1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
|
//===--- DerivedConformanceRawRepresentable.cpp - Derived RawRepresentable ===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements implicit derivation of the RawRepresentable protocol
// for an enum.
//
//===----------------------------------------------------------------------===//
#include "CodeSynthesis.h"
#include "TypeChecker.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Types.h"
#include "llvm/ADT/APInt.h"
#include "DerivedConformances.h"
#include "TypeCheckDecl.h"
using namespace swift;
static LiteralExpr *cloneRawLiteralExpr(ASTContext &C, LiteralExpr *expr) {
LiteralExpr *clone;
if (auto intLit = dyn_cast<IntegerLiteralExpr>(expr)) {
clone = new (C) IntegerLiteralExpr(intLit->getDigitsText(), expr->getLoc(),
/*implicit*/ true);
if (intLit->isNegative())
cast<IntegerLiteralExpr>(clone)->setNegative(expr->getLoc());
} else if (isa<NilLiteralExpr>(expr)) {
clone = new (C) NilLiteralExpr(expr->getLoc());
} else if (auto stringLit = dyn_cast<StringLiteralExpr>(expr)) {
clone = new (C) StringLiteralExpr(stringLit->getValue(), expr->getLoc());
} else if (auto floatLit = dyn_cast<FloatLiteralExpr>(expr)) {
clone = new (C) FloatLiteralExpr(floatLit->getDigitsText(), expr->getLoc(),
/*implicit*/ true);
if (floatLit->isNegative())
cast<FloatLiteralExpr>(clone)->setNegative(expr->getLoc());
} else if (auto boolLit = dyn_cast<BooleanLiteralExpr>(expr)) {
clone = new (C) BooleanLiteralExpr(boolLit->getValue(), expr->getLoc(),
/*implicit*/true);
} else {
llvm_unreachable("invalid raw literal expr");
}
clone->setImplicit();
return clone;
}
static Type deriveRawRepresentable_Raw(DerivedConformance &derived) {
// enum SomeEnum : SomeType {
// @derived
// typealias Raw = SomeType
// }
auto rawInterfaceType = cast<EnumDecl>(derived.Nominal)->getRawType();
return derived.getConformanceContext()->mapTypeIntoContext(rawInterfaceType);
}
static std::pair<BraceStmt *, bool>
deriveBodyRawRepresentable_raw(AbstractFunctionDecl *toRawDecl, void *) {
// enum SomeEnum : SomeType {
// case A = 111, B = 222
// @derived
// var raw: SomeType {
// switch self {
// case A:
// return 111
// case B:
// return 222
// }
// }
// }
auto parentDC = toRawDecl->getDeclContext();
ASTContext &C = parentDC->getASTContext();
auto enumDecl = parentDC->getSelfEnumDecl();
Type rawTy = enumDecl->getRawType();
assert(rawTy);
rawTy = toRawDecl->mapTypeIntoContext(rawTy);
if (enumDecl->isObjC()) {
// Special case: ObjC enums are represented by their raw value, so just use
// a bitcast.
// return unsafeBitCast(self, to: RawType.self)
auto functionRef = UnresolvedDeclRefExpr::createImplicit(
C, C.getIdentifier("unsafeBitCast"), {Identifier(), C.Id_to});
auto selfRef = DerivedConformance::createSelfDeclRef(toRawDecl);
auto bareTypeExpr = TypeExpr::createImplicit(rawTy, C);
auto typeExpr = new (C) DotSelfExpr(bareTypeExpr, SourceLoc(), SourceLoc());
auto *argList = ArgumentList::forImplicitCallTo(functionRef->getName(),
{selfRef, typeExpr}, C);
auto call = CallExpr::createImplicit(C, functionRef, argList);
auto *returnStmt = ReturnStmt::createImplicit(C, call);
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(returnStmt),
SourceLoc());
return { body, /*isTypeChecked=*/false };
}
Type enumType = parentDC->getDeclaredTypeInContext();
SmallVector<ASTNode, 4> cases;
for (auto elt : enumDecl->getAllElements()) {
auto pat = new (C)
EnumElementPattern(TypeExpr::createImplicit(enumType, C), SourceLoc(),
DeclNameLoc(), DeclNameRef(), elt, nullptr,
/*DC*/ toRawDecl);
pat->setImplicit();
auto labelItem = CaseLabelItem(pat);
auto returnExpr = cloneRawLiteralExpr(C, elt->getRawValueExpr());
auto *returnStmt = ReturnStmt::createImplicit(C, returnExpr);
auto body = BraceStmt::create(C, SourceLoc(),
ASTNode(returnStmt), SourceLoc());
cases.push_back(CaseStmt::create(C, CaseParentKind::Switch, SourceLoc(),
labelItem, SourceLoc(), SourceLoc(), body,
/*case body var decls*/ std::nullopt));
}
auto selfRef = DerivedConformance::createSelfDeclRef(toRawDecl);
auto switchStmt =
SwitchStmt::createImplicit(LabeledStmtInfo(), selfRef, cases, C);
auto body = BraceStmt::create(C, SourceLoc(),
ASTNode(switchStmt),
SourceLoc());
return { body, /*isTypeChecked=*/false };
}
static void maybeMarkAsInlinable(DerivedConformance &derived,
AbstractFunctionDecl *afd) {
ASTContext &C = derived.Context;
auto parentDC = derived.getConformanceContext();
if (!parentDC->getParentModule()->isResilient()) {
AccessScope access =
afd->getFormalAccessScope(nullptr,
/*treatUsableFromInlineAsPublic*/true);
if (auto *attr = afd->getAttrs().getAttribute<UsableFromInlineAttr>())
attr->setInvalid();
if (access.isPublic())
afd->getAttrs().add(new (C) InlinableAttr(/*implicit*/false));
}
}
static VarDecl *deriveRawRepresentable_raw(DerivedConformance &derived) {
ASTContext &C = derived.Context;
auto enumDecl = cast<EnumDecl>(derived.Nominal);
auto parentDC = derived.getConformanceContext();
auto rawInterfaceType = enumDecl->getRawType();
auto rawType = parentDC->mapTypeIntoContext(rawInterfaceType);
// Define the property.
VarDecl *propDecl;
PatternBindingDecl *pbDecl;
std::tie(propDecl, pbDecl) = derived.declareDerivedProperty(
DerivedConformance::SynthesizedIntroducer::Var, C.Id_rawValue,
rawInterfaceType, rawType, /*isStatic=*/false,
/*isFinal=*/false);
addNonIsolatedToSynthesized(enumDecl, propDecl);
// Define the getter.
auto getterDecl = DerivedConformance::addGetterToReadOnlyDerivedProperty(
propDecl, rawType);
getterDecl->setBodySynthesizer(&deriveBodyRawRepresentable_raw);
// If the containing module is not resilient, make sure clients can get at
// the raw value without function call overhead.
maybeMarkAsInlinable(derived, getterDecl);
derived.addMembersToConformanceContext({propDecl, pbDecl});
return propDecl;
}
/// Contains information needed to synthesize a runtime version check.
struct RuntimeVersionCheck {
PlatformKind Platform;
llvm::VersionTuple Version;
RuntimeVersionCheck(PlatformKind Platform, llvm::VersionTuple Version)
: Platform(Platform), Version(Version)
{ }
VersionRange getVersionRange() const {
return VersionRange::allGTE(Version);
}
/// Synthesizes a statement which returns nil if the runtime version check
/// fails, e.g. "guard #available(iOS 10, *) else { return nil }".
Stmt *createEarlyReturnStmt(ASTContext &C) const {
// platformSpec = "\(attr.platform) \(attr.introduced)"
auto platformSpec = new (C) PlatformVersionConstraintAvailabilitySpec(
Platform, SourceLoc(),
Version, Version, SourceLoc()
);
// otherSpec = "*"
auto otherSpec = new (C) OtherPlatformAvailabilitySpec(SourceLoc());
// availableInfo = "#available(\(platformSpec), \(otherSpec))"
auto availableInfo = PoundAvailableInfo::create(
C, SourceLoc(), SourceLoc(), { platformSpec, otherSpec }, SourceLoc(),
false);
// This won't be filled in by TypeCheckAvailability because we have
// invalid SourceLocs in this area of the AST.
availableInfo->setAvailableRange(getVersionRange());
// earlyReturnBody = "{ return nil }"
auto earlyReturn = new (C) FailStmt(SourceLoc(), SourceLoc());
auto earlyReturnBody = BraceStmt::create(C, SourceLoc(),
ASTNode(earlyReturn),
SourceLoc(), /*implicit=*/true);
// guardStmt = "guard \(availableInfo) else \(earlyReturnBody)"
StmtConditionElement conds[1] = { availableInfo };
auto guardStmt = new (C) GuardStmt(SourceLoc(), C.AllocateCopy(conds),
earlyReturnBody, /*implicit=*/true);
return guardStmt;
}
};
/// Checks if the case will be available at runtime given the current target
/// platform. If it will never be available, returns false. If it will always
/// be available, returns true. If it will sometimes be available, adds
/// information about the runtime check needed to ensure it is available to
/// \c versionCheck and returns true.
static bool
checkAvailability(const EnumElementDecl *elt, ASTContext &C,
std::optional<RuntimeVersionCheck> &versionCheck) {
auto *attr = elt->getAttrs().getPotentiallyUnavailable(C);
// Is it always available?
if (!attr)
return true;
// For type-checking purposes, iOS availability is inherited for visionOS
// targets. However, it is not inherited for the sake of code-generation
// of runtime availability queries, and is assumed to be available.
if ((attr->Platform == PlatformKind::iOS ||
attr->Platform == PlatformKind::iOSApplicationExtension) &&
C.LangOpts.Target.isXROS())
return true;
AvailableVersionComparison availability = attr->getVersionAvailability(C);
assert(availability != AvailableVersionComparison::Available &&
"DeclAttributes::getPotentiallyUnavailable() shouldn't "
"return an available attribute");
// Is it never available?
if (availability != AvailableVersionComparison::PotentiallyUnavailable)
return false;
// It's conditionally available; create a version constraint and return true.
assert(attr->getPlatformAgnosticAvailability() ==
PlatformAgnosticAvailabilityKind::None &&
"can only express #available(somePlatform version) checks");
versionCheck.emplace(attr->Platform, *attr->Introduced);
return true;
}
static std::pair<BraceStmt *, bool>
deriveBodyRawRepresentable_init(AbstractFunctionDecl *initDecl, void *) {
// enum SomeEnum : SomeType {
// case A = 111, B = 222
// @available(iOS 10, *) case C = 333
// @derived
// init?(rawValue: SomeType) {
// switch rawValue {
// case 111:
// self = .A
// case 222:
// self = .B
// case 333:
// guard #available(iOS 10, *) else { return nil }
// self = .C
// default:
// return nil
// }
// }
// }
auto parentDC = initDecl->getDeclContext();
ASTContext &C = parentDC->getASTContext();
auto nominalTypeDecl = parentDC->getSelfNominalTypeDecl();
auto enumDecl = cast<EnumDecl>(nominalTypeDecl);
Type rawTy = enumDecl->getRawType();
assert(rawTy);
rawTy = initDecl->mapTypeIntoContext(rawTy);
bool isStringEnum = rawTy->isString();
llvm::SmallVector<Expr *, 16> stringExprs;
Type enumType = parentDC->getDeclaredTypeInContext();
auto selfDecl = cast<ConstructorDecl>(initDecl)->getImplicitSelfDecl();
SmallVector<ASTNode, 4> cases;
unsigned Idx = 0;
for (auto elt : enumDecl->getAllElements()) {
// First, check case availability. If the case will definitely be
// unavailable, skip it. If it might be unavailable at runtime, save
// information about that check in versionCheck and keep processing this
// element.
std::optional<RuntimeVersionCheck> versionCheck(std::nullopt);
if (!checkAvailability(elt, C, versionCheck))
continue;
// litPat = elt.rawValueExpr as a pattern
LiteralExpr *litExpr = cloneRawLiteralExpr(C, elt->getRawValueExpr());
if (isStringEnum) {
// In case of a string enum we are calling the _findStringSwitchCase
// function from the library and switching on the returned Int value.
stringExprs.push_back(litExpr);
litExpr = IntegerLiteralExpr::createFromUnsigned(C, Idx, SourceLoc());
}
auto *litPat = ExprPattern::createImplicit(C, litExpr, /*DC*/ initDecl);
/// Statements in the body of this case.
SmallVector<ASTNode, 2> stmts;
// If checkAvailability() discovered we need a runtime version check,
// add it now.
if (versionCheck.has_value())
stmts.push_back(ASTNode(versionCheck->createEarlyReturnStmt(C)));
// Create a statement which assigns the case to self.
// valueExpr = "\(enumType).\(elt)"
auto metaTyRef = TypeExpr::createImplicit(enumType, C);
auto valueExpr = new (C) MemberRefExpr(metaTyRef, SourceLoc(),
elt, DeclNameLoc(), /*implicit*/true);
// assignment = "self = \(valueExpr)"
auto selfRef = new (C) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/true,
AccessSemantics::DirectToStorage);
auto assignment = new (C) AssignExpr(selfRef, SourceLoc(), valueExpr,
/*implicit*/ true);
stmts.push_back(ASTNode(assignment));
// body = "{ \(stmts) }" (the braces are silent)
auto body = BraceStmt::create(C, SourceLoc(),
stmts, SourceLoc());
// cases.append("case \(litPat): \(body)")
cases.push_back(CaseStmt::create(C, CaseParentKind::Switch, SourceLoc(),
CaseLabelItem(litPat), SourceLoc(),
SourceLoc(), body,
/*case body var decls*/ std::nullopt));
++Idx;
}
auto anyPat = AnyPattern::createImplicit(C);
auto dfltLabelItem = CaseLabelItem::getDefault(anyPat);
auto dfltReturnStmt = new (C) FailStmt(SourceLoc(), SourceLoc());
auto dfltBody = BraceStmt::create(C, SourceLoc(),
ASTNode(dfltReturnStmt), SourceLoc());
cases.push_back(CaseStmt::create(C, CaseParentKind::Switch, SourceLoc(),
dfltLabelItem, SourceLoc(), SourceLoc(),
dfltBody,
/*case body var decls*/ std::nullopt));
auto rawDecl = initDecl->getParameters()->get(0);
auto rawRef = new (C) DeclRefExpr(rawDecl, DeclNameLoc(), /*implicit*/true);
Expr *switchArg = rawRef;
if (isStringEnum) {
// Call _findStringSwitchCase with an array of strings as argument.
auto *Fun = UnresolvedDeclRefExpr::createImplicit(
C, C.getIdentifier("_findStringSwitchCase"));
auto *strArray = ArrayExpr::create(C, SourceLoc(), stringExprs, {},
SourceLoc());
Argument args[] = {
Argument(SourceLoc(), C.getIdentifier("cases"), strArray),
Argument(SourceLoc(), C.getIdentifier("string"), rawRef)
};
auto *argList = ArgumentList::createImplicit(C, args);
switchArg = CallExpr::createImplicit(C, Fun, argList);
}
auto switchStmt =
SwitchStmt::createImplicit(LabeledStmtInfo(), switchArg, cases, C);
auto body = BraceStmt::create(C, SourceLoc(),
ASTNode(switchStmt),
SourceLoc());
return { body, /*isTypeChecked=*/false };
}
static ConstructorDecl *
deriveRawRepresentable_init(DerivedConformance &derived) {
ASTContext &C = derived.Context;
auto enumDecl = cast<EnumDecl>(derived.Nominal);
auto parentDC = derived.getConformanceContext();
auto rawInterfaceType = enumDecl->getRawType();
auto rawType = parentDC->mapTypeIntoContext(rawInterfaceType);
assert([&]() -> bool {
return TypeChecker::conformsToKnownProtocol(
rawType, KnownProtocolKind::Equatable,
derived.getParentModule());
}());
auto *rawDecl = new (C)
ParamDecl(SourceLoc(), SourceLoc(),
C.Id_rawValue, SourceLoc(), C.Id_rawValue, parentDC);
rawDecl->setSpecifier(ParamSpecifier::Default);
rawDecl->setInterfaceType(rawInterfaceType);
rawDecl->setImplicit();
auto paramList = ParameterList::createWithoutLoc(rawDecl);
DeclName name(C, DeclBaseName::createConstructor(), paramList);
auto initDecl =
new (C) ConstructorDecl(name, SourceLoc(),
/*Failable=*/true, /*FailabilityLoc=*/SourceLoc(),
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*ThrownType=*/TypeLoc(), paramList,
/*GenericParams=*/nullptr, parentDC,
/*LifetimeDependentReturnTypeRepr*/ nullptr);
initDecl->setImplicit();
initDecl->setBodySynthesizer(&deriveBodyRawRepresentable_init);
addNonIsolatedToSynthesized(enumDecl, initDecl);
initDecl->copyFormalAccessFrom(enumDecl, /*sourceIsParentContext*/true);
// If the containing module is not resilient, make sure clients can construct
// an instance without function call overhead.
maybeMarkAsInlinable(derived, initDecl);
derived.addMembersToConformanceContext({initDecl});
return initDecl;
}
bool DerivedConformance::canDeriveRawRepresentable(DeclContext *DC,
NominalTypeDecl *type) {
auto enumDecl = dyn_cast<EnumDecl>(type);
if (!enumDecl)
return false;
Type rawType = enumDecl->getRawType();
if (!rawType || rawType->hasError())
return false;
if (!computeAutomaticEnumValueKind(enumDecl))
return false;
rawType = DC->mapTypeIntoContext(rawType);
auto inherited = enumDecl->getInherited().getEntries();
if (!inherited.empty() && inherited.front().wasValidated() &&
inherited.front().isError())
return false;
// The raw type must be Equatable, so that we have a suitable ~= for
// synthesized switch statements.
if (!TypeChecker::conformsToKnownProtocol(rawType, KnownProtocolKind::Equatable,
DC->getParentModule()))
return false;
auto &C = type->getASTContext();
auto rawValueDecls = enumDecl->lookupDirect(DeclName(C.Id_RawValue));
if (rawValueDecls.size() > 1)
return false;
// Check that the RawValue matches the expected raw type.
if (!rawValueDecls.empty()) {
if (auto alias = dyn_cast<TypeDecl>(rawValueDecls.front())) {
auto ty = alias->getDeclaredInterfaceType();
if (!DC->mapTypeIntoContext(ty)->isEqual(rawType)) {
return false;
}
}
}
// There must be enum elements.
if (enumDecl->getAllElements().empty())
return false;
// Have the type-checker validate that:
// - the enum elements all have the same type
// - they all match the enum type
for (auto elt : enumDecl->getAllElements()) {
// We cannot synthesize raw representable conformance for an enum with
// cases that have a payload.
if (elt->hasAssociatedValues())
return false;
if (elt->isInvalid()) {
return false;
}
}
// If it meets all of those requirements, we can synthesize RawRepresentable conformance.
return true;
}
ValueDecl *DerivedConformance::deriveRawRepresentable(ValueDecl *requirement) {
// Check preconditions for synthesized conformance.
if (!canDeriveRawRepresentable(cast<DeclContext>(ConformanceDecl), Nominal))
return nullptr;
if (requirement->getBaseName() == Context.Id_rawValue)
return deriveRawRepresentable_raw(*this);
if (requirement->getBaseName().isConstructor())
return deriveRawRepresentable_init(*this);
Context.Diags.diagnose(requirement->getLoc(),
diag::broken_raw_representable_requirement);
return nullptr;
}
Type DerivedConformance::deriveRawRepresentable(AssociatedTypeDecl *assocType) {
// Check preconditions for synthesized conformance.
if (!canDeriveRawRepresentable(cast<DeclContext>(ConformanceDecl), Nominal))
return nullptr;
if (assocType->getName() == Context.Id_RawValue) {
return deriveRawRepresentable_Raw(*this);
}
Context.Diags.diagnose(assocType->getLoc(),
diag::broken_raw_representable_requirement);
return nullptr;
}
|