in scope = "
<< "[";
auto typeVars = CS.getTypeVariables();
PrintOptions PO;
PO.PrintTypesForDebugging = true;
interleave(typeVars, [&](TypeVariableType *typeVar) {
Type(typeVar).print(log, PO);
},
[&] {
log << ", ";
});
log << "]" << '\n';
}
// If this component has orphaned constraint attached,
// let's return it to the graph.
CS.CG.setOrphanedConstraint(OrphanedConstraint);
}
/// Finalize current component by either cleanup if sub-tasks
/// have failed, or solution generation and minimization.
StepResult finalize(bool isSuccess);
};
template <typename P> class BindingStep : public SolverStep {
protected:
using Scope = ConstraintSystem::SolverScope;
P Producer;
/// Indicates whether any of the attempted bindings
/// produced a solution.
bool AnySolved = false;
/// Active binding (scope + choice) which is currently
/// being attempted, helps to rewind state of the
/// constraint system back to original before attempting
/// next binding, if any.
std::optional<std::pair<std::unique_ptr<Scope>, typename P::Element>>
ActiveChoice;
BindingStep(ConstraintSystem &cs, P producer,
SmallVectorImpl<Solution> &solutions)
: SolverStep(cs, solutions), Producer(std::move(producer)) {}
public:
StepResult take(bool prevFailed) override {
// Before attempting the next choice, let's check whether the constraint
// system is too complex already.
if (CS.isTooComplex(Solutions))
return done(/*isSuccess=*/false);
while (auto choice = Producer()) {
if (shouldSkip(*choice))
continue;
if (shouldStopAt(*choice))
break;
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << "(attempting ";
choice->print(log, &CS.getASTContext().SourceMgr, CS.solverState->getCurrentIndent() + 2);
log << '\n';
}
{
auto scope = std::make_unique<Scope>(CS);
if (attempt(*choice)) {
ActiveChoice.emplace(std::move(scope), *choice);
if (CS.isDebugMode()) {
auto &log = llvm::errs();
auto &CG = CS.getConstraintGraph();
CG.dumpActiveScopeChanges(log, CS.solverState->getCurrentIndent());
}
return suspend(std::make_unique<SplitterStep>(CS, Solutions));
}
}
if (CS.isDebugMode())
getDebugLogger() << ")\n";
// If this binding didn't match, let's check if we've attempted
// enough bindings to stop, because some producers might need
// to compute next step of bindings to try, which we'd want to avoid.
if (shouldStopAfter(*choice))
break;
}
return done(/*isSuccess=*/AnySolved);
}
protected:
/// Attempt to apply given binding choice to constraint system.
/// This action is going to establish "active choice" of this step
/// to point to a given choice.
///
/// \param choice The choice to attempt.
///
/// \return true if the choice has been accepted and system can be
/// simplified further, false otherwise.
virtual bool attempt(const typename P::Element &choice) = 0;
/// Check whether attempting this choice could be avoided,
/// which could speed-up solving.
virtual bool shouldSkip(const typename P::Element &choice) const = 0;
/// Check whether attempting binding choices should be stopped,
/// because optimal solution has already been found.
virtual bool shouldStopAt(const typename P::Element &choice) const = 0;
/// Check whether attempting binding choices should be stopped,
/// after current choice has been attempted, because optimal
/// solution has already been found,
virtual bool shouldStopAfter(const typename P::Element &choice) const {
return false;
}
bool needsToComputeNext() const { return Producer.needsToComputeNext(); }
ConstraintLocator *getLocator() const { return Producer.getLocator(); }
};
class TypeVariableStep final : public BindingStep<TypeVarBindingProducer> {
using BindingContainer = inference::BindingSet;
using Binding = inference::PotentialBinding;
TypeVariableType *TypeVar;
/// Indicates whether source of one of the previously
/// attempted bindings was a literal constraint. This
/// is useful for a performance optimization to stop
/// attempting other bindings in certain conditions.
bool SawFirstLiteralConstraint = false;
public:
TypeVariableStep(BindingContainer &bindings,
SmallVectorImpl<Solution> &solutions)
: BindingStep(bindings.getConstraintSystem(), {bindings}, solutions),
TypeVar(bindings.getTypeVariable()) {}
void setup() override;
StepResult resume(bool prevFailed) override;
void print(llvm::raw_ostream &Out) override {
PrintOptions PO;
PO.PrintTypesForDebugging = true;
Out << "TypeVariableStep for " << TypeVar->getString(PO) << '\n';
}
protected:
bool attempt(const TypeVariableBinding &choice) override;
bool shouldSkip(const TypeVariableBinding &choice) const override {
// Let's always attempt types inferred from "defaultable" constraints
// in diagnostic mode. This allows the solver to attempt i.e. `Any`
// for collection literals and produce better diagnostics for for-in
// statements like `for (x, y, z) in [] { ... }` when pattern type
// could not be inferred.
if (CS.shouldAttemptFixes())
return false;
// If this is a defaultable binding and we have found solutions,
// don't explore the default binding.
return AnySolved && choice.isDefaultable();
}
/// Check whether attempting type variable binding choices should
/// be stopped, because optimal solution has already been found.
bool shouldStopAt(const TypeVariableBinding &choice) const override {
// Let's always attempt default types inferred from literals in diagnostic
// mode because that could lead to better diagnostics if the problem is
// contextual like argument/parameter conversion or collection element
// mismatch.
if (CS.shouldAttemptFixes())
return false;
// If we were able to solve this without considering
// default literals, don't bother looking at default literals.
return AnySolved && choice.hasDefaultedProtocol() &&
!SawFirstLiteralConstraint;
}
bool shouldStopAfter(const TypeVariableBinding &choice) const override {
// Let's always attempt additional bindings in diagnostic mode, as that
// could lead to better diagnostic for e.g trying the unwrapped type.
if (CS.shouldAttemptFixes())
return false;
// If there has been at least one solution so far
// at a current batch of bindings is done it's a
// success because each new batch would be less
// and less precise.
return AnySolved && needsToComputeNext();
}
};
class DisjunctionStep final : public BindingStep<DisjunctionChoiceProducer> {
Constraint *Disjunction;
SmallVector<Constraint *, 4> DisabledChoices;
ConstraintList::iterator AfterDisjunction;
std::optional<Score> BestNonGenericScore;
std::optional<std::pair<Constraint *, Score>> LastSolvedChoice;
public:
DisjunctionStep(ConstraintSystem &cs, Constraint *disjunction,
SmallVectorImpl<Solution> &solutions)
: BindingStep(cs, {cs, disjunction}, solutions), Disjunction(disjunction),
AfterDisjunction(erase(disjunction)) {
assert(Disjunction->getKind() == ConstraintKind::Disjunction);
pruneOverloadSet(Disjunction);
++cs.solverState->NumDisjunctions;
}
~DisjunctionStep() override {
// Rewind back any changes left after attempting last choice.
ActiveChoice.reset();
// Return disjunction constraint back to the system.
restore(AfterDisjunction, Disjunction);
// Re-enable previously disabled overload choices.
for (auto *choice : DisabledChoices)
choice->setEnabled();
}
StepResult resume(bool prevFailed) override;
void print(llvm::raw_ostream &Out) override {
Out << "DisjunctionStep for ";
Disjunction->print(Out, &CS.getASTContext().SourceMgr,
CS.solverState->getCurrentIndent());
Out << '\n';
}
private:
bool shouldSkip(const DisjunctionChoice &choice) const override;
/// Whether we should short-circuit a disjunction that already has a
/// solution when we encounter the given choice.
///
/// FIXME: This is performance hack, which should go away.
///
/// \params choice The disjunction choice we are about to attempt.
///
/// \returns true if disjunction step should be considered complete,
/// false otherwise.
bool shouldStopAt(const DisjunctionChoice &choice) const override;
bool shortCircuitDisjunctionAt(Constraint *currentChoice,
Constraint *lastSuccessfulChoice) const;
bool shouldSkipGenericOperators() const {
if (!BestNonGenericScore)
return false;
// Let's skip generic overload choices only in case if
// non-generic score indicates that there were no forced
// unwrappings of optional(s), no unavailable overload
// choices present in the solution, no fixes required,
// and there are no non-trivial user or function conversions.
auto &score = BestNonGenericScore->Data;
return (score[SK_ForceUnchecked] == 0 && score[SK_Unavailable] == 0 &&
score[SK_Fix] == 0 && score[SK_UserConversion] == 0 &&
score[SK_FunctionConversion] == 0);
}
/// Attempt to apply given disjunction choice to constraint system.
/// This action is going to establish "active choice" of this disjunction
/// to point to a given choice.
///
/// \param choice The choice to attempt.
///
/// \return true if the choice has been accepted and system can be
/// simplified further, false otherwise.
bool attempt(const DisjunctionChoice &choice) override;
// Check if selected disjunction has a representative
// this might happen when there are multiple binary operators
// chained together. If so, disable choices which differ
// from currently selected representative.
void pruneOverloadSet(Constraint *disjunction) {
auto *choice = disjunction->getNestedConstraints().front();
if (choice->getKind() != ConstraintKind::BindOverload)
return;
auto *typeVar = choice->getFirstType()->getAs<TypeVariableType>();
if (!typeVar)
return;
auto *repr = typeVar->getImpl().getRepresentative(nullptr);
if (!repr || repr == typeVar)
return;
for (auto overload : CS.getResolvedOverloads()) {
auto resolved = overload.second;
if (!resolved.boundType->isEqual(repr))
continue;
auto &representative = resolved.choice;
if (!representative.isDecl())
return;
// Disable all of the overload choices which are different from
// the one which is currently picked for representative.
for (auto *constraint : disjunction->getNestedConstraints()) {
auto choice = constraint->getOverloadChoice();
if (!choice.isDecl() || choice.getDecl() == representative.getDecl())
continue;
constraint->setDisabled();
DisabledChoices.push_back(constraint);
}
break;
}
};
// Figure out which of the solutions has the smallest score.
static std::optional<Score>
getBestScore(SmallVectorImpl<Solution> &solutions) {
if (solutions.empty())
return std::nullopt;
Score bestScore = solutions.front().getFixedScore();
if (solutions.size() == 1)
return bestScore;
for (unsigned i = 1, n = solutions.size(); i != n; ++i) {
auto &score = solutions[i].getFixedScore();
if (score < bestScore)
bestScore = score;
}
return bestScore;
}
};
class ConjunctionStep : public BindingStep<ConjunctionElementProducer> {
/// Snapshot of the constraint system before conjunction.
class SolverSnapshot {
ConstraintSystem &CS;
/// The conjunction this snapshot belongs to.
Constraint *Conjunction;
std::optional<llvm::SaveAndRestore<DeclContext *>> DC = std::nullopt;
llvm::SetVector<TypeVariableType *> TypeVars;
ConstraintList Constraints;
/// If this conjunction has to be solved in isolation,
/// this scope would be initialized once all of the
/// elements are successfully solved to continue solving
/// along the current path as-if there was no conjunction.
std::unique_ptr<Scope> IsolationScope = nullptr;
public:
SolverSnapshot(ConstraintSystem &cs, Constraint *conjunction)
: CS(cs), Conjunction(conjunction),
TypeVars(std::move(cs.TypeVariables)) {
auto *locator = Conjunction->getLocator();
// If this conjunction represents a closure, we need to
// switch declaration context over to it.
if (locator->directlyAt<ClosureExpr>()) {
DC.emplace(CS.DC, castToExpr<ClosureExpr>(locator->getAnchor()));
}
auto &CG = CS.getConstraintGraph();
// Remove all of the current inactive constraints.
Constraints.splice(Constraints.end(), CS.InactiveConstraints);
// Clear constraint graph.
for (auto &constraint : Constraints)
CG.removeConstraint(&constraint);
}
void setupOuterContext(Solution solution) {
// Re-add type variables and constraints back
// to the constraint system.
restore();
// Establish isolation scope so that conjunction solution
// and follow-up steps could be rolled back.
IsolationScope = std::make_unique<Scope>(CS);
// Apply solution inferred for the conjunction.
applySolution(solution);
// Add constraints to the graph after solution
// has been applied to make sure that all type
// information is available to incremental inference.
for (auto &constraint : CS.InactiveConstraints)
CS.CG.addConstraint(&constraint);
}
bool isScoped() const { return bool(IsolationScope); }
~SolverSnapshot() {
if (!IsolationScope)
restore();
IsolationScope.reset();
// Re-add all of the constraint to the constraint
// graph after scope has been rolled back, to make
// make sure the original (before conjunction)
// state is completely restored.
updateConstraintGraph();
}
private:
void restore() {
DC.reset();
CS.TypeVariables = std::move(TypeVars);
CS.InactiveConstraints.splice(CS.InactiveConstraints.end(), Constraints);
}
void updateConstraintGraph() {
auto &CG = CS.getConstraintGraph();
for (auto &constraint : CS.InactiveConstraints)
CG.addConstraint(&constraint);
}
void applySolution(const Solution &solution);
};
/// Best solution solver reached so far.
std::optional<Score> BestScore;
/// The score established before conjunction is attempted.
Score CurrentScore;
/// The number of constraint solver scopes already explored
/// before accepting this conjunction.
llvm::SaveAndRestore<unsigned> OuterScopeCount;
/// The number of milliseconds until outer constraint system
/// is considered "too complex" if timer is enabled.
std::optional<std::pair<ExpressionTimer::AnchorType, unsigned>>
OuterTimeRemaining = std::nullopt;
/// Conjunction constraint associated with this step.
Constraint *Conjunction;
/// Position of the conjunction in the inactive constraints
/// list which is required to re-instate it to the system
/// after this step is done.
ConstraintList::iterator AfterConjunction;
/// Indicates that one of the elements failed inference.
bool HadFailure = false;
/// If conjunction has to be solved in isolation, this
/// variable would capture the snapshot of the constraint
/// system step before conjunction step.
std::optional<SolverSnapshot> Snapshot;
/// A set of previously deduced solutions. This is used upon
/// successful solution of an isolated conjunction to introduce
/// all of the inferred information back into the outer context.
SmallVectorImpl<Solution> &OuterSolutions;
/// Solutions produced while attempting elements of an isolated conjunction.
///
/// Note that this is what `BindingStep` is initialized with
/// in isolated mode.
SmallVector<Solution, 4> IsolatedSolutions;
public:
ConjunctionStep(ConstraintSystem &cs, Constraint *conjunction,
SmallVectorImpl<Solution> &solutions)
: BindingStep(cs, {cs, conjunction},
conjunction->isIsolated() ? IsolatedSolutions : solutions),
BestScore(getBestScore()), CurrentScore(getCurrentScore()),
OuterScopeCount(cs.CountScopes, 0), Conjunction(conjunction),
AfterConjunction(erase(conjunction)), OuterSolutions(solutions) {
assert(conjunction->getKind() == ConstraintKind::Conjunction);
// Make a snapshot of the constraint system state before conjunction.
if (conjunction->isIsolated())
Snapshot.emplace(cs, conjunction);
if (cs.Timer) {
auto remainingTime = cs.Timer->getRemainingProcessTimeInMillis();
OuterTimeRemaining.emplace(cs.Timer->getAnchor(), remainingTime);
}
}
~ConjunctionStep() override {
assert(!bool(ActiveChoice));
// Return all of the type variables and constraints back.
Snapshot.reset();
// Restore conjunction constraint.
restore(AfterConjunction, Conjunction);
// Restore best score only if conjunction fails because
// successful outcome should keep a score set by `restoreOuterState`.
if (HadFailure) {
auto solutionScore = Score();
restoreBestScore();
restoreCurrentScore(solutionScore);
}
if (OuterTimeRemaining) {
auto anchor = OuterTimeRemaining->first;
auto remainingTime = OuterTimeRemaining->second;
CS.Timer.emplace(anchor, CS, remainingTime);
}
}
StepResult resume(bool prevFailed) override;
void print(llvm::raw_ostream &Out) override {
Out << "ConjunctionStep for ";
Conjunction->print(Out, &CS.getASTContext().SourceMgr,
CS.solverState->getCurrentIndent());
Out << '\n';
}
protected:
bool attempt(const ConjunctionElement &element) override;
/// Conjunction can't skip elements.
bool shouldSkip(const ConjunctionElement &element) const override {
return false;
}
/// Conjunction can't reject attempting any of its elements.
bool shouldStopAt(const ConjunctionElement &element) const override {
return false;
}
/// Conjunctions only stop after first failure.
///
/// TODO: In diagnostic mode conjunction evaluation should stop
/// after first element failure and consider the rest to
/// be solved, in order to produce good diagnostics.
bool shouldStopAfter(const ConjunctionElement &element) const override {
return HadFailure;
}
void markAsFailed() {
HadFailure = true;
// During performance mode, failure to infer a type for one
// of the elements automatically fails whole conjunction.
//
// TODO: In diagnostic mode, let's consider this conjunction
// a success if at least one of its elements was solved
// successfully by use of fixes, and ignore the rest.
AnySolved = false;
}
private:
/// Restore best and current scores as they were before conjunction.
void restoreCurrentScore(const Score &solutionScore) const {
CS.CurrentScore = CurrentScore;
CS.increaseScore(SK_Fix, Conjunction->getLocator(),
solutionScore.Data[SK_Fix]);
CS.increaseScore(SK_Hole, Conjunction->getLocator(),
solutionScore.Data[SK_Hole]);
}
void restoreBestScore() const { CS.solverState->BestScore = BestScore; }
// Restore constraint system state before conjunction.
//
// Note that this doesn't include conjunction constraint
// itself because we don't want to re-solve it.
void restoreOuterState(const Score &solutionScore) const;
};
} // end namespace constraints
} // end namespace swift
#endif // SWIFT_SEMA_CSSTEP_H
|