File: DerivedConformanceCodable.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (2161 lines) | stat: -rw-r--r-- 85,594 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
//===--- DerivedConformanceCodable.cpp - Derived Codable ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements explicit derivation of the Encodable and Decodable
// protocols for a struct or class.
//
//===----------------------------------------------------------------------===//

#include "CodeSynthesis.h"
#include "TypeChecker.h"
#include "llvm/ADT/STLExtras.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Types.h"
#include "swift/Basic/StringExtras.h"
#include "DerivedConformances.h"

using namespace swift;

/// Returns whether the type represented by the given ClassDecl inherits from a
/// type which conforms to the given protocol.
static bool superclassConformsTo(ClassDecl *target, KnownProtocolKind kpk) {
  if (!target) {
    return false;
  }

  auto superclass = target->getSuperclassDecl();
  if (!superclass)
    return false;

  return !superclass
              ->getModuleContext()
              ->lookupConformance(target->getSuperclass(),
                                  target->getASTContext().getProtocol(kpk))
              .isInvalid();
}

/// Retrieve the variable name for the purposes of encoding/decoding.
///
/// \param paramIndex if set will be used to generate name in the form of
///                   '_$paramIndex' when VarDecl has no name.
static Identifier
getVarNameForCoding(VarDecl *var,
                    std::optional<int> paramIndex = std::nullopt) {
  auto &C = var->getASTContext();
  Identifier identifier;
  if (auto *PD = dyn_cast<ParamDecl>(var)) {
    identifier = PD->getArgumentName();
  } else {
    identifier = var->getName();
  }

  if (auto originalVar = var->getOriginalWrappedProperty())
    identifier = originalVar->getName();

  if (identifier.empty() && paramIndex.has_value())
    return C.getIdentifier("_" + std::to_string(paramIndex.value()));

  return identifier;
}

/// Compute the Identifier for the CodingKey of an enum case
static Identifier caseCodingKeysIdentifier(const ASTContext &C,
                                         EnumElementDecl *elt) {
  llvm::SmallString<16> scratch;
  camel_case::appendSentenceCase(scratch, elt->getBaseIdentifier().str());
  scratch += C.Id_CodingKeys.str();
  return C.getIdentifier(scratch.str());
}

/// Fetches the \c CodingKeys enum nested in \c target, potentially reaching
/// through a typealias if the "CodingKeys" entity is a typealias.
///
/// This is only useful once a \c CodingKeys enum has been validated (via \c
/// hasValidCodingKeysEnum) or synthesized (via \c synthesizeCodingKeysEnum).
///
/// \param C The \c ASTContext to perform the lookup in.
///
/// \param target The target type to look in.
///
/// \return A retrieved canonical \c CodingKeys enum if \c target has a valid
/// one; \c nullptr otherwise.
static EnumDecl *lookupEvaluatedCodingKeysEnum(ASTContext &C,
                                               NominalTypeDecl *target,
                                               Identifier identifier) {
  auto codingKeyDecls = target->lookupDirect(DeclName(identifier));
  if (codingKeyDecls.empty())
    return nullptr;

  auto *codingKeysDecl = codingKeyDecls.front();
  if (auto *typealiasDecl = dyn_cast<TypeAliasDecl>(codingKeysDecl))
    codingKeysDecl = typealiasDecl->getDeclaredInterfaceType()->getAnyNominal();

  return dyn_cast<EnumDecl>(codingKeysDecl);
}

static EnumDecl *lookupEvaluatedCodingKeysEnum(ASTContext &C,
                                               NominalTypeDecl *target) {
  return lookupEvaluatedCodingKeysEnum(C, target, C.Id_CodingKeys);
}

static EnumElementDecl *lookupEnumCase(ASTContext &C, NominalTypeDecl *target,
                                       Identifier identifier) {
  auto elementDecls = target->lookupDirect(DeclName(identifier));
  if (elementDecls.empty())
    return nullptr;

  auto *elementDecl = elementDecls.front();

  return dyn_cast<EnumElementDecl>(elementDecl);
}

static NominalTypeDecl *lookupErrorContext(ASTContext &C,
                                           NominalTypeDecl *errorDecl) {
  auto elementDecls = errorDecl->lookupDirect(C.Id_Context);
  if (elementDecls.empty())
    return nullptr;

  auto *decl = elementDecls.front();

  return dyn_cast<NominalTypeDecl>(decl);
}

static EnumDecl *
addImplicitCodingKeys(NominalTypeDecl *target,
                      llvm::SmallVectorImpl<Identifier> &caseIdentifiers,
                      Identifier codingKeysEnumIdentifier) {
  auto &C = target->getASTContext();
  assert(target->lookupDirect(DeclName(codingKeysEnumIdentifier)).empty());

  // We want to look through all the var declarations of this type to create
  // enum cases based on those var names.
  auto *codingKeyProto = C.getProtocol(KnownProtocolKind::CodingKey);
  auto codingKeyType = codingKeyProto->getDeclaredInterfaceType();
  InheritedEntry protoTypeLoc[1] = {
    InheritedEntry(TypeLoc::withoutLoc(codingKeyType))};
  ArrayRef<InheritedEntry> inherited = C.AllocateCopy(protoTypeLoc);

  auto *enumDecl = new (C) EnumDecl(SourceLoc(), codingKeysEnumIdentifier,
                                    SourceLoc(), inherited, nullptr, target);
  enumDecl->setImplicit();
  enumDecl->setSynthesized();
  enumDecl->setAccess(AccessLevel::Private);

  // For classes which inherit from something Encodable or Decodable, we
  // provide case `super` as the first key (to be used in encoding super).
  auto *classDecl = dyn_cast<ClassDecl>(target);
  if (superclassConformsTo(classDecl, KnownProtocolKind::Encodable) ||
      superclassConformsTo(classDecl, KnownProtocolKind::Decodable)) {
    // TODO: Ensure the class doesn't already have or inherit a variable named
    // "`super`"; otherwise we will generate an invalid enum. In that case,
    // diagnose and bail.
    auto *super = new (C) EnumElementDecl(SourceLoc(), C.Id_super, nullptr,
                                          SourceLoc(), nullptr, enumDecl);
    super->setImplicit();
    enumDecl->addMember(super);
  }

  for (auto caseIdentifier : caseIdentifiers) {
    auto *elt = new (C) EnumElementDecl(SourceLoc(), caseIdentifier, nullptr,
                                        SourceLoc(), nullptr, enumDecl);
    elt->setImplicit();
    enumDecl->addMember(elt);
  }

  // Forcibly derive conformance to CodingKey.
  TypeChecker::checkConformancesInContext(enumDecl);

  // Add to the type.
  target->addMember(enumDecl);

  return enumDecl;
}

static EnumDecl *addImplicitCaseCodingKeys(EnumDecl *target,
                                           EnumElementDecl *elementDecl,
                                           EnumDecl *codingKeysEnum) {
  auto &C = target->getASTContext();

  // Only derive if this case exist in the CodingKeys enum
  auto *codingKeyCase =
      lookupEnumCase(C, codingKeysEnum, elementDecl->getBaseIdentifier());
  if (!codingKeyCase)
    return nullptr;

  auto enumIdentifier = caseCodingKeysIdentifier(C, elementDecl);

  llvm::SmallVector<Identifier, 4> caseIdentifiers;
  if (elementDecl->hasAssociatedValues()) {
    for (auto entry : llvm::enumerate(*elementDecl->getParameterList())) {
      auto *paramDecl = entry.value();

      // if the type conforms to {En,De}codable, add it to the enum.
      Identifier paramIdentifier =
          getVarNameForCoding(paramDecl, entry.index());

      caseIdentifiers.push_back(paramIdentifier);
    }
  }

  return addImplicitCodingKeys(target, caseIdentifiers, enumIdentifier);
}

// Create CodingKeys in the parent type always, because both
// Encodable and Decodable might want to use it, and they may have
// different conditional bounds. CodingKeys is simple and can't
// depend on those bounds.
//
// FIXME: Eventually we should find a way to expose this function to the lookup
// machinery so it no longer costs two protocol conformance lookups to retrieve
// CodingKeys. It will also help in our quest to separate semantic and parsed
// members.
static EnumDecl *addImplicitCodingKeys(NominalTypeDecl *target) {
  auto &C = target->getASTContext();

  llvm::SmallVector<Identifier, 4> caseIdentifiers;
  if (auto *enumDecl = dyn_cast<EnumDecl>(target)) {
    for (auto *elementDecl : enumDecl->getAllElements()) {
      caseIdentifiers.push_back(elementDecl->getBaseIdentifier());
    }
  } else {
    for (auto *varDecl : target->getStoredProperties()) {
      if (!varDecl->isUserAccessible()) {
        continue;
      }

      caseIdentifiers.push_back(getVarNameForCoding(varDecl));
    }
  }

  return addImplicitCodingKeys(target, caseIdentifiers, C.Id_CodingKeys);
}

namespace {
  /// Container for a set of functions that produces notes used when a
  /// synthesized conformance fails.
  struct DelayedNotes : public std::vector<std::function<void()>> {
    ~DelayedNotes() {
      for (const auto &fn : *this) {
        fn();
      }
    }
  };
}

static EnumDecl *validateCodingKeysType(const DerivedConformance &derived,
                                        TypeDecl *_codingKeysTypeDecl,
                                        DelayedNotes &delayedNotes) {
  auto &C = derived.Context;
  // CodingKeys may be a typealias. If so, follow the alias to its canonical
  // type. We are creating a copy here, so we can hold on to the original
  // `TypeDecl` in case we need to produce a diagnostic.
  auto *codingKeysTypeDecl = _codingKeysTypeDecl;
  auto codingKeysType = codingKeysTypeDecl->getDeclaredInterfaceType();
  if (isa<TypeAliasDecl>(codingKeysTypeDecl))
    codingKeysTypeDecl = codingKeysType->getAnyNominal();

  // Ensure that the type we found conforms to the CodingKey protocol.
  auto *codingKeyProto = C.getProtocol(KnownProtocolKind::CodingKey);
  if (!derived.getParentModule()->lookupConformance(codingKeysType, codingKeyProto)) {
    // If CodingKeys is a typealias which doesn't point to a valid nominal type,
    // codingKeysTypeDecl will be nullptr here. In that case, we need to warn on
    // the location of the usage, since there isn't an underlying type to
    // diagnose on.
    SourceLoc loc = codingKeysTypeDecl ? codingKeysTypeDecl->getLoc()
                                       : cast<TypeDecl>(_codingKeysTypeDecl)->getLoc();

    delayedNotes.push_back([=] {
      ASTContext &C = derived.getProtocolType()->getASTContext();
      C.Diags.diagnose(loc, diag::codable_codingkeys_type_does_not_conform_here,
                       derived.getProtocolType());
    });
    return nullptr;
  }

  auto *codingKeysDecl =
      dyn_cast_or_null<EnumDecl>(codingKeysType->getAnyNominal());
  if (!codingKeysDecl) {
    delayedNotes.push_back([=] {
      codingKeysTypeDecl->diagnose(
          diag::codable_codingkeys_type_is_not_an_enum_here,
          derived.getProtocolType());
    });
    return nullptr;
  }

  return codingKeysDecl;
}

/// Validates the given CodingKeys enum decl by ensuring its cases are a 1-to-1
/// match with the given VarDecls.
///
/// \param varDecls The \c var decls to validate against.
/// \param codingKeysTypeDecl The \c CodingKeys enum decl to validate.
static bool validateCodingKeysEnum(const DerivedConformance &derived,
                               llvm::SmallMapVector<Identifier, VarDecl *, 8> varDecls,
                               TypeDecl *codingKeysTypeDecl,
                               DelayedNotes &delayedNotes) {
  auto *codingKeysDecl = validateCodingKeysType(
      derived, codingKeysTypeDecl, delayedNotes);
  if (!codingKeysDecl)
    return false;

  // Look through all var decls.
  //
  // If any of the entries in the CodingKeys decl are not present in the type
  // by name, then this decl doesn't match.
  // If there are any vars left in the type which don't have a default value
  // (for Decodable), then this decl doesn't match.
  bool varDeclsAreValid = true;
  for (auto elt : codingKeysDecl->getAllElements()) {
    auto it = varDecls.find(elt->getBaseIdentifier());
    if (it == varDecls.end()) {
      delayedNotes.push_back([=] {
        elt->diagnose(diag::codable_extraneous_codingkey_case_here,
                      elt->getBaseIdentifier());
      });
      // TODO: Investigate typo-correction here; perhaps the case name was
      //       misspelled and we can provide a fix-it.
      varDeclsAreValid = false;
      continue;
    }

    // We have a property to map to. Ensure it's {En,De}codable.
    auto target = derived.getConformanceContext()->mapTypeIntoContext(
         it->second->getValueInterfaceType());
    if (derived.getParentModule()->checkConformance(target, derived.Protocol)
            .isInvalid()) {
      TypeLoc typeLoc = {
          it->second->getTypeReprOrParentPatternTypeRepr(),
          it->second->getTypeInContext(),
      };

      auto var = it->second;
      auto proto = derived.getProtocolType();
      delayedNotes.push_back([=] {
        var->diagnose(diag::codable_non_conforming_property_here,
                      proto, typeLoc);
      });
      varDeclsAreValid = false;
    } else {
      // The property was valid. Remove it from the list.
      varDecls.erase(it);
    }
  }

  if (!varDeclsAreValid)
    return false;

  // If there are any remaining var decls which the CodingKeys did not cover,
  // we can skip them on encode. On decode, though, we can only skip them if
  // they have a default value.
  if (derived.Protocol->isSpecificProtocol(KnownProtocolKind::Decodable)) {
    for (auto &entry : varDecls) {
      const auto *pbd = entry.second->getParentPatternBinding();
      if (pbd && pbd->isDefaultInitializable()) {
        continue;
      }

      if (entry.second->isParentInitialized()) {
        continue;
      }

      if (auto *paramDecl = dyn_cast<ParamDecl>(entry.second)) {
        if (paramDecl->hasDefaultExpr()) {
          continue;
        }
      }

      // The var was not default initializable, and did not have an explicit
      // initial value.
      varDeclsAreValid = false;
      delayedNotes.push_back([=] {
        entry.second->diagnose(diag::codable_non_decoded_property_here,
                               derived.getProtocolType(), entry.first);
      });
    }
  }

  return varDeclsAreValid;
}

static bool validateCodingKeysEnum_enum(const DerivedConformance &derived,
                                        TypeDecl *codingKeysTypeDecl,
                                        DelayedNotes &delayedNotes) {
  auto *enumDecl = dyn_cast<EnumDecl>(derived.Nominal);
  if (!enumDecl) {
    return false;
  }
  llvm::SmallSetVector<Identifier, 4> caseNames;
  for (auto *elt : enumDecl->getAllElements()) {
    caseNames.insert(elt->getBaseIdentifier());
  }

  auto *codingKeysDecl = validateCodingKeysType(
      derived, codingKeysTypeDecl, delayedNotes);
  if (!codingKeysDecl)
    return false;

  bool casesAreValid = true;
  for (auto *elt : codingKeysDecl->getAllElements()) {
    if (!caseNames.contains(elt->getBaseIdentifier())) {
      delayedNotes.push_back([=] {
        elt->diagnose(diag::codable_extraneous_codingkey_case_here,
                      elt->getBaseIdentifier());
      });
      casesAreValid = false;
    }
  }

  return casesAreValid;
}

/// Looks up and validates a CodingKeys enum for the given DerivedConformance.
/// If a CodingKeys enum does not exist, one will be derived.
static bool validateCodingKeysEnum(const DerivedConformance &derived,
                                   DelayedNotes &delayedNotes) {
  auto &C = derived.Context;

  auto codingKeysDecls =
       derived.Nominal->lookupDirect(DeclName(C.Id_CodingKeys));

  if (codingKeysDecls.size() > 1) {
    return false;
  }

  ValueDecl *result = codingKeysDecls.empty()
                          ? addImplicitCodingKeys(derived.Nominal)
                          : codingKeysDecls.front();
  auto *codingKeysTypeDecl = dyn_cast<TypeDecl>(result);
  if (!codingKeysTypeDecl) {
    delayedNotes.push_back([=] {
      result->diagnose(diag::codable_codingkeys_type_is_not_an_enum_here,
                       derived.getProtocolType());
    });
    return false;
  }

  if (dyn_cast<EnumDecl>(derived.Nominal)) {
    return validateCodingKeysEnum_enum(
        derived, codingKeysTypeDecl, delayedNotes);
  } else {

    // Look through all var decls in the given type.
    // * Filter out lazy/computed vars.
    // * Filter out ones which are present in the given decl (by name).

    // Here we'll hold on to properties by name -- when we've validated a property
    // against its CodingKey entry, it will get removed.
    llvm::SmallMapVector<Identifier, VarDecl *, 8> properties;
    for (auto *varDecl : derived.Nominal->getStoredProperties()) {
      if (!varDecl->isUserAccessible())
        continue;

      properties[getVarNameForCoding(varDecl)] = varDecl;
    }

    return validateCodingKeysEnum(
        derived, properties, codingKeysTypeDecl, delayedNotes);
  }
}

/// Looks up and validates a CaseCodingKeys enum for the given elementDecl.
/// If a CaseCodingKeys enum does not exist, one will be derived.
///
/// \param elementDecl The \c EnumElementDecl to validate against.
static bool validateCaseCodingKeysEnum(const DerivedConformance &derived,
                                       EnumElementDecl *elementDecl,
                                       DelayedNotes &delayedNotes) {
  auto &C = derived.Context;
  auto *enumDecl = dyn_cast<EnumDecl>(derived.Nominal);
  if (!enumDecl) {
    return false;
  }

  auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, enumDecl);

  // At this point we ran validation for this and should have
  // a CodingKeys decl.
  assert(codingKeysEnum && "Missing CodingKeys decl.");

  auto cckIdentifier = caseCodingKeysIdentifier(C, elementDecl);
  auto caseCodingKeysDecls =
       enumDecl->lookupDirect(DeclName(cckIdentifier));

  if (caseCodingKeysDecls.size() > 1) {
    return false;
  }

  ValueDecl *result = caseCodingKeysDecls.empty()
                          ? addImplicitCaseCodingKeys(
                              enumDecl, elementDecl, codingKeysEnum)
                          : caseCodingKeysDecls.front();

  if (!result) {
    // There is no coding key defined for this element,
    // which is okay, because not all elements have to
    // be considered for serialization. Attempts to
    // en-/decode them will be handled at runtime.
    return true;
  }

  auto *codingKeysTypeDecl = dyn_cast<TypeDecl>(result);
  if (!codingKeysTypeDecl) {
    delayedNotes.push_back([=] {
      result->diagnose(diag::codable_codingkeys_type_is_not_an_enum_here,
                       derived.getProtocolType());
    });
    return false;
  }

  // Here we'll hold on to parameters by name -- when we've validated a parameter
  // against its CodingKey entry, it will get removed.
  llvm::SmallMapVector<Identifier, VarDecl *, 8> properties;
  if (elementDecl->hasAssociatedValues()) {
    for (auto entry : llvm::enumerate(*elementDecl->getParameterList())) {
      auto paramDecl = entry.value();
      if (!paramDecl->isUserAccessible())
        continue;

      auto identifier = getVarNameForCoding(paramDecl, entry.index());
      properties[identifier] = paramDecl;
    }
  }

  return validateCodingKeysEnum(
      derived, properties, codingKeysTypeDecl, delayedNotes);
}

/// Creates a new var decl representing
///
///   var/let identifier : containerBase<keyType>
///
/// \c containerBase is the name of the type to use as the base (either
/// \c KeyedEncodingContainer or \c KeyedDecodingContainer).
///
/// \param C The AST context to create the decl in.
///
/// \param DC The \c DeclContext to create the decl in.
///
/// \param keyedContainerDecl The generic type to bind the key type in.
///
/// \param keyType The key type to bind to the container type.
///
/// \param introducer Whether to declare the variable as immutable.
///
/// \param identifier Identifier of the variable.
static VarDecl *createKeyedContainer(ASTContext &C, DeclContext *DC,
                                     NominalTypeDecl *keyedContainerDecl,
                                     Type keyType,
                                     VarDecl::Introducer introducer,
                                     Identifier identifier) {
  // Bind Keyed*Container to Keyed*Container<KeyType>
  Type boundType[1] = {keyType};
  auto containerType = BoundGenericType::get(keyedContainerDecl, Type(),
                                             C.AllocateCopy(boundType));

  // let container : Keyed*Container<KeyType>
  auto *containerDecl = new (C) VarDecl(/*IsStatic=*/false, introducer,
                                        SourceLoc(), identifier, DC);
  containerDecl->setImplicit();
  containerDecl->setSynthesized();
  containerDecl->setInterfaceType(containerType);
  return containerDecl;
}

/// Creates a new var decl representing
///
///   var/let container : containerBase<keyType>
///
/// \c containerBase is the name of the type to use as the base (either
/// \c KeyedEncodingContainer or \c KeyedDecodingContainer).
///
/// \param C The AST context to create the decl in.
///
/// \param DC The \c DeclContext to create the decl in.
///
/// \param keyedContainerDecl The generic type to bind the key type in.
///
/// \param keyType The key type to bind to the container type.
///
/// \param introducer Whether to declare the variable as immutable.
static VarDecl *createKeyedContainer(ASTContext &C, DeclContext *DC,
                                     NominalTypeDecl *keyedContainerDecl,
                                     Type keyType,
                                     VarDecl::Introducer introducer) {
  return createKeyedContainer(C, DC, keyedContainerDecl, keyType,
                              introducer, C.Id_container);
}

/// Creates a new \c CallExpr representing
///
///   base.container(keyedBy: CodingKeys.self)
///
/// \param C The AST context to create the expression in.
///
/// \param DC The \c DeclContext to create any decls in.
///
/// \param base The base expression to make the call on.
///
/// \param returnType The return type of the call.
///
/// \param param The parameter to the call.
static CallExpr *createContainerKeyedByCall(ASTContext &C, DeclContext *DC,
                                            Expr *base, Type returnType,
                                            NominalTypeDecl *param) {
  // (keyedBy:)
  auto *keyedByDecl = new (C)
      ParamDecl(SourceLoc(), SourceLoc(),
                C.Id_keyedBy, SourceLoc(), C.Id_keyedBy, DC);
  keyedByDecl->setImplicit();
  keyedByDecl->setSpecifier(ParamSpecifier::Default);
  keyedByDecl->setInterfaceType(returnType);

  // base.container(keyedBy:) expr
  auto *paramList = ParameterList::createWithoutLoc(keyedByDecl);
  auto *unboundCall = UnresolvedDotExpr::createImplicit(C, base, C.Id_container,
                                                        paramList);

  // CodingKeys.self expr
  auto *codingKeysExpr = TypeExpr::createImplicitForDecl(
      DeclNameLoc(), param, param->getDeclContext(),
      DC->mapTypeIntoContext(param->getInterfaceType()));
  auto *codingKeysMetaTypeExpr = new (C) DotSelfExpr(codingKeysExpr,
                                                     SourceLoc(), SourceLoc());

  // Full bound base.container(keyedBy: CodingKeys.self) call
  auto *argList =
      ArgumentList::forImplicitSingle(C, C.Id_keyedBy, codingKeysMetaTypeExpr);
  return CallExpr::createImplicit(C, unboundCall, argList);
}

static CallExpr *createNestedContainerKeyedByForKeyCall(
    ASTContext &C, DeclContext *DC, Expr *base, NominalTypeDecl *codingKeysType,
    EnumElementDecl *key) {
  // base.nestedContainer(keyedBy:, forKey:) expr
  auto *unboundCall = UnresolvedDotExpr::createImplicit(
      C, base, C.Id_nestedContainer, {C.Id_keyedBy, C.Id_forKey});

  // CodingKeys.self expr
  auto *codingKeysExpr = TypeExpr::createImplicitForDecl(
      DeclNameLoc(), codingKeysType, codingKeysType->getDeclContext(),
      DC->mapTypeIntoContext(codingKeysType->getInterfaceType()));
  auto *codingKeysMetaTypeExpr =
      new (C) DotSelfExpr(codingKeysExpr, SourceLoc(), SourceLoc());

  // key expr
  auto *metaTyRef = TypeExpr::createImplicit(
      DC->mapTypeIntoContext(key->getParentEnum()->getDeclaredInterfaceType()),
      C);
  auto *keyExpr = new (C) MemberRefExpr(metaTyRef, SourceLoc(), key,
                                        DeclNameLoc(), /*Implicit=*/true);

  // Full bound base.nestedContainer(keyedBy: CodingKeys.self, forKey: key) call
  auto *argList = ArgumentList::forImplicitCallTo(
      unboundCall->getName(), {codingKeysMetaTypeExpr, keyExpr}, C);
  return CallExpr::createImplicit(C, unboundCall, argList);
}

static ThrowStmt *createThrowCodingErrorStmt(ASTContext &C, Expr *containerExpr,
                                             NominalTypeDecl *errorDecl,
                                             Identifier errorId,
                                             std::optional<Expr *> argument,
                                             StringRef debugMessage) {
  auto *contextDecl = lookupErrorContext(C, errorDecl);
  assert(contextDecl && "Missing Context decl.");

  auto *debugMessageExpr = new (C) StringLiteralExpr(
      C.AllocateCopy(debugMessage), SourceRange(),
      /* Implicit */ true);

  auto *contextTypeExpr =
      TypeExpr::createImplicit(contextDecl->getDeclaredType(), C);

  // Context.init(codingPath:, debugDescription:)
  auto *contextInitCall = UnresolvedDotExpr::createImplicit(
      C, contextTypeExpr, DeclBaseName::createConstructor(),
      {C.Id_codingPath, C.Id_debugDescription, C.Id_underlyingError});

  auto *codingPathExpr =
      UnresolvedDotExpr::createImplicit(C, containerExpr, C.Id_codingPath);
  auto *underlyingErrorExpr =
      new (C) NilLiteralExpr(SourceLoc(), /*implicit*/ true);

  auto *initArgList = ArgumentList::forImplicitCallTo(
      contextInitCall->getName(),
      {codingPathExpr, debugMessageExpr, underlyingErrorExpr}, C);
  auto *contextInitCallExpr = CallExpr::createImplicit(C, contextInitCall,
                                                       initArgList);
  llvm::SmallVector<Expr *, 2> arguments;
  if (argument.has_value()) {
    arguments.push_back(argument.value());
  }
  arguments.push_back(contextInitCallExpr);

  SmallVector<Identifier, 2> scratch;
  auto *decodeArgList = ArgumentList::forImplicitUnlabeled(C, arguments);
  auto *decodingErrorTypeExpr =
      TypeExpr::createImplicit(errorDecl->getDeclaredType(), C);
  auto *decodingErrorCall = UnresolvedDotExpr::createImplicit(
      C, decodingErrorTypeExpr, errorId,
      decodeArgList->getArgumentLabels(scratch));

  auto *decodingErrorCallExpr =
      CallExpr::createImplicit(C, decodingErrorCall, decodeArgList);
  return new (C) ThrowStmt(SourceLoc(), decodingErrorCallExpr);
}

/// Looks up the property corresponding to the indicated coding key.
///
/// \param conformanceDC The DeclContext we're generating code within.
/// \param elt The CodingKeys enum case.
/// \param targetDecl The type to look up properties in.
///
/// \return A tuple containing the \c VarDecl for the property, the type that
/// should be passed when decoding it, and a boolean which is true if
/// \c encodeIfPresent/\c decodeIfPresent should be used for this property.
static std::tuple<VarDecl *, Type, bool>
lookupVarDeclForCodingKeysCase(DeclContext *conformanceDC,
                               EnumElementDecl *elt,
                               NominalTypeDecl *targetDecl) {
  for (auto decl : targetDecl->lookupDirect(
                                   DeclName(elt->getBaseIdentifier()))) {
    if (auto *vd = dyn_cast<VarDecl>(decl)) {
      // If we found a property with an attached wrapper, retrieve the
      // backing property.
      if (auto backingVar = vd->getPropertyWrapperBackingProperty())
        vd = backingVar;

      if (!vd->isStatic()) {
        // This is the VarDecl we're looking for.

        auto varType =
            conformanceDC->mapTypeIntoContext(vd->getValueInterfaceType());

        bool useIfPresentVariant = false;

        if (auto objType = varType->getOptionalObjectType()) {
          varType = objType;
          useIfPresentVariant = true;
        }

        return std::make_tuple(vd, varType, useIfPresentVariant);
      }
    }
  }

  llvm_unreachable("Should have found at least 1 var decl");
}

static TryExpr *createEncodeCall(ASTContext &C, Type codingKeysType,
                                 EnumElementDecl *codingKey,
                                 Expr *containerExpr, Expr *varExpr,
                                 bool useIfPresentVariant) {
  // CodingKeys.x
  auto *metaTyRef = TypeExpr::createImplicit(codingKeysType, C);
  auto *keyExpr = new (C) MemberRefExpr(metaTyRef, SourceLoc(), codingKey,
                                        DeclNameLoc(), /*Implicit=*/true);

  // encode(_:forKey:)/encodeIfPresent(_:forKey:)
  auto methodName = useIfPresentVariant ? C.Id_encodeIfPresent : C.Id_encode;
  auto *encodeCall = UnresolvedDotExpr::createImplicit(
      C, containerExpr, methodName, {Identifier(), C.Id_forKey});

  // container.encode(x, forKey: CodingKeys.x)
  auto *argList = ArgumentList::forImplicitCallTo(encodeCall->getName(),
                                                  {varExpr, keyExpr}, C);
  auto *callExpr = CallExpr::createImplicit(C, encodeCall, argList);

  // try container.encode(x, forKey: CodingKeys.x)
  auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
                                  /*Implicit=*/true);
  return tryExpr;
}

/// Synthesizes the body for `func encode(to encoder: Encoder) throws`.
///
/// \param encodeDecl The function decl whose body to synthesize.
static std::pair<BraceStmt *, bool>
deriveBodyEncodable_encode(AbstractFunctionDecl *encodeDecl, void *) {
  // struct Foo : Codable {
  //   var x: Int
  //   var y: String
  //
  //   // Already derived by this point if possible.
  //   @derived enum CodingKeys : CodingKey {
  //     case x
  //     case y
  //   }
  //
  //   @derived func encode(to encoder: Encoder) throws {
  //     var container = encoder.container(keyedBy: CodingKeys.self)
  //     try container.encode(x, forKey: .x)
  //     try container.encode(y, forKey: .y)
  //   }
  // }

  // The enclosing type decl.
  auto conformanceDC = encodeDecl->getDeclContext();
  auto *targetDecl = conformanceDC->getSelfNominalTypeDecl();

  auto *funcDC = cast<DeclContext>(encodeDecl);
  auto &C = funcDC->getASTContext();

  // We'll want the CodingKeys enum for this type, potentially looking through
  // a typealias.
  auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, targetDecl);
  // We should have bailed already if:
  // a) The type does not have CodingKeys
  // b) The type is not an enum
  assert(codingKeysEnum && "Missing CodingKeys decl.");

  SmallVector<ASTNode, 5> statements;

  // Generate a reference to containerExpr ahead of time in case there are no
  // properties to encode or decode, but the type is a class which inherits from
  // something Codable and needs to encode super.

  // let container : KeyedEncodingContainer<CodingKeys>
  auto codingKeysType = codingKeysEnum->getDeclaredType();
  auto *containerDecl = createKeyedContainer(C, funcDC,
                                             C.getKeyedEncodingContainerDecl(),
                                             codingKeysEnum->getDeclaredInterfaceType(),
                                             VarDecl::Introducer::Var);

  auto *containerExpr = new (C) DeclRefExpr(ConcreteDeclRef(containerDecl),
                                            DeclNameLoc(), /*Implicit=*/true,
                                            AccessSemantics::DirectToStorage);

  // Need to generate
  //   `let container = encoder.container(keyedBy: CodingKeys.self)`
  // This is unconditional because a type with no properties should encode as an
  // empty container.
  //
  // `let container` (containerExpr) is generated above.

  // encoder
  auto encoderParam = encodeDecl->getParameters()->get(0);
  auto *encoderExpr = new (C) DeclRefExpr(ConcreteDeclRef(encoderParam),
                                          DeclNameLoc(), /*Implicit=*/true);

  // Bound encoder.container(keyedBy: CodingKeys.self) call
  auto containerType = containerDecl->getInterfaceType();
  auto *callExpr = createContainerKeyedByCall(C, funcDC, encoderExpr,
                                              containerType, codingKeysEnum);

  // Full `let container = encoder.container(keyedBy: CodingKeys.self)`
  // binding.
  auto *containerPattern = NamedPattern::createImplicit(C, containerDecl);
  auto *bindingDecl = PatternBindingDecl::createImplicit(
      C, StaticSpellingKind::None, containerPattern, callExpr, funcDC);
  statements.push_back(bindingDecl);
  statements.push_back(containerDecl);

  // Now need to generate `try container.encode(x, forKey: .x)` for all
  // existing properties. Optional properties get `encodeIfPresent`.
  for (auto *elt : codingKeysEnum->getAllElements()) {
    VarDecl *varDecl;
    Type varType;                // not used in Encodable synthesis
    bool useIfPresentVariant;

    std::tie(varDecl, varType, useIfPresentVariant) =
        lookupVarDeclForCodingKeysCase(conformanceDC, elt, targetDecl);

    // self.x
    auto *selfRef = DerivedConformance::createSelfDeclRef(encodeDecl);
    auto *varExpr = new (C) MemberRefExpr(selfRef, SourceLoc(),
                                          ConcreteDeclRef(varDecl),
                                          DeclNameLoc(), /*Implicit=*/true);

    auto *encodeCallExpr = createEncodeCall(
        C, codingKeysType, elt, containerExpr, varExpr, useIfPresentVariant);

    statements.push_back(encodeCallExpr);
  }

  // Classes which inherit from something Codable should encode super as well.
  if (superclassConformsTo(dyn_cast<ClassDecl>(targetDecl),
                           KnownProtocolKind::Encodable)) {
    // Need to generate `try super.encode(to: container.superEncoder())`

    // superEncoder()
    auto *method = UnresolvedDeclRefExpr::createImplicit(C, C.Id_superEncoder);

    // container.superEncoder()
    auto *superEncoderRef = DotSyntaxCallExpr::create(
        C, method, SourceLoc(), Argument::unlabeled(containerExpr));

    // encode(to:) expr
    auto *encodeDeclRef = new (C) DeclRefExpr(ConcreteDeclRef(encodeDecl),
                                              DeclNameLoc(), /*Implicit=*/true);

    // super
    auto *superRef = new (C) SuperRefExpr(encodeDecl->getImplicitSelfDecl(),
                                          SourceLoc(), /*Implicit=*/true);

    // super.encode(to:)
    auto *encodeCall = DotSyntaxCallExpr::create(C, encodeDeclRef, SourceLoc(),
                                                 Argument::unlabeled(superRef));

    // super.encode(to: container.superEncoder())
    auto *args = ArgumentList::forImplicitSingle(C, C.Id_to, superEncoderRef);
    auto *callExpr = CallExpr::createImplicit(C, encodeCall, args);

    // try super.encode(to: container.superEncoder())
    auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
                                    /*Implicit=*/true);
    statements.push_back(tryExpr);
  }

  auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
                                 /*implicit=*/true);
  return { body, /*isTypeChecked=*/false };
}

static SwitchStmt *
createEnumSwitch(ASTContext &C, DeclContext *DC, Expr *expr, EnumDecl *enumDecl,
                 EnumDecl *codingKeysEnum, bool createSubpattern,
                 std::function<std::tuple<EnumElementDecl *, BraceStmt *>(
                     EnumElementDecl *, EnumElementDecl *, ArrayRef<VarDecl *>)>
                     createCase) {
  SmallVector<ASTNode, 4> cases;
  for (auto elt : enumDecl->getAllElements()) {
    // .<elt>(let a0, let a1, ...)
    SmallVector<VarDecl *, 3> payloadVars;
    Pattern *subpattern = nullptr;
    std::optional<MutableArrayRef<VarDecl *>> caseBodyVarDecls;

    if (createSubpattern) {
      subpattern = DerivedConformance::enumElementPayloadSubpattern(
          elt, 'a', DC, payloadVars, /* useLabels */ true);

      auto hasBoundDecls = !payloadVars.empty();
      if (hasBoundDecls) {
        // We allocated a direct copy of our var decls for the case
        // body.
        auto copy = C.Allocate<VarDecl *>(payloadVars.size());
        for (unsigned i : indices(payloadVars)) {
          auto *vOld = payloadVars[i];
          auto *vNew = new (C) VarDecl(
              /*IsStatic*/ false, vOld->getIntroducer(), vOld->getNameLoc(),
              vOld->getName(), vOld->getDeclContext());
          vNew->setImplicit();
          copy[i] = vNew;
        }
        caseBodyVarDecls.emplace(copy);
      }
    }

    // CodingKeys.x
    auto *codingKeyCase =
        lookupEnumCase(C, codingKeysEnum, elt->getName().getBaseIdentifier());

    EnumElementDecl *targetElt;
    BraceStmt *caseBody;
    std::tie(targetElt, caseBody) = createCase(elt, codingKeyCase, payloadVars);

    if (caseBody) {
      // generate: case .<Case>:
      auto pat = new (C) EnumElementPattern(
          TypeExpr::createImplicit(
              DC->mapTypeIntoContext(
                  targetElt->getParentEnum()->getDeclaredInterfaceType()),
              C),
          SourceLoc(), DeclNameLoc(), DeclNameRef(), targetElt, subpattern, DC);
      pat->setImplicit();

      auto labelItem = CaseLabelItem(pat);
      auto stmt =
          CaseStmt::create(C, CaseParentKind::Switch, SourceLoc(), labelItem,
                           SourceLoc(), SourceLoc(), caseBody,
                           /*case body vardecls*/
                           createSubpattern ? caseBodyVarDecls : std::nullopt);
      cases.push_back(stmt);
    }
  }

  // generate: switch $expr { }
  return SwitchStmt::createImplicit(LabeledStmtInfo(), expr, cases, C);
}

static DeclRefExpr *createContainer(ASTContext &C, DeclContext *DC,
                                    VarDecl::Introducer introducer,
                                    NominalTypeDecl *containerTypeDecl,
                                    VarDecl *target, EnumDecl *codingKeysEnum,
                                    llvm::SmallVectorImpl<ASTNode> &statements,
                                    bool throws) {
  // let/var container : KeyedDecodingContainer<CodingKeys>
  auto *containerDecl = createKeyedContainer(
      C, DC, containerTypeDecl, codingKeysEnum->getDeclaredInterfaceType(),
      introducer);

  auto *containerExpr =
      new (C) DeclRefExpr(ConcreteDeclRef(containerDecl), DeclNameLoc(),
                          /*Implicit=*/true, AccessSemantics::DirectToStorage);

  // de/encoder
  auto *decoderExpr = new (C)
      DeclRefExpr(ConcreteDeclRef(target), DeclNameLoc(), /*Implicit=*/true);

  // Bound de/encoder.container(keyedBy: CodingKeys.self) call
  auto containerType = containerDecl->getInterfaceType();
  Expr *callExpr = createContainerKeyedByCall(C, DC, decoderExpr, containerType,
                                              codingKeysEnum);

  if (throws) {
    // try decoder.container(keyedBy: CodingKeys.self)
    callExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
                               /*implicit=*/true);
  }

  // Full `let container = decoder.container(keyedBy: CodingKeys.self)`
  // binding.
  auto *containerPattern = NamedPattern::createImplicit(C, containerDecl);
  auto *bindingDecl = PatternBindingDecl::createImplicit(
      C, StaticSpellingKind::None, containerPattern, callExpr, DC);
  statements.push_back(bindingDecl);
  statements.push_back(containerDecl);

  return containerExpr;
}

static std::pair<BraceStmt *, bool>
deriveBodyEncodable_enum_encode(AbstractFunctionDecl *encodeDecl, void *) {
  // enum Foo : Codable {
  //   case bar(x: Int)
  //   case baz(y: String)
  //
  //   // Already derived by this point if possible.
  //   @derived enum CodingKeys : CodingKey {
  //     case bar
  //     case baz
  //
  //     @derived enum BarCodingKeys : CodingKey {
  //       case x
  //     }
  //
  //     @derived enum BazCodingKeys : CodingKey {
  //       case y
  //     }
  //   }
  //
  //   @derived func encode(to encoder: Encoder) throws {
  //     var container = encoder.container(keyedBy: CodingKeys.self)
  //     switch self {
  //     case bar(let x):
  //       let nestedContainer = try container.nestedContainer(keyedBy:
  //       BarCodingKeys.self, forKey: .bar) try nestedContainer.encode(x,
  //       forKey: .x)
  //     case baz(let y):
  //       let nestedContainer = try container.nestedContainer(keyedBy:
  //       BazCodingKeys.self, forKey: .baz) try nestedContainer.encode(y,
  //       forKey: .y)
  //     }
  //   }
  // }

  // The enclosing type decl.
  auto conformanceDC = encodeDecl->getDeclContext();
  auto *enumDecl = conformanceDC->getSelfEnumDecl();

  auto *funcDC = cast<DeclContext>(encodeDecl);
  auto &C = funcDC->getASTContext();

  // We'll want the CodingKeys enum for this type, potentially looking through
  // a typealias.
  auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, enumDecl);
  // We should have bailed already if:
  // a) The type does not have CodingKeys
  // b) The type is not an enum
  assert(codingKeysEnum && "Missing CodingKeys decl.");

  SmallVector<ASTNode, 5> statements;

  // Generate a reference to containerExpr ahead of time in case there are no
  // properties to encode or decode, but the type is a class which inherits from
  // something Codable and needs to encode super.

  // Need to generate
  //   `let container = encoder.container(keyedBy: CodingKeys.self)`
  // This is unconditional because a type with no properties should encode as an
  // empty container.

  // let container : KeyedEncodingContainer<CodingKeys>
  auto *containerExpr = createContainer(
      C, funcDC, VarDecl::Introducer::Var, C.getKeyedEncodingContainerDecl(),
      encodeDecl->getParameters()->get(0), codingKeysEnum, statements,
      /*throws*/ false);

  auto *selfRef = encodeDecl->getImplicitSelfDecl();

  // generate: switch self { }
  auto enumRef =
      new (C) DeclRefExpr(ConcreteDeclRef(selfRef), DeclNameLoc(),
                          /*implicit*/ true, AccessSemantics::Ordinary);
  auto switchStmt = createEnumSwitch(
      C, funcDC, enumRef, enumDecl, codingKeysEnum,
      /*createSubpattern*/ true,
      [&](EnumElementDecl *elt, EnumElementDecl *codingKeyCase,
          ArrayRef<VarDecl *> payloadVars)
          -> std::tuple<EnumElementDecl *, BraceStmt *> {
        SmallVector<ASTNode, 3> caseStatements;

        if (elt->getAttrs().isUnavailable(C)) {
          // This case is not encodable because it is unavailable and therefore
          // should not be instantiable at runtime. Skipping this case will
          // result in the SIL pipeline giving the switch a default case for
          // unexpected values.
          return std::make_tuple(nullptr, nullptr);
        }

        if (!codingKeyCase) {
          // This case should not be encodable, so throw an error if an attempt
          // is made to encode it
          auto debugMessage =
              "Case '" + elt->getBaseIdentifier().str().str() +
              "' cannot be encoded because it is not defined in CodingKeys.";
          auto *selfRefExpr = new (C) DeclRefExpr(
              ConcreteDeclRef(selfRef), DeclNameLoc(), /* Implicit */ true);

          auto *throwStmt = createThrowCodingErrorStmt(
              C, containerExpr, C.getEncodingErrorDecl(), C.Id_invalidValue,
              selfRefExpr, debugMessage);

          caseStatements.push_back(throwStmt);
        } else {
          auto caseIdentifier = caseCodingKeysIdentifier(C, elt);
          auto *caseCodingKeys =
              lookupEvaluatedCodingKeysEnum(C, enumDecl, caseIdentifier);

          auto *nestedContainerDecl = createKeyedContainer(
              C, funcDC, C.getKeyedEncodingContainerDecl(),
              caseCodingKeys->getDeclaredInterfaceType(),
              VarDecl::Introducer::Var, C.Id_nestedContainer);

          auto *nestedContainerCall = createNestedContainerKeyedByForKeyCall(
              C, funcDC, containerExpr, caseCodingKeys, codingKeyCase);

          auto *containerPattern =
              NamedPattern::createImplicit(C, nestedContainerDecl);
          auto *bindingDecl = PatternBindingDecl::createImplicit(
              C, StaticSpellingKind::None, containerPattern,
              nestedContainerCall, funcDC);
          caseStatements.push_back(bindingDecl);
          caseStatements.push_back(nestedContainerDecl);

          for (auto entry : llvm::enumerate(payloadVars)) {
            auto *payloadVar = entry.value();
            auto *nestedContainerExpr = new (C) DeclRefExpr(
                ConcreteDeclRef(nestedContainerDecl), DeclNameLoc(),
                /*Implicit=*/true, AccessSemantics::DirectToStorage);
            auto payloadVarRef = new (C) DeclRefExpr(payloadVar, DeclNameLoc(),
                                                     /*implicit*/ true);
            auto *paramDecl = elt->getParameterList()->get(entry.index());
            auto caseCodingKeysIdentifier =
                getVarNameForCoding(paramDecl, entry.index());
            auto *caseCodingKey =
                lookupEnumCase(C, caseCodingKeys, caseCodingKeysIdentifier);

            // If there is no key defined for this parameter, skip it.
            if (!caseCodingKey)
              continue;

            auto varType = conformanceDC->mapTypeIntoContext(
                payloadVar->getValueInterfaceType());

            bool useIfPresentVariant = false;
            if (auto objType = varType->getOptionalObjectType()) {
              varType = objType;
              useIfPresentVariant = true;
            }

            auto *encodeCallExpr = createEncodeCall(
                C, caseCodingKeys->getDeclaredType(), caseCodingKey,
                nestedContainerExpr, payloadVarRef, useIfPresentVariant);

            caseStatements.push_back(encodeCallExpr);
          }
        }

        auto body =
            BraceStmt::create(C, SourceLoc(), caseStatements, SourceLoc());

        return std::make_tuple(elt, body);
      });

  statements.push_back(switchStmt);

  auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
                                 /*implicit=*/true);
  return {body, /*isTypeChecked=*/false};
}

/// Synthesizes a function declaration for `encode(to: Encoder) throws` with a
/// lazily synthesized body for the given type.
///
/// Adds the function declaration to the given type before returning it.
static FuncDecl *deriveEncodable_encode(DerivedConformance &derived) {
  auto &C = derived.Context;
  auto conformanceDC = derived.getConformanceContext();

  // Expected type: (Self) -> (Encoder) throws -> ()
  // Constructed as: func type
  //                 input: Self
  //                 throws
  //                 output: function type
  //                         input: Encoder
  //                         output: ()
  // Create from the inside out:

  auto encoderType = ExistentialType::get(C.getEncoderType());
  auto returnType = TupleType::getEmpty(C);

  // Params: (Encoder)
  auto *encoderParam = new (C)
      ParamDecl(SourceLoc(), SourceLoc(), C.Id_to,
                SourceLoc(), C.Id_encoder, conformanceDC);
  encoderParam->setSpecifier(ParamSpecifier::Default);
  encoderParam->setInterfaceType(encoderType);
  encoderParam->setImplicit();

  ParameterList *params = ParameterList::createWithoutLoc(encoderParam);

  // Func name: encode(to: Encoder)
  DeclName name(C, C.Id_encode, params);
  auto *const encodeDecl = FuncDecl::createImplicit(
      C, StaticSpellingKind::None, name, /*NameLoc=*/SourceLoc(),
      /*Async=*/false,
      /*Throws=*/true, /*ThrownType=*/Type(),
      /*GenericParams=*/nullptr, params, returnType,
      conformanceDC);
  encodeDecl->setSynthesized();

  if (dyn_cast<EnumDecl>(derived.Nominal)) {
    encodeDecl->setBodySynthesizer(deriveBodyEncodable_enum_encode);
  } else {
    encodeDecl->setBodySynthesizer(deriveBodyEncodable_encode);
  }

  // This method should be marked as 'override' for classes inheriting Encodable
  // conformance from a parent class.
  if (superclassConformsTo(dyn_cast<ClassDecl>(derived.Nominal),
                           KnownProtocolKind::Encodable)) {
    auto *attr = new (C) OverrideAttr(/*IsImplicit=*/true);
    encodeDecl->getAttrs().add(attr);
  }

  addNonIsolatedToSynthesized(derived.Nominal, encodeDecl);

  encodeDecl->copyFormalAccessFrom(derived.Nominal,
                                   /*sourceIsParentContext*/ true);

  derived.addMembersToConformanceContext({encodeDecl});

  return encodeDecl;
}

static TryExpr *createDecodeCall(ASTContext &C, Type resultType,
                                 Type codingKeysType,
                                 EnumElementDecl *codingKey,
                                 Expr *containerExpr,
                                 bool useIfPresentVariant) {
  auto methodName = useIfPresentVariant ? C.Id_decodeIfPresent : C.Id_decode;

  // Type.self
  auto *metaTyRef = TypeExpr::createImplicit(resultType, C);
  auto *targetExpr =
      new (C) DotSelfExpr(metaTyRef, SourceLoc(), SourceLoc(), resultType);

  // CodingKeys.x
  metaTyRef = TypeExpr::createImplicit(codingKeysType, C);
  auto *keyExpr =
      new (C) MemberRefExpr(metaTyRef, SourceLoc(), codingKey, DeclNameLoc(),
                            /*Implicit=*/true);

  // decode(_:forKey:)/decodeIfPresent(_:forKey:)
  auto *decodeCall = UnresolvedDotExpr::createImplicit(
      C, containerExpr, methodName, {Identifier(), C.Id_forKey});

  // container.decode(Type.self, forKey: CodingKeys.x)
  auto *argList = ArgumentList::forImplicitCallTo(decodeCall->getName(),
                                                  {targetExpr, keyExpr}, C);
  auto *callExpr = CallExpr::createImplicit(C, decodeCall, argList);

  // try container.decode(Type.self, forKey: CodingKeys.x)
  auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
                                  /*Implicit=*/true);
  return tryExpr;
}

/// Synthesizes the body for `init(from decoder: Decoder) throws`.
///
/// \param initDecl The function decl whose body to synthesize.
static std::pair<BraceStmt *, bool>
deriveBodyDecodable_init(AbstractFunctionDecl *initDecl, void *) {
  // struct Foo : Codable {
  //   var x: Int
  //   var y: String
  //
  //   // Already derived by this point if possible.
  //   @derived enum CodingKeys : CodingKey {
  //     case x
  //     case y
  //   }
  //
  //   @derived init(from decoder: Decoder) throws {
  //     let container = try decoder.container(keyedBy: CodingKeys.self)
  //     x = try container.decode(Type.self, forKey: .x)
  //     y = try container.decode(Type.self, forKey: .y)
  //   }
  // }

  // The enclosing type decl.
  auto conformanceDC = initDecl->getDeclContext();
  auto *targetDecl = conformanceDC->getSelfNominalTypeDecl();

  auto *funcDC = cast<DeclContext>(initDecl);
  auto &C = funcDC->getASTContext();

  // We'll want the CodingKeys enum for this type, potentially looking through
  // a typealias.
  auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, targetDecl);
  // We should have bailed already if:
  // a) The type does not have CodingKeys
  // b) The type is not an enum
  assert(codingKeysEnum && "Missing CodingKeys decl.");

  // Generate a reference to containerExpr ahead of time in case there are no
  // properties to encode or decode, but the type is a class which inherits from
  // something Codable and needs to decode super.

  // let container : KeyedDecodingContainer<CodingKeys>
  auto codingKeysType = codingKeysEnum->getDeclaredType();
  auto *containerDecl = createKeyedContainer(C, funcDC,
                                             C.getKeyedDecodingContainerDecl(),
                                             codingKeysEnum->getDeclaredInterfaceType(),
                                             VarDecl::Introducer::Let);

  auto *containerExpr = new (C) DeclRefExpr(ConcreteDeclRef(containerDecl),
                                            DeclNameLoc(), /*Implicit=*/true,
                                            AccessSemantics::DirectToStorage);

  SmallVector<ASTNode, 5> statements;
  auto enumElements = codingKeysEnum->getAllElements();
  if (!enumElements.empty()) {
    // Need to generate
    //   `let container = try decoder.container(keyedBy: CodingKeys.self)`
    // `let container` (containerExpr) is generated above.

    // decoder
    auto decoderParam = initDecl->getParameters()->get(0);
    auto *decoderExpr = new (C) DeclRefExpr(ConcreteDeclRef(decoderParam),
                                            DeclNameLoc(), /*Implicit=*/true);

    // Bound decoder.container(keyedBy: CodingKeys.self) call
    auto containerType = containerDecl->getInterfaceType();
    auto *callExpr = createContainerKeyedByCall(C, funcDC, decoderExpr,
                                                containerType, codingKeysEnum);

    // try decoder.container(keyedBy: CodingKeys.self)
    auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
                                    /*implicit=*/true);

    // Full `let container = decoder.container(keyedBy: CodingKeys.self)`
    // binding.
    auto *containerPattern = NamedPattern::createImplicit(C, containerDecl);
    auto *bindingDecl = PatternBindingDecl::createImplicit(
        C, StaticSpellingKind::None, containerPattern, tryExpr, funcDC);
    statements.push_back(bindingDecl);
    statements.push_back(containerDecl);

    // Now need to generate `x = try container.decode(Type.self, forKey: .x)`
    // for all existing properties. Optional properties get `decodeIfPresent`.
    for (auto *elt : enumElements) {
      VarDecl *varDecl;
      Type varType;
      bool useIfPresentVariant;

      std::tie(varDecl, varType, useIfPresentVariant) =
          lookupVarDeclForCodingKeysCase(conformanceDC, elt, targetDecl);

      // Don't output a decode statement for a let with an initial value.
      if (varDecl->isLet() && varDecl->isParentInitialized()) {
        // But emit a warning to let the user know that it won't be decoded.
        auto lookupResult =
            codingKeysEnum->lookupDirect(varDecl->getBaseName());
        auto keyExistsInCodingKeys =
            llvm::any_of(lookupResult, [&](ValueDecl *VD) {
              if (isa<EnumElementDecl>(VD)) {
                return VD->getBaseName() == varDecl->getBaseName();
              }
              return false;
            });
        auto *encodableProto = C.getProtocol(KnownProtocolKind::Encodable);
        bool conformsToEncodable =
            conformanceDC->getParentModule()->lookupConformance(
                targetDecl->getDeclaredInterfaceType(), encodableProto) != nullptr;

        // Strategy to use for CodingKeys enum diagnostic part - this is to
        // make the behaviour more explicit:
        //
        // 1. If we have an *implicit* CodingKeys enum:
        // (a) If the type is Decodable only, explicitly define the enum and
        //     remove the key from it. This makes it explicit that the key
        //     will not be decoded.
        // (b) If the type is Codable, explicitly define the enum and keep the
        //     key in it. This is because removing the key will break encoding
        //     which is mostly likely not what the user expects.
        //
        // 2. If we have an *explicit* CodingKeys enum:
        // (a) If the type is Decodable only and the key exists in the enum,
        //     then explicitly remove the key from the enum. This makes it
        //     explicit that the key will not be decoded.
        // (b) If the type is Decodable only and the key does not exist in
        //     the enum, do nothing. This is because the user has explicitly
        //     made it clear that they don't want the key to be decoded.
        // (c) If the type is Codable, do nothing. This is because removing
        //     the key will break encoding which is most likely not what the
        //     user expects.
        if (!codingKeysEnum->isImplicit()) {
          if (conformsToEncodable || !keyExistsInCodingKeys) {
            continue;
          }
        }

        varDecl->diagnose(diag::decodable_property_will_not_be_decoded);
        if (codingKeysEnum->isImplicit()) {
          varDecl->diagnose(
              diag::decodable_property_init_or_codingkeys_implicit,
              conformsToEncodable ? 0 : 1, varDecl->getName());
        } else {
          varDecl->diagnose(
              diag::decodable_property_init_or_codingkeys_explicit,
              varDecl->getName());
        }
        if (auto *PBD = varDecl->getParentPatternBinding()) {
          varDecl->diagnose(diag::decodable_make_property_mutable)
              .fixItReplace(PBD->getLoc(), "var");
        }

        continue;
      }

      auto *tryExpr = createDecodeCall(C, varType, codingKeysType, elt,
                                       containerExpr, useIfPresentVariant);

      auto *selfRef = DerivedConformance::createSelfDeclRef(initDecl);
      auto *varExpr = UnresolvedDotExpr::createImplicit(C, selfRef,
                                                        varDecl->getName());
      auto *assignExpr = new (C) AssignExpr(varExpr, SourceLoc(), tryExpr,
                                            /*Implicit=*/true);
      statements.push_back(assignExpr);
    }
  }

  // Classes which have a superclass must call super.init(from:) if the
  // superclass is Decodable, or super.init() if it is not.
  if (auto *classDecl = dyn_cast<ClassDecl>(targetDecl)) {
    if (auto *superclassDecl = classDecl->getSuperclassDecl()) {
      if (superclassConformsTo(classDecl, KnownProtocolKind::Decodable)) {
        // Need to generate `try super.init(from: container.superDecoder())`

        // container.superDecoder
        auto *superDecoderRef =
          UnresolvedDotExpr::createImplicit(C, containerExpr,
                                            C.Id_superDecoder);

        // container.superDecoder()
        auto *superDecoderCall =
            CallExpr::createImplicitEmpty(C, superDecoderRef);

        // super
        auto *superRef = new (C) SuperRefExpr(initDecl->getImplicitSelfDecl(),
                                              SourceLoc(), /*Implicit=*/true);

        // super.init(from:)
        auto *initCall = UnresolvedDotExpr::createImplicit(
            C, superRef, DeclBaseName::createConstructor(), {C.Id_from});

        // super.decode(from: container.superDecoder())
        auto *argList =
            ArgumentList::forImplicitSingle(C, C.Id_from, superDecoderCall);
        auto *callExpr = CallExpr::createImplicit(C, initCall, argList);

        // try super.init(from: container.superDecoder())
        auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
                                        /*Implicit=*/true);
        statements.push_back(tryExpr);
      } else {
        // The explicit constructor name is a compound name taking no arguments.
        DeclName initName(C, DeclBaseName::createConstructor(),
                          ArrayRef<Identifier>());

        // We need to look this up in the superclass to see if it throws.
        auto result = superclassDecl->lookupDirect(initName);

        // We should have bailed one level up if this were not available.
        assert(!result.empty());

        // If the init is failable, we should have already bailed one level
        // above.
        ConstructorDecl *superInitDecl = cast<ConstructorDecl>(result.front());
        assert(!superInitDecl->isFailable());

        // super
        auto *superRef = new (C) SuperRefExpr(initDecl->getImplicitSelfDecl(),
                                              SourceLoc(), /*Implicit=*/true);

        // super.init()
        auto *superInitRef = UnresolvedDotExpr::createImplicit(C, superRef,
                                                               initName);
        // super.init() call
        Expr *callExpr = CallExpr::createImplicitEmpty(C, superInitRef);

        // If super.init throws, try super.init()
        if (superInitDecl->hasThrows())
          callExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
                                     /*Implicit=*/true);

        statements.push_back(callExpr);
      }
    }
  }

  auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
                                 /*implicit=*/true);
  return { body, /*isTypeChecked=*/false };
}

/// Synthesizes the body for `init(from decoder: Decoder) throws`.
///
/// \param initDecl The function decl whose body to synthesize.
static std::pair<BraceStmt *, bool>
deriveBodyDecodable_enum_init(AbstractFunctionDecl *initDecl, void *) {
  // enum Foo : Codable {
  //   case bar(x: Int)
  //   case baz(y: String)
  //   @available(*, unavailable) case qux(z: Double)
  //
  //   // Already derived by this point if possible.
  //   @derived enum CodingKeys : CodingKey {
  //     case bar
  //     case baz
  //     case qux
  //
  //     @derived enum BarCodingKeys : CodingKey {
  //       case x
  //     }
  //
  //     @derived enum BazCodingKeys : CodingKey {
  //       case y
  //     }
  //
  //     @derived enum QuxCodingKeys : CodingKey {
  //       case z
  //     }
  //   }
  //
  //   @derived init(from decoder: Decoder) throws {
  //     let container = try decoder.container(keyedBy: CodingKeys.self)
  //     var allKeys = ArraySlice(container.allKeys)
  //     guard let onlyKey = allKeys.popFirst(), allKeys.isEmpty else {
  //       let context = DecodingError.Context(
  //           codingPath: container.codingPath,
  //           debugDescription: "Invalid number of keys found, expected one.")
  //       throw DecodingError.typeMismatch(Foo.self, context)
  //     }
  //     switch onlyKey {
  //     case .bar:
  //       let nestedContainer = try container.nestedContainer(
  //           keyedBy: BarCodingKeys.self, forKey: .bar)
  //       let x = try nestedContainer.decode(Int.self, forKey: .x)
  //       self = .bar(x: x)
  //     case .baz:
  //       let nestedContainer = try container.nestedContainer(
  //           keyedBy: BazCodingKeys.self, forKey: .baz)
  //       let y = try nestedContainer.decode(String.self, forKey: .y)
  //       self = .baz(y: y)
  //     case .qux:
  //       throw DecodingError.dataCorrupted(
  //         DecodingError.Context(
  //           codingPath: decoder.codingPath,
  //           debugDescription: "Unavailable enum element encountered.")
  //       )
  //     }
  //   }

  // The enclosing type decl.
  auto conformanceDC = initDecl->getDeclContext();
  auto *targetEnum = conformanceDC->getSelfEnumDecl();

  auto *funcDC = cast<DeclContext>(initDecl);
  auto &C = funcDC->getASTContext();

  // We'll want the CodingKeys enum for this type, potentially looking through
  // a typealias.
  auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, targetEnum);
  // We should have bailed already if:
  // a) The type does not have CodingKeys
  // b) The type is not an enum
  assert(codingKeysEnum && "Missing CodingKeys decl.");

  SmallVector<ASTNode, 5> statements;
  if (codingKeysEnum->hasCases()) {
    // Need to generate
    //   `let container = try decoder.container(keyedBy: CodingKeys.self)`

    auto *containerExpr = createContainer(
        C, funcDC, VarDecl::Introducer::Let, C.getKeyedDecodingContainerDecl(),
        initDecl->getParameters()->get(0), codingKeysEnum, statements,
        /*throws*/ true);

    // generate: var allKeys = ArraySlice(container.allKeys);
    auto *allKeysDecl =
        new (C) VarDecl(/*IsStatic=*/false, VarDecl::Introducer::Var,
                        SourceLoc(), C.Id_allKeys, funcDC);
    allKeysDecl->setImplicit();
    allKeysDecl->setSynthesized();
    {
      auto *arraySliceRef =
          new (C) DeclRefExpr(ConcreteDeclRef(C.getArraySliceDecl()),
                              DeclNameLoc(), /*Implicit=*/true);
      auto *containerAllKeys =
          UnresolvedDotExpr::createImplicit(C, containerExpr, C.Id_allKeys);
      auto *argList = ArgumentList::createImplicit(
          C, {Argument::unlabeled(containerAllKeys)});
      auto *init = CallExpr::createImplicit(C, arraySliceRef, argList);

      auto *allKeysPattern = NamedPattern::createImplicit(C, allKeysDecl);
      auto *allKeysBindingDecl = PatternBindingDecl::createImplicit(
          C, StaticSpellingKind::None, allKeysPattern, init, funcDC);

      statements.push_back(allKeysBindingDecl);
      statements.push_back(allKeysDecl);
    }

    // generate:
    //  guard let onlyKey = allKeys.popFirst(), allKeys.isEmpty else {
    //    let context = DecodingError.Context(
    //            codingPath: container.codingPath,
    //            debugDescription: "Invalid number of keys found, expected
    //            one.")
    //    throw DecodingError.typeMismatch(Foo.self, context)
    //  }
    auto *theKeyDecl =
        new (C) VarDecl(/*IsStatic=*/false, VarDecl::Introducer::Let,
                        SourceLoc(), C.getIdentifier("onlyKey"), funcDC);
    theKeyDecl->setImplicit();
    theKeyDecl->setSynthesized();

    SmallVector<StmtConditionElement, 2> guardElements;
    {
      auto *allKeysExpr =
          new (C) DeclRefExpr(ConcreteDeclRef(allKeysDecl), DeclNameLoc(),
                              /*Implicit=*/true);

      // generate: let onlyKey = allKeys.popFirst;
      auto *allKeysPopFirstCallExpr = CallExpr::createImplicitEmpty(
          C, UnresolvedDotExpr::createImplicit(C, allKeysExpr, C.Id_popFirst));

      auto *theKeyPattern = BindingPattern::createImplicit(
          C, VarDecl::Introducer::Let,
          NamedPattern::createImplicit(C, theKeyDecl));

      guardElements.emplace_back(ConditionalPatternBindingInfo::create(
          C, SourceLoc(), theKeyPattern, allKeysPopFirstCallExpr));

      // generate: allKeys.isEmpty;
      auto *allKeysIsEmptyExpr =
          UnresolvedDotExpr::createImplicit(C, allKeysExpr, C.Id_isEmpty);

      guardElements.emplace_back(allKeysIsEmptyExpr);
    }

    auto *targetType = TypeExpr::createImplicit(
        funcDC->mapTypeIntoContext(targetEnum->getDeclaredInterfaceType()), C);
    auto *targetTypeExpr =
        new (C) DotSelfExpr(targetType, SourceLoc(), SourceLoc());

    auto *throwStmt = createThrowCodingErrorStmt(
        C, containerExpr, C.getDecodingErrorDecl(), C.Id_typeMismatch,
        targetTypeExpr, "Invalid number of keys found, expected one.");

    auto *guardBody = BraceStmt::create(C, SourceLoc(), {throwStmt},
                                        SourceLoc(), /* Implicit */ true);

    auto *guardStmt =
        new (C) GuardStmt(SourceLoc(), C.AllocateCopy(guardElements), guardBody,
                          /* Implicit */ true);

    statements.push_back(guardStmt);

    // generate: switch onlyKey { }
    auto *theKeyExpr = new (C) DeclRefExpr(ConcreteDeclRef(theKeyDecl),
                                           DeclNameLoc(), /*Implicit=*/true);

    auto switchStmt = createEnumSwitch(
        C, funcDC, theKeyExpr, targetEnum, codingKeysEnum,
        /*createSubpattern*/ false,
        [&](EnumElementDecl *elt, EnumElementDecl *codingKeyCase,
            ArrayRef<VarDecl *> payloadVars)
            -> std::tuple<EnumElementDecl *, BraceStmt *> {
          // Skip this case if it's not defined in the CodingKeys
          if (!codingKeyCase)
            return std::make_tuple(nullptr, nullptr);

          if (elt->getAttrs().isUnavailable(C)) {
            // generate:
            //       throw DecodingError.dataCorrupted(
            //         DecodingError.Context(
            //           codingPath: decoder.codingPath,
            //           debugDescription: "...")
            auto *throwStmt = createThrowCodingErrorStmt(
                C, containerExpr, C.getDecodingErrorDecl(), C.Id_dataCorrupted,
                std::nullopt, "Unavailable enum element encountered.");

            auto body =
                BraceStmt::create(C, SourceLoc(), {throwStmt}, SourceLoc());

            return std::make_tuple(codingKeyCase, body);
          }

          llvm::SmallVector<ASTNode, 3> caseStatements;
          auto caseIdentifier = caseCodingKeysIdentifier(C, elt);
          auto *caseCodingKeys =
              lookupEvaluatedCodingKeysEnum(C, targetEnum, caseIdentifier);

          auto *nestedContainerDecl = createKeyedContainer(
              C, funcDC, C.getKeyedDecodingContainerDecl(),
              caseCodingKeys->getDeclaredInterfaceType(),
              VarDecl::Introducer::Let, C.Id_nestedContainer);

          auto *nestedContainerCall = createNestedContainerKeyedByForKeyCall(
              C, funcDC, containerExpr, caseCodingKeys, codingKeyCase);

          auto *tryNestedContainerCall = new (C) TryExpr(
              SourceLoc(), nestedContainerCall, Type(), /* Implicit */ true);

          auto *containerPattern =
              NamedPattern::createImplicit(C, nestedContainerDecl);
          auto *bindingDecl = PatternBindingDecl::createImplicit(
              C, StaticSpellingKind::None, containerPattern,
              tryNestedContainerCall, funcDC);
          caseStatements.push_back(bindingDecl);
          caseStatements.push_back(nestedContainerDecl);

          llvm::SmallVector<Argument, 3> decodeArgs;
          if (elt->hasAssociatedValues()) {
            for (auto entry : llvm::enumerate(*elt->getParameterList())) {
              auto *paramDecl = entry.value();
              Identifier identifier = getVarNameForCoding(paramDecl);
              if (identifier.empty()) {
                identifier =
                    C.getIdentifier("_" + std::to_string(entry.index()));
              }
              auto *caseCodingKey =
                  lookupEnumCase(C, caseCodingKeys, identifier);

              auto argLabel = getVarNameForCoding(paramDecl);

              // If no key is defined for this parameter, use the default value
              if (!caseCodingKey) {
                // This should have been verified to have a default expr in the
                // CodingKey synthesis
                assert(paramDecl->hasDefaultExpr());
                decodeArgs.emplace_back(SourceLoc(), argLabel,
                                        paramDecl->getTypeCheckedDefaultExpr());
                continue;
              }

              auto varType = conformanceDC->mapTypeIntoContext(
                  paramDecl->getValueInterfaceType());

              bool useIfPresentVariant = false;
              if (auto objType = varType->getOptionalObjectType()) {
                varType = objType;
                useIfPresentVariant = true;
              }

              auto *nestedContainerExpr = new (C) DeclRefExpr(
                  ConcreteDeclRef(nestedContainerDecl), DeclNameLoc(),
                  /*Implicit=*/true, AccessSemantics::DirectToStorage);

              auto *tryExpr = createDecodeCall(
                  C, varType, caseCodingKeys->getDeclaredType(), caseCodingKey,
                  nestedContainerExpr, useIfPresentVariant);

              decodeArgs.emplace_back(SourceLoc(), argLabel, tryExpr);
            }
          }

          auto *selfRef = DerivedConformance::createSelfDeclRef(initDecl);

          // Foo.bar
          auto *selfTypeExpr =
              TypeExpr::createImplicit(targetEnum->getDeclaredType(), C);

          if (decodeArgs.empty()) {
            auto *selfCaseExpr =
                new (C) MemberRefExpr(selfTypeExpr, SourceLoc(), elt,
                                      DeclNameLoc(), /*Implicit=*/true);

            auto *selfRef = DerivedConformance::createSelfDeclRef(initDecl);

            auto *assignExpr =
                new (C) AssignExpr(selfRef, SourceLoc(), selfCaseExpr,
                                   /*Implicit=*/true);

            caseStatements.push_back(assignExpr);
          } else {
            // Foo.bar(x:)
            SmallVector<Identifier, 3> scratch;
            auto *argList = ArgumentList::createImplicit(C, decodeArgs);
            auto *selfCaseExpr = UnresolvedDotExpr::createImplicit(
                C, selfTypeExpr, elt->getBaseIdentifier(),
                argList->getArgumentLabels(scratch));

            // Foo.bar(x: try nestedContainer.decode(Int.self, forKey: .x))
            auto *caseCallExpr =
                CallExpr::createImplicit(C, selfCaseExpr, argList);

            // self = Foo.bar(x: try nestedContainer.decode(Int.self))
            auto *assignExpr =
                new (C) AssignExpr(selfRef, SourceLoc(), caseCallExpr,
                                   /*Implicit=*/true);

            caseStatements.push_back(assignExpr);
          }

          auto body =
              BraceStmt::create(C, SourceLoc(), caseStatements, SourceLoc());

          return std::make_tuple(codingKeyCase, body);
        });

    statements.push_back(switchStmt);
  }

  auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
                                 /*implicit=*/true);
  return {body, /*isTypeChecked=*/false};
}

/// Synthesizes a function declaration for `init(from: Decoder) throws` with a
/// lazily synthesized body for the given type.
///
/// Adds the function declaration to the given type before returning it.
static ValueDecl *deriveDecodable_init(DerivedConformance &derived) {
  auto &C = derived.Context;

  auto classDecl = dyn_cast<ClassDecl>(derived.Nominal);
  auto conformanceDC = derived.getConformanceContext();

  // Expected type: (Self) -> (Decoder) throws -> (Self)
  // Constructed as: func type
  //                 input: Self
  //                 throws
  //                 output: function type
  //                         input: Encoder
  //                         output: Self
  // Compute from the inside out:

  // Params: (Decoder)
  auto decoderType = ExistentialType::get(C.getDecoderType());
  auto *decoderParamDecl = new (C) ParamDecl(
      SourceLoc(), SourceLoc(), C.Id_from,
      SourceLoc(), C.Id_decoder, conformanceDC);
  decoderParamDecl->setImplicit();
  decoderParamDecl->setSpecifier(ParamSpecifier::Default);
  decoderParamDecl->setInterfaceType(decoderType);

  auto *paramList = ParameterList::createWithoutLoc(decoderParamDecl);

  // Func name: init(from: Decoder)
  DeclName name(C, DeclBaseName::createConstructor(), paramList);

  auto *initDecl =
      new (C) ConstructorDecl(name, SourceLoc(),
                              /*Failable=*/false, SourceLoc(),
                              /*Async=*/false, /*AsyncLoc=*/SourceLoc(),
                              /*Throws=*/true, SourceLoc(),
                              /*ThrownType=*/TypeLoc(), paramList,
                              /*GenericParams=*/nullptr, conformanceDC,
                              /*LifetimeDependentReturnTypeRepr*/ nullptr);
  initDecl->setImplicit();
  initDecl->setSynthesized();

  if (dyn_cast<EnumDecl>(derived.Nominal)) {
    initDecl->setBodySynthesizer(&deriveBodyDecodable_enum_init);
  } else {
    initDecl->setBodySynthesizer(&deriveBodyDecodable_init);
  }

  // This constructor should be marked as `required` for non-final classes.
  if (classDecl && !classDecl->isSemanticallyFinal()) {
    auto *reqAttr = new (C) RequiredAttr(/*IsImplicit=*/true);
    initDecl->getAttrs().add(reqAttr);
  }

  addNonIsolatedToSynthesized(derived.Nominal, initDecl);

  initDecl->copyFormalAccessFrom(derived.Nominal,
                                 /*sourceIsParentContext*/ true);

  derived.addMembersToConformanceContext({initDecl});

  return initDecl;
}

/// Returns whether the given type is valid for synthesizing {En,De}codable.
///
/// Checks to see whether the given type has a valid \c CodingKeys enum, and if
/// not, attempts to synthesize one for it.
///
/// \param requirement The requirement we want to synthesize.
static bool canSynthesize(DerivedConformance &derived, ValueDecl *requirement,
                          DelayedNotes &delayedNotes) {
  // Before we attempt to look up (or more importantly, synthesize) a CodingKeys
  // entity on target, we need to make sure the type is otherwise valid.
  //
  // If we are synthesizing Decodable and the target is a class with a
  // superclass, our synthesized init(from:) will need to call either
  // super.init(from:) or super.init() depending on whether the superclass is
  // Decodable itself.
  //
  // If the required initializer is not available, we shouldn't attempt to
  // synthesize CodingKeys.
  auto proto = derived.Protocol;
  auto *classDecl = dyn_cast<ClassDecl>(derived.Nominal);
  if (proto->isSpecificProtocol(KnownProtocolKind::Decodable) && classDecl) {
    if (auto *superclassDecl = classDecl->getSuperclassDecl()) {
      DeclName memberName;
      auto superType = superclassDecl->getDeclaredInterfaceType();
      if (derived.getParentModule()->checkConformance(superType, proto)) {
        // super.init(from:) must be accessible.
        memberName = cast<ConstructorDecl>(requirement)->getName();
      } else {
        // super.init() must be accessible.
        // Passing an empty params array constructs a compound name with no
        // arguments (as opposed to a simple name when omitted).
        memberName =
            DeclName(derived.Context, DeclBaseName::createConstructor(),
                     ArrayRef<Identifier>());
      }

      auto result =
          TypeChecker::lookupMember(superclassDecl, superType,
                                    DeclNameRef(memberName));

      if (result.empty()) {
        // No super initializer for us to call.
        delayedNotes.push_back([=] {
          superclassDecl->diagnose(diag::decodable_no_super_init_here,
                                   requirement->getName(), memberName);
        });

        return false;
      } else if (result.size() > 1) {
        // There are multiple results for this lookup. We'll end up producing a
        // diagnostic later complaining about duplicate methods (if we haven't
        // already), so just bail with a general error.
        return false;
      } else {
        auto *initializer =
          cast<ConstructorDecl>(result.front().getValueDecl());
        auto conformanceDC = derived.getConformanceContext();
        if (!initializer->isDesignatedInit()) {
          // We must call a superclass's designated initializer.
          delayedNotes.push_back([=] {
            initializer->diagnose(
                diag::decodable_super_init_not_designated_here,
                requirement->getName(), memberName);
          });
          return false;
        } else if (!initializer->isAccessibleFrom(conformanceDC)) {
          // Cannot call an inaccessible method.
          delayedNotes.push_back([=] {
            auto accessScope = initializer->getFormalAccessScope(conformanceDC);
            initializer->diagnose(diag::decodable_inaccessible_super_init_here,
                                  requirement->getName(), memberName,
                                  accessScope.accessLevelForDiagnostics());
          });
          return false;
        } else if (initializer->isFailable()) {
          // We can't call super.init() if it's failable, since init(from:)
          // isn't failable.
          delayedNotes.push_back([=] {
            initializer->diagnose(diag::decodable_super_init_is_failable_here,
                                  requirement->getName(), memberName);
          });
          return false;
        }
      }
    }
  }

  if (!validateCodingKeysEnum(derived, delayedNotes)) {
    return false;
  }

  bool allValid = true;
  if (auto *enumDecl = dyn_cast<EnumDecl>(derived.Nominal)) {
    llvm::SmallSetVector<Identifier, 4> caseNames;
    for (auto *elementDecl : enumDecl->getAllElements()) {
      bool duplicate = false;
      if (!caseNames.insert(elementDecl->getBaseIdentifier())) {
        delayedNotes.push_back([=] {
          elementDecl->diagnose(diag::codable_enum_duplicate_case_name_here,
                               derived.getProtocolType(),
                               derived.Nominal->getDeclaredType(),
                               elementDecl->getBaseIdentifier());
        });
        allValid = false;
        duplicate = true;
      }

      if (elementDecl->hasAssociatedValues()) {
        llvm::SmallMapVector<Identifier, ParamDecl *, 4> params;
        for (auto entry : llvm::enumerate(*elementDecl->getParameterList())) {
          auto *paramDecl = entry.value();
          Identifier paramIdentifier = getVarNameForCoding(paramDecl);
          bool generatedName = false;
          if (paramIdentifier.empty()) {
            paramIdentifier = derived.Context.getIdentifier("_" + std::to_string(entry.index()));
            generatedName = true;
          }
          auto inserted = params.insert(std::make_pair(paramIdentifier, paramDecl));
          if (!inserted.second) {
            // duplicate identifier found
            auto userDefinedParam = paramDecl;
            if (generatedName) {
              // at most we have one user defined and one generated identifier
              // with this name, so if this is the generated, the other one
              // must be the user defined
              userDefinedParam = inserted.first->second;
            }

            delayedNotes.push_back([=] {
              userDefinedParam->diagnose(diag::codable_enum_duplicate_parameter_name_here,
                                    derived.getProtocolType(),
                                    derived.Nominal->getDeclaredType(),
                                    paramIdentifier,
                                    elementDecl->getBaseIdentifier());
            });
            allValid = false;
          }
        }
      }

      if (!duplicate &&
          !validateCaseCodingKeysEnum(derived, elementDecl, delayedNotes)) {
        allValid = false;
      }
    }
  }

  return allValid;
}

static bool canDeriveCodable(NominalTypeDecl *NTD,
                             KnownProtocolKind Kind) {
  assert(Kind == KnownProtocolKind::Encodable ||
         Kind == KnownProtocolKind::Decodable);

  // Structs, classes and enums can explicitly derive Encodable and Decodable
  // conformance (explicitly meaning we can synthesize an implementation if
  // a type conforms manually).
  if (!isa<StructDecl>(NTD) && !isa<ClassDecl>(NTD) && !isa<EnumDecl>(NTD)) {
    return false;
  }

  auto *PD = NTD->getASTContext().getProtocol(Kind);
  if (!PD) {
    return false;
  }

  return true;
}

bool DerivedConformance::canDeriveDecodable(NominalTypeDecl *NTD) {
  return canDeriveCodable(NTD, KnownProtocolKind::Decodable);
}

bool DerivedConformance::canDeriveEncodable(NominalTypeDecl *NTD) {
  return canDeriveCodable(NTD, KnownProtocolKind::Encodable);
}

ValueDecl *DerivedConformance::deriveEncodable(ValueDecl *requirement) {
  // We can only synthesize Encodable for structs and classes.
  if (!isa<StructDecl>(Nominal) && !isa<ClassDecl>(Nominal) &&
      !isa<EnumDecl>(Nominal))
    return nullptr;

  if (requirement->getBaseName() != Context.Id_encode) {
    // Unknown requirement.
    requirement->diagnose(diag::broken_encodable_requirement);
    return nullptr;
  }

  if (checkAndDiagnoseDisallowedContext(requirement))
    return nullptr;

  // Check other preconditions for synthesized conformance.
  // This synthesizes a CodingKeys enum if possible.
  DelayedNotes delayedNotes;
  if (!canSynthesize(*this, requirement, delayedNotes)) {
    ConformanceDecl->diagnose(diag::type_does_not_conform,
                              Nominal->getDeclaredType(), getProtocolType());
    requirement->diagnose(diag::no_witnesses, diag::RequirementKind::Func,
                          requirement, getProtocolType(), /*AddFixIt=*/false);

    return nullptr;
  }
  assert(delayedNotes.empty());

  return deriveEncodable_encode(*this);
}

ValueDecl *DerivedConformance::deriveDecodable(ValueDecl *requirement) {
  // We can only synthesize Encodable for structs and classes.
  if (!isa<StructDecl>(Nominal) && !isa<ClassDecl>(Nominal) &&
      !isa<EnumDecl>(Nominal))
    return nullptr;

  if (!requirement->getBaseName().isConstructor()) {
    // Unknown requirement.
    requirement->diagnose(diag::broken_decodable_requirement);
    return nullptr;
  }

  if (checkAndDiagnoseDisallowedContext(requirement))
    return nullptr;

  // Check other preconditions for synthesized conformance.
  // This synthesizes a CodingKeys enum if possible.
  DelayedNotes delayedNotes;
  if (!canSynthesize(*this, requirement, delayedNotes)) {
    ConformanceDecl->diagnose(diag::type_does_not_conform,
                              Nominal->getDeclaredType(), getProtocolType());
    requirement->diagnose(diag::no_witnesses, diag::RequirementKind::Constructor,
                          requirement, getProtocolType(), /*AddFixIt=*/false);

    return nullptr;
  }
  assert(delayedNotes.empty());

  return deriveDecodable_init(*this);
}