1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
//===--- TypeCheckCodeCompletion.cpp - Type Checking for Code Completion --===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements various entry points for use by lib/IDE/.
//
//===----------------------------------------------------------------------===//
#include "CodeSynthesis.h"
#include "MiscDiagnostics.h"
#include "TypeCheckObjC.h"
#include "TypeCheckType.h"
#include "TypeChecker.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Attr.h"
#include "swift/AST/DiagnosticSuppression.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Identifier.h"
#include "swift/AST/ImportCache.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/ModuleLoader.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Type.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/Statistic.h"
#include "swift/Parse/IDEInspectionCallbacks.h"
#include "swift/Parse/Lexer.h"
#include "swift/Sema/CompletionContextFinder.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Sema/IDETypeChecking.h"
#include "swift/Strings.h"
#include "swift/Subsystems.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/Twine.h"
#include <algorithm>
using namespace swift;
using namespace constraints;
static Type
getTypeOfExpressionWithoutApplying(Expr *&expr, DeclContext *dc,
ConcreteDeclRef &referencedDecl) {
if (isa<AbstractClosureExpr>(dc)) {
// If the expression is embedded in a closure, the constraint system tries
// to retrieve that closure's type, which will fail since we won't have
// generated any type variables for it. Thus, fallback type checking isn't
// available in this case.
return Type();
}
auto &Context = dc->getASTContext();
FrontendStatsTracer StatsTracer(Context.Stats,
"typecheck-expr-no-apply", expr);
PrettyStackTraceExpr stackTrace(Context, "type-checking", expr);
referencedDecl = nullptr;
ConstraintSystemOptions options;
options |= ConstraintSystemFlags::SuppressDiagnostics;
// Construct a constraint system from this expression.
ConstraintSystem cs(dc, options);
// Attempt to solve the constraint system.
const Type originalType = expr->getType();
const bool needClearType = originalType && originalType->hasError();
const auto recoverOriginalType = [&] () {
if (needClearType)
expr->setType(originalType);
};
// If the previous checking gives the expr error type, clear the result and
// re-check.
if (needClearType)
expr->setType(Type());
SyntacticElementTarget target(expr, dc, CTP_Unused, Type(),
/*isDiscarded=*/false);
SmallVector<Solution, 2> viable;
cs.solveForCodeCompletion(target, viable);
if (viable.empty()) {
recoverOriginalType();
return Type();
}
// Get the expression's simplified type.
expr = target.getAsExpr();
auto &solution = viable.front();
auto &solutionCS = solution.getConstraintSystem();
Type exprType = solution.simplifyType(solutionCS.getType(expr));
assert(exprType && !exprType->hasTypeVariable() &&
"free type variable with FreeTypeVariableBinding::GenericParameters?");
assert(exprType && !exprType->hasPlaceholder() &&
"type placeholder with FreeTypeVariableBinding::GenericParameters?");
if (exprType->hasError()) {
recoverOriginalType();
return Type();
}
// Dig the declaration out of the solution.
auto semanticExpr = expr->getSemanticsProvidingExpr();
auto topLocator = cs.getConstraintLocator(semanticExpr);
referencedDecl = solution.resolveLocatorToDecl(topLocator);
if (!referencedDecl.getDecl()) {
// Do another check in case we have a curried call from binding a function
// reference to a variable, for example:
//
// class C {
// func instanceFunc(p1: Int, p2: Int) {}
// }
// func t(c: C) {
// C.instanceFunc(c)#^COMPLETE^#
// }
//
// We need to get the referenced function so we can complete the argument
// labels. (Note that the requirement to have labels in the curried call
// seems inconsistent with the removal of labels from function types.
// If this changes the following code could be removed).
if (auto *CE = dyn_cast<CallExpr>(semanticExpr)) {
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(CE->getFn())) {
if (isa<TypeExpr>(UDE->getBase())) {
auto udeLocator = cs.getConstraintLocator(UDE);
auto udeRefDecl = solution.resolveLocatorToDecl(udeLocator);
if (auto *FD = dyn_cast_or_null<FuncDecl>(udeRefDecl.getDecl())) {
if (FD->isInstanceMember())
referencedDecl = udeRefDecl;
}
}
}
}
}
// Recover the original type if needed.
recoverOriginalType();
return exprType;
}
static bool hasTypeForCompletion(Solution &solution,
CompletionContextFinder &contextAnalyzer) {
if (contextAnalyzer.hasCompletionExpr()) {
return solution.hasType(contextAnalyzer.getCompletionExpr());
} else {
return solution.hasType(
contextAnalyzer.getKeyPathContainingCompletionComponent(),
contextAnalyzer.getKeyPathCompletionComponentIndex());
}
}
void TypeChecker::filterSolutionsForCodeCompletion(
SmallVectorImpl<Solution> &solutions,
CompletionContextFinder &contextAnalyzer) {
// Ignore solutions that didn't end up involving the completion (e.g. due to
// a fix to skip over/ignore it).
llvm::erase_if(solutions, [&](Solution &S) {
if (hasTypeForCompletion(S, contextAnalyzer))
return false;
// FIXME: Technically this should never happen, but it currently does in
// result builder contexts. Re-evaluate if we can assert here when we have
// multi-statement closure checking for result builders.
return true;
});
if (solutions.size() <= 1)
return;
Score minScore = std::min_element(solutions.begin(), solutions.end(),
[](const Solution &a, const Solution &b) {
return a.getFixedScore() < b.getFixedScore();
})->getFixedScore();
llvm::erase_if(solutions, [&](const Solution &S) {
return S.getFixedScore().Data[SK_Fix] > minScore.Data[SK_Fix];
});
}
bool TypeChecker::typeCheckForCodeCompletion(
SyntacticElementTarget &target, bool needsPrecheck,
llvm::function_ref<void(const Solution &)> callback) {
auto *DC = target.getDeclContext();
auto &Context = DC->getASTContext();
// First of all, let's check whether given target expression
// does indeed have the code completion location in it.
{
auto range = target.getSourceRange();
if (range.isInvalid() ||
!containsIDEInspectionTarget(range, Context.SourceMgr))
return false;
}
CompletionContextFinder contextAnalyzer(target, DC);
// If there was no completion expr (e.g. if the code completion location was
// among tokens that were skipped over during parser error recovery) bail.
if (!contextAnalyzer.hasCompletion())
return false;
if (needsPrecheck) {
// First, pre-check the expression, validating any types that occur in the
// expression and folding sequence expressions.
auto failedPreCheck =
ConstraintSystem::preCheckTarget(target,
/*replaceInvalidRefsWithErrors=*/true);
if (failedPreCheck)
return false;
}
enum class CompletionResult { Ok, NotApplicable, Fallback };
auto solveForCodeCompletion =
[&](SyntacticElementTarget &target) -> CompletionResult {
ConstraintSystemOptions options;
options |= ConstraintSystemFlags::AllowFixes;
options |= ConstraintSystemFlags::SuppressDiagnostics;
options |= ConstraintSystemFlags::ForCodeCompletion;
ConstraintSystem cs(DC, options);
llvm::SmallVector<Solution, 4> solutions;
// If solve failed to generate constraints or with some other
// issue, we need to fallback to type-checking a sub-expression.
cs.setTargetFor(target.getAsExpr(), target);
if (!cs.solveForCodeCompletion(target, solutions))
return CompletionResult::Fallback;
// Similarly, if the type-check didn't produce any solutions, fall back
// to type-checking a sub-expression in isolation.
if (solutions.empty())
return CompletionResult::Fallback;
// FIXME: instead of filtering, expose the score and viability to clients.
// Remove solutions that skipped over/ignored the code completion point
// or that require fixes and have a score that is worse than the best.
filterSolutionsForCodeCompletion(solutions, contextAnalyzer);
llvm::for_each(solutions, callback);
return CompletionResult::Ok;
};
switch (solveForCodeCompletion(target)) {
case CompletionResult::Ok:
return true;
case CompletionResult::NotApplicable:
return false;
case CompletionResult::Fallback:
break;
}
// Determine the best subexpression to use based on the collected context
// of the code completion expression.
auto fallback = contextAnalyzer.getFallbackCompletionExpr();
if (!fallback) {
return true;
}
if (isa<AbstractClosureExpr>(fallback->DC)) {
// If the expression is embedded in a closure, the constraint system tries
// to retrieve that closure's type, which will fail since we won't have
// generated any type variables for it. Thus, fallback type checking isn't
// available in this case.
return true;
}
if (auto *expr = target.getAsExpr()) {
assert(fallback->E != expr);
(void)expr;
}
SyntacticElementTarget completionTarget(fallback->E, fallback->DC,
CTP_Unused,
/*contextualType=*/Type(),
/*isDiscarded=*/true);
typeCheckForCodeCompletion(completionTarget, fallback->SeparatePrecheck,
callback);
return true;
}
static std::optional<Type>
getTypeOfCompletionContextExpr(DeclContext *DC, CompletionTypeCheckKind kind,
Expr *&parsedExpr,
ConcreteDeclRef &referencedDecl) {
if (constraints::ConstraintSystem::preCheckExpression(
parsedExpr, DC,
/*replaceInvalidRefsWithErrors=*/true))
return std::nullopt;
switch (kind) {
case CompletionTypeCheckKind::Normal:
// Handle below.
break;
case CompletionTypeCheckKind::KeyPath:
referencedDecl = nullptr;
if (auto keyPath = dyn_cast<KeyPathExpr>(parsedExpr)) {
auto components = keyPath->getComponents();
if (!components.empty()) {
auto &last = components.back();
if (last.isResolved()) {
if (last.getKind() == KeyPathExpr::Component::Kind::Property)
referencedDecl = last.getDeclRef();
Type lookupTy = last.getComponentType();
ASTContext &Ctx = DC->getASTContext();
if (auto bridgedClass = Ctx.getBridgedToObjC(DC, lookupTy))
return bridgedClass;
return lookupTy;
}
}
}
return std::nullopt;
}
Type originalType = parsedExpr->getType();
if (auto T =
getTypeOfExpressionWithoutApplying(parsedExpr, DC, referencedDecl))
return T;
// Try to recover if we've made any progress.
if (parsedExpr &&
!isa<ErrorExpr>(parsedExpr) &&
parsedExpr->getType() &&
!parsedExpr->getType()->hasError() &&
(originalType.isNull() ||
!parsedExpr->getType()->isEqual(originalType))) {
return parsedExpr->getType();
}
return std::nullopt;
}
/// Return the type of an expression parsed during code completion, or
/// a null \c Type on error.
std::optional<Type> swift::getTypeOfCompletionContextExpr(
ASTContext &Ctx, DeclContext *DC, CompletionTypeCheckKind kind,
Expr *&parsedExpr, ConcreteDeclRef &referencedDecl) {
DiagnosticSuppression suppression(Ctx.Diags);
// Try to solve for the actual type of the expression.
return ::getTypeOfCompletionContextExpr(DC, kind, parsedExpr,
referencedDecl);
}
LookupResult
swift::lookupSemanticMember(DeclContext *DC, Type ty, DeclName name) {
return TypeChecker::lookupMember(DC, ty, DeclNameRef(name), SourceLoc(),
std::nullopt);
}
|