1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
|
//===--- TypeCheckCircularity.cpp - Type decl circularity checking --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements an infinitely-sized-type check.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "swift/Basic/Debug.h"
using namespace swift;
#define DEBUG_TYPE "TypeCheckCircularity"
namespace {
/// The information we track for a type.
class TrackingInfo {
/// The parent type; either null or a key for an entry in TrackingMap.
CanType Parent;
/// The member of the parent type that lead to this type, or null
/// for a tuple element; and whether the type is currently being
/// expanded.
llvm::PointerIntPair<ValueDecl *, 1, bool> ParentMemberAndIsBeingExpanded;
public:
TrackingInfo(CanType parent, ValueDecl *parentMember)
: Parent(parent), ParentMemberAndIsBeingExpanded(parentMember, false) {}
CanType getParentType() const {
return Parent;
}
ValueDecl *getParentMember() const {
return ParentMemberAndIsBeingExpanded.getPointer();
}
bool isBeingExpanded() const {
return ParentMemberAndIsBeingExpanded.getInt();
}
void setBeingExpanded(bool isBeingExpanded) {
ParentMemberAndIsBeingExpanded.setInt(isBeingExpanded);
}
};
struct WorkItem {
enum : unsigned {
/// A special depth we use to say that this work item
/// is to *finish* expanding the target type.
FinishExpandingType = ~0U
};
unsigned Depth;
CanType Type;
WorkItem(unsigned depth, CanType type)
: Depth(depth), Type(type) {}
};
struct PathElement {
ValueDecl *Member; // Or nullptr for a tuple element type.
size_t TupleIndex;
Type Ty;
SWIFT_DEBUG_DUMP;
void print(llvm::raw_ostream &out) const;
};
class Path {
SmallVector<PathElement, 8> Elements;
public:
void push_back(const PathElement &elt) { Elements.push_back(elt); }
bool empty() const { return Elements.empty(); }
size_t size() const { return Elements.size(); }
const PathElement &operator[](size_t index) const { return Elements[index]; }
const PathElement &back() const { return Elements.back(); }
SWIFT_DEBUG_DUMP;
void printCycle(llvm::raw_ostream &out, size_t cycleIndex) const;
void printInfinite(llvm::raw_ostream &out) const;
private:
void printSegment(llvm::raw_ostream &out, size_t begin, size_t end,
size_t maxContext, bool printFirstType = true) const;
};
/// A helper class for performing a circularity check.
class CircularityChecker final {
/// The original type declaration we're starting with.
NominalTypeDecl *OriginalDecl;
/// The maximum circularity depth.
unsigned MaxDepth;
llvm::DenseMap<CanType, TrackingInfo> TrackingMap;
SmallVector<WorkItem, 8> Workstack;
public:
CircularityChecker(NominalTypeDecl *typeDecl)
: OriginalDecl(typeDecl),
MaxDepth(typeDecl->getASTContext().LangOpts.MaxCircularityDepth) {}
void run();
private:
Type getOriginalType() const {
return OriginalDecl->getDeclaredInterfaceType();
}
bool expandType(CanType type, unsigned depth);
bool expandTuple(CanTupleType type, unsigned depth);
bool expandNominal(CanType type, NominalTypeDecl *D, unsigned depth);
bool expandStruct(CanType type, StructDecl *S, unsigned depth);
bool expandEnum(CanType type, EnumDecl *E, unsigned depth);
bool addMember(CanType parentType, ValueDecl *member, Type memberType,
unsigned parentDepth);
void startExpandingType(CanType type) {
auto it = TrackingMap.find(type);
assert(it != TrackingMap.end());
// Set the IsBeginExpanded flag.
assert(!it->second.isBeingExpanded() && "already expanding type");
it->second.setBeingExpanded(true);
// Push a work item to clear that flag.
pushFinishExpandingTypeWorkItem(type);
}
void finishExpandingType(CanType type) {
auto it = TrackingMap.find(type);
assert(it != TrackingMap.end());
// Clear the IsBeginExpanded flag.
assert(it->second.isBeingExpanded() && "not already expanding type");
it->second.setBeingExpanded(false);
}
void pushFinishExpandingTypeWorkItem(CanType type) {
Workstack.emplace_back(WorkItem::FinishExpandingType, type);
}
void pushExpandTypeWorkItem(CanType type, unsigned depth) {
assert(depth != WorkItem::FinishExpandingType);
Workstack.emplace_back(depth, type);
}
bool diagnoseCircularity(CanType parentType, ValueDecl *member,
CanType memberType);
bool diagnoseInfiniteRecursion(CanType parentType, ValueDecl *member,
CanType memberType);
void diagnoseNonWellFoundedEnum(EnumDecl *E);
void addPathElementsTo(Path &path, CanType type);
void addPathElement(Path &path, ValueDecl *member, CanType memberType);
Path buildPath(CanType parentType, ValueDecl *member, CanType memberType);
};
} // end anonymous namespace
void TypeChecker::checkDeclCircularity(NominalTypeDecl *decl) {
CircularityChecker(decl).run();
}
/// The main routine for performing circularity checks.
void CircularityChecker::run() {
auto type = getOriginalType()->getCanonicalType();
// Prime the tracking map.
TrackingMap.insert({type, TrackingInfo(CanType(), nullptr)});
// Recurse into the top-level nominal type.
expandNominal(type, OriginalDecl, 0);
// Execute the workstack.
while (!Workstack.empty()) {
auto item = Workstack.pop_back_val();
if (item.Depth == WorkItem::FinishExpandingType) {
finishExpandingType(item.Type);
} else if (expandType(item.Type, item.Depth)) {
return;
}
}
}
/// Visit a type and try to expand it one level.
///
/// \return true if a problem was found and all further processing
/// should be aborted.
bool CircularityChecker::expandType(CanType type, unsigned depth) {
if (auto D = type.getAnyNominal()) {
return expandNominal(type, D, depth);
} else if (auto tuple = dyn_cast<TupleType>(type)) {
return expandTuple(tuple, depth);
} else {
return false;
}
}
/// Visit a tuple type and try to expand it one level.
bool CircularityChecker::expandTuple(CanTupleType tupleType, unsigned depth) {
LLVM_DEBUG(llvm::dbgs() << std::string(depth, ' ') << "expanding tuple "
<< tupleType << "\n";);
startExpandingType(tupleType);
for (auto eltType : tupleType.getElementTypes()) {
if (addMember(tupleType, nullptr, eltType, depth))
return true;
}
return false;
}
/// Visit a nominal type and try to expand it one level.
bool CircularityChecker::expandNominal(CanType type, NominalTypeDecl *D,
unsigned depth) {
LLVM_DEBUG(llvm::dbgs() << std::string(depth, ' ') << "expanding nominal "
<< type << "\n";);
if (auto S = dyn_cast<StructDecl>(D)) {
return expandStruct(type, S, depth);
} else if (auto E = dyn_cast<EnumDecl>(D)) {
return expandEnum(type, E, depth);
} else {
// Other nominal types are representational leaves.
return false;
}
}
/// Visit a struct type and try to expand it one level.
bool CircularityChecker::expandStruct(CanType type, StructDecl *S,
unsigned depth) {
startExpandingType(type);
auto subMap = type->getContextSubstitutionMap(
S->getModuleContext(), S);
for (auto field: S->getStoredProperties()) {
auto fieldType =field->getValueInterfaceType().subst(subMap);
if (addMember(type, field, fieldType, depth))
return true;
}
return false;
}
/// Visit an enum type and try to expand it one level.
bool CircularityChecker::expandEnum(CanType type, EnumDecl *E,
unsigned depth) {
// Indirect enums are representational leaves.
if (E->isIndirect()) {
// Diagnose whether the enum is non-well-founded before bailing
diagnoseNonWellFoundedEnum(E);
return false;
}
startExpandingType(type);
auto subMap = type->getContextSubstitutionMap(
E->getModuleContext(), E);
for (auto elt: E->getAllElements()) {
// Indirect elements are representational leaves.
if (elt->isIndirect())
continue;
if (!elt->hasAssociatedValues())
continue;
auto eltType = elt->getArgumentInterfaceType().subst(subMap);
if (addMember(type, elt, eltType, depth))
return true;
}
diagnoseNonWellFoundedEnum(E);
return false;
}
bool CircularityChecker::addMember(CanType parentType, ValueDecl *member,
Type memberNCType, unsigned parentDepth) {
auto memberType = memberNCType->getCanonicalType();
unsigned depth = parentDepth + 1;
if (depth > MaxDepth) {
return diagnoseInfiniteRecursion(parentType, member, memberType);
}
// Fast path: if the type isn't some sort of interesting type,
// just ignore it.
if (isa<TupleType>(memberType)) {
// Ok, visit tuples.
} else if (memberType.getStructOrBoundGenericStruct()) {
// Ok, visit structs.
// TODO: skip non-generic types in different modules?
} else if (auto E = memberType.getEnumOrBoundGenericEnum()) {
// Ok, visit non-indirect enums.
if (E->isIndirect()) return false;
// TODO: skip non-generic types in different modules?
} else {
// Everything else is a representational leaf.
return false;
}
// Try to start tracking the type.
auto insertion = TrackingMap.insert({memberType,
TrackingInfo(parentType, member)});
// If it's not already there, add an item to recurse into it.
if (insertion.second) {
pushExpandTypeWorkItem(memberType, depth);
return false;
}
// Otherwise, we've already enqueued it. If we're not currently
// expanding it, there's no circularity to worry about.
auto &info = insertion.first->second;
if (!info.isBeingExpanded())
return false;
return diagnoseCircularity(parentType, member, memberType);
}
static size_t findCycleIndex(const Path &path) {
for (auto index : IntRange<size_t>(0, path.size() - 1)) {
if (path[index].Ty->isEqual(path.back().Ty))
return index;
}
llvm_unreachable("didn't find cycle in path");
}
static Type getMemberStorageInterfaceType(ValueDecl *member) {
if (auto elt = dyn_cast<EnumElementDecl>(member)) {
return elt->getArgumentInterfaceType();
} else {
return member->getInterfaceType();
}
}
static bool isNonDependentField(const PathElement &elt) {
if (!elt.Member) return false;
return !getMemberStorageInterfaceType(elt.Member)->hasTypeParameter();
}
void LLVM_ATTRIBUTE_USED Path::dump() const {
auto &out = llvm::errs();
printSegment(out, 0, size(), size());
out << '\n';
}
/// Prints:
/// TypeA -> (a: TypeB) -> (b: TypeB) -> (c: CycleType)
/// -> (d: TypeD) -> (e: CycleType)
void Path::printCycle(llvm::raw_ostream &out, size_t cycleIndex) const {
// If the cycle goes to Self or the member type, print the
// path in one segment starting from the field type.
if (cycleIndex <= 1) {
printSegment(out, 1, size(), 3);
// Otherwise, print the path in two segments.
} else {
printSegment(out, 1, cycleIndex + 1, 2);
printSegment(out, cycleIndex, size(), 2, false);
}
}
/// Prints:
/// TypeA -> (x: TypeB) -> (y: TypeB) -> (z: TypeC) -> ...
void Path::printInfinite(llvm::raw_ostream &out) const {
printSegment(out, 1, std::min(size(), size_t(7)), 7);
out << " -> ...";
}
/// Prints:
/// [TypeA] -> (a: TypeB) -> (b: TypeB) -> (c: TypeC)
/// If the path is too long, elides the middle with '-> ...'.
void Path::printSegment(llvm::raw_ostream &out, size_t begin, size_t end,
size_t maxContext, bool printFirstType) const {
if (printFirstType) {
out << Elements[begin].Ty;
}
size_t numElements = end - begin;
if (numElements > maxContext * 2) {
for (size_t i = begin + 1; i != begin + maxContext + 1; ++i)
Elements[i].print(out);
out << " -> ... ";
for (size_t i = end - maxContext; i != end; ++i)
Elements[i].print(out);
} else {
for (size_t i = begin + 1; i != end; ++i) {
Elements[i].print(out);
}
}
}
void LLVM_ATTRIBUTE_USED PathElement::dump() const {
auto &out = llvm::errs();
print(out);
out << '\n';
}
/// Prints:
/// -> (a: TypeA)
void PathElement::print(llvm::raw_ostream &out) const {
out << " -> (";
if (Member) {
auto name = Member->getName();
if (name) {
out << name;
} else {
out << "<anonymous>";
}
} else {
out << '.' << TupleIndex;
}
out << ": " << Ty << ')';
}
/// Recreate a non-canonical type path.
Path CircularityChecker::buildPath(CanType parentType, ValueDecl *member,
CanType memberType) {
Path path;
addPathElementsTo(path, parentType);
addPathElement(path, member, memberType);
return path;
}
/// Recreate a non-canonical path that leads to the target type.
void CircularityChecker::addPathElementsTo(Path &path, CanType targetType) {
auto it = TrackingMap.find(targetType);
assert(it != TrackingMap.end() && "no entry in tracking map?");
CanType canParentType = it->second.getParentType();
if (!canParentType) {
path.push_back({ nullptr, 0, getOriginalType()});
return;
}
addPathElementsTo(path, canParentType);
addPathElement(path, it->second.getParentMember(), targetType);
}
/// Add a non-canonical path element to a path.
void CircularityChecker::addPathElement(Path &path, ValueDecl *member,
CanType canMemberType) {
assert(!path.empty());
Type parentType = path.back().Ty;
PathElement elt;
if (member) {
elt.Member = member;
elt.TupleIndex = 0;
Type memberIfaceType = getMemberStorageInterfaceType(member);
elt.Ty = parentType->getTypeOfMember(member->getModuleContext(), member,
memberIfaceType);
} else {
auto tupleType = parentType->castTo<TupleType>();
for (auto index : indices(tupleType->getElementTypes())) {
auto eltType = tupleType->getElementType(index);
if (eltType->getCanonicalType() == canMemberType) {
elt.Member = nullptr;
elt.TupleIndex = index;
elt.Ty = eltType;
break;
}
}
assert(elt.Ty && "didn't find matching element of tuple");
}
// We shouldn't print reference storage types here.
if (auto ref = elt.Ty->getAs<ReferenceStorageType>()) {
elt.Ty = ref->getReferentType();
}
// Strip outer parens from the type. (This is especially common with
// enum elements.)
if (auto parens = dyn_cast<ParenType>(elt.Ty.getPointer())) {
elt.Ty = parens->getSinglyDesugaredType();
}
path.push_back(elt);
}
/// Diagnose a circularity.
///
/// \returns always true
bool CircularityChecker::diagnoseCircularity(CanType parentType,
ValueDecl *member,
CanType memberType) {
auto path = buildPath(parentType, member, memberType);
// Find the index that the cycle leads back to.
auto cycleIndex = findCycleIndex(path);
// If the path to the cycle passes through a field (other than the one
// directly declared on this type) that does not depend on the original
// declaration in any way, then the type that contains that field should
// be responsible for reporting the cycle.
// TODO: we can also suppress this if the cycle would exist independently.
for (size_t i = 2; i < cycleIndex + 1; ++i) {
if (isNonDependentField(path[i]))
return true;
}
auto baseType = path[0].Ty;
if (cycleIndex != 0) {
OriginalDecl->diagnose(diag::unsupported_infinitely_sized_type, baseType);
} else if (isa<StructDecl>(OriginalDecl)) {
path[1].Member->diagnose(diag::unsupported_recursive_struct, baseType);
} else if (isa<EnumDecl>(OriginalDecl)) {
OriginalDecl->diagnose(diag::recursive_enum_not_indirect, baseType)
.fixItInsert(OriginalDecl->getStartLoc(), "indirect ");
} else {
llvm_unreachable("what kind of entity was this?");
}
// Add a note about the path we found unless it's completely trivial.
if (path.size() > 2) {
llvm::SmallString<128> pathString; {
llvm::raw_svector_ostream out(pathString);
path.printCycle(out, cycleIndex);
}
path[1].Member->diagnose(diag::note_type_cycle_starts_here, pathString);
} else if (isa<EnumDecl>(OriginalDecl)) {
path[1].Member->diagnose(diag::note_recursive_enum_case_here);
}
return true;
}
bool CircularityChecker::diagnoseInfiniteRecursion(CanType parentType,
ValueDecl *member,
CanType memberType) {
auto path = buildPath(parentType, member, memberType);
// If the path passes through a field (other than the one directly
// declared on this type) that does not depend on the original
// declaration in any way, then the type that contains that field should
// be responsible for reporting the cycle.
// Applying this heuristic only makes sense if we're assuming that
// it really is an infinite expansion.
for (size_t i = 2, e = path.size(); i < e; ++i) {
if (isNonDependentField(path[i]))
return true;
}
auto baseType = path[0].Ty;
OriginalDecl->diagnose(diag::unsupported_infinitely_sized_type, baseType);
// Add a note about the start of the path.
llvm::SmallString<128> pathString; {
llvm::raw_svector_ostream out(pathString);
path.printInfinite(out);
}
path[1].Member->diagnose(diag::note_type_cycle_starts_here, pathString);
return true;
}
/// Show a warning if all cases of the given enum are recursive,
/// making it impossible to be instantiated. Such an enum is 'non-well-founded'.
/// The outcome of this method is irrelevant.
void CircularityChecker::diagnoseNonWellFoundedEnum(EnumDecl *E) {
auto containsType = [](TupleType *tuple, Type E) -> bool {
for (auto type: tuple->getElementTypes()) {
if (type->isEqual(E))
return true;
}
return false;
};
auto isNonWellFounded = [&]() -> bool {
auto elts = E->getAllElements();
if (elts.empty())
return false;
for (auto elt: elts) {
if (!elt->isIndirect() && !E->isIndirect())
return false;
auto argTy = elt->getArgumentInterfaceType();
if (!argTy)
return false;
if (auto tuple = argTy->getAs<TupleType>()) {
if (!containsType(tuple, E->getSelfInterfaceType()))
return false;
} else if (auto paren = dyn_cast<ParenType>(argTy.getPointer())) {
if (!E->getSelfInterfaceType()->isEqual(paren->getUnderlyingType()))
return false;
}
}
return true;
};
if (isNonWellFounded())
E->getASTContext().Diags.diagnose(E, diag::enum_non_well_founded);
}
|