1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
|
//===--- TypeCheckCaptures.cpp - Capture Analysis -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements computing capture info for closure expressions and named
// local functions.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "TypeCheckObjC.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeWalker.h"
#include "swift/Basic/Defer.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace swift;
namespace {
class FindCapturedVars : public ASTWalker {
ASTContext &Context;
SmallVector<CapturedValue, 4> Captures;
llvm::SmallDenseMap<ValueDecl*, unsigned, 4> captureEntryNumber;
/// Opened element environments introduced by `for ... in repeat`
/// statements.
llvm::SetVector<GenericEnvironment *> VisitingForEachEnv;
/// Opened element environments introduced by `repeat` expressions.
llvm::SetVector<GenericEnvironment *> VisitingPackExpansionEnv;
/// A set of local generic environments we've encountered that were not
/// in the above stack; those are the captures.
///
/// Once we can capture opened existentials, opened existential environments
/// can go here too.
llvm::SetVector<GenericEnvironment *> CapturedEnvironments;
SourceLoc GenericParamCaptureLoc;
SourceLoc DynamicSelfCaptureLoc;
DynamicSelfType *DynamicSelf = nullptr;
OpaqueValueExpr *OpaqueValue = nullptr;
SourceLoc CaptureLoc;
DeclContext *CurDC;
bool NoEscape, ObjC;
bool HasGenericParamCaptures;
public:
FindCapturedVars(SourceLoc CaptureLoc,
DeclContext *CurDC,
bool NoEscape,
bool ObjC,
bool IsGenericFunction)
: Context(CurDC->getASTContext()), CaptureLoc(CaptureLoc), CurDC(CurDC),
NoEscape(NoEscape), ObjC(ObjC), HasGenericParamCaptures(IsGenericFunction) {}
CaptureInfo getCaptureInfo() const {
DynamicSelfType *dynamicSelfToRecord = nullptr;
// Only local functions capture dynamic 'Self'.
if (CurDC->getParent()->isLocalContext()) {
if (DynamicSelfCaptureLoc.isValid())
dynamicSelfToRecord = DynamicSelf;
}
return CaptureInfo(Context, Captures, dynamicSelfToRecord,
OpaqueValue, HasGenericParamCaptures,
CapturedEnvironments.getArrayRef());
}
bool hasGenericParamCaptures() const {
return HasGenericParamCaptures;
}
SourceLoc getGenericParamCaptureLoc() const {
return GenericParamCaptureLoc;
}
SourceLoc getDynamicSelfCaptureLoc() const {
return DynamicSelfCaptureLoc;
}
/// Check if the type of an expression references any generic
/// type parameters, or the dynamic Self type.
///
/// Note that we do not need to distinguish inner from outer generic
/// parameters here -- if a local function has its own inner parameter
/// list, it also implicitly captures outer parameters, even if they're
/// not used anywhere inside the body.
void checkType(Type type, SourceLoc loc) {
if (!type)
return;
// We want to look through type aliases here.
type = type->getCanonicalType();
class TypeCaptureWalker : public TypeWalker {
bool ObjC;
std::function<void(Type)> Callback;
public:
explicit TypeCaptureWalker(bool ObjC,
std::function<void(Type)> callback)
: ObjC(ObjC), Callback(std::move(callback)) {}
Action walkToTypePre(Type ty) override {
Callback(ty);
// Pseudogeneric classes don't use their generic parameters so we
// don't need to visit them.
if (ObjC) {
if (auto clazz = dyn_cast_or_null<ClassDecl>(ty->getAnyNominal())) {
if (clazz->isTypeErasedGenericClass()) {
return Action::SkipNode;
}
}
}
return Action::Continue;
}
};
// If the type contains dynamic 'Self', conservatively assume we will
// need 'Self' metadata at runtime. We could generalize the analysis
// used below for usages of generic parameters in Objective-C
// extensions, and re-use it here.
//
// For example, forming an existential from a value of type 'Self'
// does not need the dynamic 'Self' type -- the static type will
// suffice. Also, just passing around a value of type 'Self' does
// not need metadata either, since it is represented as a single
// retainable pointer. Similarly stored property access does not
// need it, etc.
if (type->hasDynamicSelfType()) {
type.walk(TypeCaptureWalker(ObjC, [&](Type t) {
if (auto *dynamicSelf = t->getAs<DynamicSelfType>()) {
if (DynamicSelfCaptureLoc.isInvalid()) {
DynamicSelfCaptureLoc = loc;
DynamicSelf = dynamicSelf;
}
}
}));
}
// Similar to dynamic 'Self', IRGen doesn't really need type metadata
// for class-bound archetypes in nearly as many cases as with opaque
// archetypes.
//
// Perhaps this entire analysis should happen at the SILGen level,
// instead, but even there we don't really have enough information to
// perform it accurately.
if (type->hasArchetype() || type->hasTypeParameter()) {
type.walk(TypeCaptureWalker(ObjC, [&](Type t) {
// Record references to element archetypes that were bound
// outside the body of the current closure.
if (auto *element = t->getAs<ElementArchetypeType>()) {
auto *env = element->getGenericEnvironment();
if (VisitingForEachEnv.count(env) == 0 &&
VisitingPackExpansionEnv.count(env) == 0)
CapturedEnvironments.insert(env);
}
if ((t->is<PrimaryArchetypeType>() ||
t->is<PackArchetypeType>() ||
t->is<GenericTypeParamType>()) &&
!HasGenericParamCaptures) {
GenericParamCaptureLoc = loc;
HasGenericParamCaptures = true;
}
}));
}
if (auto *gft = type->getAs<GenericFunctionType>()) {
TypeCaptureWalker walker(ObjC, [&](Type t) {
if (t->is<GenericTypeParamType>() &&
!HasGenericParamCaptures) {
GenericParamCaptureLoc = loc;
HasGenericParamCaptures = true;
}
});
for (const auto ¶m : gft->getParams())
param.getPlainType().walk(walker);
gft->getResult().walk(walker);
}
}
/// Add the specified capture to the closure's capture list, diagnosing it
/// if invalid.
void addCapture(CapturedValue capture) {
auto VD = capture.getDecl();
if (!VD) {
Captures.push_back(capture);
return;
}
if (auto var = dyn_cast<VarDecl>(VD)) {
// `async let` variables cannot currently be captured.
if (var->isAsyncLet()) {
Context.Diags.diagnose(capture.getLoc(), diag::capture_async_let_not_supported);
return;
}
}
// Check to see if we already have an entry for this decl.
unsigned &entryNumber = captureEntryNumber[VD];
if (entryNumber == 0) {
Captures.push_back(capture);
entryNumber = Captures.size();
} else {
// If this already had an entry in the capture list, make sure to merge
// the information together. If one is noescape but the other isn't,
// then the result is escaping.
auto existing = Captures[entryNumber-1];
unsigned flags = existing.getFlags() & capture.getFlags();
capture = CapturedValue(VD, flags, existing.getLoc());
Captures[entryNumber-1] = capture;
}
// Visit the type of the capture, if it isn't a class reference, since
// we'd need the metadata to do so.
if (VD->hasInterfaceType()
&& (!ObjC
|| !isa<VarDecl>(VD)
|| !cast<VarDecl>(VD)->getTypeInContext()->hasRetainablePointerRepresentation()))
checkType(VD->getInterfaceType(), VD->getLoc());
}
LazyInitializerWalking getLazyInitializerWalkingBehavior() override {
// We don't want to walk into lazy initializers because they're not
// really present at this level. We'll catch them when processing
// the getter.
return LazyInitializerWalking::None;
}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkResult<Expr *> walkToPackElementExpr(PackElementExpr *PEE) {
// A pack element reference expression like `each t` or `each f()`
// expands within the innermost pack expansion expression. If there
// isn't one, it's from an outer function, so we record the capture.
if (!VisitingPackExpansionEnv.empty())
return Action::Continue(PEE);
unsigned Flags = 0;
// If the closure is noescape, then we can capture the pack element
// as noescape.
if (NoEscape)
Flags |= CapturedValue::IsNoEscape;
addCapture(CapturedValue(PEE, Flags));
return Action::SkipChildren(PEE);
}
PreWalkResult<Expr *> walkToDeclRefExpr(DeclRefExpr *DRE) {
auto *D = DRE->getDecl();
// HACK: $interpolation variables are seen as needing to be captured.
// The good news is, we literally never need to capture them, so we
// can safely ignore them.
// FIXME(TapExpr): This is probably caused by the scoping
// algorithm's ignorance of TapExpr. We should fix that.
if (D->getBaseName() == Context.Id_dollarInterpolation)
return Action::SkipNode(DRE);
// DC is the DeclContext where D was defined
// CurDC is the DeclContext where D was referenced
auto DC = D->getDeclContext();
// Capture the generic parameters of the decl, unless it's a
// local declaration in which case we will pick up generic
// parameter references transitively.
if (!DC->isLocalContext()) {
if (!ObjC || !D->isObjC() || isa<ConstructorDecl>(D)) {
if (auto subMap = DRE->getDeclRef().getSubstitutions()) {
for (auto type : subMap.getReplacementTypes()) {
checkType(type, DRE->getLoc());
}
}
}
}
// Don't "capture" type definitions at all.
if (isa<TypeDecl>(D))
return Action::SkipNode(DRE);
// A local reference is not a capture.
if (CurDC == DC || isa<TopLevelCodeDecl>(CurDC))
return Action::SkipNode(DRE);
auto TmpDC = CurDC;
while (TmpDC != nullptr) {
// Variables defined inside TopLevelCodeDecls are semantically
// local variables. If the reference is not from the top level,
// we have a capture.
if (isa<TopLevelCodeDecl>(DC) &&
(isa<SourceFile>(TmpDC) || isa<TopLevelCodeDecl>(TmpDC)))
break;
if (TmpDC == DC)
break;
// The initializer of a lazy property will eventually get
// recontextualized into it, so treat it as if it's already there.
if (auto init = dyn_cast<PatternBindingInitializer>(TmpDC)) {
if (auto lazyVar = init->getInitializedLazyVar()) {
// If we have a getter with a body, we're already re-parented
// everything so pretend we're inside the getter.
if (auto getter = lazyVar->getAccessor(AccessorKind::Get)) {
if (getter->getBody(/*canSynthesize=*/false)) {
TmpDC = getter;
continue;
}
}
}
}
// We have an intervening nominal type context that is not the
// declaration context, and the declaration context is not global.
// This is not supported since nominal types cannot capture values.
if (auto NTD = dyn_cast<NominalTypeDecl>(TmpDC)) {
// Allow references to local functions from inside methods of a
// local type, because if the local function has captures, we'll
// diagnose them in SILGen. It's a bit unfortunate that we can't
// ban this outright, but people rely on code like this working:
//
// do {
// func local() {}
// class C {
// func method() { local() }
// }
// }
if (!isa<FuncDecl>(D)) {
if (DC->isLocalContext()) {
Context.Diags.diagnose(DRE->getLoc(), diag::capture_across_type_decl,
NTD->getDescriptiveKind(),
D->getBaseIdentifier());
NTD->diagnose(diag::kind_declared_here,
DescriptiveDeclKind::Type);
D->diagnose(diag::decl_declared_here, D);
return Action::SkipNode(DRE);
}
}
}
TmpDC = TmpDC->getParent();
}
// We walked all the way up to the root without finding the declaration,
// so this is not a capture.
if (TmpDC == nullptr)
return Action::SkipNode(DRE);
// Only capture var decls at global scope. Other things can be captured
// if they are local.
if (!isa<VarDecl>(D) && !D->isLocalCapture())
return Action::SkipNode(DRE);
// We're going to capture this, compute flags for the capture.
unsigned Flags = 0;
// If this is a direct reference to underlying storage, then this is a
// capture of the storage address - not a capture of the getter/setter.
if (auto var = dyn_cast<VarDecl>(D)) {
if (var->getAccessStrategy(DRE->getAccessSemantics(),
var->supportsMutation()
? AccessKind::ReadWrite
: AccessKind::Read,
CurDC->getParentModule(),
CurDC->getResilienceExpansion())
.getKind() == AccessStrategy::Storage)
Flags |= CapturedValue::IsDirect;
}
// If the closure is noescape, then we can capture the decl as noescape.
if (NoEscape)
Flags |= CapturedValue::IsNoEscape;
addCapture(CapturedValue(D, Flags, DRE->getStartLoc()));
return Action::SkipNode(DRE);
}
void propagateCaptures(CaptureInfo captureInfo, SourceLoc loc) {
for (auto capture : captureInfo.getCaptures()) {
// If the decl was captured from us, it isn't captured *by* us.
if (capture.getDecl() &&
capture.getDecl()->getDeclContext() == CurDC)
continue;
// If the inner closure is nested in a PackExpansionExpr, it's
// PackElementExpr captures are not our captures.
if (capture.getPackElement() &&
!VisitingPackExpansionEnv.empty())
continue;
// Compute adjusted flags.
unsigned Flags = capture.getFlags();
// The decl is captured normally, even if it was captured directly
// in the subclosure.
Flags &= ~CapturedValue::IsDirect;
// If this is an escaping closure, then any captured decls are also
// escaping, even if they are coming from an inner noescape closure.
if (!NoEscape)
Flags &= ~CapturedValue::IsNoEscape;
addCapture(capture.mergeFlags(Flags));
}
if (!HasGenericParamCaptures) {
if (captureInfo.hasGenericParamCaptures()) {
GenericParamCaptureLoc = loc;
HasGenericParamCaptures = true;
}
}
if (DynamicSelfCaptureLoc.isInvalid()) {
if (captureInfo.hasDynamicSelfCapture()) {
DynamicSelfCaptureLoc = loc;
DynamicSelf = captureInfo.getDynamicSelfType();
}
}
if (!OpaqueValue) {
if (captureInfo.hasOpaqueValueCapture())
OpaqueValue = captureInfo.getOpaqueValue();
}
}
PreWalkAction walkToDeclPre(Decl *D) override {
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(D)) {
TypeChecker::computeCaptures(AFD);
propagateCaptures(AFD->getCaptureInfo(), AFD->getLoc());
return Action::SkipNode();
}
// Don't walk into local types; we'll walk their initializers when we check
// the local type itself.
if (isa<NominalTypeDecl>(D))
return Action::SkipNode();
return Action::Continue();
}
bool usesTypeMetadataOfFormalType(Expr *E) {
// For non-ObjC closures, assume the type metadata is always used.
if (!ObjC)
return true;
if (!E->getType() || E->getType()->hasError())
return false;
// We can use Objective-C generics in limited ways without reifying
// their type metadata, meaning we don't need to capture their generic
// params.
// Look through one layer of optionality when considering the class-
// Referring to a class-constrained generic or metatype
// doesn't require its type metadata.
if (auto declRef = dyn_cast<DeclRefExpr>(E))
return (!declRef->getDecl()->isObjC()
&& !E->getType()->getWithoutSpecifierType()
->hasRetainablePointerRepresentation()
&& !E->getType()->getWithoutSpecifierType()
->is<AnyMetatypeType>());
// Loading classes or metatypes doesn't require their metadata.
if (isa<LoadExpr>(E))
return (!E->getType()->hasRetainablePointerRepresentation()
&& !E->getType()->is<AnyMetatypeType>());
// Accessing @objc members doesn't require type metadata.
// rdar://problem/27796375 -- allocating init entry points for ObjC
// initializers are generated as true Swift generics, so reify type
// parameters.
if (auto memberRef = dyn_cast<MemberRefExpr>(E))
return !memberRef->getMember().getDecl()->hasClangNode();
if (auto applyExpr = dyn_cast<ApplyExpr>(E)) {
if (auto methodApply = dyn_cast<ApplyExpr>(applyExpr->getFn())) {
if (auto callee = dyn_cast<DeclRefExpr>(methodApply->getFn())) {
return !callee->getDecl()->isObjC()
|| isa<ConstructorDecl>(callee->getDecl());
}
}
if (auto callee = dyn_cast<DeclRefExpr>(applyExpr->getFn())) {
return !callee->getDecl()->isObjC()
|| isa<ConstructorDecl>(callee->getDecl());
}
}
if (auto subscriptExpr = dyn_cast<SubscriptExpr>(E)) {
return (subscriptExpr->hasDecl() &&
!subscriptExpr->getDecl().getDecl()->isObjC());
}
// Getting the dynamic type of a class doesn't require type metadata.
if (isa<DynamicTypeExpr>(E))
return (!E->getType()->castTo<AnyMetatypeType>()->getInstanceType()
->hasRetainablePointerRepresentation());
// Building a fixed-size tuple doesn't require type metadata.
// Approximate this for the purposes of being able to invoke @objc methods
// by considering tuples of ObjC-representable types to not use metadata.
if (auto tuple = dyn_cast<TupleExpr>(E)) {
for (auto elt : tuple->getType()->castTo<TupleType>()->getElements()) {
if (!elt.getType()->isRepresentableIn(ForeignLanguage::ObjectiveC,
CurDC))
return true;
}
return false;
}
// Coercion by itself is a no-op.
if (isa<CoerceExpr>(E))
return false;
// Upcasting doesn't require type metadata.
if (isa<DerivedToBaseExpr>(E))
return false;
if (isa<ArchetypeToSuperExpr>(E))
return false;
if (isa<CovariantReturnConversionExpr>(E))
return false;
if (isa<MetatypeConversionExpr>(E))
return false;
// Identity expressions are no-ops.
if (isa<IdentityExpr>(E))
return false;
// Discarding an assignment is a no-op.
if (isa<DiscardAssignmentExpr>(E))
return false;
// Unreachables are a no-op.
if (isa<UnreachableExpr>(E))
return false;
// Opening an @objc existential or metatype is a no-op.
if (auto open = dyn_cast<OpenExistentialExpr>(E))
return (!open->getSubExpr()->getType()->isObjCExistentialType()
&& !open->getSubExpr()->getType()->is<AnyMetatypeType>());
// Erasure to an ObjC existential or between metatypes doesn't require
// type metadata.
if (auto erasure = dyn_cast<ErasureExpr>(E)) {
if (E->getType()->isObjCExistentialType()
|| E->getType()->is<AnyMetatypeType>())
return false;
// We also special case Any erasure in pseudogeneric contexts
// not to rely on concrete type metadata by erasing from AnyObject
// as a waypoint.
if (E->getType()->isAny()
&& erasure->getSubExpr()->getType()->is<ArchetypeType>())
return false;
// Erasure to a Swift protocol always captures the type metadata from
// its subexpression.
checkType(erasure->getSubExpr()->getType(),
erasure->getSubExpr()->getLoc());
return true;
}
// Converting an @objc metatype to AnyObject doesn't require type
// metadata.
if (isa<ClassMetatypeToObjectExpr>(E)
|| isa<ExistentialMetatypeToObjectExpr>(E))
return false;
// Casting to an ObjC class doesn't require the metadata of its type
// parameters, if any.
if (auto cast = dyn_cast<CheckedCastExpr>(E)) {
// If we failed to resolve the written type, we've emitted an
// earlier diagnostic and should bail.
const auto toTy = cast->getCastType();
if (!toTy || toTy->hasError())
return false;
if (auto clazz = dyn_cast_or_null<ClassDecl>(toTy->getAnyNominal())) {
if (clazz->isTypeErasedGenericClass()) {
return false;
}
}
}
// Assigning an object doesn't require type metadata.
if (auto assignment = dyn_cast<AssignExpr>(E))
return assignment->getSrc()->getType() &&
!assignment->getSrc()->getType()
->hasRetainablePointerRepresentation();
return true;
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
if (usesTypeMetadataOfFormalType(E)) {
checkType(E->getType(), E->getLoc());
}
// Some kinds of expression don't really evaluate their subexpression,
// so we don't need to traverse.
if (isa<ObjCSelectorExpr>(E)) {
return Action::SkipNode(E);
}
if (auto *ECE = dyn_cast<ExplicitCastExpr>(E)) {
checkType(ECE->getCastType(), ECE->getLoc());
return Action::Continue(E);
}
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
return walkToDeclRefExpr(DRE);
if (auto *PEE = dyn_cast<PackElementExpr>(E))
return walkToPackElementExpr(PEE);
// Look into lazy initializers.
if (auto *LIE = dyn_cast<LazyInitializerExpr>(E)) {
LIE->getSubExpr()->walk(*this);
return Action::Continue(E);
}
// When we see a reference to the 'super' expression, capture 'self' decl.
if (auto *superE = dyn_cast<SuperRefExpr>(E)) {
if (auto *selfDecl = superE->getSelf()) {
if (CurDC->isChildContextOf(selfDecl->getDeclContext()))
addCapture(CapturedValue(selfDecl, 0, superE->getLoc()));
}
return Action::SkipNode(superE);
}
// Don't recur into child closures. They should already have a capture
// list computed; we just propagate it, filtering out stuff that they
// capture from us.
if (auto *SubCE = dyn_cast<AbstractClosureExpr>(E)) {
TypeChecker::computeCaptures(SubCE);
propagateCaptures(SubCE->getCaptureInfo(), SubCE->getLoc());
return Action::SkipNode(E);
}
// Capture a placeholder opaque value.
if (auto opaqueValue = dyn_cast<OpaqueValueExpr>(E)) {
if (opaqueValue->isPlaceholder()) {
assert(!OpaqueValue || OpaqueValue == opaqueValue);
OpaqueValue = opaqueValue;
return Action::Continue(E);
}
}
if (auto expansion = dyn_cast<PackExpansionExpr>(E)) {
if (auto *env = expansion->getGenericEnvironment()) {
assert(VisitingPackExpansionEnv.count(env) == 0);
VisitingPackExpansionEnv.insert(env);
}
}
return Action::Continue(E);
}
PostWalkResult<Expr *> walkToExprPost(Expr *E) override {
if (auto expansion = dyn_cast<PackExpansionExpr>(E)) {
if (auto *env = expansion->getGenericEnvironment()) {
assert(env == VisitingPackExpansionEnv.back());
(void) env;
VisitingPackExpansionEnv.pop_back();
}
}
return Action::Continue(E);
}
PreWalkResult<Stmt *> walkToStmtPre(Stmt *S) override {
if (auto *forEachStmt = dyn_cast<ForEachStmt>(S)) {
if (auto *expansion =
dyn_cast<PackExpansionExpr>(forEachStmt->getParsedSequence())) {
if (auto *env = expansion->getGenericEnvironment()) {
// Remember this generic environment, so that it remains on the
// visited stack until the end of the for .. in loop.
assert(VisitingForEachEnv.count(env) == 0);
VisitingForEachEnv.insert(env);
}
}
}
return Action::Continue(S);
}
PostWalkResult<Stmt *> walkToStmtPost(Stmt *S) override {
if (auto *forEachStmt = dyn_cast<ForEachStmt>(S)) {
if (auto *expansion =
dyn_cast<PackExpansionExpr>(forEachStmt->getParsedSequence())) {
if (auto *env = expansion->getGenericEnvironment()) {
assert(VisitingForEachEnv.back() == env);
(void) env;
VisitingForEachEnv.pop_back();
}
}
}
return Action::Continue(S);
}
};
} // end anonymous namespace
void TypeChecker::computeCaptures(AnyFunctionRef AFR) {
if (AFR.getCaptureInfo().hasBeenComputed())
return;
if (!AFR.getBody())
return;
PrettyStackTraceAnyFunctionRef trace("computing captures for", AFR);
// A generic function always captures outer generic parameters.
bool isGeneric = false;
auto *AFD = AFR.getAbstractFunctionDecl();
if (AFD)
isGeneric = (AFD->getGenericParams() != nullptr);
auto &Context = AFR.getAsDeclContext()->getASTContext();
FindCapturedVars finder(AFR.getLoc(),
AFR.getAsDeclContext(),
AFR.isKnownNoEscape(),
AFR.isObjC(),
isGeneric);
AFR.getBody()->walk(finder);
if (AFR.hasType() && !AFR.isObjC()) {
finder.checkType(AFR.getType(), AFR.getLoc());
}
AFR.setCaptureInfo(finder.getCaptureInfo());
// Compute captures for default argument expressions.
if (auto *AFD = AFR.getAbstractFunctionDecl()) {
for (auto *P : *AFD->getParameters()) {
if (auto E = P->getTypeCheckedDefaultExpr()) {
FindCapturedVars finder(E->getLoc(),
AFD,
/*isNoEscape=*/false,
/*isObjC=*/false,
/*IsGeneric*/isGeneric);
E->walk(finder);
if (!AFD->getDeclContext()->isLocalContext() &&
finder.getDynamicSelfCaptureLoc().isValid()) {
Context.Diags.diagnose(finder.getDynamicSelfCaptureLoc(),
diag::dynamic_self_default_arg);
}
P->setDefaultArgumentCaptureInfo(finder.getCaptureInfo());
}
}
}
// Extensions of generic ObjC functions can't use generic parameters from
// their context.
if (AFD && finder.hasGenericParamCaptures()) {
if (auto clazz = AFD->getParent()->getSelfClassDecl()) {
if (clazz->isTypeErasedGenericClass()) {
AFD->diagnose(diag::objc_generic_extension_using_type_parameter);
// If it's possible, suggest adding @objc.
std::optional<ForeignAsyncConvention> asyncConvention;
std::optional<ForeignErrorConvention> errorConvention;
if (!AFD->isObjC() &&
isRepresentableInObjC(AFD, ObjCReason::MemberOfObjCMembersClass,
asyncConvention, errorConvention)) {
AFD->diagnose(
diag::objc_generic_extension_using_type_parameter_try_objc)
.fixItInsert(AFD->getAttributeInsertionLoc(false), "@objc ");
}
Context.Diags.diagnose(
finder.getGenericParamCaptureLoc(),
diag::objc_generic_extension_using_type_parameter_here);
}
}
}
}
static bool isLazy(PatternBindingDecl *PBD) {
if (auto var = PBD->getSingleVar())
return var->getAttrs().hasAttribute<LazyAttr>();
return false;
}
void TypeChecker::checkPatternBindingCaptures(IterableDeclContext *DC) {
for (auto member : DC->getMembers()) {
// Ignore everything other than PBDs.
auto *PBD = dyn_cast<PatternBindingDecl>(member);
if (!PBD) continue;
// Walk the initializers for all properties declared in the type with
// an initializer.
for (unsigned i : range(PBD->getNumPatternEntries())) {
if (PBD->isInitializerSubsumed(i))
continue;
auto *init = PBD->getInit(i);
if (init == nullptr)
continue;
auto *DC = PBD->getInitContext(i);
FindCapturedVars finder(init->getLoc(),
DC,
/*NoEscape=*/false,
/*ObjC=*/false,
/*IsGenericFunction*/false);
init->walk(finder);
auto &ctx = DC->getASTContext();
if (finder.getDynamicSelfCaptureLoc().isValid() && !isLazy(PBD)) {
ctx.Diags.diagnose(finder.getDynamicSelfCaptureLoc(),
diag::dynamic_self_stored_property_init);
}
auto captures = finder.getCaptureInfo();
PBD->setCaptureInfo(i, captures);
}
}
}
|