1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
|
//===--- TypeCheckDecl.cpp - Type Checking for Declarations ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for declarations.
//
//===----------------------------------------------------------------------===//
#include "TypeCheckDecl.h"
#include "CodeSynthesis.h"
#include "DerivedConformances.h"
#include "MiscDiagnostics.h"
#include "TypeCheckAccess.h"
#include "TypeCheckAvailability.h"
#include "TypeCheckBitwise.h"
#include "TypeCheckConcurrency.h"
#include "TypeCheckInvertible.h"
#include "TypeCheckObjC.h"
#include "TypeCheckType.h"
#include "TypeChecker.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/AccessScope.h"
#include "swift/AST/Attr.h"
#include "swift/AST/ClangModuleLoader.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/OperatorNameLookup.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeWalker.h"
#include "swift/Basic/Defer.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/Parser.h"
#include "swift/Sema/IDETypeChecking.h"
#include "swift/Serialization/SerializedModuleLoader.h"
#include "swift/Strings.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DJB.h"
using namespace swift;
#define DEBUG_TYPE "TypeCheckDecl"
namespace {
/// Used during enum raw value checking to identify duplicate raw values.
/// Character, string, float, and integer literals are all keyed by value.
/// Float and integer literals are additionally keyed by numeric equivalence.
struct RawValueKey {
enum class Kind : uint8_t {
String, Float, Int, Bool, Tombstone, Empty
} kind;
struct IntValueTy {
uint64_t v0;
uint64_t v1;
IntValueTy(const APInt &bits) {
APInt bits128 = bits.sextOrTrunc(128);
assert(bits128.getBitWidth() <= 128);
const uint64_t *data = bits128.getRawData();
v0 = data[0];
v1 = data[1];
}
};
struct FloatValueTy {
uint64_t v0;
uint64_t v1;
};
// FIXME: doesn't accommodate >64-bit or signed raw integer or float values.
union {
StringRef stringValue;
IntValueTy intValue;
FloatValueTy floatValue;
bool boolValue;
};
explicit RawValueKey(LiteralExpr *expr) {
switch (expr->getKind()) {
case ExprKind::IntegerLiteral:
kind = Kind::Int;
intValue = IntValueTy(cast<IntegerLiteralExpr>(expr)->getValue());
return;
case ExprKind::FloatLiteral: {
APFloat value = cast<FloatLiteralExpr>(expr)->getValue();
llvm::APSInt asInt(127, /*isUnsigned=*/false);
bool isExact = false;
APFloat::opStatus status =
value.convertToInteger(asInt, APFloat::rmTowardZero, &isExact);
if (asInt.getBitWidth() <= 128 && status == APFloat::opOK && isExact) {
kind = Kind::Int;
intValue = IntValueTy(asInt);
return;
}
APInt bits = value.bitcastToAPInt();
const uint64_t *data = bits.getRawData();
if (bits.getBitWidth() == 80) {
kind = Kind::Float;
floatValue = FloatValueTy{ data[0], data[1] };
} else {
assert(bits.getBitWidth() == 64);
kind = Kind::Float;
floatValue = FloatValueTy{ data[0], 0 };
}
return;
}
case ExprKind::StringLiteral:
kind = Kind::String;
stringValue = cast<StringLiteralExpr>(expr)->getValue();
return;
case ExprKind::BooleanLiteral:
kind = Kind::Bool;
boolValue = cast<BooleanLiteralExpr>(expr)->getValue();
return;
default:
llvm_unreachable("not a valid literal expr for raw value");
}
}
explicit RawValueKey(Kind k) : kind(k) {
assert((k == Kind::Tombstone || k == Kind::Empty)
&& "this ctor is only for creating DenseMap special values");
}
};
/// Used during enum raw value checking to identify the source of a raw value,
/// which may have been derived by auto-incrementing, for diagnostic purposes.
struct RawValueSource {
/// The decl that has the raw value.
EnumElementDecl *sourceElt;
/// If the sourceDecl didn't explicitly name a raw value, this is the most
/// recent preceding decl with an explicit raw value. This is used to
/// diagnose 'autoincrementing from' messages.
EnumElementDecl *lastExplicitValueElt;
};
} // end anonymous namespace
namespace llvm {
template<>
class DenseMapInfo<RawValueKey> {
public:
static RawValueKey getEmptyKey() {
return RawValueKey(RawValueKey::Kind::Empty);
}
static RawValueKey getTombstoneKey() {
return RawValueKey(RawValueKey::Kind::Tombstone);
}
static unsigned getHashValue(RawValueKey k) {
switch (k.kind) {
case RawValueKey::Kind::Float:
// Hash as bits. We want to treat distinct but IEEE-equal values as not
// equal.
return DenseMapInfo<uint64_t>::getHashValue(k.floatValue.v0) ^
DenseMapInfo<uint64_t>::getHashValue(k.floatValue.v1);
case RawValueKey::Kind::Int:
return DenseMapInfo<uint64_t>::getHashValue(k.intValue.v0) &
DenseMapInfo<uint64_t>::getHashValue(k.intValue.v1);
case RawValueKey::Kind::String:
return DenseMapInfo<StringRef>::getHashValue(k.stringValue);
case RawValueKey::Kind::Bool:
return DenseMapInfo<uint64_t>::getHashValue(k.boolValue);
case RawValueKey::Kind::Empty:
case RawValueKey::Kind::Tombstone:
return 0;
}
llvm_unreachable("Unhandled RawValueKey in switch.");
}
static bool isEqual(RawValueKey a, RawValueKey b) {
if (a.kind != b.kind)
return false;
switch (a.kind) {
case RawValueKey::Kind::Float:
// Hash as bits. We want to treat distinct but IEEE-equal values as not
// equal.
return a.floatValue.v0 == b.floatValue.v0 &&
a.floatValue.v1 == b.floatValue.v1;
case RawValueKey::Kind::Int:
return a.intValue.v0 == b.intValue.v0 &&
a.intValue.v1 == b.intValue.v1;
case RawValueKey::Kind::String:
return a.stringValue.equals(b.stringValue);
case RawValueKey::Kind::Bool:
return a.boolValue == b.boolValue;
case RawValueKey::Kind::Empty:
case RawValueKey::Kind::Tombstone:
return true;
}
llvm_unreachable("Unhandled RawValueKey in switch.");
}
};
} // namespace llvm
static bool canSkipCircularityCheck(NominalTypeDecl *decl) {
// Don't bother checking imported or deserialized decls.
return decl->hasClangNode() || decl->wasDeserialized();
}
bool
HasCircularInheritedProtocolsRequest::evaluate(Evaluator &evaluator,
ProtocolDecl *decl) const {
if (canSkipCircularityCheck(decl))
return false;
InvertibleProtocolSet inverses;
bool anyObject = false;
auto inherited = getDirectlyInheritedNominalTypeDecls(decl, inverses, anyObject);
for (auto &found : inherited) {
auto *protoDecl = dyn_cast<ProtocolDecl>(found.Item);
if (!protoDecl)
continue;
// If we have a cycle, handle it and return true.
auto result = evaluateOrDefault(evaluator,
HasCircularInheritedProtocolsRequest{protoDecl},
true);
if (result)
return true;
}
return false;
}
bool
HasCircularRawValueRequest::evaluate(Evaluator &evaluator,
EnumDecl *decl) const {
if (canSkipCircularityCheck(decl) || !decl->hasRawType())
return false;
auto *inherited = decl->getRawType()->getEnumOrBoundGenericEnum();
if (!inherited)
return false;
// If we have a cycle, handle it and return true.
return evaluateOrDefault(evaluator, HasCircularRawValueRequest{inherited}, true);
}
namespace {
// The raw values of this enum must be kept in sync with
// diag::implicitly_final_cannot_be_open.
enum class ImplicitlyFinalReason : unsigned {
/// A property was declared with 'let'.
Let,
/// The containing class is final.
FinalClass,
/// A member was declared as 'static'.
Static
};
}
static bool inferFinalAndDiagnoseIfNeeded(ValueDecl *D, ClassDecl *cls,
FinalAttr *explicitFinalAttr,
StaticSpellingKind staticSpelling) {
// Are there any reasons to infer 'final'? Prefer 'static' over the class
// being final for the purposes of diagnostics.
std::optional<ImplicitlyFinalReason> reason;
if (staticSpelling == StaticSpellingKind::KeywordStatic) {
reason = ImplicitlyFinalReason::Static;
if (explicitFinalAttr) {
auto finalRange = explicitFinalAttr->getRange();
if (finalRange.isValid()) {
auto &context = D->getASTContext();
context.Diags.diagnose(finalRange.Start, diag::static_decl_already_final)
.fixItRemove(finalRange);
}
}
} else if (cls->isFinal()) {
reason = ImplicitlyFinalReason::FinalClass;
}
if (!reason)
return false;
if (D->getFormalAccess() == AccessLevel::Open) {
auto &context = D->getASTContext();
auto diagID = diag::implicitly_final_cannot_be_open;
if (!context.isSwiftVersionAtLeast(5))
diagID = diag::implicitly_final_cannot_be_open_swift4;
auto inFlightDiag = context.Diags.diagnose(D, diagID,
static_cast<unsigned>(reason.value()));
fixItAccess(inFlightDiag, D, AccessLevel::Public);
}
return true;
}
/// Runtime-replaceable accessors are dynamic when their storage declaration
/// is dynamic and they were explicitly defined or they are implicitly defined
/// getter/setter because no accessor was defined.
static bool doesAccessorNeedDynamicAttribute(AccessorDecl *accessor) {
auto kind = accessor->getAccessorKind();
auto storage = accessor->getStorage();
bool isObjC = storage->isObjC();
switch (kind) {
case AccessorKind::Get: {
auto readImpl = storage->getReadImpl();
if (!isObjC &&
(readImpl == ReadImplKind::Read || readImpl == ReadImplKind::Address))
return false;
return storage->isDynamic();
}
case AccessorKind::DistributedGet: {
return false;
}
case AccessorKind::Set: {
auto writeImpl = storage->getWriteImpl();
if (!isObjC && (writeImpl == WriteImplKind::Modify ||
writeImpl == WriteImplKind::MutableAddress ||
writeImpl == WriteImplKind::StoredWithObservers))
return false;
return storage->isDynamic();
}
case AccessorKind::Read:
if (!isObjC && storage->getReadImpl() == ReadImplKind::Read)
return storage->isDynamic();
return false;
case AccessorKind::Modify: {
if (!isObjC && storage->getWriteImpl() == WriteImplKind::Modify)
return storage->isDynamic();
return false;
}
case AccessorKind::MutableAddress: {
if (!isObjC && storage->getWriteImpl() == WriteImplKind::MutableAddress)
return storage->isDynamic();
return false;
}
case AccessorKind::Address: {
if (!isObjC && storage->getReadImpl() == ReadImplKind::Address)
return storage->isDynamic();
return false;
}
case AccessorKind::DidSet:
case AccessorKind::WillSet:
if (!isObjC &&
storage->getWriteImpl() == WriteImplKind::StoredWithObservers)
return storage->isDynamic();
return false;
case AccessorKind::Init:
return false;
}
llvm_unreachable("covered switch");
}
CtorInitializerKind
InitKindRequest::evaluate(Evaluator &evaluator, ConstructorDecl *decl) const {
auto &diags = decl->getASTContext().Diags;
auto dc = decl->getDeclContext();
if (auto nominal = dc->getSelfNominalTypeDecl()) {
// Convenience inits are only allowed on classes and in extensions thereof.
if (auto convenAttr = decl->getAttrs().getAttribute<ConvenienceAttr>()) {
if (auto classDecl = dyn_cast<ClassDecl>(nominal)) {
if (classDecl->isAnyActor()) {
// For an actor "convenience" is not required, but we'll honor it.
diags.diagnose(decl->getLoc(),
diag::no_convenience_keyword_init, "actors")
.fixItRemove(convenAttr->getLocation())
.warnInSwiftInterface(dc)
.warnUntilSwiftVersion(6);
} else { // not an actor
// Forbid convenience inits on Foreign CF types, as Swift does not yet
// support user-defined factory inits.
if (classDecl->getForeignClassKind() == ClassDecl::ForeignKind::CFType)
diags.diagnose(decl->getLoc(), diag::cfclass_convenience_init);
}
} else { // not a ClassDecl
auto ConvenienceLoc = convenAttr->getLocation();
// Produce a tailored diagnostic for structs and enums. They should
// not have `convenience`.
bool isStruct = dyn_cast<StructDecl>(nominal) != nullptr;
if (isStruct || dyn_cast<EnumDecl>(nominal)) {
diags.diagnose(decl->getLoc(), diag::no_convenience_keyword_init,
isStruct ? "structs" : "enums")
.fixItRemove(ConvenienceLoc);
} else {
diags.diagnose(decl->getLoc(), diag::no_convenience_keyword_init,
nominal->getName().str())
.fixItRemove(ConvenienceLoc);
}
return CtorInitializerKind::Designated;
}
return CtorInitializerKind::Convenience;
}
// if there's no `convenience` attribute...
if (auto classDcl = dyn_cast<ClassDecl>(nominal)) {
// actors infer whether they are `convenience` from their body kind.
if (classDcl->isAnyActor()) {
auto kind = decl->getDelegatingOrChainedInitKind();
switch (kind.initKind) {
case BodyInitKind::ImplicitChained:
case BodyInitKind::Chained:
case BodyInitKind::None:
break; // it's designated, we need more checks.
case BodyInitKind::Delegating:
return CtorInitializerKind::Convenience;
}
}
// A designated init for a class must be written within the class itself.
//
// This is because designated initializers of classes get a vtable entry,
// and extensions cannot add vtable entries to the extended type.
//
// If we implement the ability for extensions defined in the same module
// (or the same file) to add vtable entries, we can re-evaluate this
// restriction.
if (!decl->isSynthesized() &&
isa<ExtensionDecl>(dc->getImplementedObjCContext()) &&
!(decl->getAttrs().hasAttribute<DynamicReplacementAttr>())) {
if (classDcl->getForeignClassKind() == ClassDecl::ForeignKind::CFType) {
diags.diagnose(decl->getLoc(),
diag::designated_init_in_extension_no_convenience_tip,
nominal);
// despite having reported it as an error, say that it is designated.
return CtorInitializerKind::Designated;
} else if (classDcl->isAnyActor()) {
// tailor the diagnostic to not mention `convenience`
diags.diagnose(decl->getLoc(),
diag::designated_init_in_extension_no_convenience_tip,
nominal);
} else {
diags.diagnose(decl->getLoc(),
diag::designated_init_in_extension, nominal)
.fixItInsert(decl->getLoc(), "convenience ");
}
return CtorInitializerKind::Convenience;
}
} // end of Class context
} // end of Nominal context
// initializers in protocol extensions must be convenience inits
if (dc->getExtendedProtocolDecl()) {
return CtorInitializerKind::Convenience;
}
return CtorInitializerKind::Designated;
}
BodyInitKindAndExpr
BodyInitKindRequest::evaluate(Evaluator &evaluator,
ConstructorDecl *decl) const {
struct FindReferenceToInitializer : ASTWalker {
const ConstructorDecl *Decl;
BodyInitKind Kind = BodyInitKind::None;
ApplyExpr *InitExpr = nullptr;
ASTContext &ctx;
FindReferenceToInitializer(const ConstructorDecl *decl,
ASTContext &ctx)
: Decl(decl), ctx(ctx) { }
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkAction walkToDeclPre(class Decl *D) override {
// Don't walk into further nominal decls.
return Action::SkipNodeIf(isa<NominalTypeDecl>(D));
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
// Don't walk into closures.
if (isa<ClosureExpr>(E))
return Action::SkipNode(E);
// Look for calls of a constructor on self or super.
auto apply = dyn_cast<ApplyExpr>(E);
if (!apply)
return Action::Continue(E);
auto *argList = apply->getArgs();
auto Callee = apply->getSemanticFn();
Expr *arg;
if (isa<OtherConstructorDeclRefExpr>(Callee)) {
arg = argList->getUnaryExpr();
assert(arg);
} else if (auto *CRE = dyn_cast<ConstructorRefCallExpr>(Callee)) {
arg = CRE->getBase();
} else if (auto *dotExpr = dyn_cast<UnresolvedDotExpr>(Callee)) {
if (!dotExpr->getName().getBaseName().isConstructor())
return Action::Continue(E);
arg = dotExpr->getBase();
} else {
// Not a constructor call.
return Action::Continue(E);
}
// Look for a base of 'self' or 'super'.
arg = arg->getSemanticsProvidingExpr();
auto myKind = BodyInitKind::None;
if (arg->isSuperExpr())
myKind = BodyInitKind::Chained;
else if (arg->isSelfExprOf(Decl, /*sameBase*/true))
myKind = BodyInitKind::Delegating;
else if (auto *declRef = dyn_cast<UnresolvedDeclRefExpr>(arg)) {
// FIXME: We can see UnresolvedDeclRefExprs here because we have
// not yet run preCheckExpression() on the entire function body
// yet.
//
// We could consider pre-checking more eagerly.
auto name = declRef->getName();
auto loc = declRef->getLoc();
if (name.isSimpleName(ctx.Id_self)) {
auto *otherSelfDecl =
ASTScope::lookupSingleLocalDecl(Decl->getParentSourceFile(),
name.getFullName(), loc);
if (otherSelfDecl == Decl->getImplicitSelfDecl())
myKind = BodyInitKind::Delegating;
}
}
if (myKind == BodyInitKind::None)
return Action::Continue(E);
if (Kind == BodyInitKind::None) {
Kind = myKind;
InitExpr = apply;
return Action::Continue(E);
}
// If the kind changed, complain.
if (Kind != myKind) {
// The kind changed. Complain.
ctx.Diags.diagnose(E->getLoc(), diag::init_delegates_and_chains);
ctx.Diags.diagnose(InitExpr->getLoc(), diag::init_delegation_or_chain,
Kind == BodyInitKind::Chained);
}
return Action::Continue(E);
}
};
auto &ctx = decl->getASTContext();
FindReferenceToInitializer finder(decl, ctx);
if (auto *body = decl->getBody())
body->walk(finder);
// get the kind out of the finder.
auto Kind = finder.Kind;
auto *NTD = decl->getDeclContext()->getSelfNominalTypeDecl();
// Protocol extension and enum initializers are always delegating.
if (Kind == BodyInitKind::None) {
if (isa<ProtocolDecl>(NTD) || isa<EnumDecl>(NTD)) {
Kind = BodyInitKind::Delegating;
}
}
// Struct initializers that cannot see the layout of the struct type are
// always delegating. This occurs if the struct type is not fixed layout,
// and the constructor is either inlinable or defined in another module.
if (Kind == BodyInitKind::None && isa<StructDecl>(NTD)) {
// Note: This is specifically not using isFormallyResilient. We relax this
// rule for structs in non-resilient modules so that they can have inlinable
// constructors, as long as those constructors don't reference private
// declarations.
if (NTD->isResilient() &&
decl->getResilienceExpansion() == ResilienceExpansion::Minimal) {
Kind = BodyInitKind::Delegating;
} else if (isa<ExtensionDecl>(decl->getDeclContext())) {
// Prior to Swift 5, cross-module initializers were permitted to be
// non-delegating. However, if the struct isn't fixed-layout, we have to
// be delegating because, well, we don't know the layout.
// A dynamic replacement is permitted to be non-delegating.
if (NTD->isResilient() ||
(ctx.isSwiftVersionAtLeast(5) &&
!decl->getAttrs().getAttribute<DynamicReplacementAttr>())) {
if (decl->getParentModule() != NTD->getParentModule())
Kind = BodyInitKind::Delegating;
}
}
}
// If we didn't find any delegating or chained initializers, check whether
// the initializer was explicitly marked 'convenience'.
if (Kind == BodyInitKind::None &&
decl->getAttrs().hasAttribute<ConvenienceAttr>())
Kind = BodyInitKind::Delegating;
// If we still don't know, check whether we have a class with a superclass: it
// gets an implicit chained initializer.
if (Kind == BodyInitKind::None) {
if (auto classDecl = decl->getDeclContext()->getSelfClassDecl()) {
if (classDecl->hasSuperclass())
Kind = BodyInitKind::ImplicitChained;
}
}
return BodyInitKindAndExpr(Kind, finder.InitExpr);
}
bool
ProtocolRequiresClassRequest::evaluate(Evaluator &evaluator,
ProtocolDecl *decl) const {
// Quick check: @objc protocols require a class.
if (decl->isObjC())
return true;
// Determine the set of nominal types that this protocol inherits.
InvertibleProtocolSet inverses;
bool anyObject = false;
auto allInheritedNominals =
getDirectlyInheritedNominalTypeDecls(decl, inverses, anyObject);
// Quick check: do we inherit AnyObject?
if (anyObject)
return true;
// Look through all of the inherited nominals for a superclass or a
// class-bound protocol.
for (const auto &found : allInheritedNominals) {
// Superclass bound.
if (isa<ClassDecl>(found.Item))
return true;
// A protocol that might be class-constrained.
if (auto proto = dyn_cast<ProtocolDecl>(found.Item)) {
if (proto->requiresClass())
return true;
}
}
return false;
}
bool
ExistentialConformsToSelfRequest::evaluate(Evaluator &evaluator,
ProtocolDecl *decl) const {
// Marker protocols always self-conform.
if (decl->isMarkerProtocol()) {
// Except for BitwiseCopyable an existential of which is not bitwise
// copyable.
if (decl->getKnownProtocolKind() == KnownProtocolKind::BitwiseCopyable) {
return false;
}
return true;
}
// Otherwise, if it's not @objc, it conforms to itself only if it has a
// self-conformance witness table.
if (!decl->isObjC())
return decl->requiresSelfConformanceWitnessTable();
// Check whether this protocol conforms to itself.
for (auto member : decl->getMembers()) {
if (member->isInvalid()) continue;
if (auto vd = dyn_cast<ValueDecl>(member)) {
// A protocol cannot conform to itself if it has static members.
if (!vd->isInstanceMember())
return false;
}
}
// Check whether any of the inherited protocols fail to conform to themselves.
for (auto proto : decl->getInheritedProtocols()) {
if (!proto->existentialConformsToSelf())
return false;
}
return true;
}
bool HasSelfOrAssociatedTypeRequirementsRequest::evaluate(
Evaluator &evaluator, ProtocolDecl *decl) const {
// ObjC protocols do not require `any`.
if (decl->isObjC())
return false;
for (auto member : decl->getMembers()) {
// Existential types require `any` if the protocol has an associated type.
if (isa<AssociatedTypeDecl>(member))
return true;
// For value members, look at their type signatures.
if (auto valueMember = dyn_cast<ValueDecl>(member)) {
const auto info = valueMember->findExistentialSelfReferences(
decl->getDeclaredInterfaceType(),
/*treatNonResultCovariantSelfAsInvariant=*/false);
if (info.selfRef > TypePosition::Covariant || info.assocTypeRef) {
return true;
}
}
}
// Check whether any of the inherited protocols require `any`.
for (auto proto : decl->getInheritedProtocols()) {
if (proto->hasSelfOrAssociatedTypeRequirements())
return true;
}
return false;
}
ArrayRef<AssociatedTypeDecl *>
PrimaryAssociatedTypesRequest::evaluate(Evaluator &evaluator,
ProtocolDecl *decl) const {
SmallVector<AssociatedTypeDecl *, 2> assocTypes;
if (decl->hasLazyPrimaryAssociatedTypes()) {
auto &ctx = decl->getASTContext();
auto contextData = static_cast<LazyProtocolData *>(
ctx.getOrCreateLazyContextData(decl, nullptr));
contextData->loader->loadPrimaryAssociatedTypes(
decl, contextData->primaryAssociatedTypesData, assocTypes);
return decl->getASTContext().AllocateCopy(assocTypes);
}
llvm::SmallDenseSet<Identifier, 2> assocTypeNames;
for (auto pair : decl->getPrimaryAssociatedTypeNames()) {
if (!assocTypeNames.insert(pair.first).second) {
auto &ctx = decl->getASTContext();
ctx.Diags.diagnose(pair.second,
diag::protocol_declares_duplicate_primary_assoc_type,
pair.first);
continue;
}
SmallVector<ValueDecl *, 2> result;
decl->lookupQualified(ArrayRef<NominalTypeDecl *>(decl),
DeclNameRef(pair.first), decl->getLoc(),
NL_QualifiedDefault | NL_OnlyTypes,
result);
AssociatedTypeDecl *bestAssocType = nullptr;
for (auto *decl : result) {
if (auto *assocType = dyn_cast<AssociatedTypeDecl>(decl)) {
if (bestAssocType == nullptr ||
TypeDecl::compare(assocType, bestAssocType) < 0) {
bestAssocType = assocType;
}
}
}
if (bestAssocType == nullptr) {
auto &ctx = decl->getASTContext();
ctx.Diags.diagnose(pair.second,
diag::protocol_declares_unknown_primary_assoc_type,
pair.first, decl->getDeclaredInterfaceType());
continue;
}
assocTypes.push_back(bestAssocType);
}
return decl->getASTContext().AllocateCopy(assocTypes);
}
bool
IsFinalRequest::evaluate(Evaluator &evaluator, ValueDecl *decl) const {
auto explicitFinalAttr = decl->getAttrs().getAttribute<FinalAttr>();
if (isa<ClassDecl>(decl))
return explicitFinalAttr;
auto cls = decl->getDeclContext()->getSelfClassDecl();
if (!cls)
return false;
switch (decl->getKind()) {
case DeclKind::Var: {
// Properties are final if they are declared 'static' or a 'let'
auto *VD = cast<VarDecl>(decl);
// Backing storage for 'lazy' or property wrappers is always final.
if (VD->isLazyStorageProperty() ||
VD->getOriginalWrappedProperty(PropertyWrapperSynthesizedPropertyKind::Backing))
return true;
// Property wrapper storage wrappers are final if the original property
// is final.
if (auto *original = VD->getOriginalWrappedProperty(
PropertyWrapperSynthesizedPropertyKind::Projection)) {
if (original->isFinal())
return true;
}
if (VD->getDeclContext()->getSelfClassDecl()) {
// If this variable is a class member, mark it final if the
// class is final, or if it was declared with 'let'.
auto *PBD = VD->getParentPatternBinding();
if (PBD && inferFinalAndDiagnoseIfNeeded(decl, cls, explicitFinalAttr,
PBD->getStaticSpelling()))
return true;
if (VD->isLet()) {
// If this `let` is in an `@_objcImplementation extension`, don't
// infer `final` unless it is written explicitly.
auto ed = dyn_cast<ExtensionDecl>(VD->getDeclContext());
if (!explicitFinalAttr && ed && ed->isObjCImplementation())
return false;
if (VD->getFormalAccess() == AccessLevel::Open) {
auto &context = decl->getASTContext();
auto diagID = diag::implicitly_final_cannot_be_open;
if (!context.isSwiftVersionAtLeast(5))
diagID = diag::implicitly_final_cannot_be_open_swift4;
auto inFlightDiag =
context.Diags.diagnose(decl, diagID,
static_cast<unsigned>(ImplicitlyFinalReason::Let));
fixItAccess(inFlightDiag, decl, AccessLevel::Public);
}
return true;
}
}
break;
}
case DeclKind::Func: {
// Methods declared 'static' are final.
auto staticSpelling = cast<FuncDecl>(decl)->getStaticSpelling();
if (inferFinalAndDiagnoseIfNeeded(decl, cls, explicitFinalAttr,
staticSpelling))
return true;
break;
}
case DeclKind::Accessor:
if (auto accessor = dyn_cast<AccessorDecl>(decl)) {
switch (accessor->getAccessorKind()) {
case AccessorKind::DidSet:
case AccessorKind::WillSet:
// Observing accessors are marked final if in a class.
return true;
case AccessorKind::Read:
case AccessorKind::Modify:
case AccessorKind::Get:
case AccessorKind::DistributedGet:
case AccessorKind::Set: {
// Coroutines and accessors are final if their storage is.
auto storage = accessor->getStorage();
if (storage->isFinal())
return true;
break;
}
default:
break;
}
}
break;
case DeclKind::Subscript: {
// Member subscripts.
auto staticSpelling = cast<SubscriptDecl>(decl)->getStaticSpelling();
if (inferFinalAndDiagnoseIfNeeded(decl, cls, explicitFinalAttr,
staticSpelling))
return true;
break;
}
default:
break;
}
return explicitFinalAttr;
}
bool
IsStaticRequest::evaluate(Evaluator &evaluator, FuncDecl *decl) const {
if (auto *accessor = dyn_cast<AccessorDecl>(decl))
return accessor->getStorage()->isStatic();
bool result = (decl->getStaticLoc().isValid() ||
decl->getStaticSpelling() != StaticSpellingKind::None);
auto *dc = decl->getDeclContext();
if (!result &&
decl->isOperator() &&
dc->isTypeContext()) {
const auto operatorName = decl->getBaseIdentifier();
if (auto ED = dyn_cast<ExtensionDecl>(dc->getAsDecl())) {
decl->diagnose(diag::nonstatic_operator_in_extension, operatorName,
ED->getExtendedTypeRepr() != nullptr,
ED->getExtendedTypeRepr())
.fixItInsert(decl->getAttributeInsertionLoc(/*forModifier=*/true),
"static ");
} else {
auto *NTD = cast<NominalTypeDecl>(dc->getAsDecl());
decl->diagnose(diag::nonstatic_operator_in_nominal, operatorName, NTD)
.fixItInsert(decl->getAttributeInsertionLoc(/*forModifier=*/true),
"static ");
}
result = true;
}
return result;
}
bool
IsDynamicRequest::evaluate(Evaluator &evaluator, ValueDecl *decl) const {
// If we can't infer dynamic here, don't.
if (!DeclAttribute::canAttributeAppearOnDecl(DeclAttrKind::Dynamic, decl))
return false;
// Add dynamic if -enable-implicit-dynamic was requested.
TypeChecker::addImplicitDynamicAttribute(decl);
// If 'dynamic' was explicitly specified, check it.
if (decl->getAttrs().hasAttribute<DynamicAttr>()) {
return true;
}
// @_objcImplementation extension member implementations are implicitly
// dynamic.
if (decl->isObjCMemberImplementation())
return true;
if (auto accessor = dyn_cast<AccessorDecl>(decl)) {
// Runtime-replaceable accessors are dynamic when their storage declaration
// is dynamic and they were explicitly defined or they are implicitly defined
// getter/setter because no accessor was defined.
return doesAccessorNeedDynamicAttribute(accessor);
}
// The 'NSManaged' attribute implies 'dynamic'.
// FIXME: Use a semantic check for NSManaged rather than looking for the
// attribute (which could be ill-formed).
if (decl->getAttrs().hasAttribute<NSManagedAttr>())
return true;
// The presence of 'final' blocks the inference of 'dynamic'.
if (decl->isSemanticallyFinal())
return false;
// Types are never 'dynamic'.
if (isa<TypeDecl>(decl))
return false;
// A non-@objc entity is never 'dynamic'.
if (!decl->isObjC())
return false;
// @objc declarations in class extensions are implicitly dynamic.
// This is intended to enable overriding the declarations.
auto dc = decl->getDeclContext();
if (isa<ExtensionDecl>(dc) && dc->getSelfClassDecl())
return true;
// If any of the declarations overridden by this declaration are dynamic
// or were imported from Objective-C, this declaration is dynamic.
// Don't do this if the declaration is not exposed to Objective-C; that's
// currently the (only) manner in which one can make an override of a
// dynamic declaration non-dynamic.
auto overriddenDecls = evaluateOrDefault(evaluator,
OverriddenDeclsRequest{decl}, {});
for (auto overridden : overriddenDecls) {
if (overridden->isDynamic() || overridden->hasClangNode())
return true;
}
return false;
}
Type
DefaultDefinitionTypeRequest::evaluate(Evaluator &evaluator,
AssociatedTypeDecl *assocType) const {
auto &ctx = assocType->getASTContext();
if (auto *data = static_cast<LazyAssociatedTypeData *>(
ctx.getLazyContextData(assocType))) {
return data->loader->loadAssociatedTypeDefault(
assocType, data->defaultDefinitionTypeData);
}
TypeRepr *defaultDefinition = assocType->getDefaultDefinitionTypeRepr();
if (defaultDefinition) {
return TypeResolution::forInterface(assocType->getDeclContext(),
std::nullopt,
// Diagnose unbound generics and
// placeholders.
/*unboundTyOpener*/ nullptr,
/*placeholderHandler*/ nullptr,
/*packElementOpener*/ nullptr)
.resolveType(defaultDefinition);
}
return Type();
}
bool
NeedsNewVTableEntryRequest::evaluate(Evaluator &evaluator,
AbstractFunctionDecl *decl) const {
auto *dc = decl->getDeclContext();
if (!isa<ClassDecl>(dc->getImplementedObjCContext()))
return false;
// Destructors always use a fixed vtable entry.
if (isa<DestructorDecl>(decl))
return false;
assert(isa<FuncDecl>(decl) || isa<ConstructorDecl>(decl));
// Final members are always be called directly.
// Dynamic methods are always accessed by objc_msgSend().
if (decl->isFinal() || decl->shouldUseObjCDispatch() || decl->hasClangNode())
return false;
auto &ctx = dc->getASTContext();
// Initializers are not normally inherited, but required initializers can
// be overridden for invocation from dynamic types, and convenience initializers
// are conditionally inherited when all designated initializers are available,
// working by dynamically invoking the designated initializer implementation
// from the subclass. Convenience initializers can also override designated
// initializer implementations from their superclass.
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
if (!ctor->isRequired() && !ctor->isDesignatedInit()) {
return false;
}
// Stub constructors don't appear in the vtable.
if (ctor->hasStubImplementation())
return false;
}
if (auto *accessor = dyn_cast<AccessorDecl>(decl)) {
// Check to see if it's one of the opaque accessors for the declaration.
auto storage = accessor->getStorage();
if (accessor->getAccessorKind() == AccessorKind::DistributedGet) {
return true;
}
if (!storage->requiresOpaqueAccessor(accessor->getAccessorKind()))
return false;
}
auto base = decl->getOverriddenDecl();
if (!base || base->hasClangNode() || base->shouldUseObjCDispatch())
return true;
// As above, convenience initializers are not formally overridable in Swift
// vtables, although same-named initializers are modeled as overriding for
// various QoI and objc interop reasons. Even if we "override" a non-required
// convenience init, we still need a distinct vtable entry.
if (auto baseCtor = dyn_cast<ConstructorDecl>(base)) {
if (!baseCtor->isRequired() && !baseCtor->isDesignatedInit()) {
return true;
}
}
// If the base is less visible than the override, we might need a vtable
// entry since callers of the override might not be able to see the base
// at all.
if (decl->isMoreVisibleThan(base))
return true;
using Direction = ASTContext::OverrideGenericSignatureReqCheck;
if (!ctx.overrideGenericSignatureReqsSatisfied(
base, decl, Direction::BaseReqSatisfiedByDerived)) {
return true;
}
// If this method is an ABI compatible override, then we don't need a new
// vtable entry. Otherwise, if it's not ABI compatible, for example if the
// base has a more general AST type, then we need a new entry. Note that an
// abstraction change is OK; we don't want to add a whole new vtable entry
// just because an @in parameter becomes @owned, or whatever.
auto isABICompatibleOverride =
evaluateOrDefault(evaluator, IsABICompatibleOverrideRequest{decl}, false);
return !isABICompatibleOverride;
}
/// Given the raw value literal expression for an enum case, produces the
/// auto-incremented raw value for the subsequent case, or returns null if
/// the value is not auto-incrementable.
static LiteralExpr *getAutomaticRawValueExpr(AutomaticEnumValueKind valueKind,
EnumElementDecl *forElt,
LiteralExpr *prevValue) {
auto &Ctx = forElt->getASTContext();
switch (valueKind) {
case AutomaticEnumValueKind::None:
Ctx.Diags.diagnose(forElt->getLoc(),
diag::enum_non_integer_convertible_raw_type_no_value);
return nullptr;
case AutomaticEnumValueKind::String:
return new (Ctx) StringLiteralExpr(forElt->getNameStr(), SourceLoc(),
/*Implicit=*/true);
case AutomaticEnumValueKind::Integer:
// If there was no previous value, start from zero.
if (!prevValue) {
return new (Ctx) IntegerLiteralExpr("0", SourceLoc(),
/*Implicit=*/true);
}
if (auto intLit = dyn_cast<IntegerLiteralExpr>(prevValue)) {
APInt raw = intLit->getRawValue();
APInt sext = (raw.getBitWidth() < 128 ? raw.sext(128) : raw);
APInt nextVal = sext + 1;
bool negative = nextVal.slt(0);
if (negative)
nextVal = -nextVal;
llvm::SmallString<10> nextValStr;
nextVal.toStringSigned(nextValStr);
auto expr = new (Ctx)
IntegerLiteralExpr(Ctx.AllocateCopy(StringRef(nextValStr)),
forElt->getLoc(), /*Implicit=*/true);
if (negative)
expr->setNegative(forElt->getLoc());
return expr;
}
Ctx.Diags.diagnose(forElt->getLoc(),
diag::enum_non_integer_raw_value_auto_increment);
return nullptr;
}
llvm_unreachable("Unhandled AutomaticEnumValueKind in switch.");
}
std::optional<AutomaticEnumValueKind>
swift::computeAutomaticEnumValueKind(EnumDecl *ED) {
Type rawTy = ED->getRawType();
assert(rawTy && "Cannot compute value kind without raw type!");
if (ED->getGenericEnvironmentOfContext() != nullptr)
rawTy = ED->mapTypeIntoContext(rawTy);
auto *module = ED->getParentModule();
// Swift enums require that the raw type is convertible from one of the
// primitive literal protocols.
auto conformsToProtocol = [&](KnownProtocolKind protoKind) {
return TypeChecker::conformsToKnownProtocol(rawTy, protoKind, module);
};
static auto otherLiteralProtocolKinds = {
KnownProtocolKind::ExpressibleByFloatLiteral,
KnownProtocolKind::ExpressibleByUnicodeScalarLiteral,
KnownProtocolKind::ExpressibleByExtendedGraphemeClusterLiteral,
};
if (conformsToProtocol(KnownProtocolKind::ExpressibleByIntegerLiteral)) {
return AutomaticEnumValueKind::Integer;
} else if (conformsToProtocol(KnownProtocolKind::ExpressibleByStringLiteral)){
return AutomaticEnumValueKind::String;
} else if (std::any_of(otherLiteralProtocolKinds.begin(),
otherLiteralProtocolKinds.end(),
conformsToProtocol)) {
return AutomaticEnumValueKind::None;
} else {
return std::nullopt;
}
}
evaluator::SideEffect
EnumRawValuesRequest::evaluate(Evaluator &eval, EnumDecl *ED,
TypeResolutionStage stage) const {
Type rawTy = ED->getRawType();
if (!rawTy) {
return std::make_tuple<>();
}
// Avoid computing raw values for enum cases in swiftinterface files since raw
// values are intentionally omitted from them (unless the enum is @objc).
// Without bailing here, incorrect raw values can be automatically generated
// and incorrect diagnostics may be omitted for some decls.
SourceFile *Parent = ED->getDeclContext()->getParentSourceFile();
if (Parent && Parent->Kind == SourceFileKind::Interface && !ED->isObjC())
return std::make_tuple<>();
if (!computeAutomaticEnumValueKind(ED)) {
return std::make_tuple<>();
}
if (ED->getGenericEnvironmentOfContext() != nullptr)
rawTy = ED->mapTypeIntoContext(rawTy);
if (rawTy->hasError())
return std::make_tuple<>();
// Check the raw values of the cases.
LiteralExpr *prevValue = nullptr;
EnumElementDecl *lastExplicitValueElt = nullptr;
// Keep a map we can use to check for duplicate case values.
llvm::SmallDenseMap<RawValueKey, RawValueSource, 8> uniqueRawValues;
// Make the raw member accesses explicit.
auto uncheckedRawValueOf = [](EnumElementDecl *EED) -> LiteralExpr * {
return EED->RawValueExpr;
};
std::optional<AutomaticEnumValueKind> valueKind;
for (auto elt : ED->getAllElements()) {
// If the element has been diagnosed up to now, skip it.
if (elt->isInvalid())
continue;
if (uncheckedRawValueOf(elt)) {
if (!uncheckedRawValueOf(elt)->isImplicit())
lastExplicitValueElt = elt;
} else if (!ED->SemanticFlags.contains(EnumDecl::HasFixedRawValues)) {
// Try to pull out the automatic enum value kind. If that fails, bail.
if (!valueKind) {
valueKind = computeAutomaticEnumValueKind(ED);
if (!valueKind) {
elt->setInvalid();
return std::make_tuple<>();
}
}
// If the enum element has no explicit raw value, try to
// autoincrement from the previous value, or start from zero if this
// is the first element.
auto nextValue = getAutomaticRawValueExpr(*valueKind, elt, prevValue);
if (!nextValue) {
elt->setInvalid();
break;
}
elt->setRawValueExpr(nextValue);
}
prevValue = uncheckedRawValueOf(elt);
assert(prevValue && "continued without setting raw value of enum case");
switch (stage) {
case TypeResolutionStage::Structural:
// We're only interested in computing the complete set of raw values,
// so we can skip type checking.
continue;
default:
// Continue on to type check the raw value.
break;
}
{
Expr *exprToCheck = prevValue;
if (TypeChecker::typeCheckExpression(
exprToCheck, ED,
/*contextualInfo=*/{rawTy, CTP_EnumCaseRawValue})) {
checkEnumElementActorIsolation(elt, exprToCheck);
TypeChecker::checkEnumElementEffects(elt, exprToCheck);
}
}
// If we didn't find a valid initializer (maybe the initial value was
// incompatible with the raw value type) mark the entry as being erroneous.
if (!prevValue->getType() || prevValue->getType()->hasError()) {
elt->setInvalid();
continue;
}
// If the raw values of the enum case are fixed, then we trust our callers
// to have set things up correctly. This comes up with imported enums
// and deserialized @objc enums which always have their raw values setup
// beforehand.
if (ED->SemanticFlags.contains(EnumDecl::HasFixedRawValues))
continue;
// Using magic literals like #file as raw value is not supported right now.
// TODO: We could potentially support #file, #function, #line and #column.
auto &Diags = ED->getASTContext().Diags;
SourceLoc diagLoc = uncheckedRawValueOf(elt)->isImplicit()
? elt->getLoc()
: uncheckedRawValueOf(elt)->getLoc();
if (auto magicLiteralExpr =
dyn_cast<MagicIdentifierLiteralExpr>(prevValue)) {
auto kindString =
magicLiteralExpr->getKindString(magicLiteralExpr->getKind());
Diags.diagnose(diagLoc, diag::enum_raw_value_magic_literal, kindString);
elt->setInvalid();
continue;
}
// Check that the raw value is unique.
RawValueKey key{prevValue};
RawValueSource source{elt, lastExplicitValueElt};
auto insertIterPair = uniqueRawValues.insert({key, source});
if (insertIterPair.second)
continue;
// Diagnose the duplicate value.
Diags.diagnose(diagLoc, diag::enum_raw_value_not_unique);
if (lastExplicitValueElt != elt &&
valueKind == AutomaticEnumValueKind::Integer) {
Diags.diagnose(uncheckedRawValueOf(lastExplicitValueElt)->getLoc(),
diag::enum_raw_value_incrementing_from_here);
}
RawValueSource prevSource = insertIterPair.first->second;
auto foundElt = prevSource.sourceElt;
diagLoc = uncheckedRawValueOf(foundElt)->isImplicit()
? foundElt->getLoc() : uncheckedRawValueOf(foundElt)->getLoc();
Diags.diagnose(diagLoc, diag::enum_raw_value_used_here);
if (foundElt != prevSource.lastExplicitValueElt &&
valueKind == AutomaticEnumValueKind::Integer) {
if (prevSource.lastExplicitValueElt)
Diags.diagnose(uncheckedRawValueOf(prevSource.lastExplicitValueElt)
->getLoc(),
diag::enum_raw_value_incrementing_from_here);
else
Diags.diagnose(ED->getAllElements().front()->getLoc(),
diag::enum_raw_value_incrementing_from_zero);
}
}
return std::make_tuple<>();
}
const ConstructorDecl *
swift::findNonImplicitRequiredInit(const ConstructorDecl *CD) {
while (CD->isImplicit()) {
auto *overridden = CD->getOverriddenDecl();
if (!overridden || !overridden->isRequired())
break;
CD = overridden;
}
return CD;
}
/// For building the higher-than component of the diagnostic path,
/// we use the visited set, which we've embellished with information
/// about how we reached a particular node. This is reasonable because
/// we need to maintain the set anyway.
static void buildHigherThanPath(
PrecedenceGroupDecl *last,
const llvm::DenseMap<PrecedenceGroupDecl *, PrecedenceGroupDecl *>
&visitedFrom,
raw_ostream &out) {
auto it = visitedFrom.find(last);
assert(it != visitedFrom.end());
auto from = it->second;
if (from) {
buildHigherThanPath(from, visitedFrom, out);
}
out << last->getName() << " -> ";
}
/// For building the lower-than component of the diagnostic path,
/// we just do a depth-first search to find a path.
static bool buildLowerThanPath(PrecedenceGroupDecl *start,
PrecedenceGroupDecl *target, raw_ostream &out) {
if (start == target) {
out << start->getName();
return true;
}
if (start->isInvalid())
return false;
for (auto &rel : start->getLowerThan()) {
if (rel.Group && buildLowerThanPath(rel.Group, target, out)) {
out << " -> " << start->getName();
return true;
}
}
return false;
}
static void checkPrecedenceCircularity(DiagnosticEngine &D,
PrecedenceGroupDecl *PGD) {
// Don't diagnose if this group is already marked invalid.
if (PGD->isInvalid())
return;
// The cycle doesn't necessarily go through this specific group,
// so we need a proper visited set to avoid infinite loops. We
// also record a back-reference so that we can easily reconstruct
// the cycle.
llvm::DenseMap<PrecedenceGroupDecl *, PrecedenceGroupDecl *> visitedFrom;
SmallVector<PrecedenceGroupDecl *, 4> stack;
// Fill out the targets set.
llvm::SmallPtrSet<PrecedenceGroupDecl *, 4> targets;
stack.push_back(PGD);
do {
auto cur = stack.pop_back_val();
// If we reach an invalid node, just bail out.
if (cur->isInvalid()) {
PGD->setInvalid();
return;
}
targets.insert(cur);
for (auto &rel : cur->getLowerThan()) {
if (!rel.Group)
continue;
// We can't have cycles in the lower-than relationship
// because it has to point outside of the module.
stack.push_back(rel.Group);
}
} while (!stack.empty());
// Make sure that the PGD is its own source.
visitedFrom.insert({PGD, nullptr});
stack.push_back(PGD);
do {
auto cur = stack.pop_back_val();
// If we reach an invalid node, just bail out.
if (cur->isInvalid()) {
PGD->setInvalid();
return;
}
for (auto &rel : cur->getHigherThan()) {
if (!rel.Group)
continue;
// Check whether we've reached a target declaration.
if (!targets.count(rel.Group)) {
// If not, check whether we've visited this group before.
if (visitedFrom.insert({rel.Group, cur}).second) {
// If not, add it to the queue.
stack.push_back(rel.Group);
}
// Note that we'll silently ignore cycles that don't go through PGD.
// We should eventually process the groups that are involved.
continue;
}
// Otherwise, we have something to report.
SmallString<128> path;
{
llvm::raw_svector_ostream str(path);
// Build the higherThan portion of the path (PGD -> cur).
buildHigherThanPath(cur, visitedFrom, str);
// Build the lowerThan portion of the path (rel.Group -> PGD).
buildLowerThanPath(PGD, rel.Group, str);
}
D.diagnose(PGD->getHigherThanLoc(),
diag::higher_than_precedence_group_cycle, path);
PGD->setInvalid();
return;
}
} while (!stack.empty());
}
static PrecedenceGroupDecl *lookupPrecedenceGroupForRelation(
DeclContext *dc, PrecedenceGroupDecl::Relation rel,
PrecedenceGroupDescriptor::PathDirection direction) {
auto &ctx = dc->getASTContext();
PrecedenceGroupDescriptor desc{dc, rel.Name, rel.NameLoc, direction};
bool hadCycle = false;
auto result = ctx.evaluator(ValidatePrecedenceGroupRequest{desc},
[&hadCycle]() -> TinyPtrVector<PrecedenceGroupDecl *> {
hadCycle = true;
return {};
});
if (hadCycle) {
// Handle a cycle error specially. We don't want to default to an empty
// result, as we don't want to emit an error about not finding a precedence
// group.
return nullptr;
}
return PrecedenceGroupLookupResult(dc, rel.Name, std::move(result))
.getSingleOrDiagnose(rel.NameLoc);
}
void swift::validatePrecedenceGroup(PrecedenceGroupDecl *PGD) {
assert(PGD && "Cannot validate a null precedence group!");
if (PGD->isInvalid())
return;
auto &Diags = PGD->getASTContext().Diags;
auto *dc = PGD->getDeclContext();
// Validate the higherThan relationships.
bool addedHigherThan = false;
for (auto &rel : PGD->getMutableHigherThan()) {
if (rel.Group)
continue;
// TODO: Requestify the lookup of a relation's group.
rel.Group = lookupPrecedenceGroupForRelation(
dc, rel, PrecedenceGroupDescriptor::HigherThan);
if (rel.Group) {
addedHigherThan = true;
} else {
PGD->setInvalid();
}
}
// Validate the lowerThan relationships.
for (auto &rel : PGD->getMutableLowerThan()) {
if (rel.Group)
continue;
auto *group = lookupPrecedenceGroupForRelation(
dc, rel, PrecedenceGroupDescriptor::LowerThan);
rel.Group = group;
// If we didn't find anything, try doing a raw lookup for the group before
// diagnosing the 'lowerThan' within the same-module restriction. This can
// allow us to diagnose even if we have a precedence group cycle.
if (!group)
group = dc->lookupPrecedenceGroup(rel.Name).getSingle();
if (group &&
group->getDeclContext()->getParentModule() == dc->getParentModule()) {
if (!PGD->isInvalid()) {
Diags.diagnose(rel.NameLoc, diag::precedence_group_lower_within_module);
Diags.diagnose(group->getNameLoc(), diag::kind_declared_here,
DescriptiveDeclKind::PrecedenceGroup);
}
PGD->setInvalid();
}
if (!rel.Group)
PGD->setInvalid();
}
// Try to diagnose trickier cycles that request evaluation alone can't catch.
if (addedHigherThan)
checkPrecedenceCircularity(Diags, PGD);
}
TinyPtrVector<PrecedenceGroupDecl *> ValidatePrecedenceGroupRequest::evaluate(
Evaluator &eval, PrecedenceGroupDescriptor descriptor) const {
auto groups = descriptor.dc->lookupPrecedenceGroup(descriptor.ident);
for (auto *group : groups)
validatePrecedenceGroup(group);
// Return the raw results vector, which will get wrapped back in a
// PrecedenceGroupLookupResult by the TypeChecker entry point. This dance
// avoids unnecessarily caching the name and context for the lookup.
return std::move(groups).get();
}
PrecedenceGroupLookupResult
TypeChecker::lookupPrecedenceGroup(DeclContext *dc, Identifier name,
SourceLoc nameLoc) {
auto groups = evaluateOrDefault(
dc->getASTContext().evaluator,
ValidatePrecedenceGroupRequest({dc, name, nameLoc, std::nullopt}), {});
return PrecedenceGroupLookupResult(dc, name, std::move(groups));
}
/// Validate the given operator declaration.
///
/// This establishes key invariants, such as an InfixOperatorDecl's
/// reference to its precedence group and the transitive validity of that
/// group.
PrecedenceGroupDecl *
OperatorPrecedenceGroupRequest::evaluate(Evaluator &evaluator,
InfixOperatorDecl *IOD) const {
auto &ctx = IOD->getASTContext();
auto *dc = IOD->getDeclContext();
auto name = IOD->getPrecedenceGroupName();
if (!name.empty()) {
auto loc = IOD->getPrecedenceGroupLoc();
auto groups = TypeChecker::lookupPrecedenceGroup(dc, name, loc);
if (groups.hasResults() ||
!ctx.TypeCheckerOpts.EnableOperatorDesignatedTypes)
return groups.getSingleOrDiagnose(loc);
// We didn't find the named precedence group and designated types are
// enabled, so we will assume that it was actually a designated type. Warn
// and fall through as though `PrecedenceGroupName` had never been set.
ctx.Diags.diagnose(IOD->getColonLoc(),
diag::operator_decl_remove_designated_types)
.fixItRemove({IOD->getColonLoc(), loc});
}
auto groups = TypeChecker::lookupPrecedenceGroup(
dc, ctx.Id_DefaultPrecedence, SourceLoc());
return groups.getSingleOrDiagnose(IOD->getLoc(), /*forBuiltin*/ true);
}
SelfAccessKind
SelfAccessKindRequest::evaluate(Evaluator &evaluator, FuncDecl *FD) const {
if (FD->getAttrs().getAttribute<MutatingAttr>(true)) {
if (!FD->isInstanceMember() || !FD->getDeclContext()->hasValueSemantics()) {
// If this decl is on a class-constrained protocol extension, then
// respect the explicit mutatingness. Otherwise, we would throw an
// error.
if (FD->getDeclContext()->isClassConstrainedProtocolExtension())
return SelfAccessKind::Mutating;
return SelfAccessKind::NonMutating;
}
return SelfAccessKind::Mutating;
} else if (FD->getAttrs().hasAttribute<NonMutatingAttr>()) {
return SelfAccessKind::NonMutating;
} else if (FD->getAttrs().hasAttribute<LegacyConsumingAttr>()) {
return SelfAccessKind::LegacyConsuming;
} else if (FD->getAttrs().hasAttribute<ConsumingAttr>()) {
return SelfAccessKind::Consuming;
} else if (FD->getAttrs().hasAttribute<BorrowingAttr>()) {
return SelfAccessKind::Borrowing;
}
if (auto *AD = dyn_cast<AccessorDecl>(FD)) {
// Non-static set/willSet/didSet/mutableAddress default to mutating.
// get/address default to non-mutating.
switch (AD->getAccessorKind()) {
case AccessorKind::Address:
case AccessorKind::Get:
case AccessorKind::DistributedGet:
case AccessorKind::Read:
break;
case AccessorKind::Init:
case AccessorKind::MutableAddress:
case AccessorKind::Set:
case AccessorKind::Modify:
if (AD->isInstanceMember() && AD->getDeclContext()->hasValueSemantics())
return SelfAccessKind::Mutating;
break;
case AccessorKind::WillSet:
case AccessorKind::DidSet: {
auto *storage =AD->getStorage();
if (storage->isSetterMutating())
return SelfAccessKind::Mutating;
break;
}
}
}
return SelfAccessKind::NonMutating;
}
bool TypeChecker::isAvailabilitySafeForConformance(
ProtocolDecl *proto, ValueDecl *requirement, ValueDecl *witness,
DeclContext *dc, AvailabilityContext &requirementInfo) {
// We assume conformances in
// non-SourceFiles have already been checked for availability.
if (!dc->getParentSourceFile())
return true;
auto &Context = proto->getASTContext();
assert(dc->getSelfNominalTypeDecl() &&
"Must have a nominal or extension context");
// Make sure that any access of the witness through the protocol
// can only occur when the witness is available. That is, make sure that
// on every version where the conforming declaration is available, if the
// requirement is available then the witness is available as well.
// We do this by checking that (an over-approximation of) the intersection of
// the requirement's available range with both the conforming declaration's
// available range and the protocol's available range is fully contained in
// (an over-approximation of) the intersection of the witnesses's available
// range with both the conforming type's available range and the protocol
// declaration's available range.
AvailabilityContext witnessInfo =
AvailabilityInference::availableRange(witness, Context);
requirementInfo = AvailabilityInference::availableRange(requirement, Context);
AvailabilityContext infoForConformingDecl =
overApproximateAvailabilityAtLocation(dc->getAsDecl()->getLoc(), dc);
// Relax the requirements for @_spi witnesses by treating the requirement as
// if it were introduced at the deployment target. This is not strictly sound
// since clients of SPI do not necessarily have the same deployment target as
// the module declaring the requirement. However, now that the public
// declarations in API libraries are checked according to the minimum possible
// deployment target of their clients this relaxation is needed for source
// compatibility with some existing code and is reasonably safe for the
// majority of cases.
if (witness->isSPI()) {
AvailabilityContext deploymentTarget =
AvailabilityContext::forDeploymentTarget(Context);
requirementInfo.constrainWith(deploymentTarget);
}
// Constrain over-approximates intersection of version ranges.
witnessInfo.constrainWith(infoForConformingDecl);
requirementInfo.constrainWith(infoForConformingDecl);
AvailabilityContext infoForProtocolDecl =
overApproximateAvailabilityAtLocation(proto->getLoc(), proto);
witnessInfo.constrainWith(infoForProtocolDecl);
requirementInfo.constrainWith(infoForProtocolDecl);
return requirementInfo.isContainedIn(witnessInfo);
}
// Returns 'nullptr' if this is the 'newValue' or 'oldValue' parameter;
// otherwise, returns the corresponding parameter of the subscript
// declaration.
static ParamDecl *getOriginalParamFromAccessor(AbstractStorageDecl *storage,
AccessorDecl *accessor,
ParamDecl *param) {
auto *accessorParams = accessor->getParameters();
unsigned startIndex = 0;
switch (accessor->getAccessorKind()) {
case AccessorKind::DidSet:
case AccessorKind::WillSet:
case AccessorKind::Set:
case AccessorKind::Init:
if (param == accessorParams->get(0)) {
// This is the 'newValue' or 'oldValue' parameter.
return nullptr;
}
startIndex = 1;
break;
default:
startIndex = 0;
break;
}
// If the parameter is not the 'newValue' parameter to a setter, it
// must be a subscript index parameter (or we have an invalid AST).
auto *subscript = cast<SubscriptDecl>(storage);
auto *subscriptParams = subscript->getIndices();
auto where = llvm::find_if(*accessorParams,
[param](ParamDecl *other) {
return other == param;
});
assert(where != accessorParams->end());
unsigned index = where - accessorParams->begin();
return subscriptParams->get(index - startIndex);
}
bool
IsImplicitlyUnwrappedOptionalRequest::evaluate(Evaluator &evaluator,
ValueDecl *decl) const {
TypeRepr *TyR = nullptr;
switch (decl->getKind()) {
case DeclKind::Func: {
TyR = cast<FuncDecl>(decl)->getResultTypeRepr();
break;
}
case DeclKind::Accessor: {
auto *accessor = cast<AccessorDecl>(decl);
if (!accessor->isGetter())
break;
auto *storage = accessor->getStorage();
if (auto *subscript = dyn_cast<SubscriptDecl>(storage))
TyR = subscript->getElementTypeRepr();
else
TyR = cast<VarDecl>(storage)->getTypeReprOrParentPatternTypeRepr();
break;
}
case DeclKind::Subscript:
TyR = cast<SubscriptDecl>(decl)->getElementTypeRepr();
break;
case DeclKind::Param: {
auto *param = cast<ParamDecl>(decl);
if (param->isSelfParameter())
return false;
if (auto *accessor = dyn_cast<AccessorDecl>(param->getDeclContext())) {
auto *storage = accessor->getStorage();
auto *originalParam = getOriginalParamFromAccessor(
storage, accessor, param);
if (originalParam == nullptr) {
// This is the setter's newValue parameter.
return storage->isImplicitlyUnwrappedOptional();
}
if (param != originalParam) {
// This is the 'subscript(...) { get { ... } set { ... } }' case.
// This means we cloned the parameter list for each accessor.
// Delegate to the original parameter.
return originalParam->isImplicitlyUnwrappedOptional();
}
// This is the 'subscript(...) { <<body of getter>> }' case.
// The subscript and the getter share their ParamDecls.
// Fall through.
}
// Handle eg, 'inout Int!' or '__owned NSObject!'.
TyR = param->getTypeRepr();
if (auto *STR = dyn_cast_or_null<SpecifierTypeRepr>(TyR))
TyR = STR->getBase();
break;
}
case DeclKind::Var:
if (decl->hasClangNode()) {
// ClangImporter does not use this request to compute whether imported
// declarations are IUOs; instead, it explicitly sets the bit itself when
// it imports the declaration's type. For most declarations this is done
// greedily, but for VarDecls, it is deferred until `getInterfaceType()`
// is called for the first time. (See apple/swift#61026.)
//
// Force the interface type, then see if a result for this request is now
// cached.
// FIXME: This is a little gross.
(void)decl->getInterfaceType();
if (auto cachedResult = this->getCachedResult())
return *cachedResult;
}
TyR = cast<VarDecl>(decl)->getTypeReprOrParentPatternTypeRepr();
break;
default:
break;
}
return (TyR && TyR->getKind() == TypeReprKind::ImplicitlyUnwrappedOptional);
}
/// Validate the underlying type of the given typealias.
Type
UnderlyingTypeRequest::evaluate(Evaluator &evaluator,
TypeAliasDecl *typeAlias) const {
TypeResolutionOptions options((typeAlias->getGenericParams()
? TypeResolverContext::GenericTypeAliasDecl
: TypeResolverContext::TypeAliasDecl));
if (typeAlias->preconcurrency())
options |= TypeResolutionFlags::Preconcurrency;
// This can happen when code completion is attempted inside
// of typealias underlying type e.g. `typealias F = () -> Int#^TOK^#`
auto *underlyingRepr = typeAlias->getUnderlyingTypeRepr();
if (!underlyingRepr) {
typeAlias->setInvalid();
return ErrorType::get(typeAlias->getASTContext());
}
const auto result =
TypeResolution::forInterface(typeAlias, options,
/*unboundTyOpener*/ nullptr,
/*placeholderHandler*/ nullptr,
/*packElementOpener*/ nullptr)
.resolveType(underlyingRepr);
if (result->hasError()) {
typeAlias->setInvalid();
return ErrorType::get(typeAlias->getASTContext());
}
return result;
}
/// Bind the given function declaration, which declares an operator, to the
/// corresponding operator declaration.
OperatorDecl *
FunctionOperatorRequest::evaluate(Evaluator &evaluator, FuncDecl *FD) const {
auto &C = FD->getASTContext();
auto &diags = C.Diags;
const auto operatorName = FD->getBaseIdentifier();
// Check for static/final/class when we're in a type.
auto dc = FD->getDeclContext();
if (dc->isTypeContext()) {
if (auto classDecl = dc->getSelfClassDecl()) {
// For a class, we also need the function or class to be 'final'.
if (!classDecl->isSemanticallyFinal() && !FD->isFinal() &&
FD->getStaticLoc().isValid() &&
FD->getStaticSpelling() != StaticSpellingKind::KeywordStatic) {
FD->diagnose(diag::nonfinal_operator_in_class,
operatorName, dc->getDeclaredInterfaceType())
.fixItInsert(FD->getAttributeInsertionLoc(/*forModifier=*/true),
"final ");
FD->getAttrs().add(new (C) FinalAttr(/*IsImplicit=*/true));
}
}
} else if (!dc->isModuleScopeContext()) {
FD->diagnose(diag::operator_in_local_scope);
}
NullablePtr<OperatorDecl> op;
if (FD->isUnaryOperator()) {
if (FD->getAttrs().hasAttribute<PrefixAttr>()) {
op = FD->lookupPrefixOperator(operatorName);
} else if (FD->getAttrs().hasAttribute<PostfixAttr>()) {
op = FD->lookupPostfixOperator(operatorName);
} else {
auto *prefixOp = FD->lookupPrefixOperator(operatorName);
auto *postfixOp = FD->lookupPostfixOperator(operatorName);
// If we found both prefix and postfix, or neither prefix nor postfix,
// complain. We can't fix this situation.
if (static_cast<bool>(prefixOp) == static_cast<bool>(postfixOp)) {
diags.diagnose(FD, diag::declared_unary_op_without_attribute);
// If we found both, point at them.
if (prefixOp) {
diags.diagnose(prefixOp, diag::unary_operator_declaration_here,
/*isPostfix*/ false)
.fixItInsert(FD->getLoc(), "prefix ");
diags.diagnose(postfixOp, diag::unary_operator_declaration_here,
/*isPostfix*/ true)
.fixItInsert(FD->getLoc(), "postfix ");
} else {
// FIXME: Introduce a Fix-It that adds the operator declaration?
}
// FIXME: Errors could cascade here, because name lookup for this
// operator won't find this declaration.
return nullptr;
}
// We found only one operator declaration, so we know whether this
// should be a prefix or a postfix operator.
// Fix the AST and determine the insertion text.
const char *insertionText;
auto &C = FD->getASTContext();
auto isPostfix = static_cast<bool>(postfixOp);
if (isPostfix) {
insertionText = "postfix ";
op = postfixOp;
FD->getAttrs().add(new (C) PostfixAttr(/*implicit*/false));
} else {
insertionText = "prefix ";
op = prefixOp;
FD->getAttrs().add(new (C) PrefixAttr(/*implicit*/false));
}
// Emit diagnostic with the Fix-It.
diags.diagnose(FD->getFuncLoc(), diag::unary_op_missing_prepos_attribute,
isPostfix)
.fixItInsert(FD->getFuncLoc(), insertionText);
op.get()->diagnose(diag::unary_operator_declaration_here, isPostfix);
}
} else if (FD->isBinaryOperator()) {
auto results = FD->lookupInfixOperator(operatorName);
// If we have an ambiguity, diagnose and return. Otherwise fall through, as
// we have a custom diagnostic for missing operator decls.
if (results.isAmbiguous()) {
results.diagnoseAmbiguity(FD->getLoc());
return nullptr;
}
op = results.getSingle();
} else {
diags.diagnose(FD, diag::invalid_arg_count_for_operator);
return nullptr;
}
if (!op) {
// We want to insert at the start of the top-most declaration, taking
// attributes into consideration.
auto *insertionDecl = FD->getTopmostDeclarationDeclContext();
auto insertionLoc = insertionDecl->getSourceRangeIncludingAttrs().Start;
SmallString<128> insertion;
{
llvm::raw_svector_ostream str(insertion);
assert(FD->isUnaryOperator() || FD->isBinaryOperator());
if (FD->isUnaryOperator()) {
if (FD->getAttrs().hasAttribute<PrefixAttr>())
str << "prefix operator ";
else
str << "postfix operator ";
} else {
str << "infix operator ";
}
str << operatorName.str() << " : <# Precedence Group #>\n";
}
InFlightDiagnostic opDiagnostic =
diags.diagnose(FD, diag::declared_operator_without_operator_decl);
if (insertionLoc.isValid())
opDiagnostic.fixItInsert(insertionLoc, insertion);
return nullptr;
}
return op.get();
}
bool swift::isMemberOperator(FuncDecl *decl, Type type) {
// Check that member operators reference the type of 'Self'.
if (decl->isInvalid())
return true;
auto *DC = decl->getDeclContext();
auto selfNominal = DC->getSelfNominalTypeDecl();
// Check the parameters for a reference to 'Self'.
bool isProtocol = isa_and_nonnull<ProtocolDecl>(selfNominal);
bool isTuple = isa_and_nonnull<BuiltinTupleDecl>(selfNominal);
for (auto param : *decl->getParameters()) {
// Look through a metatype reference, if there is one.
auto paramType = param->getInterfaceType()->getMetatypeInstanceType();
auto nominal = paramType->getAnyNominal();
if (type.isNull()) {
// Is it the same nominal type?
if (selfNominal && nominal == selfNominal)
return true;
} else {
// Is it the same nominal type? Or a generic (which may or may not match)?
if (paramType->is<GenericTypeParamType>() ||
nominal == type->getAnyNominal())
return true;
}
if (isProtocol) {
// FIXME: Source compatibility hack for Swift 5. The compiler
// accepts member operators on protocols with existential
// type arguments. We should consider banning this in Swift 6.
if (auto existential = paramType->getAs<ExistentialType>()) {
if (selfNominal == existential->getConstraintType()->getAnyNominal())
return true;
}
}
if (isProtocol || isTuple) {
// For a protocol or tuple extension, is it the 'Self' type parameter?
if (paramType->isEqual(DC->getSelfInterfaceType()))
return true;
}
}
return false;
}
static Type buildAddressorResultType(AccessorDecl *addressor,
Type valueType) {
assert(addressor->getAccessorKind() == AccessorKind::Address ||
addressor->getAccessorKind() == AccessorKind::MutableAddress);
PointerTypeKind pointerKind =
(addressor->getAccessorKind() == AccessorKind::Address)
? PTK_UnsafePointer
: PTK_UnsafeMutablePointer;
return valueType->wrapInPointer(pointerKind);
}
Type
ResultTypeRequest::evaluate(Evaluator &evaluator, ValueDecl *decl) const {
auto &ctx = decl->getASTContext();
// Accessors always inherit their result type from their storage.
if (auto *accessor = dyn_cast<AccessorDecl>(decl)) {
auto *storage = accessor->getStorage();
switch (accessor->getAccessorKind()) {
// For getters, set the result type to the value type.
case AccessorKind::Get:
case AccessorKind::DistributedGet:
return storage->getValueInterfaceType();
// For setters and observers, set the old/new value parameter's type
// to the value type.
case AccessorKind::DidSet:
case AccessorKind::WillSet:
case AccessorKind::Set:
case AccessorKind::Init:
return TupleType::getEmpty(ctx);
// Addressor result types can get complicated because of the owner.
case AccessorKind::Address:
case AccessorKind::MutableAddress:
return buildAddressorResultType(accessor, storage->getValueInterfaceType());
// Coroutine accessors don't mention the value type directly.
// If we add yield types to the function type, we'll need to update this.
case AccessorKind::Read:
case AccessorKind::Modify:
return TupleType::getEmpty(ctx);
}
}
TypeRepr *resultTyRepr = nullptr;
if (const auto *const funcDecl = dyn_cast<FuncDecl>(decl)) {
resultTyRepr = funcDecl->getResultTypeRepr();
} else if (auto subscriptDecl = dyn_cast<SubscriptDecl>(decl)) {
resultTyRepr = subscriptDecl->getElementTypeRepr();
} else {
resultTyRepr = cast<MacroDecl>(decl)->resultType.getTypeRepr();
}
if (!resultTyRepr && decl->getClangDecl() &&
isa<clang::FunctionDecl>(decl->getClangDecl())) {
auto clangFn = cast<clang::FunctionDecl>(decl->getClangDecl());
auto returnType = ctx.getClangModuleLoader()->importFunctionReturnType(
clangFn, decl->getDeclContext());
if (returnType)
return *returnType;
// Mark the imported Swift function as unavailable.
// That will ensure that the function will not be
// usable from Swift, even though it is imported.
if (!decl->getAttrs().isUnavailable(ctx)) {
StringRef unavailabilityMsgRef = "return type is unavailable in Swift";
auto ua =
AvailableAttr::createPlatformAgnostic(ctx, unavailabilityMsgRef);
decl->getAttrs().add(ua);
}
return ctx.getNeverType();
}
// Nothing to do if there's no result type.
if (resultTyRepr == nullptr)
return TupleType::getEmpty(ctx);
// Handle opaque types.
if (auto *opaqueDecl = decl->getOpaqueResultTypeDecl()) {
return opaqueDecl->getDeclaredInterfaceType();
}
auto options =
TypeResolutionOptions(TypeResolverContext::FunctionResult);
if (decl->preconcurrency())
options |= TypeResolutionFlags::Preconcurrency;
auto *const dc = decl->getInnermostDeclContext();
return TypeResolution::forInterface(dc, options,
/*unboundTyOpener*/ nullptr,
PlaceholderType::get,
/*packElementOpener*/ nullptr)
.resolveType(resultTyRepr);
}
ParamSpecifier
ParamSpecifierRequest::evaluate(Evaluator &evaluator,
ParamDecl *param) const {
auto *dc = param->getDeclContext();
if (param->isSelfParameter()) {
auto afd = cast<AbstractFunctionDecl>(dc);
auto selfParam = computeSelfParam(afd,
/*isInitializingCtor*/true,
/*wantDynamicSelf*/false);
if (auto fd = dyn_cast<FuncDecl>(afd)) {
switch (fd->getSelfAccessKind()) {
case SelfAccessKind::LegacyConsuming:
return ParamSpecifier::LegacyOwned;
case SelfAccessKind::Consuming:
return ParamSpecifier::Consuming;
case SelfAccessKind::Borrowing:
return ParamSpecifier::Borrowing;
case SelfAccessKind::Mutating:
return ParamSpecifier::InOut;
case SelfAccessKind::NonMutating:
return ParamSpecifier::Default;
}
llvm_unreachable("nonexhaustive switch");
} else {
return (selfParam.getParameterFlags().isInOut()
? ParamSpecifier::InOut
: ParamSpecifier::Default);
}
}
if (auto *accessor = dyn_cast<AccessorDecl>(dc)) {
auto *storage = accessor->getStorage();
auto *originalParam = getOriginalParamFromAccessor(
storage, accessor, param);
if (originalParam == nullptr) {
// This is the setter's newValue parameter. Note that even though
// the AST uses the 'Default' specifier, SIL will lower this to a
// +1 parameter.
return ParamSpecifier::Default;
}
if (param != originalParam) {
// This is the 'subscript(...) { get { ... } set { ... } }' case.
// This means we cloned the parameter list for each accessor.
// Delegate to the original parameter.
return originalParam->getSpecifier();
}
// This is the 'subscript(...) { <<body of getter>> }' case.
// The subscript and the getter share their ParamDecls.
// Fall through.
}
auto typeRepr = param->getTypeRepr();
assert(typeRepr != nullptr && "Should call setSpecifier() on "
"synthesized parameter declarations");
// Look through top-level pack expansions. These specifiers are
// part of what's repeated.
if (auto expansion = dyn_cast<PackExpansionTypeRepr>(typeRepr))
typeRepr = expansion->getPatternType();
// Look through parens here; other than parens, specifiers
// must appear at the top level of a parameter type.
auto *nestedRepr = typeRepr->getWithoutParens();
if (auto isolated = dyn_cast<IsolatedTypeRepr>(nestedRepr))
nestedRepr = isolated->getBase();
if (auto sending = dyn_cast<SendingTypeRepr>(nestedRepr)) {
// If we do not have an Ownership Repr and do not have a no escape type,
// return implicit copyable consuming.
auto *base = sending->getBase();
if (!param->getInterfaceType()->isNoEscape() &&
!isa<OwnershipTypeRepr>(base)) {
return ParamSpecifier::ImplicitlyCopyableConsuming;
}
nestedRepr = base;
}
if (auto ownershipRepr = dyn_cast<OwnershipTypeRepr>(nestedRepr)) {
if (ownershipRepr->getSpecifier() == ParamSpecifier::InOut
&& param->isDefaultArgument()) {
auto &ctx = param->getASTContext();
ctx.Diags.diagnose(param->getStructuralDefaultExpr()->getLoc(),
swift::diag::cannot_provide_default_value_inout,
param->getName());
return ParamSpecifier::Default;
}
return ownershipRepr->getSpecifier();
}
return ParamSpecifier::Default;
}
static Type validateParameterType(ParamDecl *decl) {
auto *dc = decl->getDeclContext();
auto &ctx = dc->getASTContext();
TypeResolutionOptions options(std::nullopt);
OpenUnboundGenericTypeFn unboundTyOpener = nullptr;
if (isa<AbstractClosureExpr>(dc)) {
options = TypeResolutionOptions(TypeResolverContext::ClosureExpr);
options |= TypeResolutionFlags::AllowUnspecifiedTypes;
unboundTyOpener = [](auto unboundTy) {
// FIXME: Don't let unbound generic types escape type resolution.
// For now, just return the unbound generic type.
return unboundTy;
};
// FIXME: Don't let placeholder types escape type resolution.
// For now, just return the placeholder type.
} else if (isa<AbstractFunctionDecl>(dc)) {
options = TypeResolutionOptions(TypeResolverContext::AbstractFunctionDecl);
} else if (isa<SubscriptDecl>(dc)) {
options = TypeResolutionOptions(TypeResolverContext::SubscriptDecl);
} else if (isa<EnumElementDecl>(dc)) {
options = TypeResolutionOptions(TypeResolverContext::EnumElementDecl);
} else {
assert(isa<MacroDecl>(dc));
options = TypeResolutionOptions(TypeResolverContext::MacroDecl);
}
// Set the "preconcurrency" flag if this is a parameter of a preconcurrency
// declaration.
if (auto decl = dc->getAsDecl()) {
if (decl->preconcurrency())
options |= TypeResolutionFlags::Preconcurrency;
}
if (dc->isInSpecializeExtensionContext())
options |= TypeResolutionFlags::AllowUsableFromInline;
Type Ty;
auto *nestedRepr = decl->getTypeRepr();
ParamSpecifier ownership = ParamSpecifier::Default;
while (true) {
if (auto *attrTypeRepr = dyn_cast<AttributedTypeRepr>(nestedRepr)) {
nestedRepr = attrTypeRepr->getTypeRepr();
continue;
}
if (auto *specifierTypeRepr = dyn_cast<SpecifierTypeRepr>(nestedRepr)) {
if (specifierTypeRepr->getKind() == TypeReprKind::Ownership)
ownership = cast<OwnershipTypeRepr>(specifierTypeRepr)->getSpecifier();
nestedRepr = specifierTypeRepr->getBase();
continue;
}
break;
}
// If the element is a variadic parameter, resolve the parameter type as if
// it were in non-parameter position, since we want functions to be
// @escaping in this case.
options.setContext(isa<VarargTypeRepr>(nestedRepr)
? TypeResolverContext::VariadicFunctionInput
: TypeResolverContext::FunctionInput);
options |= TypeResolutionFlags::Direct;
const auto resolution =
TypeResolution::forInterface(dc, options, unboundTyOpener,
PlaceholderType::get,
/*packElementOpener*/ nullptr);
if (auto *varargTypeRepr = dyn_cast<VarargTypeRepr>(nestedRepr)) {
Ty = resolution.resolveType(nestedRepr);
// Monovariadic types (T...) for <T> resolve to [T].
Ty = VariadicSequenceType::get(Ty);
// Set the old-style variadic bit.
decl->setVariadic();
if (!ctx.getArrayDecl()) {
ctx.Diags.diagnose(decl->getTypeRepr()->getLoc(),
diag::sugar_type_not_found, 0);
return ErrorType::get(ctx);
}
} else {
Ty = resolution.resolveType(decl->getTypeRepr());
}
if (Ty->hasError()) {
decl->setInvalid();
return ErrorType::get(ctx);
}
// Validate the presence of ownership for a parameter with an inverse applied.
if (!Ty->hasUnboundGenericType() &&
diagnoseMissingOwnership(ownership, decl->getTypeRepr(), Ty, resolution)) {
decl->setInvalid();
return ErrorType::get(ctx);
}
return Ty;
}
static void maybeAddParameterIsolation(AnyFunctionType::ExtInfoBuilder &infoBuilder,
ArrayRef<AnyFunctionType::Param> params) {
if (hasIsolatedParameter(params))
infoBuilder = infoBuilder.withIsolation(FunctionTypeIsolation::forParameter());
}
Type
InterfaceTypeRequest::evaluate(Evaluator &eval, ValueDecl *D) const {
auto &Context = D->getASTContext();
TypeChecker::checkForForbiddenPrefix(Context, D->getBaseName());
switch (D->getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::EnumCase:
case DeclKind::TopLevelCode:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::PrecedenceGroup:
case DeclKind::IfConfig:
case DeclKind::PoundDiagnostic:
case DeclKind::Missing:
case DeclKind::MissingMember:
case DeclKind::Module:
case DeclKind::OpaqueType:
case DeclKind::GenericTypeParam:
case DeclKind::MacroExpansion:
llvm_unreachable("should not get here");
return Type();
case DeclKind::AssociatedType: {
auto assocType = cast<AssociatedTypeDecl>(D);
auto interfaceTy = assocType->getDeclaredInterfaceType();
return MetatypeType::get(interfaceTy, Context);
}
case DeclKind::TypeAlias: {
auto typeAlias = cast<TypeAliasDecl>(D);
auto genericSig = typeAlias->getGenericSignature();
SubstitutionMap subs;
if (genericSig)
subs = genericSig->getIdentitySubstitutionMap();
Type parent;
auto parentDC = typeAlias->getDeclContext();
if (parentDC->isTypeContext())
parent = parentDC->getSelfInterfaceType();
auto sugaredType = TypeAliasType::get(typeAlias, parent, subs,
typeAlias->getUnderlyingType());
return MetatypeType::get(sugaredType, Context);
}
case DeclKind::Enum:
case DeclKind::Struct:
case DeclKind::Class:
case DeclKind::Protocol:
case DeclKind::BuiltinTuple: {
auto nominal = cast<NominalTypeDecl>(D);
Type declaredInterfaceTy = nominal->getDeclaredInterfaceType();
// FIXME: For a protocol, this returns a MetatypeType wrapping a ProtocolType, but should be a MetatypeType wrapping an ExistentialType ('(any P).Type', not 'P.Type').
return MetatypeType::get(declaredInterfaceTy, Context);
}
case DeclKind::Param: {
auto *PD = cast<ParamDecl>(D);
if (PD->isSelfParameter()) {
auto *AFD = cast<AbstractFunctionDecl>(PD->getDeclContext());
auto selfParam = computeSelfParam(AFD,
/*isInitializingCtor*/true,
/*wantDynamicSelf*/true);
PD->setIsolated(selfParam.isIsolated());
return selfParam.getPlainType();
}
if (auto *accessor = dyn_cast<AccessorDecl>(PD->getDeclContext())) {
auto *storage = accessor->getStorage();
auto *originalParam = getOriginalParamFromAccessor(
storage, accessor, PD);
if (originalParam == nullptr) {
return storage->getValueInterfaceType();
}
if (originalParam != PD) {
return originalParam->getInterfaceType();
}
}
if (!PD->getTypeRepr())
return ErrorType::get(Context);
return validateParameterType(PD);
}
case DeclKind::Var: {
auto *VD = cast<VarDecl>(D);
if (auto clangDecl = VD->getClangDecl()) {
auto clangVarDecl = cast<clang::VarDecl>(clangDecl);
return VD->getASTContext().getClangModuleLoader()->importVarDeclType(
clangVarDecl, VD, VD->getDeclContext());
}
auto *namingPattern = VD->getNamingPattern();
if (!namingPattern) {
return ErrorType::get(Context);
}
Type interfaceType = namingPattern->getType();
if (interfaceType->hasArchetype())
interfaceType = interfaceType->mapTypeOutOfContext();
// In SIL mode, VarDecls are written as having reference storage types.
if (!interfaceType->is<ReferenceStorageType>()) {
if (auto *attr = VD->getAttrs().getAttribute<ReferenceOwnershipAttr>())
interfaceType =
TypeChecker::checkReferenceOwnershipAttr(VD, interfaceType, attr);
}
return interfaceType;
}
case DeclKind::Func:
case DeclKind::Accessor:
case DeclKind::Constructor:
case DeclKind::Destructor: {
// If this is a didSet, then we need to check whether the body references
// the implicit 'oldValue' parameter or not, in order to correctly
// compute the interface type.
if (auto AD = dyn_cast<AccessorDecl>(D)) {
(void)AD->isSimpleDidSet();
}
auto *AFD = cast<AbstractFunctionDecl>(D);
auto sig = AFD->getGenericSignature();
bool hasSelf = AFD->hasImplicitSelfDecl();
AnyFunctionType::ExtInfoBuilder infoBuilder;
// Thrown error type.
Type thrownTy = AFD->getThrownInterfaceType();
if (thrownTy) {
thrownTy = AFD->getThrownInterfaceType();
ProtocolDecl *errorProto = Context.getErrorDecl();
if (thrownTy && errorProto) {
Type thrownTyInContext = AFD->mapTypeIntoContext(thrownTy);
if (!AFD->getParentModule()->checkConformance(
thrownTyInContext, errorProto)) {
SourceLoc loc;
if (auto thrownTypeRepr = AFD->getThrownTypeRepr())
loc = thrownTypeRepr->getLoc();
else
loc = AFD->getLoc();
Context.Diags.diagnose(loc, diag::thrown_type_not_error, thrownTy);
}
}
}
// Result
Type resultTy;
if (auto fn = dyn_cast<FuncDecl>(D)) {
resultTy = fn->getResultInterfaceType();
} else if (auto ctor = dyn_cast<ConstructorDecl>(D)) {
resultTy = ctor->getResultInterfaceType();
} else {
assert(isa<DestructorDecl>(D));
resultTy = TupleType::getEmpty(AFD->getASTContext());
}
auto lifetimeDependenceInfo = AFD->getLifetimeDependenceInfo();
// (Args...) -> Result
Type funcTy;
{
SmallVector<AnyFunctionType::Param, 4> argTy;
AFD->getParameters()->getParams(argTy);
maybeAddParameterIsolation(infoBuilder, argTy);
infoBuilder = infoBuilder.withAsync(AFD->hasAsync());
infoBuilder = infoBuilder.withSendable(AFD->isSendable());
// 'throws' only applies to the innermost function.
infoBuilder = infoBuilder.withThrows(AFD->hasThrows(), thrownTy);
// Defer bodies must not escape.
if (auto fd = dyn_cast<FuncDecl>(D)) {
infoBuilder = infoBuilder.withNoEscape(fd->isDeferBody());
if (fd->hasSendingResult())
infoBuilder = infoBuilder.withSendingResult();
}
if (lifetimeDependenceInfo.has_value()) {
infoBuilder =
infoBuilder.withLifetimeDependenceInfo(*lifetimeDependenceInfo);
}
auto info = infoBuilder.build();
if (sig && !hasSelf) {
funcTy = GenericFunctionType::get(sig, argTy, resultTy, info);
} else {
funcTy = FunctionType::get(argTy, resultTy, info);
}
}
// (Self) -> (Args...) -> Result
if (hasSelf) {
// Substitute in our own 'self' parameter.
auto selfParam = computeSelfParam(AFD);
AnyFunctionType::ExtInfoBuilder selfInfoBuilder;
maybeAddParameterIsolation(selfInfoBuilder, {selfParam});
if (lifetimeDependenceInfo.has_value()) {
selfInfoBuilder =
selfInfoBuilder.withLifetimeDependenceInfo(*lifetimeDependenceInfo);
}
// FIXME: Verify ExtInfo state is correct, not working by accident.
auto selfInfo = selfInfoBuilder.build();
if (sig) {
funcTy = GenericFunctionType::get(sig, {selfParam}, funcTy, selfInfo);
} else {
funcTy = FunctionType::get({selfParam}, funcTy, selfInfo);
}
}
return funcTy;
}
case DeclKind::Subscript: {
auto *SD = cast<SubscriptDecl>(D);
auto elementTy = SD->getElementInterfaceType();
SmallVector<AnyFunctionType::Param, 2> argTy;
SD->getIndices()->getParams(argTy);
AnyFunctionType::ExtInfoBuilder infoBuilder;
maybeAddParameterIsolation(infoBuilder, argTy);
Type funcTy;
// FIXME: Verify ExtInfo state is correct, not working by accident.
auto info = infoBuilder.build();
if (auto sig = SD->getGenericSignature()) {
funcTy = GenericFunctionType::get(sig, argTy, elementTy, info);
} else {
funcTy = FunctionType::get(argTy, elementTy, info);
}
return funcTy;
}
case DeclKind::EnumElement: {
auto *EED = cast<EnumElementDecl>(D);
auto *ED = EED->getParentEnum();
// The type of the enum element is either (Self.Type) -> Self
// or (Self.Type) -> (Args...) -> Self.
auto resultTy = ED->getDeclaredInterfaceType();
AnyFunctionType::Param selfTy(MetatypeType::get(resultTy, Context));
if (auto *PL = EED->getParameterList()) {
SmallVector<AnyFunctionType::Param, 4> argTy;
PL->getParams(argTy);
// FIXME: Verify ExtInfo state is correct, not working by accident.
FunctionType::ExtInfo info;
resultTy = FunctionType::get(argTy, resultTy, info);
}
// FIXME: Verify ExtInfo state is correct, not working by accident.
if (auto genericSig = ED->getGenericSignature()) {
GenericFunctionType::ExtInfo info;
resultTy = GenericFunctionType::get(genericSig, {selfTy}, resultTy, info);
} else {
FunctionType::ExtInfo info;
resultTy = FunctionType::get({selfTy}, resultTy, info);
}
return resultTy;
}
case DeclKind::Macro: {
auto macro = cast<MacroDecl>(D);
Type resultType = macro->getResultInterfaceType();
if (!macro->parameterList)
return resultType;
SmallVector<AnyFunctionType::Param, 4> paramTypes;
macro->parameterList->getParams(paramTypes);
if (auto genericSig = macro->getGenericSignature()) {
GenericFunctionType::ExtInfo info;
return GenericFunctionType::get(
genericSig, paramTypes, resultType, info);
} else {
FunctionType::ExtInfo info;
return FunctionType::get(paramTypes, resultType, info);
}
}
}
llvm_unreachable("invalid decl kind");
}
NamedPattern *
NamingPatternRequest::evaluate(Evaluator &evaluator, VarDecl *VD) const {
auto &Context = VD->getASTContext();
auto *PBD = VD->getParentPatternBinding();
// FIXME: In order for this request to properly express its dependencies,
// all of the places that allow variable bindings need to also use pattern
// binding decls. Otherwise, we'll have to go digging around in case
// statements and patterns to find named patterns.
if (PBD) {
// FIXME: For now, this works because PatternBindingEntryRequest fills in
// the naming pattern as a side effect in this case, and TypeCheckStmt
// and TypeCheckPattern handle the others. But that's all really gross.
unsigned i = PBD->getPatternEntryIndexForVarDecl(VD);
(void)PBD->getCheckedPatternBindingEntry(i);
if (PBD->isInvalid()) {
VD->getParentPattern()->setType(ErrorType::get(Context));
setBoundVarsTypeError(VD->getParentPattern(), Context);
return nullptr;
}
} else if (!VD->getParentPatternStmt() && !VD->getParentVarDecl()) {
// No parent? That's an error.
return nullptr;
}
// Go digging for the named pattern that declares this variable.
auto *namingPattern = VD->NamingPattern;
if (!namingPattern) {
auto *canVD = VD->getCanonicalVarDecl();
namingPattern = canVD->NamingPattern;
}
if (!namingPattern) {
if (auto parentStmt = VD->getParentPatternStmt()) {
// Try type checking parent control statement.
if (auto condStmt = dyn_cast<LabeledConditionalStmt>(parentStmt)) {
// The VarDecl is defined inside a condition of a `if` or `while` stmt.
// Only type check the condition we care about: the one with the VarDecl
bool foundVarDecl = false;
for (auto &condElt : condStmt->getCond()) {
if (auto pat = condElt.getPatternOrNull()) {
if (!pat->containsVarDecl(VD)) {
continue;
}
// We found the condition that declares the variable. Type check it
// and stop the loop. The variable can only be declared once.
// We don't care about isFalsable
bool isFalsable = false;
TypeChecker::typeCheckStmtConditionElement(condElt, isFalsable,
VD->getDeclContext());
foundVarDecl = true;
break;
}
}
assert(foundVarDecl && "VarDecl not declared in its parent?");
(void) foundVarDecl;
} else {
// We have some other parent stmt. Type check it completely.
if (auto CS = dyn_cast<CaseStmt>(parentStmt))
parentStmt = CS->getParentStmt();
bool LeaveBodyUnchecked = true;
// type-checking 'catch' patterns depends on the type checked body.
if (isa<DoCatchStmt>(parentStmt))
LeaveBodyUnchecked = false;
ASTNode node(parentStmt);
TypeChecker::typeCheckASTNode(node, VD->getDeclContext(),
LeaveBodyUnchecked);
}
namingPattern = VD->getCanonicalVarDecl()->NamingPattern;
}
}
if (!namingPattern) {
// HACK: If no other diagnostic applies, emit a generic diagnostic about
// a variable being unbound. We can't do better than this at the
// moment because TypeCheckPattern does not reliably invalidate parts of
// the pattern AST on failure.
//
// Once that's through, this will only fire during circular validation.
if (VD->hasInterfaceType() &&
!VD->isInvalid() && !VD->getParentPattern()->isImplicit()) {
VD->diagnose(diag::variable_bound_by_no_pattern, VD);
}
VD->getParentPattern()->setType(ErrorType::get(Context));
setBoundVarsTypeError(VD->getParentPattern(), Context);
return nullptr;
}
if (!namingPattern->hasType()) {
namingPattern->setType(ErrorType::get(Context));
setBoundVarsTypeError(namingPattern, Context);
}
return namingPattern;
}
namespace {
// Utility class for deterministically ordering vtable entries for
// synthesized declarations.
struct SortedDeclList {
using Key = std::tuple<DeclName, std::string>;
using Entry = std::pair<Key, ValueDecl *>;
SmallVector<Entry, 2> elts;
bool sorted = false;
void add(ValueDecl *vd) {
assert(!isa<AccessorDecl>(vd));
Key key{vd->getName(), vd->getInterfaceType()->getCanonicalType().getString()};
elts.emplace_back(key, vd);
}
bool empty() { return elts.empty(); }
void sort() {
assert(!sorted);
sorted = true;
std::sort(elts.begin(),
elts.end(),
[](const Entry &lhs, const Entry &rhs) -> bool {
return lhs.first < rhs.first;
});
}
decltype(elts)::const_iterator begin() const {
assert(sorted);
return elts.begin();
}
decltype(elts)::const_iterator end() const {
assert(sorted);
return elts.end();
}
};
} // end namespace
namespace {
enum class MembersRequestKind {
ABI,
All,
};
}
/// Evaluate a request for a particular set of members of an iterable
/// declaration context.
static ArrayRef<Decl *> evaluateMembersRequest(
IterableDeclContext *idc, MembersRequestKind kind) {
auto dc = cast<DeclContext>(idc->getDecl());
auto &ctx = dc->getASTContext();
SmallVector<Decl *, 8> result;
// If there's no parent source file, everything is already in order.
if (!dc->getParentSourceFile()) {
for (auto *member : idc->getMembers())
result.push_back(member);
return ctx.AllocateCopy(result);
}
auto nominal = dyn_cast<NominalTypeDecl>(dc->getImplementedObjCContext());
if (nominal) {
// We need to add implicit initializers because they
// affect vtable layout.
TypeChecker::addImplicitConstructors(nominal);
// Destructors don't affect vtable layout, but TBDGen needs to
// see them, so we also force the destructor here.
if (auto *classDecl = dyn_cast<ClassDecl>(nominal))
(void) classDecl->getDestructor();
}
// Force any conformances that may introduce more members.
for (auto conformance : idc->getLocalConformances()) {
auto *normal = dyn_cast<NormalProtocolConformance>(
conformance->getRootConformance());
if (normal == nullptr)
continue;
auto proto = conformance->getProtocol();
bool isDerivable = proto->getKnownDerivableProtocolKind().has_value();
if (kind == MembersRequestKind::All &&
!proto->getAssociatedTypeMembers().empty()) {
evaluateOrDefault(ctx.evaluator,
ResolveTypeWitnessesRequest{normal},
evaluator::SideEffect());
}
if (isDerivable) {
normal->resolveValueWitnesses();
}
}
if (nominal) {
// If the type conforms to Encodable or Decodable, even via an extension,
// the CodingKeys enum is synthesized as a member of the type itself.
// Force it into existence.
(void) evaluateOrDefault(
ctx.evaluator,
ResolveImplicitMemberRequest{nominal,
ImplicitMemberAction::ResolveCodingKeys},
{});
}
// Expand synthesized member macros.
auto *mutableDecl = const_cast<Decl *>(idc->getDecl());
(void)evaluateOrDefault(
ctx.evaluator,
ExpandSynthesizedMemberMacroRequest{mutableDecl},
false);
// If the decl has a @main attribute, we need to force synthesis of the
// $main function.
(void) evaluateOrDefault(
ctx.evaluator,
SynthesizeMainFunctionRequest{const_cast<Decl *>(idc->getDecl())},
nullptr);
for (auto *member : idc->getMembers()) {
if (auto *var = dyn_cast<VarDecl>(member)) {
// The projected storage wrapper ($foo) might have
// dynamically-dispatched accessors, so force them to be synthesized.
if (var->hasAttachedPropertyWrapper()) {
(void) var->getPropertyWrapperAuxiliaryVariables();
(void) var->getPropertyWrapperInitializerInfo();
}
}
}
SortedDeclList synthesizedMembers;
std::function<void(Decl *)> addResult;
addResult = [&](Decl *member) {
member->visitAuxiliaryDecls(addResult);
if (auto *vd = dyn_cast<ValueDecl>(member)) {
// Add synthesized members to a side table and sort them by their mangled
// name, since they could have been added to the class in any order.
if (vd->isSynthesized() &&
// FIXME: IRGen requires the distributed actor synthesized
// properties to be in a specific order that is different
// from ordering by their mangled name, so preserve the order
// they were added in.
!(nominal &&
(vd == nominal->getDistributedActorIDProperty() ||
vd == nominal->getDistributedActorSystemProperty()))) {
synthesizedMembers.add(vd);
return;
}
}
result.push_back(member);
};
for (auto *member : idc->getMembers()) {
addResult(member);
}
if (!synthesizedMembers.empty()) {
synthesizedMembers.sort();
for (const auto &pair : synthesizedMembers)
result.push_back(pair.second);
}
return ctx.AllocateCopy(result);
}
ArrayRef<Decl *>
ABIMembersRequest::evaluate(
Evaluator &evaluator, IterableDeclContext *idc) const {
return evaluateMembersRequest(idc, MembersRequestKind::ABI);
}
ArrayRef<Decl *>
AllMembersRequest::evaluate(
Evaluator &evaluator, IterableDeclContext *idc) const {
return evaluateMembersRequest(idc, MembersRequestKind::All);
}
bool TypeChecker::isPassThroughTypealias(TypeAliasDecl *typealias,
NominalTypeDecl *nominal) {
// Pass-through only makes sense when the typealias refers to a nominal
// type.
if (!nominal) return false;
// Check that the nominal type and the typealias are either both generic
// at this level or neither are.
if (nominal->isGeneric() != typealias->isGeneric())
return false;
// Make sure either both have generic signatures or neither do.
auto nominalSig = nominal->getGenericSignature();
auto typealiasSig = typealias->getGenericSignature();
if (static_cast<bool>(nominalSig) != static_cast<bool>(typealiasSig))
return false;
// If neither is generic, we're done: it's a pass-through alias.
if (!nominalSig) return true;
// Check that the type parameters are the same the whole way through.
auto nominalGenericParams = nominalSig.getGenericParams();
auto typealiasGenericParams = typealiasSig.getGenericParams();
if (nominalGenericParams.size() != typealiasGenericParams.size())
return false;
if (!std::equal(nominalGenericParams.begin(), nominalGenericParams.end(),
typealiasGenericParams.begin(),
[](GenericTypeParamType *gp1, GenericTypeParamType *gp2) {
return gp1->isEqual(gp2);
}))
return false;
// If neither is generic at this level, we have a pass-through typealias.
if (!typealias->isGeneric()) return true;
if (typealias->getUnderlyingType()->isEqual(
nominal->getSelfInterfaceType())) {
return true;
}
return false;
}
Type
ExtendedTypeRequest::evaluate(Evaluator &eval, ExtensionDecl *ext) const {
auto error = [&ext]() {
ext->setInvalid();
return ErrorType::get(ext->getASTContext());
};
// If we didn't parse a type, fill in an error type and bail out.
auto *extendedRepr = ext->getExtendedTypeRepr();
if (!extendedRepr)
return error();
// Compute the extended type.
TypeResolutionOptions options(TypeResolverContext::ExtensionBinding);
if (ext->isInSpecializeExtensionContext())
options |= TypeResolutionFlags::AllowUsableFromInline;
const auto resolution = TypeResolution::forStructural(
ext->getDeclContext(), options, nullptr,
// FIXME: Don't let placeholder types escape type resolution.
// For now, just return the placeholder type.
PlaceholderType::get,
/*packElementOpener*/ nullptr);
auto extendedType = resolution.resolveType(extendedRepr);
if (extendedType->hasError())
return error();
// Hack to allow extending a generic typealias.
if (auto *unboundGeneric = extendedType->getAs<UnboundGenericType>()) {
if (auto *aliasDecl = dyn_cast<TypeAliasDecl>(unboundGeneric->getDecl())) {
auto underlyingType = aliasDecl->getUnderlyingType();
if (auto extendedNominal = underlyingType->getAnyNominal()) {
return TypeChecker::isPassThroughTypealias(
aliasDecl, extendedNominal)
? extendedType
: extendedNominal->getDeclaredType();
}
if (underlyingType->is<TupleType>()) {
return extendedType;
}
}
}
auto &diags = ext->getASTContext().Diags;
// Cannot extend a metatype.
if (extendedType->is<AnyMetatypeType>()) {
diags.diagnose(ext->getLoc(), diag::extension_metatype, extendedType)
.highlight(extendedRepr->getSourceRange());
return error();
}
// Cannot extend function types, metatypes, existentials, etc.
if (!extendedType->is<TupleType>() &&
!extendedType->getAnyNominal() &&
!extendedType->is<ParameterizedProtocolType>()) {
diags.diagnose(ext->getLoc(), diag::non_nominal_extension, extendedType)
.highlight(extendedRepr->getSourceRange());
return error();
}
// Cannot extend types who contain placeholders.
if (extendedType->hasPlaceholder()) {
diags.diagnose(ext->getLoc(), diag::extension_placeholder)
.highlight(extendedRepr->getSourceRange());
return error();
}
return extendedType;
}
//----------------------------------------------------------------------------//
// ImplicitKnownProtocolConformanceRequest
//----------------------------------------------------------------------------//
ProtocolConformance *
ImplicitKnownProtocolConformanceRequest::evaluate(Evaluator &evaluator,
NominalTypeDecl *nominal,
KnownProtocolKind kp) const {
switch (kp) {
case KnownProtocolKind::Sendable:
return deriveImplicitSendableConformance(evaluator, nominal);
case KnownProtocolKind::BitwiseCopyable:
return deriveImplicitBitwiseCopyableConformance(nominal);
default:
llvm_unreachable("non-implicitly derived KnownProtocol");
}
}
std::optional<LifetimeDependenceInfo>
LifetimeDependenceInfoRequest::evaluate(Evaluator &evaluator,
AbstractFunctionDecl *decl) const {
return LifetimeDependenceInfo::get(decl);
}
|