File: TypeCheckDeclPrimary.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (4385 lines) | stat: -rw-r--r-- 161,577 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
//===--- TypeCheckDeclPrimary.cpp - Type Checking for Primary Files -------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements type checking for primary files, that is, files whose
// declarations we're planning to emit. This exhaustively triggers diagnostics
// and type checking of all delayed bodies in those files.
//
//===----------------------------------------------------------------------===//

#include "CodeSynthesis.h"
#include "DerivedConformances.h"
#include "MiscDiagnostics.h"
#include "TypeCheckAccess.h"
#include "TypeCheckAvailability.h"
#include "TypeCheckConcurrency.h"
#include "TypeCheckDecl.h"
#include "TypeCheckMacros.h"
#include "TypeCheckObjC.h"
#include "TypeCheckType.h"
#include "TypeChecker.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/AccessNotes.h"
#include "swift/AST/AccessScope.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DeclContext.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/KnownProtocols.h"
#include "swift/AST/MacroDefinition.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeDifferenceVisitor.h"
#include "swift/AST/TypeWalker.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Statistic.h"
#include "swift/Bridging/ASTGen.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/Parser.h"
#include "swift/Serialization/SerializedModuleLoader.h"
#include "swift/Strings.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DJB.h"

using namespace swift;

#define DEBUG_TYPE "TypeCheckDeclPrimary"

static Type containsParameterizedProtocolType(Type inheritedTy) {
  if (inheritedTy->is<ParameterizedProtocolType>()) {
    return inheritedTy;
  }

  if (auto *compositionTy = inheritedTy->getAs<ProtocolCompositionType>()) {
    for (auto memberTy : compositionTy->getMembers()) {
      if (auto paramTy = containsParameterizedProtocolType(memberTy))
        return paramTy;
    }
  }

  return Type();
}

class CheckRepressions {
  llvm::PointerUnion<const TypeDecl *, const ExtensionDecl *> declUnion;
  ASTContext &ctx;

  llvm::DenseSet<RepressibleProtocolKind> seen;

public:
  CheckRepressions(
      llvm::PointerUnion<const TypeDecl *, const ExtensionDecl *> declUnion,
      ASTContext &ctx)
      : declUnion(declUnion), ctx(ctx) {}

  template <typename... ArgTypes>
  InFlightDiagnostic diagnoseInvalid(TypeRepr &repr, ArgTypes &&...Args) {
    auto &diags = ctx.Diags;
    repr.setInvalid();
    return diags.diagnose(std::forward<ArgTypes>(Args)...);
  }

  /// Record the repressed kind indicated by the provided
  /// InheritedTypeResult.Suppressed (i.e. \p ty and \p repr) if it is in fact
  /// repressed or return the inverted type.
  Type add(Type ty, InverseTypeRepr &repr,
           llvm::PointerUnion<const TypeDecl *, const ExtensionDecl *> decl) {
    if (!ty)
      return Type();
    assert(!ty->is<ExistentialMetatypeType>());
    auto kp = ty->getKnownProtocol();
    if (!kp) {
      diagnoseInvalid(repr, repr.getLoc(), diag::inverse_type_not_invertible,
                      ty);
      return Type();
    }
    auto ipk = getInvertibleProtocolKind(*kp);
    if (ipk) {
      // Gate the '~Escapable' type behind a specific flag for now.
      // Uses of 'Escapable' itself are already diagnosed; return ErrorType.
      if (*ipk == InvertibleProtocolKind::Escapable &&
          !ctx.LangOpts.hasFeature(Feature::NonescapableTypes)) {
        return ErrorType::get(ctx);
      }

      return ProtocolCompositionType::getInverseOf(ctx, *ipk);
    }
    auto rpk = getRepressibleProtocolKind(*kp);
    if (!rpk) {
      diagnoseInvalid(repr, repr.getLoc(),
                      diag::suppress_nonsuppressable_protocol,
                      ctx.getProtocol(*kp));
      return Type();
    }
    if (auto *extension = dyn_cast<const ExtensionDecl *>(decl)) {
      diagnoseInvalid(repr, extension,
                      diag::suppress_inferrable_protocol_extension,
                      ctx.getProtocol(*kp));
      return Type();
    }
    if (!seen.insert(*rpk).second) {
      diagnoseInvalid(repr, repr.getLoc(),
                      diag::suppress_already_suppressed_protocol,
                      ctx.getProtocol(getKnownProtocolKind(*rpk)));
    }
    return Type();
  }
};

/// If the extension adds a conformance to an invertible protocol, ensure that
/// it does not add a conformance to any other protocol. So these are illegal:
///
///     extension S: Copyable & P {}
///     extension S: Q, Copyable {}
///
/// This policy is in place because extensions adding a conformance to an
/// invertible protocol do _not_ add default requirements on generic parameters,
/// so it would be confusing to mix them together in the same extension.
static void checkExtensionAddsSoloInvertibleProtocol(const ExtensionDecl *ext) {
  auto localConfs = ext->getLocalConformances();
  if (localConfs.size() <= 1)
    return;

  for (auto *conf : localConfs) {
    if (auto ip = conf->getProtocol()->getInvertibleProtocolKind()) {
      ext->diagnose(diag::extension_conforms_to_invertible_and_others,
                    getInvertibleProtocolKindName(*ip));
    }
  }
}

/// Check the inheritance clause of a type declaration or extension thereof.
///
/// This routine performs detailed checking of the inheritance clause of the
/// given type or extension. It need only be called within the primary source
/// file.
static void checkInheritanceClause(
    llvm::PointerUnion<const TypeDecl *, const ExtensionDecl *> declUnion) {
  auto inheritedTypes = InheritedTypes(declUnion);
  auto inheritedClause = inheritedTypes.getEntries();
  const ExtensionDecl *ext = nullptr;
  const TypeDecl *typeDecl = nullptr;
  const Decl *decl;
  if ((ext = declUnion.dyn_cast<const ExtensionDecl *>())) {
    decl = ext;

    // Protocol extensions cannot have inheritance clauses.
    if (auto proto = ext->getExtendedProtocolDecl()) {
      if (!inheritedClause.empty()) {
        ext->diagnose(diag::extension_protocol_inheritance,
                 proto->getName())
          .highlight(SourceRange(inheritedClause.front().getSourceRange().Start,
                                 inheritedClause.back().getSourceRange().End));
        return;
      }
    }
  } else {
    typeDecl = declUnion.get<const TypeDecl *>();
    decl = typeDecl;
  }

  // Can this declaration's inheritance clause contain a class or
  // subclass existential?
  bool canHaveSuperclass = (isa<ClassDecl>(decl) ||
                            (isa<ProtocolDecl>(decl) &&
                             !cast<ProtocolDecl>(decl)->isObjC()));

  ASTContext &ctx = decl->getASTContext();
  auto &diags = ctx.Diags;

  CheckRepressions checkRepressions(declUnion, ctx);

  // Check all of the types listed in the inheritance clause.
  Type superclassTy;
  SourceRange superclassRange;
  std::optional<std::pair<unsigned, SourceRange>> inheritedAnyObject;
  for (unsigned i = 0, n = inheritedClause.size(); i != n; ++i) {
    auto &inherited = inheritedClause[i];

    // Validate the type.
    InheritedTypeRequest request{declUnion, i, TypeResolutionStage::Interface};
    auto result = evaluateOrDefault(ctx.evaluator, request,
                                    InheritedTypeResult::forDefault());

    Type inheritedTy;
    switch (result) {
    case InheritedTypeResult::Inherited:
      inheritedTy = result.getInheritedType();
      break;
    case InheritedTypeResult::Suppressed: {
      auto pair = result.getSuppressed();

      auto inverted = checkRepressions.add(pair.first, *pair.second, declUnion);
      if (!inverted)
        continue;
      inheritedTy = inverted;
      break;
    }
    case InheritedTypeResult::Default:
      continue;
    }

    // If we couldn't resolve an the inherited type, or it contains an error,
    // ignore it.
    if (!inheritedTy || inheritedTy->hasError())
      continue;

    // For generic parameters and associated types, the GSB checks constraints;
    // however, we still want to fire off the requests to produce diagnostics
    // in some circular validation cases.
    if (isa<GenericTypeParamDecl>(decl) ||
        isa<AssociatedTypeDecl>(decl))
      continue;

    // Check whether we inherited from 'AnyObject' twice.
    // Other redundant-inheritance scenarios are checked below, the
    // GenericSignatureBuilder (for protocol inheritance) or the
    // ConformanceLookupTable (for protocol conformance).
    if (inheritedTy->isAnyObject()) {
      // Warn inherited AnyObject written as 'class' as deprecated
      // for Swift >= 5.
      auto sourceRange = inherited.getSourceRange();
      bool isWrittenAsClass =
          isa<ProtocolDecl>(decl) &&
          Lexer::getTokenAtLocation(ctx.SourceMgr, sourceRange.Start)
              .is(tok::kw_class);
      if (ctx.LangOpts.isSwiftVersionAtLeast(5) && isWrittenAsClass) {
        diags
            .diagnose(sourceRange.Start,
                      diag::anyobject_class_inheritance_deprecated)
            .fixItReplace(sourceRange, "AnyObject");
      }

      if (inheritedAnyObject) {
        // If the first occurrence was written as 'class', downgrade the error
        // to a warning in such case for backward compatibility with
        // Swift <= 4.
        auto knownIndex = inheritedAnyObject->first;
        auto knownRange = inheritedAnyObject->second;
        SourceRange removeRange = inheritedTypes.getRemovalRange(knownIndex);
        if (!ctx.LangOpts.isSwiftVersionAtLeast(5) &&
            isa<ProtocolDecl>(decl) &&
            Lexer::getTokenAtLocation(ctx.SourceMgr, knownRange.Start)
              .is(tok::kw_class)) {
          SourceLoc classLoc = knownRange.Start;

          diags.diagnose(classLoc, diag::duplicate_anyobject_class_inheritance)
            .fixItRemoveChars(removeRange.Start, removeRange.End);
        } else {
          diags.diagnose(inherited.getSourceRange().Start,
                 diag::duplicate_inheritance, inheritedTy)
            .fixItRemoveChars(removeRange.Start, removeRange.End);
        }
        continue;
      }

      // Note that we saw inheritance from 'AnyObject'.
      inheritedAnyObject = { i, inherited.getSourceRange() };
    }

    if (auto paramTy = containsParameterizedProtocolType(inheritedTy)) {
      if (!isa<ProtocolDecl>(decl)) {
        decl->diagnose(diag::inheritance_from_parameterized_protocol,
                       paramTy);
      }
      continue;
    }

    if (inheritedTy->isConstraintType()) {
      auto layout = inheritedTy->getExistentialLayout();

      // An inverse on an extension is an error.
      if (isa<ExtensionDecl>(decl)) {
        auto canInheritedTy = inheritedTy->getCanonicalType();
        if (auto pct = canInheritedTy->getAs<ProtocolCompositionType>()) {
          for (auto inverse : pct->getInverses()) {
            decl->diagnose(diag::inverse_extension,
                           getProtocolName(getKnownProtocolKind(inverse)));
          }
        }
      }

      // Subclass existentials are not allowed except on classes and
      // non-@objc protocols.
      if (layout.explicitSuperclass &&
          !canHaveSuperclass) {
        decl->diagnose(diag::inheritance_from_protocol_with_superclass,
                       inheritedTy);
        continue;
      }

      // Classes and protocols can inherit from subclass existentials.
      // For classes, we check for a duplicate superclass below.
      // For protocols, the requirement machine emits a requirement
      // conflict instead.
      if (isa<ProtocolDecl>(decl))
        continue;

      // AnyObject is not allowed except on protocols.
      if (layout.hasExplicitAnyObject && !isa<ClassDecl>(decl)) {
        decl->diagnose(diag::inheritance_from_anyobject);
        continue;
      }

      // If the existential did not have a class constraint, we're done.
      if (!layout.explicitSuperclass)
        continue;

      assert(isa<ClassDecl>(decl));
      assert(canHaveSuperclass);
      inheritedTy = layout.explicitSuperclass;
    }

    // If this is an enum inheritance clause, check for a raw type.
    if (auto enumDecl = dyn_cast<EnumDecl>(decl)) {
      // Check if we already had a raw type.
      if (superclassTy) {
        if (superclassTy->isEqual(inheritedTy)) {
          auto removeRange = inheritedTypes.getRemovalRange(i);
          diags.diagnose(inherited.getSourceRange().Start,
                         diag::duplicate_inheritance, inheritedTy)
            .fixItRemoveChars(removeRange.Start, removeRange.End);
        } else {
          diags.diagnose(inherited.getSourceRange().Start,
                         diag::multiple_enum_raw_types, superclassTy,
                         inheritedTy)
            .highlight(superclassRange);
        }
        continue;
      }

      // Noncopyable types cannot have a raw type until there is support for
      // generics, since the raw type here is only useful if we'll generate
      // a conformance to RawRepresentable, which is currently disabled.
      if (!enumDecl->canBeCopyable()) {
        // TODO: getRemovalRange is not yet aware of ~Copyable entries so it
        // will accidentally delete commas or colons that are needed.
        diags.diagnose(inherited.getSourceRange().Start,
                       diag::enum_raw_type_nonconforming_and_noncopyable,
                       enumDecl->getDeclaredInterfaceType(), inheritedTy)
             .highlight(inherited.getSourceRange());
      }
      
      // If this is not the first entry in the inheritance clause, complain.
      if (i > 0) {
        auto removeRange = inheritedTypes.getRemovalRange(i);

        diags.diagnose(inherited.getSourceRange().Start,
                       diag::raw_type_not_first, inheritedTy)
          .fixItRemoveChars(removeRange.Start, removeRange.End)
          .fixItInsert(inheritedClause[0].getSourceRange().Start,
                       inheritedTy.getString() + ", ");
      }

      // Save the raw type locally.
      superclassTy = inheritedTy;
      superclassRange = inherited.getSourceRange();
      continue;
    }

    // If this is a class type, it may be the superclass. We end up here when
    // the inherited type is either itself a class, or when it is a subclass
    // existential via the existential type path above.
    if (inheritedTy->getClassOrBoundGenericClass()) {
      // First, check if we already had a superclass.
      if (superclassTy) {
        // FIXME: Check for shadowed protocol names, i.e., NSObject?

        if (superclassTy->isEqual(inheritedTy)) {
          // Duplicate superclass.
          auto removeRange = inheritedTypes.getRemovalRange(i);
          diags.diagnose(inherited.getSourceRange().Start,
                         diag::duplicate_inheritance, inheritedTy)
            .fixItRemoveChars(removeRange.Start, removeRange.End);
        } else {
          // Complain about multiple inheritance.
          // Don't emit a Fix-It here. The user has to think harder about this.
          diags.diagnose(inherited.getSourceRange().Start,
                         diag::multiple_inheritance, superclassTy, inheritedTy)
            .highlight(superclassRange);
        }
        continue;
      }

      // If this is not the first entry in the inheritance clause, complain.
      if (isa<ClassDecl>(decl) && i > 0) {
        auto removeRange = inheritedTypes.getRemovalRange(i);
        diags.diagnose(inherited.getSourceRange().Start,
                       diag::superclass_not_first, inheritedTy)
          .fixItRemoveChars(removeRange.Start, removeRange.End)
          .fixItInsert(inheritedClause[0].getSourceRange().Start,
                       inheritedTy.getString() + ", ");

        // Fall through to record the superclass.
      }

      if (canHaveSuperclass) {
        // Record the superclass.
        superclassTy = inheritedTy;
        superclassRange = inherited.getSourceRange();
        continue;
      }
    }

    // We can't inherit from a non-class, non-protocol type.
    decl->diagnose(canHaveSuperclass
                   ? diag::inheritance_from_non_protocol_or_class
                   : diag::inheritance_from_non_protocol,
                   inheritedTy);
    // FIXME: Note pointing to the declaration 'inheritedTy' references?
  }
}

static void installCodingKeysIfNecessary(NominalTypeDecl *NTD) {
  auto req =
    ResolveImplicitMemberRequest{NTD, ImplicitMemberAction::ResolveCodingKeys};
  (void)evaluateOrDefault(NTD->getASTContext().evaluator, req, {});
}

// TODO(distributed): same ugly hack as Codable does...
static void installDistributedActorIfNecessary(NominalTypeDecl *NTD) {
  auto req =
    ResolveImplicitMemberRequest{NTD, ImplicitMemberAction::ResolveDistributedActor};
  (void)evaluateOrDefault(NTD->getASTContext().evaluator, req, {});
}

// Check for static properties that produce empty option sets
// using a rawValue initializer with a value of '0'
static void checkForEmptyOptionSet(const VarDecl *VD) {
  // Check if property is a 'static let'
  if (!VD->isStatic() || !VD->isLet())
    return;
  
  auto DC = VD->getDeclContext();
  
  // Make sure property is of same type as the type it is declared in
  if (!VD->getInterfaceType()->isEqual(DC->getSelfInterfaceType()))
    return;
  
  // Make sure this type conforms to OptionSet
  bool conformsToOptionSet =
    (bool)TypeChecker::conformsToKnownProtocol(DC->getSelfTypeInContext(),
                                               KnownProtocolKind::OptionSet,
                                               DC->getParentModule());
  
  if (!conformsToOptionSet)
    return;
  
  auto PBD = VD->getParentPatternBinding();
  if (!PBD)
    return;
  
  auto initIndex = PBD->getPatternEntryIndexForVarDecl(VD);
  auto init = PBD->getInit(initIndex);

  // Make sure property is being set with a constructor
  auto ctor = dyn_cast_or_null<CallExpr>(init);
  if (!ctor)
    return;
  auto ctorCalledVal = ctor->getCalledValue();
  if (!ctorCalledVal)
    return;
  if (!isa<ConstructorDecl>(ctorCalledVal))
    return;
  
  // Make sure it is calling the rawValue constructor
  auto *args = ctor->getArgs();
  if (!args->isUnary())
    return;
  if (args->getLabel(0) != VD->getASTContext().Id_rawValue)
    return;
  
  // Make sure the rawValue parameter is a '0' integer literal
  auto intArg = dyn_cast<IntegerLiteralExpr>(args->getExpr(0));
  if (!intArg)
    return;
  if (intArg->getValue() != 0)
    return;
  
  VD->diagnose(diag::option_set_zero_constant, VD->getName());
  VD->diagnose(diag::option_set_empty_set_init)
    .fixItReplace(args->getSourceRange(), "([])");
}

template<typename T>
static void diagnoseDuplicateDecls(T &&decls) {
  llvm::SmallDenseMap<DeclBaseName, const ValueDecl *> names;
  for (auto *current : decls) {
    if (!current->hasName() || current->isImplicit())
      continue;

    auto found = names.insert(std::make_pair(current->getBaseName(), current));
    if (!found.second) {
      auto *other = found.first->second;

      current->getASTContext().Diags.diagnoseWithNotes(
        current->diagnose(diag::invalid_redecl, current), [&]() {
        other->diagnose(diag::invalid_redecl_prev, other);
      });

      // Mark the decl as invalid. This is needed to avoid emitting a
      // duplicate diagnostic when running redeclaration checking in
      // the case where the VarDecl is part of the enclosing context,
      // e.g `let (x, x) = (0, 0)`.
      if (!isa<GenericTypeParamDecl>(current))
        current->setInvalid();
    }
  }
}

/// Check the inheritance clauses generic parameters along with any
/// requirements stored within the generic parameter list.
static void checkGenericParams(GenericContext *ownerCtx) {
  const auto genericParams = ownerCtx->getGenericParams();
  if (!genericParams)
    return;

  auto *decl = ownerCtx->getAsDecl();
  bool hasPack = false;

  for (auto gp : *genericParams) {
    // Diagnose generic types with a parameter packs if VariadicGenerics
    // is not enabled.
    if (gp->isParameterPack()) {
      // Variadic nominal types require runtime support.
      if (isa<NominalTypeDecl>(decl)) {
        TypeChecker::checkAvailability(
            gp->getSourceRange(),
            ownerCtx->getASTContext().getVariadicGenericTypeAvailability(),
            diag::availability_variadic_type_only_version_newer,
            ownerCtx);
      }

      // Variadic nominal and type alias types can only have a single
      // parameter pack.
      if (hasPack && isa<GenericTypeDecl>(decl)) {
        gp->diagnose(diag::more_than_one_pack_in_type);
      }

      hasPack = true;
    }

    TypeChecker::checkDeclAttributes(gp);
    checkInheritanceClause(gp);
  }

  // Force resolution of interface types written in requirements here.
  WhereClauseOwner(ownerCtx)
      .visitRequirements(TypeResolutionStage::Interface,
                         [](Requirement, RequirementRepr *) { return false; });

  // Check for duplicate generic parameter names.
  TypeChecker::checkShadowedGenericParams(ownerCtx);
}

template <typename T>
static void checkOperatorOrPrecedenceGroupRedeclaration(
    T *decl, Diag<> diagID, Diag<> noteID,
    llvm::function_ref<TinyPtrVector<T *>(OperatorLookupDescriptor)>
        lookupOthers) {
  if (decl->isInvalid())
    return;

  auto *currentFile = decl->getDeclContext()->getParentSourceFile();
  assert(currentFile);

  auto *module = currentFile->getParentModule();
  auto &ctx = module->getASTContext();
  auto desc = OperatorLookupDescriptor::forModule(module, decl->getName());
  auto otherDecls = lookupOthers(desc);
  for (auto *other : otherDecls) {
    if (other == decl || other->isInvalid())
      continue;

    bool shouldDiagnose = false;
    if (currentFile == other->getDeclContext()->getParentSourceFile()) {
      // For a same-file redeclaration, make sure we get the diagnostic ordering
      // to be sensible.
      if (decl->getLoc().isValid() && other->getLoc().isValid() &&
          ctx.SourceMgr.isBeforeInBuffer(decl->getLoc(), other->getLoc())) {
        std::swap(decl, other);
      }
      shouldDiagnose = true;
    } else {
      // If the declarations are in different files, only diagnose if we've
      // enabled the new operator lookup behaviour where decls in the current
      // module are now favored over imports.
      shouldDiagnose = ctx.LangOpts.EnableNewOperatorLookup;
    }

    if (shouldDiagnose) {
      ctx.Diags.diagnose(decl, diagID);
      ctx.Diags.diagnose(other, noteID);
      decl->setInvalid();
      return;
    }
  }
}

static void checkRedeclaration(OperatorDecl *op) {
  checkOperatorOrPrecedenceGroupRedeclaration<OperatorDecl>(
      op, diag::operator_redeclared, diag::previous_operator_decl,
      [&](OperatorLookupDescriptor desc) {
        DirectOperatorLookupRequest req{desc, op->getFixity()};
        return evaluateOrDefault(op->getASTContext().evaluator, req, {});
      });
}

static void checkRedeclaration(PrecedenceGroupDecl *group) {
  checkOperatorOrPrecedenceGroupRedeclaration<PrecedenceGroupDecl>(
      group, diag::precedence_group_redeclared,
      diag::previous_precedence_group_decl, [&](OperatorLookupDescriptor desc) {
        DirectPrecedenceGroupLookupRequest req{desc};
        return evaluateOrDefault(group->getASTContext().evaluator, req, {});
      });
}

/// Check whether \c current is a redeclaration.
evaluator::SideEffect
CheckRedeclarationRequest::evaluate(Evaluator &eval, ValueDecl *current,
                                    NominalTypeDecl *SelfNominalType) const {
  // Ignore invalid and anonymous declarations.
  if (current->isInvalid() || !current->hasName())
    return std::make_tuple<>();

  // If this declaration isn't from a source file, don't check it.
  // FIXME: Should restrict this to the source file we care about.
  DeclContext *currentDC = current->getDeclContext();
  SourceFile *currentFile = currentDC->getParentSourceFile();
  if (!currentFile)
    return std::make_tuple<>();

  if (auto func = dyn_cast<AbstractFunctionDecl>(current)) {
    if (func->isDistributedThunk()) {
      return std::make_tuple<>();
    }
  }

  auto &ctx = current->getASTContext();

  // Find other potential definitions.
  SmallVector<ValueDecl *, 4> otherDefinitions;
  if (currentDC->isTypeContext()) {
    // Look within a type context.
    if (auto nominal = currentDC->getSelfNominalTypeDecl()) {
      auto found = nominal->lookupDirect(current->getBaseName());
      otherDefinitions.append(found.begin(), found.end());
    }
  } else if (currentDC->isLocalContext()) {
    if (!current->isImplicit()) {
      ASTScope::lookupLocalDecls(currentFile, current->getBaseName(),
                                 current->getLoc(),
                                 /*stopAfterInnermostBraceStmt=*/true,
                                 otherDefinitions);
    }
  } else {
    assert(currentDC->isModuleScopeContext());
    // Look within a module context.
    currentFile->getParentModule()->lookupValue(current->getBaseName(),
                                                NLKind::QualifiedLookup,
                                                otherDefinitions);
  }

  // Compare this signature against the signature of other
  // declarations with the same name.
  OverloadSignature currentSig = current->getOverloadSignature();
  CanType currentSigType = current->getOverloadSignatureType();
  ModuleDecl *currentModule = current->getModuleContext();
  for (auto other : otherDefinitions) {
    // Skip invalid declarations and ourselves.
    //
    // FIXME: Breaking a cycle here with hasInterfaceType() is bogus.
    if (current == other || (other->hasInterfaceType() && other->isInvalid()))
      continue;

    auto *otherDC = other->getDeclContext();

    // Skip declarations in other modules.
    if (currentModule != otherDC->getParentModule())
      continue;

    // If both declarations are in the same file, only diagnose the second one.
    if (currentFile == otherDC->getParentSourceFile())
      if (current->getLoc().isValid() &&
          ctx.SourceMgr.isBeforeInBuffer(
            current->getLoc(), other->getLoc()))
        continue;

    // Don't compare methods vs. non-methods (which only happens with
    // operators).
    if (currentDC->isTypeContext() != otherDC->isTypeContext())
      continue;

    // In local context, only consider exact name matches.
    if (currentDC->isLocalContext() &&
        current->getName() != other->getName())
      continue;

    // Check whether the overload signatures conflict (ignoring the type for
    // now).
    auto otherSig = other->getOverloadSignature();
    if (!conflicting(currentSig, otherSig))
      continue;

    // Skip inaccessible declarations in other files.
    // In practice, this means we will warn on a private declaration that
    // shadows a non-private one, but only in the file where the shadowing
    // happens. We will warn on conflicting non-private declarations in both
    // files.
    if (!currentDC->isLocalContext() &&
        !other->isAccessibleFrom(currentDC))
      continue;

    // Skip invalid declarations.
    if (other->isInvalid())
      continue;

    // Allow redeclarations of typealiases in different constrained
    // extensions.
    if (isa<TypeAliasDecl>(current) &&
        isa<TypeAliasDecl>(other) &&
        currentDC != otherDC &&
        currentDC->getGenericSignatureOfContext().getCanonicalSignature() !=
        otherDC->getGenericSignatureOfContext().getCanonicalSignature())
      continue;

    // Thwart attempts to override the same declaration more than once.
    const auto *currentOverride = current->getOverriddenDecl();
    const auto *otherOverride = other->getOverriddenDecl();
    const auto *otherInit = dyn_cast<ConstructorDecl>(other);
    if (currentOverride && currentOverride == otherOverride &&
        !(otherInit && otherInit->isImplicit())) {
      current->diagnose(diag::multiple_override, current->getName());
      other->diagnose(diag::multiple_override_prev, other->getName());
      current->setInvalid();
      break;
    }

    // Get the overload signature type.
    CanType otherSigType = other->getOverloadSignatureType();

    bool wouldBeSwift5Redeclaration = false;
    auto isRedeclaration = conflicting(ctx, currentSig, currentSigType,
                                       otherSig, otherSigType,
                                       &wouldBeSwift5Redeclaration);
    // If there is another conflict, complain.
    if (isRedeclaration || wouldBeSwift5Redeclaration) {
      // If we're currently looking at a .sil and the conflicting declaration
      // comes from a .sib, don't error since we won't be considering the sil
      // from the .sib. So it's fine for the .sil to shadow it, since that's the
      // one we want.
      if (currentFile->Kind == SourceFileKind::SIL) {
        auto *otherFile = dyn_cast<SerializedASTFile>(
            other->getDeclContext()->getModuleScopeContext());
        if (otherFile && otherFile->isSIB())
          continue;
      }

      // Signatures are the same, but interface types are not. We must
      // have a type that we've massaged as part of signature
      // interface type generation.
      if (current->getInterfaceType()->isEqual(other->getInterfaceType())) {
        if (currentDC->isTypeContext() == other->getDeclContext()->isTypeContext()) {
          auto currFnTy = current->getInterfaceType()->getAs<AnyFunctionType>();
          auto otherFnTy = other->getInterfaceType()->getAs<AnyFunctionType>();
          if (currFnTy && otherFnTy && currentDC->isTypeContext()) {
            currFnTy = currFnTy->getResult()->getAs<AnyFunctionType>();
            otherFnTy = otherFnTy->getResult()->getAs<AnyFunctionType>();
          }
          
          if (currFnTy && otherFnTy) {
            ArrayRef<AnyFunctionType::Param> currParams = currFnTy->getParams();
            ArrayRef<AnyFunctionType::Param> otherParams = otherFnTy->getParams();
            
            if (currParams.size() == otherParams.size()) {
              auto diagnosed = false;
              for (unsigned i : indices(currParams)) {
                  
                bool currIsIUO = false;
                bool otherIsIUO = false;
                bool optionalRedecl = false;
                
                if (currParams[i].getPlainType()->getOptionalObjectType()) {
                  optionalRedecl = true;
                  auto *param = swift::getParameterAt(current, i);
                  assert(param);
                  if (param->isImplicitlyUnwrappedOptional())
                    currIsIUO = true;
                }
                
                if (otherParams[i].getPlainType()->getOptionalObjectType()) {
                  auto *param = swift::getParameterAt(other, i);
                  assert(param);
                  if (param->isImplicitlyUnwrappedOptional())
                    otherIsIUO = true;
                }
                else {
                  optionalRedecl = false;
                }
                
                if (optionalRedecl && currIsIUO != otherIsIUO) {
                  ctx.Diags.diagnoseWithNotes(
                    current->diagnose(diag::invalid_redecl, current), [&]() {
                    other->diagnose(diag::invalid_redecl_prev, other);
                  });
                  current->diagnose(diag::invalid_redecl_by_optionality_note,
                                    otherIsIUO, currIsIUO);
                  
                  current->setInvalid();
                  diagnosed = true;
                  break;
                }
              }

              if (diagnosed)
                break;
            }
          }
        }
      }

      // If the conflicting declarations have non-overlapping availability and,
      // we allow the redeclaration to proceed if...
      //
      // - they are initializers with different failability,
      bool isAcceptableVersionBasedChange = false;
      {
        const auto *currentInit = dyn_cast<ConstructorDecl>(current);
        const auto *otherInit = dyn_cast<ConstructorDecl>(other);
        if (currentInit && otherInit &&
            (currentInit->isFailable() !=
             otherInit->isFailable())) {
          isAcceptableVersionBasedChange = true;
        }
      }
      // - one throws and the other does not,
      {
        const auto *currentAFD = dyn_cast<AbstractFunctionDecl>(current);
        const auto *otherAFD = dyn_cast<AbstractFunctionDecl>(other);
        if (currentAFD && otherAFD &&
            currentAFD->hasThrows() != otherAFD->hasThrows()) {
          isAcceptableVersionBasedChange = true;
        }
      }
      // - or they are computed properties of different types,
      {
        const auto *currentVD = dyn_cast<VarDecl>(current);
        const auto *otherVD = dyn_cast<VarDecl>(other);
        if (currentVD && otherVD &&
            !currentVD->hasStorage() &&
            !otherVD->hasStorage() &&
            !currentVD->getInterfaceType()->isEqual(
              otherVD->getInterfaceType())) {
          isAcceptableVersionBasedChange = true;
        }
      }

      if (isAcceptableVersionBasedChange) {
        class AvailabilityRange {
          std::optional<llvm::VersionTuple> introduced;
          std::optional<llvm::VersionTuple> obsoleted;

        public:
          static AvailabilityRange from(const ValueDecl *VD) {
            AvailabilityRange result;
            for (auto *attr : VD->getAttrs().getAttributes<AvailableAttr>()) {
              if (attr->PlatformAgnostic ==
                    PlatformAgnosticAvailabilityKind::SwiftVersionSpecific) {
                if (attr->Introduced)
                  result.introduced = attr->Introduced;
                if (attr->Obsoleted)
                  result.obsoleted = attr->Obsoleted;
              }
            }
            return result;
          }

          bool fullyPrecedes(const AvailabilityRange &other) const {
            if (!obsoleted.has_value())
              return false;
            if (!other.introduced.has_value())
              return false;
            return *obsoleted <= *other.introduced;
          }

          bool overlaps(const AvailabilityRange &other) const {
            return !fullyPrecedes(other) && !other.fullyPrecedes(*this);
          }
        };

        auto currentAvail = AvailabilityRange::from(current);
        auto otherAvail = AvailabilityRange::from(other);
        if (!currentAvail.overlaps(otherAvail))
          continue;
      }

      // If both are VarDecls, and both have exactly the same type, then
      // matching the Swift 4 behaviour (i.e. just emitting the future-compat
      // warning) will result in SILGen crashes due to both properties mangling
      // the same, so it's better to just follow the Swift 5 behaviour and emit
      // the actual error.
      if (wouldBeSwift5Redeclaration && isa<VarDecl>(current) &&
          isa<VarDecl>(other) &&
          current->getInterfaceType()->isEqual(other->getInterfaceType())) {
        wouldBeSwift5Redeclaration = false;
      }

      // Distributed declarations cannot be overloaded on async-ness only,
      // because it'd cause problems with the always async distributed thunks.
      // Provide an extra diagnostic if this is the case we're facing.
      bool diagnoseDistributedAsyncOverload = false;
      if (auto func = dyn_cast<AbstractFunctionDecl>(other)) {
        diagnoseDistributedAsyncOverload = func->isDistributed();
      } else  if (auto var = dyn_cast<VarDecl>(other)) {
        diagnoseDistributedAsyncOverload = var->isDistributed();
      }

      // If this isn't a redeclaration in the current version of Swift, but
      // would be in Swift 5 mode, emit a warning instead of an error.
      if (wouldBeSwift5Redeclaration) {
        current->diagnose(diag::invalid_redecl_swift5_warning, current);
        other->diagnose(diag::invalid_redecl_prev, other);
      } else {
        const auto *otherInit = dyn_cast<ConstructorDecl>(other);
        // Provide a better description for implicit initializers.
        if (otherInit && otherInit->isImplicit()) {
          // Skip conflicts with inherited initializers, which only happen
          // when the current declaration is within an extension. The override
          // checker should have already taken care of emitting a more
          // productive diagnostic.
          if (!other->getOverriddenDecl())
            current->diagnose(diag::invalid_redecl_init, current,
                              otherInit->isMemberwiseInitializer());
        } else if (current->isImplicit() || other->isImplicit()) {
          // If both declarations are implicit, we do not diagnose anything
          // as it would lead to misleading diagnostics and it's likely that
          // there's nothing actionable about it due to its implicit nature.
          // Special case for this is property wrappers or lazy variables.
          //
          // Otherwise, if 'current' is implicit, then we diagnose 'other'
          // since 'other' is a redeclaration of 'current'. Similarly, if
          // 'other' is implicit, we diagnose 'current'.
          const Decl *declToDiagnose = nullptr;
          if (current->isImplicit() && other->isImplicit()) {
            // If 'current' is a property wrapper backing storage property
            // or projected value property, then diagnose the wrapped
            // property.
            if (auto VD = dyn_cast<VarDecl>(current)) {
              if (auto originalWrappedProperty =
                      VD->getOriginalWrappedProperty()) {
                declToDiagnose = originalWrappedProperty;
              }

              // If 'current' is a synthesized lazy storage variable and
              // 'other' is synthesized projected value variable, then
              // diagnose the wrapped property.
              //
              // TODO: We should probably emit a diagnostic note on the lazy
              // variable as well, but there is currently no way to grab the
              // lazy property from its backing storage.
              if (VD->isLazyStorageProperty()) {
                if (auto otherVar = dyn_cast<VarDecl>(other)) {
                  if (auto originalWrappedProperty =
                          otherVar->getOriginalWrappedProperty()) {
                    declToDiagnose = originalWrappedProperty;
                  }
                }
              }
            }
          } else {
            declToDiagnose = current->isImplicit() ? other : current;
          }

          if (declToDiagnose) {
            // Figure out if the declaration we've redeclared is a
            // synthesized witness for a protocol requirement.
            bool isProtocolRequirement = false;
            if (auto VD = dyn_cast<ValueDecl>(current->isImplicit() ? current
                                                                    : other)) {
              isProtocolRequirement = llvm::any_of(
                  VD->getSatisfiedProtocolRequirements(), [&](ValueDecl *req) {
                    return req->getName() == VD->getName();
                  });
            }
            declToDiagnose->diagnose(diag::invalid_redecl_implicit,
                                     current->getDescriptiveKind(),
                                     isProtocolRequirement, other);

            // Emit a specialized note if the one of the declarations is
            // the backing storage property ('_foo') or projected value
            // property ('$foo') for a wrapped property. The backing or
            // projected var has the same source location as the wrapped
            // property we diagnosed above, so we don't need to extract
            // the original property.
            const VarDecl *varToDiagnose = nullptr;
            auto kind = PropertyWrapperSynthesizedPropertyKind::Backing;
            if (auto currentVD = dyn_cast<VarDecl>(current)) {
              if (auto currentKind =
                      currentVD->getPropertyWrapperSynthesizedPropertyKind()) {
                varToDiagnose = currentVD;
                kind = *currentKind;
              }
            }
            if (auto otherVD = dyn_cast<VarDecl>(other)) {
              if (auto otherKind =
                      otherVD->getPropertyWrapperSynthesizedPropertyKind()) {
                varToDiagnose = otherVD;
                kind = *otherKind;
              }
            }

            if (varToDiagnose) {
              assert(declToDiagnose);
              varToDiagnose->diagnose(
                  diag::invalid_redecl_implicit_wrapper, varToDiagnose,
                  kind == PropertyWrapperSynthesizedPropertyKind::Backing);
            }

            current->setInvalid();
          }
        } else {
          ctx.Diags.diagnoseWithNotes(
            current->diagnose(diag::invalid_redecl, current), [&]() {

            // Add a specialized note about the 'other' overload
            if (diagnoseDistributedAsyncOverload) {
              other->diagnose(diag::distributed_func_cannot_overload_on_async_only, other);
            } else {
              other->diagnose(diag::invalid_redecl_prev, other);
            }
          });

          current->setInvalid();
        }
      }

      break;
    }
  }
  return std::make_tuple<>();
}

static std::optional<unsigned> getParamIndex(const ParameterList *paramList,
                                             const ParamDecl *decl) {
  ArrayRef<ParamDecl *> params = paramList->getArray();
  for (unsigned i = 0; i < params.size(); ++i) {
    if (params[i] == decl) return i;
  }
  return std::nullopt;
}

static void checkInheritedDefaultValueRestrictions(ParamDecl *PD) {
  assert(PD->getDefaultArgumentKind() == DefaultArgumentKind::Inherited);

  auto *DC = PD->getInnermostDeclContext();
  const SourceFile *SF = DC->getParentSourceFile();
  assert((SF && SF->Kind == SourceFileKind::Interface || PD->isImplicit()) &&
         "explicit inherited default argument outside of a module interface?");

  // The containing decl should be a designated initializer.
  auto ctor = dyn_cast<ConstructorDecl>(DC);
  if (!ctor || ctor->isConvenienceInit()) {
    PD->diagnose(diag::inherited_default_value_not_in_designated_constructor);
    return;
  }

  // The decl it overrides should also be a designated initializer.
  auto overridden = ctor->getOverriddenDecl();
  if (!overridden || overridden->isConvenienceInit()) {
    PD->diagnose(
        diag::inherited_default_value_used_in_non_overriding_constructor);
    if (overridden)
      overridden->diagnose(diag::overridden_here);
    return;
  }

  // The corresponding parameter should have a default value.
  std::optional<unsigned> idx = getParamIndex(ctor->getParameters(), PD);
  assert(idx && "containing decl does not contain param?");
  ParamDecl *equivalentParam = overridden->getParameters()->get(*idx);
  if (equivalentParam->getDefaultArgumentKind() == DefaultArgumentKind::None) {
    PD->diagnose(diag::corresponding_param_not_defaulted);
    equivalentParam->diagnose(diag::inherited_default_param_here);
  }
}

static bool checkExpressionMacroDefaultValueRestrictions(ParamDecl *param) {
  assert(param->getDefaultArgumentKind() ==
         DefaultArgumentKind::ExpressionMacro);
  auto &ctx = param->getASTContext();
  auto *initExpr = param->getStructuralDefaultExpr();
  assert(initExpr);

#if SWIFT_BUILD_SWIFT_SYNTAX
  auto *DC = param->getInnermostDeclContext();
  const SourceFile *SF = DC->getParentSourceFile();
  return swift_ASTGen_checkDefaultArgumentMacroExpression(
      &ctx.Diags, SF->getExportedSourceFile(),
      initExpr->getLoc().getOpaquePointerValue());
#else
  ctx.Diags.diagnose(initExpr->getLoc(), diag::macro_unsupported);
  return false;
#endif
}

void TypeChecker::notePlaceholderReplacementTypes(Type writtenType,
                                                  Type inferredType) {
  assert(writtenType && inferredType &&
         "Must provide both written and inferred types");
  assert(writtenType->hasPlaceholder() && "Written type has no placeholder?");

  class PlaceholderNotator
      : public CanTypeDifferenceVisitor<PlaceholderNotator> {
  public:
    bool visitDifferentComponentTypes(CanType t1, CanType t2) {
      // Never replace anything the user wrote with an error type.
      if (t2->hasError() || t2->hasUnresolvedType()) {
        return false;
      }

      auto *placeholder = t1->getAs<PlaceholderType>();
      if (!placeholder) {
        return false;
      }

      if (auto *origRepr =
              placeholder->getOriginator().dyn_cast<PlaceholderTypeRepr *>()) {
        t1->getASTContext()
            .Diags
            .diagnose(origRepr->getLoc(),
                      diag::replace_placeholder_with_inferred_type, t2)
            .fixItReplace(origRepr->getSourceRange(), t2.getString());
      }
      return false;
    }

    bool check(Type t1, Type t2) {
      return !visit(t1->getCanonicalType(), t2->getCanonicalType());
    };
  };

  PlaceholderNotator().check(writtenType, inferredType);
}

/// Check the default arguments that occur within this parameter list.
static void checkDefaultArguments(ParameterList *params) {
  // Force the default values in case they produce diagnostics.
  for (auto *param : *params) {
    auto ifacety = param->getInterfaceType();
    auto *expr = param->getTypeCheckedDefaultExpr();

    // If the default argument has isolation, it must match the
    // isolation of the decl context.
    (void)param->getInitializerIsolation();

    if (!ifacety->hasPlaceholder()) {
      continue;
    }

    // Placeholder types are banned for all parameter decls. We try to use the
    // freshly-checked default expression's contextual type to suggest a
    // reasonable type to insert.
    param->diagnose(diag::placeholder_type_not_allowed_in_parameter)
        .highlight(param->getSourceRange());
    if (expr && !expr->getType()->hasError()) {
      TypeChecker::notePlaceholderReplacementTypes(
          ifacety, expr->getType()->mapTypeOutOfContext());
    }
  }
}

void swift::checkVariadicParameters(ParameterList *params, DeclContext *dc) {
  bool lastWasVariadic = false;

  for (auto *param : *params) {
    if (lastWasVariadic) {
      if (param->getArgumentName().empty()) {
        if (isa<AbstractClosureExpr>(dc))
          param->diagnose(diag::closure_unlabeled_parameter_following_variadic_parameter);
        else
          param->diagnose(diag::unlabeled_parameter_following_variadic_parameter);
      }

      lastWasVariadic = false;
    }

    if (!param->isVariadic() &&
        !param->getInterfaceType()->is<PackExpansionType>())
      continue;

    if (param->isDefaultArgument())
      param->diagnose(diag::parameter_vararg_default);

    // Enum elements don't allow old-style variadics.
    if (param->isVariadic() &&
        isa<EnumElementDecl>(dc)) {
      param->diagnose(diag::enum_element_ellipsis);
      continue;
    }

    lastWasVariadic = true;
  }
}

Expr *DefaultArgumentExprRequest::evaluate(Evaluator &evaluator,
                                           ParamDecl *param) const {
  if (param->getDefaultArgumentKind() == DefaultArgumentKind::Inherited) {
    // Inherited default arguments don't have expressions, but we need to
    // perform a couple of semantic checks to make sure they're valid.
    checkInheritedDefaultValueRestrictions(param);
    return nullptr;
  }

  auto &ctx = param->getASTContext();
  auto paramTy = param->getTypeInContext();
  auto *initExpr = param->getStructuralDefaultExpr();
  assert(initExpr);

  auto isMacroExpansionExpr =
      param->getDefaultArgumentKind() == DefaultArgumentKind::ExpressionMacro;

  if (isMacroExpansionExpr &&
      !checkExpressionMacroDefaultValueRestrictions(param))
    return new (ctx) ErrorExpr(initExpr->getSourceRange(), ErrorType::get(ctx));

  // If the param has an error type, there's no point type checking the default
  // expression, unless we are type checking for code completion, in which case
  // the default expression might contain the code completion token.
  if (paramTy->hasError() && !ctx.CompletionCallback)
    return new (ctx) ErrorExpr(initExpr->getSourceRange(), ErrorType::get(ctx));

  auto *dc = param->getDefaultArgumentInitContext();
  assert(dc);

  if (!TypeChecker::typeCheckParameterDefault(initExpr, dc, paramTy,
                                              param->isAutoClosure(),
                                              /*atCallerSide=*/false)) {
    return new (ctx) ErrorExpr(initExpr->getSourceRange(), ErrorType::get(ctx));
  }

  // Expression macro default arguments are checked at caller side
  if (isMacroExpansionExpr)
    return initExpr;

  // Walk the checked initializer and contextualize any closures
  // we saw there.
  TypeChecker::contextualizeInitializer(dc, initExpr);
  TypeChecker::checkInitializerEffects(dc, initExpr);

  return initExpr;
}

Type DefaultArgumentTypeRequest::evaluate(Evaluator &evaluator,
                                          ParamDecl *param) const {
  if (auto *expr = param->getTypeCheckedDefaultExpr()) {
    // If the request failed, let's not propagate ErrorType up.
    return isa<ErrorExpr>(expr) ? Type() : expr->getType();
  }
  return Type();
}

Initializer *
DefaultArgumentInitContextRequest::evaluate(Evaluator &eval,
                                            ParamDecl *param) const {
  auto &ctx = param->getASTContext();
  auto *parentDC = param->getDeclContext();
  auto *paramList = getParameterList(cast<ValueDecl>(parentDC->getAsDecl()));

  // In order to compute the initializer context for this parameter, we need to
  // know its index in the parameter list. Therefore iterate over the parameters
  // looking for it and fill in the other parameter's contexts while we're here.
  Initializer *result = nullptr;
  for (auto idx : indices(*paramList)) {
    auto *otherParam = paramList->get(idx);

    // If this param doesn't need a context, we're done.
    if (!otherParam->hasDefaultExpr() && !otherParam->getStoredProperty())
      continue;

    // If this param already has a context, continue using it.
    if (otherParam->getCachedDefaultArgumentInitContext())
      continue;

    // Create a new initializer context. If this is for the parameter that
    // kicked off the request, make a note of it for when we return. Otherwise
    // cache the result ourselves.
    auto *initDC = new (ctx) DefaultArgumentInitializer(parentDC, idx);
    if (param == otherParam) {
      result = initDC;
    } else {
      eval.cacheOutput(DefaultArgumentInitContextRequest{otherParam},
                       std::move(initDC));
    }
  }
  assert(result && "Didn't create init context?");
  return result;
}

/// Check the requirements in the where clause of the given \c atd
/// to ensure that they don't introduce additional 'Self' requirements.
static void checkProtocolSelfRequirements(ProtocolDecl *proto,
                                          AssociatedTypeDecl *atd) {
  WhereClauseOwner(atd).visitRequirements(
      TypeResolutionStage::Interface,
      [proto](const Requirement &req, RequirementRepr *reqRepr) {
        switch (req.getKind()) {
        case RequirementKind::SameShape:
        case RequirementKind::Conformance:
        case RequirementKind::Layout:
        case RequirementKind::Superclass:
          if (reqRepr &&
              req.getFirstType()->isEqual(proto->getSelfInterfaceType())) {
            auto &diags = proto->getASTContext().Diags;
            diags.diagnose(reqRepr->getSubjectRepr()->getLoc(),
                           diag::protocol_where_clause_self_requirement);
          }

          return false;

        case RequirementKind::SameType:
          return false;
        }
        llvm_unreachable("unhandled kind");
      });
}

/// For now, DynamicSelfType can only appear at the top level of a
/// function result type, possibly wrapped in an optional type.
///
/// In the future, we could generalize it to allow it in any
/// covariant position, so that for example a class method could
/// return '() -> Self'.
static void checkDynamicSelfType(ValueDecl *decl, Type type) {
  if (!type->hasDynamicSelfType())
    return;

  if (auto objectTy = type->getOptionalObjectType())
    type = objectTy;

  if (type->is<DynamicSelfType>())
    return;

  if (isa<FuncDecl>(decl))
    decl->diagnose(diag::dynamic_self_invalid_method);
  else if (isa<VarDecl>(decl))
    decl->diagnose(diag::dynamic_self_invalid_property);
  else {
    assert(isa<SubscriptDecl>(decl));
    decl->diagnose(diag::dynamic_self_invalid_subscript);
  }
}

/// Build a default initializer string for the given pattern.
///
/// This string is suitable for display in diagnostics.
static std::optional<std::string>
buildDefaultInitializerString(DeclContext *dc, Pattern *pattern) {
  switch (pattern->getKind()) {
#define REFUTABLE_PATTERN(Id, Parent) case PatternKind::Id:
#define PATTERN(Id, Parent)
#include "swift/AST/PatternNodes.def"
    return std::nullopt;
  case PatternKind::Any:
    return std::nullopt;

  case PatternKind::Named: {
    if (!pattern->hasType())
      return std::nullopt;

    // Special-case the various types we might see here.
    auto type = pattern->getType();

    auto *module = dc->getParentModule();

    // For literal-convertible types, form the corresponding literal.
#define CHECK_LITERAL_PROTOCOL(Kind, String)                                       \
  if (TypeChecker::conformsToKnownProtocol(type, KnownProtocolKind::Kind, module)) \
    return std::string(String);

    CHECK_LITERAL_PROTOCOL(ExpressibleByArrayLiteral, "[]")
    CHECK_LITERAL_PROTOCOL(ExpressibleByDictionaryLiteral, "[:]")
    CHECK_LITERAL_PROTOCOL(ExpressibleByUnicodeScalarLiteral, "\"\"")
    CHECK_LITERAL_PROTOCOL(ExpressibleByExtendedGraphemeClusterLiteral, "\"\"")
    CHECK_LITERAL_PROTOCOL(ExpressibleByFloatLiteral, "0.0")
    CHECK_LITERAL_PROTOCOL(ExpressibleByIntegerLiteral, "0")
    CHECK_LITERAL_PROTOCOL(ExpressibleByStringLiteral, "\"\"")
#undef CHECK_LITERAL_PROTOCOL

    // For optional types, use 'nil'.
    if (type->getOptionalObjectType())
      return std::string("nil");

    return std::nullopt;
  }

  case PatternKind::Paren: {
    if (auto sub = buildDefaultInitializerString(
            dc, cast<ParenPattern>(pattern)->getSubPattern())) {
      return "(" + *sub + ")";
    }

    return std::nullopt;
  }

  case PatternKind::Tuple: {
    std::string result = "(";
    bool first = true;
    for (auto elt : cast<TuplePattern>(pattern)->getElements()) {
      if (auto sub = buildDefaultInitializerString(dc, elt.getPattern())) {
        if (first) {
          first = false;
        } else {
          result += ", ";
        }

        result += *sub;
      } else {
        return std::nullopt;
      }
    }
    result += ")";
    return result;
  }

  case PatternKind::Typed:
    return buildDefaultInitializerString(
        dc, cast<TypedPattern>(pattern)->getSubPattern());

  case PatternKind::Binding:
    return buildDefaultInitializerString(
        dc, cast<BindingPattern>(pattern)->getSubPattern());
  }

  llvm_unreachable("Unhandled PatternKind in switch.");
}

/// Create a fix-it string for the 'decodable_suggest_overriding_init_here' and
/// optionally, the 'codable_suggest_overriding_init_here' diagnostics.
static std::string getFixItStringForDecodable(ClassDecl *CD,
                                              bool includeEncodeTo) {
  auto &ctx = CD->getASTContext();
  SourceLoc indentationLoc = CD->getBraces().End;
  StringRef extraIndentation;
  StringRef indentation = Lexer::getIndentationForLine(
      ctx.SourceMgr, indentationLoc, &extraIndentation);
  std::string fixItStringToReturn;
  {
    llvm::raw_string_ostream out(fixItStringToReturn);
    ExtraIndentStreamPrinter printer(out, indentation);

    printer.printNewline();
    printer << "override init(from decoder: Decoder) throws";

    // Add a dummy body.
    auto printDummyBody = [&]() {
      printer << " {";
      printer.printNewline();
      printer << extraIndentation << getCodePlaceholder();
      printer.printNewline();
      printer << "}";
    };

    printDummyBody();

    if (includeEncodeTo) {
      printer.printNewline();
      printer.printNewline();
      printer << "override func encode(to encoder: Encoder) throws";
      printDummyBody();
    }
  }

  return fixItStringToReturn;
}

/// Diagnose a class that does not have any initializers.
static void diagnoseClassWithoutInitializers(ClassDecl *classDecl) {
  ASTContext &C = classDecl->getASTContext();
  C.Diags.diagnose(classDecl, diag::class_without_init,
                   classDecl->isExplicitActor(),
                   classDecl->getDeclaredType());

  // HACK: We've got a special case to look out for and diagnose specifically to
  // improve the experience of seeing this, and mitigate some confusion.
  //
  // For a class A which inherits from Decodable class B, class A may have
  // additional members which prevent default initializer synthesis (and
  // inheritance of other initializers). The user may have assumed that this
  // case would synthesize Encodable/Decodable conformance for class A the same
  // way it may have for class B, or other classes.
  //
  // It is helpful to suggest here that the user may have forgotten to override
  // init(from:) (and encode(to:), if applicable) in a note, before we start
  // listing the members that prevented initializer synthesis.
  if (auto *superclassDecl = classDecl->getSuperclassDecl()) {
    auto *decodableProto = C.getProtocol(KnownProtocolKind::Decodable);
    auto superclassType = superclassDecl->getDeclaredInterfaceType();
    auto ref = classDecl->getParentModule()->lookupConformance(
        superclassType, decodableProto);
    if (ref) {
      // super conforms to Decodable, so we've failed to inherit init(from:).
      // Let's suggest overriding it here.
      //
      // We're going to diagnose on the concrete init(from:) decl if it exists
      // and isn't implicit; otherwise, on the subclass itself.
      ValueDecl *diagDest = classDecl;
      DeclNameRef initFrom(
          { C, DeclBaseName::createConstructor(), { C.Id_from } });
      auto result =
          TypeChecker::lookupMember(superclassDecl, superclassType, initFrom,
                                    classDecl->getLoc(),
                                    NameLookupFlags::IgnoreAccessControl);

      if (!result.empty() && !result.front().getValueDecl()->isImplicit())
        diagDest = result.front().getValueDecl();

      auto diagName = diag::decodable_suggest_overriding_init_here;
      auto shouldEmitFixItForEncodeTo = false;

      // This is also a bit of a hack, but the best place we've got at the
      // moment to suggest this.
      //
      // If the superclass also conforms to Encodable, it's quite
      // likely that the user forgot to override its encode(to:). In this case,
      // we can produce a slightly different diagnostic to suggest doing so.
      auto *encodableProto = C.getProtocol(KnownProtocolKind::Encodable);
      auto ref = classDecl->getParentModule()->lookupConformance(
          superclassType, encodableProto);
      if (ref) {
        // We only want to produce this version of the diagnostic if the
        // subclass doesn't directly implement encode(to:).
        // The direct lookup here won't see an encode(to:) if it is inherited
        // from the superclass.
        auto encodeTo = DeclName(C, C.Id_encode, C.Id_to);
        if (classDecl->lookupDirect(encodeTo).empty()) {
          diagName = diag::codable_suggest_overriding_init_here;
          shouldEmitFixItForEncodeTo = true;
        }
      }

      auto insertionLoc =
          Lexer::getLocForEndOfLine(C.SourceMgr, classDecl->getBraces().Start);
      auto fixItString =
          getFixItStringForDecodable(classDecl, shouldEmitFixItForEncodeTo);
      C.Diags.diagnose(diagDest, diagName)
          .fixItInsert(insertionLoc, fixItString);
    }
  }

  // Lazily construct a mapping from backing storage properties to the
  // declared properties.
  bool computedBackingToOriginalVars = false;
  llvm::SmallDenseMap<VarDecl *, VarDecl *> backingToOriginalVars;
  auto getOriginalVar = [&](VarDecl *var) -> VarDecl * {
    // If we haven't computed the mapping yet, do so now.
    if (!computedBackingToOriginalVars) {
      for (auto member : classDecl->getMembers()) {
        if (auto var = dyn_cast<VarDecl>(member)) {
          if (auto backingVar = var->getPropertyWrapperBackingProperty()) {
            backingToOriginalVars[backingVar] = var;
          }
        }
      }

      computedBackingToOriginalVars = true;
    }

    auto known = backingToOriginalVars.find(var);
    if (known == backingToOriginalVars.end())
      return nullptr;

    return known->second;
  };

  for (auto member : classDecl->getMembers()) {
    auto pbd = dyn_cast<PatternBindingDecl>(member);
    if (!pbd)
      continue;

    if (pbd->isStatic() || !pbd->hasStorage() ||
        pbd->isDefaultInitializable() || pbd->isInvalid())
      continue;
   
    for (auto idx : range(pbd->getNumPatternEntries())) {
      if (pbd->isInitialized(idx)) continue;

      auto *pattern = pbd->getPattern(idx);
      SmallVector<VarDecl *, 4> vars;
      pattern->collectVariables(vars);
      if (vars.empty()) continue;

      // Replace the variables we found with the originals for diagnostic
      // purposes.
      for (auto &var : vars) {
        if (auto originalVar = getOriginalVar(var))
          var = originalVar;
      }

      auto varLoc = vars[0]->getLoc();

      std::optional<InFlightDiagnostic> diag;
      switch (vars.size()) {
      case 1:
        diag.emplace(C.Diags.diagnose(varLoc, diag::note_no_in_class_init_1,
                                      vars[0]->getName()));
        break;
      case 2:
        diag.emplace(C.Diags.diagnose(varLoc, diag::note_no_in_class_init_2,
                                      vars[0]->getName(), vars[1]->getName()));
        break;
      case 3:
        diag.emplace(C.Diags.diagnose(varLoc, diag::note_no_in_class_init_3plus,
                                      vars[0]->getName(), vars[1]->getName(),
                                      vars[2]->getName(), false));
        break;
      default:
        diag.emplace(C.Diags.diagnose(varLoc, diag::note_no_in_class_init_3plus,
                                      vars[0]->getName(), vars[1]->getName(),
                                      vars[2]->getName(), true));
        break;
      }

      if (auto defaultValueSuggestion =
              buildDefaultInitializerString(classDecl, pattern))
        diag->fixItInsertAfter(pattern->getEndLoc(),
                               " = " + *defaultValueSuggestion);
    }
  }
}

static void maybeDiagnoseClassWithoutInitializers(ClassDecl *classDecl) {
  if (auto *SF = classDecl->getParentSourceFile()) {
    // Allow classes without initializers in SIL and module interface files.
    switch (SF->Kind) {
    case SourceFileKind::SIL:
    case SourceFileKind::Interface:
      return;
    case SourceFileKind::DefaultArgument:
    case SourceFileKind::Library:
    case SourceFileKind::Main:
    case SourceFileKind::MacroExpansion:
      break;
    }
  }

  // Some heuristics to skip emitting a diagnostic if the class is already
  // irreperably busted.
  if (classDecl->isInvalid() ||
      classDecl->inheritsSuperclassInitializers())
    return;

  auto *superclassDecl = classDecl->getSuperclassDecl();
  if (superclassDecl &&
      superclassDecl->getModuleContext() != classDecl->getModuleContext() &&
      superclassDecl->hasMissingDesignatedInitializers())
    return;

  for (auto member : classDecl->lookupDirect(DeclBaseName::createConstructor())) {
    auto ctor = dyn_cast<ConstructorDecl>(member);
    if (ctor && ctor->isDesignatedInit())
      return;
  }

  diagnoseClassWithoutInitializers(classDecl);
}

/// Determines if a given TypeLoc is module qualified by checking if it's
/// of the form `<Module>.<Type>`.
static bool isModuleQualified(TypeRepr *repr, ModuleDecl *module) {
  auto qualIdentTR = dyn_cast<QualifiedIdentTypeRepr>(repr);
  if (!qualIdentTR) {
    return false;
  }

  // FIXME(ModQual): This needs to be updated once we have an explicit
  //                 module qualification syntax.
  return qualIdentTR->getRoot()->isSimpleUnqualifiedIdentifier(
      module->getName());
}

/// If the provided type is an AttributedTypeRepr, unwraps it and provides both
/// the casted AttributedTypeRepr and the underlying type.
/// If the provided type is _not_ an AttributedTypeRepr, returns it unmodified
/// and returns `nullptr` for the attributed type.
static TypeRepr *unwrapAttributedRepr(TypeRepr *repr) {
  if (auto attr = dyn_cast<AttributedTypeRepr>(repr)) {
    return attr->getTypeRepr();
  }
  return repr;
}

/// Determines if this extension declares a conformance of a type declared
/// outside this module to a protocol declared outside this module (but only
/// in library evolution mode)
///
/// Since there can only be one conformance of a type to a given protocol,
/// it's not supported to declare these conformances because any other framework
/// (including the source framework) can declare this conformance, which would
/// result in duplicate symbols at runtime.
static void diagnoseRetroactiveConformances(
    ExtensionDecl *ext, DiagnosticEngine &diags) {
  ModuleDecl *module = ext->getParentModule();

  // Disable this for the Foundation module because of the interplay with
  // _ObjectiveCBridgeable.
  if (module->isFoundationModule()) {
    return;
  }

  // Don't warn for this if we see it in module interfaces.
  if (ext->getParentSourceFile()->Kind == SourceFileKind::Interface) {
    return;
  }

  Type extendedType = ext->getExtendedType();
  NominalTypeDecl *extendedNominalDecl = ext->getExtendedNominal();
  if (!extendedNominalDecl) {
    return;
  }

  ModuleDecl *extTypeModule = extendedNominalDecl->getParentModule();

  // If the type comes from the __ObjC clang header module, don't warn.
  if (extTypeModule->getName().is(CLANG_HEADER_MODULE_NAME)) {
    return;
  }

  // At this point, we know we're extending a type declared outside this module.
  // We better only be conforming it to protocols declared within this module.
  llvm::SmallSetVector<ProtocolDecl *, 8> externalProtocols;
  llvm::SmallSet<ProtocolDecl *, 8> protocolsWithRetroactiveAttr;
  for (const InheritedEntry &entry : ext->getInherited().getEntries()) {
    if (entry.getType().isNull() || !entry.getTypeRepr()) {
      continue;
    }

    auto proto =
        dyn_cast_or_null<ProtocolDecl>(entry.getType()->getAnyNominal());
    if (!proto) {  
      continue;
    }
    
    // As a fallback, to support previous language versions, also allow
    // this through if the protocol has been explicitly module-qualified.
    TypeRepr *repr = unwrapAttributedRepr(entry.getTypeRepr());
    if (isModuleQualified(repr, proto->getParentModule())) {
      continue;
    }

    proto->walkInheritedProtocols([&](ProtocolDecl *decl) {

      // Get the original conformance of the extended type to this protocol.
      auto conformanceRef = ext->getParentModule()->lookupConformance(
          extendedType, decl);
      if (!conformanceRef.isConcrete()) {
        return TypeWalker::Action::Continue;
      }
      auto conformance = conformanceRef.getConcrete();

      // If that conformance came from this extension, then we warn. Otherwise
      // we will have diagnosed it on the extension that actually declares this
      // specific conformance.
      if (conformance->getDeclContext() != ext) {
        return TypeWalker::Action::Continue;
      }

      // If this isn't a retroactive conformance, skip it.
      if (!conformance->isRetroactive()) {
        // However, if this is the protocol in the inherited type entry,
        // check to make sure it's not erroneously marked @retroactive when it's
        // not actually retroactive.
        if (decl == proto && entry.isRetroactive()) {
          auto loc =
              entry.getTypeRepr()->findAttrLoc(TypeAttrKind::Retroactive);

          bool typeInSamePackage = extTypeModule->inSamePackage(module);
          bool typeIsSameModule =
              extTypeModule->isSameModuleLookingThroughOverlays(module);

          auto declForDiag = (typeIsSameModule || typeInSamePackage)
                                 ? extendedNominalDecl
                                 : proto;
          bool isSameModule = declForDiag->getParentModule()
                                  ->isSameModuleLookingThroughOverlays(module);

          diags
              .diagnose(loc, diag::retroactive_attr_does_not_apply, declForDiag,
                        isSameModule)
              .warnUntilSwiftVersion(6)
              .fixItRemove(SourceRange(loc, loc.getAdvancedLoc(1)));
          return TypeWalker::Action::Stop;
        }
        return TypeWalker::Action::Continue;
      }

      // If it's marked @retroactive, no need to warn.
      if (entry.isRetroactive()) {
        // Note that we encountered this protocol through a conformance marked
        // @retroactive in case multiple clauses cause the protocol to be
        // inherited.
        protocolsWithRetroactiveAttr.insert(decl);
        return TypeWalker::Action::Continue;
      }

      // If we've come this far, we know this extension is the first declaration
      // of the conformance of the extended type to this protocol.
      externalProtocols.insert(decl);

      return TypeWalker::Action::Continue;
    });
  }

  // Remove protocols that are reachable through a @retroactive conformance.
  for (auto *proto : protocolsWithRetroactiveAttr) {
    externalProtocols.remove(proto);
  }

  // If we didn't find any violations, we're done.
  if (externalProtocols.empty()) {
    return;
  }

  // Diagnose the list of protocols we're introducing a conformance to.

  llvm::SmallString<32> protocolList;
  {
    llvm::raw_svector_ostream os(protocolList);
    llvm::interleaveComma(externalProtocols, os, [&os](ProtocolDecl *proto) {
      os << "'" << proto->getName() << "'";
    });
  }

  ext->diagnose(
      diag::extension_retroactive_conformance,
      extendedNominalDecl->getName(),
      externalProtocols.size() == 1,
      protocolList.str(),
      extTypeModule->getName());

  // Now build up a set of fix-its to force the user to explicitly specify the
  // declared conformances.

  auto diag = ext->diagnose(diag::extension_retroactive_conformance_silence);

  // First, find if we can insert `@retroactive ` within this extension
  // declaration to silence the warning. Each one of these gets removed from the
  // externalProtocols list, and that might end up being all of them.
  for (const InheritedEntry &entry : ext->getInherited().getEntries()) {
    auto protoDecl =
        dyn_cast_or_null<ProtocolDecl>(entry.getType()->getAnyNominal());
    TypeRepr *repr = unwrapAttributedRepr(entry.getTypeRepr());
    if (protoDecl && externalProtocols.remove(protoDecl)) {
      llvm::SmallString<32> qualifiedName;
      llvm::raw_svector_ostream os(qualifiedName);
      os << "@retroactive " << protoDecl->getName();
      diag.fixItReplace(
        repr->getSourceRange(), qualifiedName.str());
    }
  }

  // If we've hit every protocol declared by this extension, we're good to go.
  if (externalProtocols.empty()) {
    return;
  }

  // Otherwise, we've got inherited protocols that are being implicitly declared
  // by this extension. Create explicit declarations for these with
  // '@retroactive' conformances.

  {
    llvm::SmallString<32> additionalExtensions;
    llvm::raw_svector_ostream os(additionalExtensions);
    for (ProtocolDecl *proto : externalProtocols) {
      os << "extension " << extendedNominalDecl->getName() << ": "
        << "@retroactive " << proto->getName()
        << " {}\n";
    }
    diag.fixItInsert(ext->getStartLoc(), additionalExtensions.str());
  }
}

void TypeChecker::diagnoseDuplicateBoundVars(Pattern *pattern) {
  SmallVector<VarDecl *, 2> boundVars;
  pattern->collectVariables(boundVars);

  diagnoseDuplicateDecls(boundVars);
}

void TypeChecker::diagnoseDuplicateCaptureVars(CaptureListExpr *expr) {
  SmallVector<VarDecl *, 2> captureListVars;
  for (auto &capture : expr->getCaptureList())
    captureListVars.push_back(capture.getVar());

  diagnoseDuplicateDecls(captureListVars);
}

static StringRef prettyPrintAttrs(const ValueDecl *VD,
                                  ArrayRef<const DeclAttribute *> attrs,
                                  SmallVectorImpl<char> &out) {
  llvm::raw_svector_ostream os(out);
  StreamPrinter printer(os);

  PrintOptions opts = PrintOptions::printDeclarations();
  VD->getAttrs().print(printer, opts, attrs, VD);
  return StringRef(out.begin(), out.size()).drop_back();
}

static void diagnoseChangesByAccessNote(
    ValueDecl *VD,
    ArrayRef<const DeclAttribute *> attrs,
    Diag<StringRef, StringRef, DescriptiveDeclKind> diagID,
    Diag<StringRef> fixItID,
    llvm::function_ref<void(InFlightDiagnostic, StringRef)> addFixIts) {
  if (!VD->getASTContext().LangOpts.shouldRemarkOnAccessNoteSuccess() ||
      attrs.empty())
    return;

  // Generate string containing all attributes.
  SmallString<64> attrString;
  auto attrText = prettyPrintAttrs(VD, attrs, attrString);

  SourceLoc fixItLoc;

  auto reason = VD->getModuleContext()->getAccessNotes().Reason;
  auto diag = VD->diagnose(diagID, reason, attrText, VD->getDescriptiveKind());
  for (auto attr : attrs) {
    diag.highlight(attr->getRangeWithAt());
    if (fixItLoc.isInvalid())
      fixItLoc = attr->getRangeWithAt().Start;
  }
  diag.flush();

  if (!fixItLoc)
    fixItLoc = VD->getAttributeInsertionLoc(true);

  addFixIts(VD->getASTContext().Diags.diagnose(fixItLoc, fixItID, attrText),
            attrString);
}

template <typename Attr>
static void addOrRemoveAttr(ValueDecl *VD, const AccessNotesFile &notes,
                            std::optional<bool> expected,
                            SmallVectorImpl<DeclAttribute *> &removedAttrs,
                            llvm::function_ref<Attr *()> willCreate) {
  if (!expected) return;

  auto attr = VD->getAttrs().getAttribute<Attr>();
  if (*expected == (attr != nullptr)) return;

  if (*expected) {
    attr = willCreate();
    attr->setAddedByAccessNote();
    VD->getAttrs().add(attr);

    // Arrange for us to emit a remark about this attribute after type checking
    // has ensured it's valid.
    if (auto SF = VD->getDeclContext()->getParentSourceFile())
      SF->AttrsAddedByAccessNotes[VD].push_back(attr);
  } else {
    removedAttrs.push_back(attr);
    VD->getAttrs().removeAttribute(attr);
  }
}

InFlightDiagnostic
swift::softenIfAccessNote(const Decl *D, const DeclAttribute *attr,
                          InFlightDiagnostic &diag) {
  const ValueDecl *VD = dyn_cast<ValueDecl>(D);
  if (!VD || !attr || !attr->getAddedByAccessNote())
    return std::move(diag);

  SmallString<32> attrString;
  auto attrText = prettyPrintAttrs(VD, llvm::ArrayRef(attr), attrString);

  ASTContext &ctx = D->getASTContext();
  auto behavior = ctx.LangOpts.getAccessNoteFailureLimit();
  return std::move(diag.wrapIn(diag::wrap_invalid_attr_added_by_access_note,
                               D->getModuleContext()->getAccessNotes().Reason,
                               ctx.AllocateCopy(attrText), D->getDescriptiveKind())
                        .limitBehavior(behavior));
}

static void applyAccessNote(ValueDecl *VD, const AccessNote &note,
                            const AccessNotesFile &notes) {
  ASTContext &ctx = VD->getASTContext();
  SmallVector<DeclAttribute *, 2> removedAttrs;

  addOrRemoveAttr<ObjCAttr>(VD, notes, note.ObjC, removedAttrs, [&]{
    return ObjCAttr::create(ctx, note.ObjCName, false);
  });

  addOrRemoveAttr<DynamicAttr>(VD, notes, note.Dynamic, removedAttrs, [&]{
    return new (ctx) DynamicAttr(true);
  });

  // FIXME: If we ever have more attributes, we'll need to sort removedAttrs by
  // SourceLoc. As it is, attrs are always before modifiers, so we're okay now.

  diagnoseChangesByAccessNote(VD, removedAttrs,
                              diag::attr_removed_by_access_note,
                              diag::fixit_attr_removed_by_access_note,
                              [&](InFlightDiagnostic diag, StringRef code) {
    for (auto attr : llvm::reverse(removedAttrs))
      diag.fixItRemove(attr->getRangeWithAt());
  });

  if (note.ObjCName) {
    auto attr = VD->getAttrs().getAttribute<ObjCAttr>();
    assert(attr && "ObjCName set, but ObjCAttr not true or did not apply???");

    if (!attr->hasName()) {
      auto oldName = attr->getName();
      attr->setName(*note.ObjCName, true);

      if (!ctx.LangOpts.shouldRemarkOnAccessNoteSuccess())
        return;

      VD->diagnose(diag::attr_objc_name_changed_by_access_note,
                   notes.Reason, VD->getDescriptiveKind(), *note.ObjCName);

      auto fixIt =
          VD->diagnose(diag::fixit_attr_objc_name_changed_by_access_note);
      fixDeclarationObjCName(fixIt, VD, oldName, *note.ObjCName);
    }
    else if (attr->getName() != *note.ObjCName) {
      auto behavior = ctx.LangOpts.getAccessNoteFailureLimit();

      VD->diagnose(diag::attr_objc_name_conflicts_with_access_note,
                   notes.Reason, VD->getDescriptiveKind(), *attr->getName(),
                   *note.ObjCName)
          .highlight(attr->getRangeWithAt())
          .limitBehavior(behavior);
    }
  }
}

void TypeChecker::applyAccessNote(ValueDecl *VD) {
  (void)evaluateOrDefault(VD->getASTContext().evaluator,
                          ApplyAccessNoteRequest{VD}, {});
}

void swift::diagnoseAttrsAddedByAccessNote(SourceFile &SF) {
  if (!SF.getASTContext().LangOpts.shouldRemarkOnAccessNoteSuccess())
    return;

  for (auto declAndAttrs : SF.AttrsAddedByAccessNotes) {
    auto D = declAndAttrs.getFirst();
    SmallVector<DeclAttribute *, 4> sortedAttrs;
    llvm::append_range(sortedAttrs, declAndAttrs.getSecond());

    // Filter out invalid attributes.
    sortedAttrs.erase(
      llvm::remove_if(sortedAttrs, [](DeclAttribute *attr) {
        assert(attr->getAddedByAccessNote());
        return attr->isInvalid();
      }), sortedAttrs.end());
    if (sortedAttrs.empty()) continue;

    // Sort attributes by name.
    llvm::sort(sortedAttrs, [](DeclAttribute * first, DeclAttribute * second) {
      return first->getAttrName() < second->getAttrName();
    });
    sortedAttrs.erase(std::unique(sortedAttrs.begin(), sortedAttrs.end()),
                      sortedAttrs.end());

    diagnoseChangesByAccessNote(D, sortedAttrs, diag::attr_added_by_access_note,
                                diag::fixit_attr_added_by_access_note,
                                [=](InFlightDiagnostic diag, StringRef code) {
      diag.fixItInsert(D->getAttributeInsertionLoc(/*isModifier=*/true), code);
    });
  }
}

evaluator::SideEffect
ApplyAccessNoteRequest::evaluate(Evaluator &evaluator, ValueDecl *VD) const {
  AccessNotesFile &notes = VD->getModuleContext()->getAccessNotes();
  if (auto note = notes.lookup(VD))
    applyAccessNote(VD, *note.get(), notes);
  return {};
}

static void diagnoseWrittenPlaceholderTypes(ASTContext &Ctx,
                                            const Pattern *P,
                                            Expr *init) {
  // Make sure we have a user-written type annotation.
  auto *TP = dyn_cast<TypedPattern>(P);
  if (!TP || !TP->getTypeRepr()) {
    return;
  }

  auto *repr = TP->getTypeRepr()->getWithoutParens();
  if (auto *PTR = dyn_cast<PlaceholderTypeRepr>(repr)) {
    Ctx.Diags.diagnose(P->getLoc(),
                       diag::placeholder_type_not_allowed_in_pattern)
        .highlight(P->getSourceRange());
    if (init && !init->getType()->hasError()) {
      auto initTy = init->getType()->mapTypeOutOfContext();
      Ctx.Diags
          .diagnose(PTR->getLoc(),
                    diag::replace_placeholder_with_inferred_type, initTy)
          .fixItReplace(PTR->getSourceRange(), initTy.getString());
    }
  }
}

/// Make sure that every protocol conformance requirement on 'Self' is
/// directly stated in the protocol's inheritance clause.
///
/// This disallows protocol declarations where a conformance requirement on
/// 'Self' is implied by some other requirement, such as this:
///
///    protocol Other { ... }
///    protocol Foo { associatedtype A : Other }
///    protocol Bar {
///      associatedtype A : Foo where Self == A.A
///    }
///
/// Since name lookup is upstream of generic signature computation, we
/// want 'Other' to appear in the inheritance clause of 'Bar', so that
/// name lookup on Bar can find members of Other.
static void checkProtocolRefinementRequirements(ProtocolDecl *proto) {
  auto &ctx = proto->getASTContext();
  auto selfTy = proto->getSelfInterfaceType();
  auto genericSig = proto->getGenericSignature();

  // Check for circular inheritance; the HasCircularInheritedProtocolsRequest
  // will diagnose an error in that case, and we skip all remaining checks.
  if (proto->hasCircularInheritedProtocols())
    return;

  // If we make a ~P marking but our protocol Self type still conforms to P,
  // diagnose an error.
  //
  // FIXME: This duplicates logic from computeRequirementDiagnostics().
  // Get the list of written inverses.
  InvertibleProtocolSet inverses;
  bool anyObject = false;
  (void) getDirectlyInheritedNominalTypeDecls(proto, inverses, anyObject);

  for (auto ip : inverses) {
    auto kp = getKnownProtocolKind(ip);
    auto *otherProto = ctx.getProtocol(kp);
    if (!genericSig->requiresProtocol(selfTy, otherProto))
      continue;

    ctx.Diags.diagnose(proto,
                       diag::inverse_generic_but_also_conforms,
                       selfTy, getProtocolName(kp));
  }

  auto requiredProtos = genericSig->getRequiredProtocols(selfTy);
  for (auto *otherProto : requiredProtos) {
    // Every protocol 'P' has an implied requirement 'Self : P'; skip it.
    if (otherProto == proto)
      continue;

    // SIMDScalar in the standard library currently emits this warning for:
    // 'Hashable', 'Encodable', and 'Decodable'. This is unfortunate, but we
    // cannot fix it as it would alter the ABI of the protocol. Silence these
    // warnings specifically for those cases.
    if (proto->isSpecificProtocol(KnownProtocolKind::SIMDScalar) &&
        (otherProto->isSpecificProtocol(KnownProtocolKind::Hashable) ||
        otherProto->isSpecificProtocol(KnownProtocolKind::Encodable) ||
        otherProto->isSpecificProtocol(KnownProtocolKind::Decodable))) {
      continue;
    }

    // GenericSignature::getRequiredProtocols() canonicalizes the protocol
    // list by dropping protocols that are inherited by other protocols in
    // the list. Any protocols that remain in the list other than 'proto'
    // itself are implied by a conformance requirement on 'Self', but are
    // not (transitively) inherited by 'proto'.
    proto->diagnose(diag::missing_protocol_refinement, proto, otherProto);
  }
}

static void dumpGenericSignature(ASTContext &ctx, GenericContext *GC) {
  if (ctx.TypeCheckerOpts.DebugGenericSignatures) {
    if (auto sig = GC->getGenericSignature()) {
      llvm::errs() << "\n";
      if (auto *VD = dyn_cast_or_null<ValueDecl>(GC->getAsDecl())) {
        VD->dumpRef(llvm::errs());
        llvm::errs() << "\n";
      } else {
        GC->printContext(llvm::errs());
      }
      llvm::errs() << "Generic signature: ";
      PrintOptions Opts;
      Opts.ProtocolQualifiedDependentMemberTypes = true;
      Opts.PrintInverseRequirements =
          !ctx.TypeCheckerOpts.DebugInverseRequirements;
      sig->print(llvm::errs(), Opts);
      llvm::errs() << "\n";
      llvm::errs() << "Canonical generic signature: ";
      sig.getCanonicalSignature()->print(llvm::errs(), Opts);
      llvm::errs() << "\n";
    }
  }
}

namespace {
class DeclChecker : public DeclVisitor<DeclChecker> {
public:
  ASTContext &Ctx;
  SourceFile *SF;

  explicit DeclChecker(ASTContext &ctx, SourceFile *SF) : Ctx(ctx), SF(SF) {}

  ASTContext &getASTContext() const { return Ctx; }
  void addDelayedFunction(AbstractFunctionDecl *AFD) {
    if (!SF)
      return;

    while (auto *ESF = SF->getEnclosingSourceFile())
      SF = ESF;

    SF->addDelayedFunction(AFD);
  }

  void visit(Decl *decl) {
    // Visit auxiliary decls first.
    // We don't do this for members of classes because it happens as part of
    // visiting their ABI members.
    if (!isa<ClassDecl>(decl->getDeclContext())) {
      decl->visitAuxiliaryDecls([&](Decl *auxiliaryDecl) {
        this->visit(auxiliaryDecl);
      }, /*visitFreestandingExpanded=*/false);
    }

    if (auto *Stats = Ctx.Stats)
      ++Stats->getFrontendCounters().NumDeclsTypechecked;

    FrontendStatsTracer StatsTracer(getASTContext().Stats,
                                    "typecheck-decl", decl);
    PrettyStackTraceDecl StackTrace("type-checking", decl);

    if (auto VD = dyn_cast<ValueDecl>(decl))
      TypeChecker::applyAccessNote(VD);

    DeclVisitor<DeclChecker>::visit(decl);

    TypeChecker::checkExistentialTypes(decl);

    if (auto VD = dyn_cast<ValueDecl>(decl)) {
      TypeChecker::checkForForbiddenPrefix(Ctx, VD->getBaseName());

      // Force some requests, which can produce diagnostics.

      // Check redeclaration.
      (void)evaluateOrDefault(
          Ctx.evaluator,
          CheckRedeclarationRequest{
              VD, VD->getDeclContext()->getSelfNominalTypeDecl()},
          {});

      // Compute access level.
      (void) VD->getFormalAccess();

      // Compute overrides.
      if (!VD->getOverriddenDecls().empty())
        checkOverrideActorIsolation(VD);

      // Check whether the member is @objc or dynamic.
      (void) VD->isObjC();
      (void) VD->isDynamic();

      // Check for actor isolation of top-level and local declarations.
      // Declarations inside types are handled in checkConformancesInContext()
      // to avoid cycles involving associated type inference.
      if (!VD->getDeclContext()->isTypeContext())
        (void) getActorIsolation(VD);

      // If this is a member of a nominal type, don't allow it to have a name of
      // "Type" or "Protocol" since we reserve the X.Type and X.Protocol
      // expressions to mean something builtin to the language.  We *do* allow
      // these if they are escaped with backticks though.
      if (VD->getDeclContext()->isTypeContext() &&
          (VD->getName().isSimpleName(Ctx.Id_Type) ||
           VD->getName().isSimpleName(Ctx.Id_Protocol)) &&
          VD->getNameLoc().isValid() &&
          Ctx.SourceMgr.extractText({VD->getNameLoc(), 1}) != "`") {
        auto &DE = Ctx.Diags;
        DE.diagnose(VD->getNameLoc(), diag::reserved_member_name,
                    VD, VD->getBaseIdentifier().str());
        DE.diagnose(VD->getNameLoc(), diag::backticks_to_escape)
            .fixItReplace(VD->getNameLoc(),
                          "`" + VD->getBaseName().userFacingName().str() + "`");
      }

      // Expand extension macros.
      if (auto *nominal = dyn_cast<NominalTypeDecl>(VD)) {
        (void)evaluateOrDefault(
            Ctx.evaluator,
            ExpandExtensionMacros{nominal},
            { });
      }
    }
  }


  //===--------------------------------------------------------------------===//
  // Visit Methods.
  //===--------------------------------------------------------------------===//

  void visitGenericTypeParamDecl(GenericTypeParamDecl *D) {
    llvm_unreachable("cannot reach here");
  }
  
  void visitImportDecl(ImportDecl *ID) {
    TypeChecker::checkDeclAttributes(ID);

    // Force the lookup of decls referenced by a scoped import in case it emits
    // diagnostics.
    (void)ID->getDecls();

    auto target = ID->getModule();
    if (target && // module would be nil if loading fails
        !Ctx.LangOpts.PackageName.empty() &&
        Ctx.LangOpts.PackageName == target->getPackageName().str() &&
        !target->isNonSwiftModule() && // target is a Swift module
        target->isNonUserModule()) { // target module is in distributed SDK
      // If reached here, a binary module (.swiftmodule) instead of interface of the
      // target was loaded for the main module, where both belong to the same package;
      // this is an expected behavior, but it should have been loaded from the local
      // build directory, not from distributed SDK. In such case, we show a warning.
      Ctx.Diags.diagnose(ID,
                         diag::in_package_module_not_compiled_locally,
                         target->getBaseIdentifier(),
                         target->getPackageName(),
                         target->getModuleFilename());
    }

    // Report the public import of a private module.
    if (Ctx.LangOpts.LibraryLevel == LibraryLevel::API) {
      auto importer = ID->getModuleContext();
      if (target &&
          !ID->getAttrs().hasAttribute<ImplementationOnlyAttr>() &&
          !ID->getAttrs().hasAttribute<SPIOnlyAttr>() &&
          ID->getAccessLevel() == AccessLevel::Public &&
          target->getLibraryLevel() == LibraryLevel::SPI) {

        InFlightDiagnostic inFlight =
            Ctx.Diags.diagnose(ID, diag::error_public_import_of_private_module,
                               target->getName(), importer->getName());
        if (ID->getAttrs().isEmpty()) {
           inFlight.fixItInsert(ID->getStartLoc(),
                              "@_implementationOnly ");
        }

#ifndef NDEBUG
        static bool enableTreatAsError = true;
#else
        static bool enableTreatAsError = getenv("ENABLE_PUBLIC_IMPORT_OF_PRIVATE_AS_ERROR");
#endif

        bool isImportOfUnderlying = importer->getName() == target->getName();
        auto *SF = ID->getDeclContext()->getParentSourceFile();
        bool treatAsError = enableTreatAsError &&
                            !isImportOfUnderlying &&
                            SF->Kind != SourceFileKind::Interface;
        if (!treatAsError)
          inFlight.limitBehavior(DiagnosticBehavior::Warning);
      }
    }
  }

  void visitOperatorDecl(OperatorDecl *OD) {
    TypeChecker::checkDeclAttributes(OD);
    checkRedeclaration(OD);
    if (auto *IOD = dyn_cast<InfixOperatorDecl>(OD))
      (void)IOD->getPrecedenceGroup();
    checkAccessControl(OD);
  }

  void visitPrecedenceGroupDecl(PrecedenceGroupDecl *PGD) {
    TypeChecker::checkDeclAttributes(PGD);
    validatePrecedenceGroup(PGD);
    checkRedeclaration(PGD);
    checkAccessControl(PGD);
  }

  void visitMissingDecl(MissingDecl *missing) {  }

  void visitMissingMemberDecl(MissingMemberDecl *MMD) {
    llvm_unreachable("should always be type-checked already");
  }

  /// Determine the number of bits set.
  static unsigned numBitsSet(uint64_t value) {
    unsigned count = 0;
    for (uint64_t i : range(0, 63)) {
      if (value & (uint64_t(1) << i))
        ++count;
    }

    return count;
  }

  void visitMacroDecl(MacroDecl *MD) {
    TypeChecker::checkDeclAttributes(MD);
    checkAccessControl(MD);

    if (!MD->getDeclContext()->isModuleScopeContext())
      MD->diagnose(diag::macro_in_nested, MD->getName());
    if (!MD->getAttrs().hasAttribute<MacroRoleAttr>(/*AllowInvalid*/ true))
      MD->diagnose(diag::macro_without_role, MD->getName());

    TypeChecker::checkParameterList(MD->getParameterList(), MD);
    checkDefaultArguments(MD->getParameterList());

    // Check the macro definition.
    switch (auto macroDef = MD->getDefinition()) {
    case MacroDefinition::Kind::Undefined:
      MD->diagnose(diag::macro_must_be_defined, MD->getName());
      break;

    case MacroDefinition::Kind::Invalid:
    case MacroDefinition::Kind::Builtin:
    case MacroDefinition::Kind::Expanded:
      // Nothing else to check here.
      break;

    case MacroDefinition::Kind::External: {
        // Retrieve the external definition of the macro.
      auto external = macroDef.getExternalMacro();
      ExternalMacroDefinitionRequest request{
        &Ctx, external.moduleName, external.macroTypeName
      };
      auto externalDef =
          evaluateOrDefault(Ctx.evaluator, request,
                            ExternalMacroDefinition::error("unknown error"));
      if (externalDef.isError()) {
        MD->diagnose(diag::external_macro_not_found, external.moduleName.str(),
                     external.macroTypeName.str(), MD->getName(),
                     externalDef.getErrorMessage())
            .limitBehavior(DiagnosticBehavior::Warning);
      }

      break;
    }
    }

    // If the macro has a result type, it must have the freestanding
    // expression role. Other roles cannot have result types.
    if (auto resultTypeRepr = MD->getResultTypeRepr()) {
      if (!MD->getMacroRoles().contains(MacroRole::Expression)) {
        auto resultType = MD->getResultInterfaceType(); {
          auto diag = Ctx.Diags.diagnose(
              MD->arrowLoc, diag::macro_result_type_cannot_be_used, resultType);
          diag.highlight(resultTypeRepr->getSourceRange());

          // In a .swiftinterface file, downgrade this diagnostic to a warning.
          // This allows the compiler to process existing .swiftinterface
          // files that contain this issue.
          if (resultType->isVoid()) {
            if (auto sourceFile = MD->getParentSourceFile())
              if (sourceFile->Kind == SourceFileKind::Interface)
                diag.limitBehavior(DiagnosticBehavior::Warning);
          }
        }

        Ctx.Diags.diagnose(MD->arrowLoc, diag::macro_make_freestanding_expression)
          .fixItInsert(MD->getAttributeInsertionLoc(false),
                       "@freestanding(expression)\n");
        Ctx.Diags.diagnose(MD->arrowLoc, diag::macro_remove_result_type)
          .fixItRemove(SourceRange(MD->arrowLoc, resultTypeRepr->getEndLoc()));
      }
    }

    // A macro can only have a single freestanding macro role.
    MacroRoles freestandingRolesInhabited =
        MD->getMacroRoles() & getFreestandingMacroRoles();
    if (numBitsSet(freestandingRolesInhabited.toRaw()) > 1) {
      MD->diagnose(diag::macro_multiple_freestanding_roles);
    }
  }

  void visitMacroExpansionDecl(MacroExpansionDecl *MED) {
    // Assign a discriminator.
    (void)MED->getDiscriminator();
    MED->forEachExpandedNode([&](ASTNode node) {
      TypeChecker::typeCheckASTNode(node, MED->getDeclContext());
    });
  }

  void visitBoundVariable(VarDecl *VD) {
    // WARNING: Anything you put in this function will only be run when the
    // VarDecl is fully type-checked within its own file. It will NOT be run
    // when the VarDecl is merely used from another file.

    // Compute these requests in case they emit diagnostics.
    TypeChecker::applyAccessNote(VD);
    (void) VD->getInterfaceType();
    (void) VD->isGetterMutating();
    (void) VD->isSetterMutating();
    (void) VD->getPropertyWrapperAuxiliaryVariables();
    (void) VD->getPropertyWrapperInitializerInfo();
    (void) VD->getImplInfo();
    (void) getActorIsolation(VD);

    // Visit auxiliary decls first
    VD->visitAuxiliaryDecls([&](VarDecl *var) {
      this->visitBoundVariable(var);
    });

    // Reject cases where this is a variable that has storage but it isn't
    // allowed.
    if (VD->hasStorage()) {
      // Note: Stored properties in protocols, enums, etc are diagnosed in
      // finishStorageImplInfo().

      // We haven't implemented type-level storage in some contexts.
      if (VD->isStatic()) {
        auto PBD = VD->getParentPatternBinding();
        // Selector for unimplemented_static_var message.
        enum : unsigned {
          Misc,
          GenericTypes,
          Classes,
          ProtocolExtensions
        };
        auto unimplementedStatic = [&](unsigned diagSel) {
          auto staticLoc = PBD->getStaticLoc();
          VD->diagnose(diag::unimplemented_static_var, diagSel,
                       PBD->getStaticSpelling(), diagSel == Classes)
              .highlight(staticLoc);
        };

        auto DC = VD->getDeclContext();

        // Stored type variables in a generic context need to logically
        // occur once per instantiation, which we don't yet handle.
        if (DC->getExtendedProtocolDecl()) {
          unimplementedStatic(ProtocolExtensions);
        } else if (DC->isGenericContext()
               && !DC->getGenericSignatureOfContext()->areAllParamsConcrete()) {
          unimplementedStatic(GenericTypes);
        } else if (DC->getSelfClassDecl()) {
          auto StaticSpelling = PBD->getStaticSpelling();
          if (StaticSpelling != StaticSpellingKind::KeywordStatic)
            unimplementedStatic(Classes);
        }
      }
    }

    TypeChecker::checkDeclAttributes(VD);

    auto DC = VD->getDeclContext();

    if (!checkOverrides(VD)) {
      // If a property has an override attribute but does not override
      // anything, complain.
      auto overridden = VD->getOverriddenDecl();
      if (auto *OA = VD->getAttrs().getAttribute<OverrideAttr>()) {
        if (!overridden) {
          auto isClassContext = DC->getSelfClassDecl() != nullptr;
          auto isStructOrEnumContext = DC->getSelfEnumDecl() != nullptr ||
                                       DC->getSelfStructDecl() != nullptr;
          if (isStructOrEnumContext) {
            VD->diagnose(diag::override_nonclass_decl)
                .highlight(OA->getLocation())
                .fixItRemove(OA->getRange());
          } else {
            VD->diagnose(diag::property_does_not_override, isClassContext)
                .highlight(OA->getLocation());
          }
          OA->setInvalid();
        }
      }
    }

    checkImplementationOnlyOverride(VD);

    if (VD->getDeclContext()->getSelfClassDecl()) {
      if (VD->getValueInterfaceType()->hasDynamicSelfType()) {
        if (VD->hasStorage())
          VD->diagnose(diag::dynamic_self_in_stored_property);
        else if (VD->isSettable(nullptr))
          VD->diagnose(diag::dynamic_self_in_mutable_property);
        else
          checkDynamicSelfType(VD, VD->getValueInterfaceType());
      }
    }
    
    checkForEmptyOptionSet(VD);

    // Now check all the accessors.
    VD->visitEmittedAccessors([&](AccessorDecl *accessor) {
      visit(accessor);
    });

    // If this var decl is a no implicit copy varDecl, error if its type is a
    // move only type. No implicit copy is redundant.
    //
    // NOTE: We do this here instead of TypeCheckAttr since types are not
    // completely type checked at that point.
    auto &DE = Ctx.Diags;
    if (auto attr = VD->getAttrs().getAttribute<NoImplicitCopyAttr>()) {
      if (auto *nom = VD->getInterfaceType()->getNominalOrBoundGenericNominal()) {
        if (!nom->canBeCopyable()) {
          DE.diagnose(attr->getLocation(),
                      diag::noimplicitcopy_attr_not_allowed_on_moveonlytype)
            .fixItRemove(attr->getRange());
        }
      }
    }

    // @_staticExclusiveOnly types cannot be put into 'var's, only 'let'.
    if (auto SD = VD->getInterfaceType()->getStructOrBoundGenericStruct()) {
      if (SD->getAttrs().hasAttribute<StaticExclusiveOnlyAttr>()) {
        auto isProtocolContext = isa<ProtocolDecl>(DC);

        if (isProtocolContext && !VD->supportsMutation()) {
          return;
        }

        if (VD->isLet()) {
          return;
        }

        auto diagMsg = isProtocolContext
                           ? diag::attr_static_exclusive_no_setters
                           : diag::attr_static_exclusive_only_let_only;

        Ctx.Diags.diagnoseWithNotes(
            VD->diagnose(diagMsg, VD->getInterfaceType()), [&]() {
              SD->diagnose(diag::attr_static_exclusive_only_type_nonmutating,
                           SD->getDeclaredInterfaceType());
            });
      }
    }
  }

  bool checkBoundInOutVarDecl(PatternBindingDecl *pbd, unsigned patternIndex,
                              const Pattern *p, VarDecl *vd) {
    // If our var decl doesn't have an initial value, error. We always want an
    // inout var decl to have an lvalue initial value that it is binding to.
    auto *expr = pbd->getInit(patternIndex);
    assert(expr && "Code assumes that we checked for validity");

    // Next make sure that our initial value was an lvalue.
    if (!isa<LoadExpr>(expr)) {
      vd->diagnose(diag::referencebindings_binding_must_be_to_lvalue, "inout");
      return false;
    }

    return true;
  }

  void visitPatternBindingDecl(PatternBindingDecl *PBD) {
    DeclContext *DC = PBD->getDeclContext();

    TypeChecker::checkDeclAttributes(PBD);

    bool isInSILMode = false;
    if (auto sourceFile = SF)
      isInSILMode = sourceFile->Kind == SourceFileKind::SIL;
    bool isTypeContext = DC->isTypeContext();

    for (auto i : range(PBD->getNumPatternEntries())) {
      const auto *entry = PBD->isFullyValidated(i)
                              ? &PBD->getPatternList()[i]
                              : PBD->getCheckedPatternBindingEntry(i);
      assert(entry && "No pattern binding entry?");

      const auto *Pat = PBD->getPattern(i);
      Pat->forEachVariable([&](VarDecl *var) {
        this->visitBoundVariable(var);

        auto markVarAndPBDInvalid = [PBD, var] {
          PBD->setInvalid();
          var->setInvalid();
        };

        if (PBD->isInitialized(i)) {
          // Add the attribute that preserves the "has an initializer" value
          // across module generation, as required for TBDGen.
          if (var->supportsInitialization() &&
              !var->getAttrs().hasAttribute<HasInitialValueAttr>()) {
            var->getAttrs().add(new (Ctx)
                                    HasInitialValueAttr(/*IsImplicit=*/true));
          }

          // If we fail to check the bound inout introducer, mark the variable
          // and pbd invalid().
          if (var->getIntroducer() == VarDecl::Introducer::InOut) {
            if (!checkBoundInOutVarDecl(PBD, i, Pat, var)) {
              markVarAndPBDInvalid();
            }
          }

          return;
        }

        // If this is a declaration without an initializer, reject code if
        // uninitialized vars are not allowed.
        if (isInSILMode) return;

        // If the variable has no storage, it never needs an initializer.
        if (!var->hasStorage())
          return;

        if (var->getAttrs().hasAttribute<SILGenNameAttr>())
          return;

        if (var->isInvalid() || PBD->isInvalid())
          return;

        // Properties with an opaque return type need an initializer to
        // determine their underlying type.
        if (var->getOpaqueResultTypeDecl()) {
          var->diagnose(diag::opaque_type_var_no_init);
        }

        // Non-member observing properties need an initializer.
        if (var->getWriteImpl() == WriteImplKind::StoredWithObservers &&
            !isTypeContext) {
          var->diagnose(diag::observingprop_requires_initializer);
          markVarAndPBDInvalid();
          return;
        }

        // Static/class declarations require an initializer unless in a
        // protocol.
        if (var->isStatic() && !isa<ProtocolDecl>(DC)) {
          // ...but don't enforce this for SIL or module interface files.
          switch (SF->Kind) {
          case SourceFileKind::Interface:
          case SourceFileKind::SIL:
            return;
          case SourceFileKind::DefaultArgument:
          case SourceFileKind::Main:
          case SourceFileKind::Library:
          case SourceFileKind::MacroExpansion:
            break;
          }

          var->diagnose(diag::static_requires_initializer,
                        var->getCorrectStaticSpelling(),
                        var->isLet());
          var->diagnose(diag::static_requires_initializer_add_init)
            .fixItInsert(Pat->getEndLoc(), " = <#initializer#>");
          markVarAndPBDInvalid();
          return;
        }

        // Global variables require an initializer in normal source files.
        if (DC->isModuleScopeContext()) {
          switch (SF->Kind) {
          case SourceFileKind::Main:
          case SourceFileKind::Interface:
          case SourceFileKind::SIL:
            return;
          case SourceFileKind::DefaultArgument:
          case SourceFileKind::Library:
          case SourceFileKind::MacroExpansion:
            break;
          }

          var->diagnose(diag::global_requires_initializer, var->isLet());
          var->diagnose(diag::static_requires_initializer_add_init)
            .fixItInsert(Pat->getEndLoc(), " = <#initializer#>");
          markVarAndPBDInvalid();
          return;
        }

        // Inout VarDecls need to have an initializer.
        if (var->getIntroducer() == VarDecl::Introducer::InOut) {
          var->diagnose(diag::referencebindings_binding_must_have_initial_value,
                        "inout");
          markVarAndPBDInvalid();
          return;
        }
      });
    }

    TypeChecker::checkDeclAttributes(PBD);

    checkAccessControl(PBD);

    checkExplicitAvailability(PBD);

    // If the initializers in the PBD aren't checked yet, do so now.
    for (auto i : range(PBD->getNumPatternEntries())) {
      if (!PBD->isInitialized(i))
        continue;

      if (!PBD->isInitializerChecked(i)) {
        TypeCheckExprOptions options;

        TypeChecker::typeCheckPatternBinding(PBD, i, /*patternType=*/Type(),
                                             options);
      }

      if (!PBD->isInvalid()) {
        auto *init = PBD->getInit(i);

        // If we're performing an binding to a weak or unowned variable from a
        // constructor call, emit a warning that the instance will be immediately
        // deallocated.
        diagnoseUnownedImmediateDeallocation(Ctx, PBD->getPattern(i),
                                             PBD->getEqualLoc(i),
                                             init);

        // Written placeholder types are banned in the signatures of pattern
        // bindings. If there's a valid initializer, try to offer its type
        // as a replacement.
        diagnoseWrittenPlaceholderTypes(Ctx, PBD->getPattern(i), init);

        // Trigger a request that will complete typechecking for the
        // initializer.
        (void) PBD->getCheckedAndContextualizedInit(i);

        if (auto *var = PBD->getSingleVar()) {
          if (var->hasAttachedPropertyWrapper())
            return;
        }

        if (!PBD->getDeclContext()->isLocalContext()) {
          (void) PBD->getInitializerIsolation(i);
        }
      }
    }

    if (auto *var = PBD->getSingleVar()) {

      // If this is an init accessor property with a default initializer,
      // make sure that it subsumes initializers of all of its "initializes"
      // stored properties.
      // FIXME: This should be requestified.
      auto *initAccessor = var->getAccessor(AccessorKind::Init);
      if (initAccessor && PBD->isInitialized(0)) {
        for (auto *property : initAccessor->getInitializedProperties()) {
          auto *propertyBinding = property->getParentPatternBinding();
          if (propertyBinding->isInitialized(0))
            propertyBinding->setInitializerSubsumed(0);
        }
      }

      // If we have a pure noncopyable type, we cannot have explicit read/set
      // accessors since this means that we cannot call mutating methods without
      // copying. We do not want to support types that one cannot define a
      // modify operation via a get/set or a modify.
      if (var->getTypeInContext()->isNoncopyable()) {
        if (auto *read = var->getAccessor(AccessorKind::Read)) {
          if (!read->isImplicit()) {
            if (auto *set = var->getAccessor(AccessorKind::Set)) {
              if (!set->isImplicit()) {
                var->diagnose(diag::noncopyable_cannot_have_read_set_accessor,
                              0);
                PBD->setInvalid();
                var->setInvalid();
                return;
              }
            }
          }
        }
      }
    }
  }

  void visitSubscriptDecl(SubscriptDecl *SD) {
    auto *DC = SD->getDeclContext();

    // Force creation of the generic signature.
    (void) SD->getGenericSignature();
    dumpGenericSignature(Ctx, SD);

    // Force requests that can emit diagnostics.
    (void) SD->getInterfaceType();

    if (!SD->isInvalid()) {
      TypeChecker::checkReferencedGenericParams(SD);
      checkGenericParams(SD);
      TypeChecker::checkProtocolSelfRequirements(SD);
    }

    TypeChecker::checkDeclAttributes(SD);

    checkAccessControl(SD);

    checkExplicitAvailability(SD);

    if (!checkOverrides(SD)) {
      // If a subscript has an override attribute but does not override
      // anything, complain.
      if (auto *OA = SD->getAttrs().getAttribute<OverrideAttr>()) {
        if (!SD->getOverriddenDecl()) {
          auto DC = SD->getDeclContext();
          auto isClassContext = DC->getSelfClassDecl() != nullptr;
          auto isStructOrEnumContext = DC->getSelfEnumDecl() != nullptr ||
                                       DC->getSelfStructDecl() != nullptr;
          if (isStructOrEnumContext) {
            SD->diagnose(diag::override_nonclass_decl)
                .highlight(OA->getLocation())
                .fixItRemove(OA->getRange());
          } else {
            SD->diagnose(diag::subscript_does_not_override, isClassContext)
                .highlight(OA->getLocation());
          }
          OA->setInvalid();
        }
      }
    }

    checkImplementationOnlyOverride(SD);

    // Compute these requests in case they emit diagnostics.
    (void) SD->isGetterMutating();
    (void) SD->isSetterMutating();
    (void) SD->getImplInfo();

    TypeChecker::checkParameterList(SD->getIndices(), SD);

    checkDefaultArguments(SD->getIndices());
    checkVariadicParameters(SD->getIndices(), SD);

    if (DC->getSelfClassDecl()) {
      checkDynamicSelfType(SD, SD->getValueInterfaceType());

      if (SD->getValueInterfaceType()->hasDynamicSelfType() &&
          SD->supportsMutation()) {
        SD->diagnose(diag::dynamic_self_in_mutable_subscript);
      }
    }

    // Reject "class" methods on actors.
    if (SD->getStaticSpelling() == StaticSpellingKind::KeywordClass &&
        DC->getSelfClassDecl() &&
        DC->getSelfClassDecl()->isActor()) {
      SD->diagnose(diag::class_subscript_not_in_class, false)
          .fixItReplace(SD->getStaticLoc(), "static");
    }

    // Reject noncopyable typed subscripts with read/set accessors since we
    // cannot define modify operations upon them without copying the read.
    if (SD->mapTypeIntoContext(SD->getElementInterfaceType())->isNoncopyable()) {
      if (auto *read = SD->getAccessor(AccessorKind::Read)) {
        if (!read->isImplicit()) {
          if (auto *set = SD->getAccessor(AccessorKind::Set)) {
            if (!set->isImplicit()) {
              SD->diagnose(diag::noncopyable_cannot_have_read_set_accessor,
                           1);
              SD->setInvalid();
              return;
            }
          }
        }
      }
    }

    // Now check all the accessors.
    SD->visitEmittedAccessors([&](AccessorDecl *accessor) {
      visit(accessor);
    });
  }

  void visitTypeAliasDecl(TypeAliasDecl *TAD) {
    // Force creation of the generic signature.
    (void) TAD->getGenericSignature();
    dumpGenericSignature(Ctx, TAD);

    // Force requests that can emit diagnostics.
    (void) TAD->getUnderlyingType();

    // Make sure to check the underlying type.
    
    TypeChecker::checkDeclAttributes(TAD);
    checkAccessControl(TAD);
    checkGenericParams(TAD);
  }
  
  void visitOpaqueTypeDecl(OpaqueTypeDecl *OTD) {
    // Force requests that can emit diagnostics.
    (void) OTD->getGenericSignature();

    TypeChecker::checkDeclAttributes(OTD);
    checkAccessControl(OTD);
  }
  
  void visitAssociatedTypeDecl(AssociatedTypeDecl *AT) {
    TypeChecker::checkDeclAttributes(AT);

    checkInheritanceClause(AT);
    auto *proto = AT->getProtocol();

    checkProtocolSelfRequirements(proto, AT);

    if (proto->isObjC()) {
      AT->diagnose(diag::associated_type_objc, AT->getName(), proto->getName());
    }

    checkAccessControl(AT);

    // Trigger the checking for overridden declarations.
    (void) AT->getOverriddenDecls();

    auto defaultType = AT->getDefaultDefinitionType();
    if (defaultType && !defaultType->hasError()) {
      // associatedtype X = X is invalid
      auto mentionsItself =
        defaultType.findIf([&](Type defaultType) {
          if (auto DMT = defaultType->getAs<DependentMemberType>()) {
            return (DMT->getAssocType() == AT &&
                    DMT->getBase()->isEqual(proto->getSelfInterfaceType()));
          }
          return false;
        });

      if (mentionsItself) {
        auto &DE = Ctx.Diags;
        DE.diagnose(AT->getDefaultDefinitionTypeRepr()->getLoc(),
                    diag::recursive_decl_reference, AT);
        AT->diagnose(diag::kind_declared_here, DescriptiveDeclKind::Type);
      }
    }

    // An associated type that was introduced after the protocol
    auto module = AT->getDeclContext()->getParentModule();
    if (!defaultType &&
        module->getResilienceStrategy() == ResilienceStrategy::Resilient &&
        AvailabilityInference::availableRange(proto, Ctx)
          .isSupersetOf(AvailabilityInference::availableRange(AT, Ctx))) {
      AT->diagnose(
          diag::resilient_associated_type_less_available_requires_default, AT);
    }
  }

  void checkUnsupportedNestedType(NominalTypeDecl *NTD) {
    auto *DC = NTD->getDeclContext();

    // We don't allow nested types inside inlinable contexts.
    auto kind = DC->getFragileFunctionKind();
    if (kind.kind != FragileFunctionKind::None) {
      NTD->diagnose(diag::local_type_in_inlinable_function, NTD->getName(),
                    kind.getSelector());
    }

    if (auto *parentDecl = DC->getSelfNominalTypeDecl()) {
      // We don't allow types to be nested within a tuple extension.
      if (isa<BuiltinTupleDecl>(parentDecl)) {
        NTD->diagnose(diag::tuple_extension_nested_type, NTD);
        return;
      }

      // We don't support protocols nested in generic contexts.
      // This includes protocols nested in other protocols.
      if (isa<ProtocolDecl>(NTD) && DC->isGenericContext()) {
        if (auto *OuterPD = DC->getSelfProtocolDecl())
          NTD->diagnose(diag::unsupported_nested_protocol_in_protocol, NTD,
                        OuterPD);
        else
          NTD->diagnose(diag::unsupported_nested_protocol_in_generic, NTD);

        NTD->setInvalid();
        return;
      }

      // We don't support nested types in protocols.
      if (auto proto = dyn_cast<ProtocolDecl>(parentDecl)) {
        if (DC->getExtendedProtocolDecl()) {
          NTD->diagnose(diag::unsupported_type_nested_in_protocol_extension, NTD,
                        proto);
        } else {
          NTD->diagnose(diag::unsupported_type_nested_in_protocol, NTD, proto);
        }
        NTD->setInvalid();
      }
    }

    // We don't support nested types in generic functions yet.
    if (NTD->isGenericContext()) {
      if (DC->isLocalContext() && DC->isGenericContext()) {
        // A local generic context is a generic function.
        if (auto AFD = dyn_cast<AbstractFunctionDecl>(DC)) {
          NTD->diagnose(diag::unsupported_type_nested_in_generic_function, NTD,
                        AFD);
        } else {
          NTD->diagnose(diag::unsupported_type_nested_in_generic_closure, NTD);
        }
        NTD->setInvalid();
      }
    }
  }

  void visitEnumDecl(EnumDecl *ED) {
    checkUnsupportedNestedType(ED);

    // Force creation of the generic signature.
    (void) ED->getGenericSignature();
    dumpGenericSignature(Ctx, ED);

    // Temporary restriction until we figure out pattern matching and
    // enum case construction with packs.
    if (auto genericSig = ED->getGenericSignature()) {
      for (auto paramTy : genericSig.getGenericParams()) {
        if (paramTy->isParameterPack()) {
          ED->diagnose(diag::enum_with_pack);
          break;
        }
      }
    }

    // FIXME: Remove this once we clean up the mess involving raw values.
    (void) ED->getInterfaceType();

    checkGenericParams(ED);

    // Check for circular inheritance of the raw type.
    (void) ED->hasCircularRawValue();

    TypeChecker::checkDeclAttributes(ED);

    for (Decl *member : ED->getMembers())
      visit(member);

    checkInheritanceClause(ED);
    diagnoseMissingExplicitSendable(ED);
    checkAccessControl(ED);

    TypeChecker::checkPatternBindingCaptures(ED);

    auto &DE = Ctx.Diags;
    if (auto rawTy = ED->getRawType()) {
      // The raw type must be one of the blessed literal convertible types.
      if (!computeAutomaticEnumValueKind(ED)) {
        if (!rawTy->is<ErrorType>()) {
          DE.diagnose(ED->getInherited().getStartLoc(),
                      diag::raw_type_not_literal_convertible, rawTy);
        }
      }
      
      // We need at least one case to have a raw value.
      if (ED->getAllElements().empty()) {
        DE.diagnose(ED->getInherited().getStartLoc(),
                    diag::empty_enum_raw_type);
      }
    }

    // -----
    // NonCopyableChecks
    //

    if (ED->isObjC() && !ED->canBeCopyable()) {
      ED->diagnose(diag::noncopyable_objc_enum);
    }

    checkExplicitAvailability(ED);

    TypeChecker::checkDeclCircularity(ED);

    TypeChecker::checkConformancesInContext(ED);

    // If our enum is marked as move only, it cannot be indirect or have any
    // indirect cases.
    if (!ED->canBeCopyable()) {
      if (ED->isIndirect())
        ED->diagnose(diag::noncopyable_enums_do_not_support_indirect,
                     ED->getBaseIdentifier());
      for (auto *elt : ED->getAllElements()) {
        if (elt->isIndirect()) {
          elt->diagnose(diag::noncopyable_enums_do_not_support_indirect,
                        ED->getBaseIdentifier());
        }
      }
    }
  }

  void visitStructDecl(StructDecl *SD) {
    checkUnsupportedNestedType(SD);

    // Force creation of the generic signature.
    (void) SD->getGenericSignature();
    dumpGenericSignature(Ctx, SD);

    checkGenericParams(SD);

    // Force lowering of stored properties.
    (void) SD->getStoredProperties();

    TypeChecker::addImplicitConstructors(SD);

    installCodingKeysIfNecessary(SD);
    installDistributedActorIfNecessary(SD);

    TypeChecker::checkDeclAttributes(SD);

    for (Decl *Member : SD->getMembers()) {
      visit(Member);
    }

    TypeChecker::checkPatternBindingCaptures(SD);

    checkInheritanceClause(SD);
    diagnoseMissingExplicitSendable(SD);

    checkAccessControl(SD);

    checkExplicitAvailability(SD);

    TypeChecker::checkDeclCircularity(SD);

    TypeChecker::checkConformancesInContext(SD);
  }

  /// Check whether the given properties can be @NSManaged in this class.
  static bool propertiesCanBeNSManaged(ClassDecl *classDecl,
                                       ArrayRef<VarDecl *> vars) {
    // Check whether we have an Objective-C-defined class in our
    // inheritance chain.
    if (!classDecl->checkAncestry(AncestryFlags::ClangImported))
      return false;

    // If all of the variables are @objc, we can use @NSManaged.
    for (auto var : vars) {
      if (!var->isObjC())
        return false;
    }

    // Okay, we can use @NSManaged.
    return true;
  }

  /// Check that all stored properties have in-class initializers.
  void checkRequiredInClassInits(ClassDecl *cd) {
    // Initializers may be omitted from property declarations in module
    // interface files so don't diagnose in them.
    SourceFile *sourceFile = cd->getDeclContext()->getParentSourceFile();
    if (sourceFile && sourceFile->Kind == SourceFileKind::Interface)
      return;

    ClassDecl *source = nullptr;
    for (auto member : cd->getMembers()) {
      auto pbd = dyn_cast<PatternBindingDecl>(member);
      if (!pbd)
        continue;

      if (pbd->isStatic() || !pbd->hasStorage() || 
          pbd->isDefaultInitializable() || pbd->isInvalid())
        continue;

      // The variables in this pattern have not been
      // initialized. Diagnose the lack of initial value.
      pbd->setInvalid();
      SmallVector<VarDecl *, 4> vars;
      for (auto idx : range(pbd->getNumPatternEntries()))
        pbd->getPattern(idx)->collectVariables(vars);
      bool suggestNSManaged = propertiesCanBeNSManaged(cd, vars);
      switch (vars.size()) {
      case 0:
        llvm_unreachable("should have been marked invalid");

      case 1:
        pbd->diagnose(diag::missing_in_class_init_1, vars[0]->getName(),
                      suggestNSManaged);
        break;

      case 2:
        pbd->diagnose(diag::missing_in_class_init_2, vars[0]->getName(),
                      vars[1]->getName(), suggestNSManaged);
        break;

      case 3:
        pbd->diagnose(diag::missing_in_class_init_3plus, vars[0]->getName(),
                      vars[1]->getName(), vars[2]->getName(), false,
                      suggestNSManaged);
        break;

      default:
        pbd->diagnose(diag::missing_in_class_init_3plus, vars[0]->getName(),
                      vars[1]->getName(), vars[2]->getName(), true,
                      suggestNSManaged);
        break;
      }

      // Figure out where this requirement came from.
      if (!source) {
        source = cd;
        while (true) {
          // If this class had the 'requires_stored_property_inits'
          // attribute, diagnose here.
          if (source->getAttrs().
                hasAttribute<RequiresStoredPropertyInitsAttr>())
            break;

          // If the superclass doesn't require in-class initial
          // values, the requirement was introduced at this point, so
          // stop here.
          auto superclass = source->getSuperclassDecl();
          if (!superclass->requiresStoredPropertyInits())
            break;

          // Keep looking.
          source = superclass;
        }
      }

      // Add a note describing why we need an initializer.
      source->diagnose(diag::requires_stored_property_inits_here,
                       source->getDeclaredType(), cd == source,
                       suggestNSManaged);
    }
  }

  static void diagnoseInverseOnClass(ClassDecl *decl) {
    auto &ctx = decl->getASTContext();

    InvertibleProtocolSet inverses;
    bool anyObject = false;
    (void) getDirectlyInheritedNominalTypeDecls(decl, inverses, anyObject);

    for (auto ip : inverses) {
      // Allow ~Copyable when MoveOnlyClasses is enabled
      if (ip == InvertibleProtocolKind::Copyable
          && ctx.LangOpts.hasFeature(Feature::MoveOnlyClasses))
        continue;

      ctx.Diags.diagnose(decl->getLoc(),
                         diag::inverse_on_class,
                         getProtocolName(getKnownProtocolKind(ip)),
                         decl->isAnyActor());
    }
  }

  void visitClassDecl(ClassDecl *CD) {
    checkUnsupportedNestedType(CD);

    // Force creation of the generic signature.
    (void) CD->getGenericSignature();
    dumpGenericSignature(Ctx, CD);

    checkGenericParams(CD);

    // Check for circular inheritance.
    (void)CD->getSuperclassDecl();

    if (auto superclass = CD->getSuperclassDecl()) {
      // Actors cannot have superclasses, nor can they be superclasses.
      if (CD->isActor() && !superclass->isNSObject())
        CD->diagnose(diag::actor_inheritance,
                     /*distributed=*/CD->isDistributedActor());
      else if (superclass->isActor())
        CD->diagnose(diag::actor_inheritance,
                     /*distributed=*/CD->isDistributedActor());

      // Enforce a temporary restriction on inheriting from a superclass
      // type with a pack, until we figure out the semantics of method
      // overrides in these situations.
      if (auto genericSig = superclass->getGenericSignature()) {
        for (auto paramTy : genericSig.getGenericParams()) {
          if (paramTy->isParameterPack()) {
            CD->diagnose(diag::superclass_with_pack);
            break;
          }
        }
      }
    }

    // Check distributed actors
    TypeChecker::checkDistributedActor(SF, CD);

    // Force lowering of stored properties.
    (void) CD->getStoredProperties();

    // Force creation of an implicit destructor, if any.
    (void) CD->getDestructor();

    TypeChecker::checkDeclAttributes(CD);

    if (CD->isActor())
      TypeChecker::checkConcurrencyAvailability(CD->getLoc(), CD);

    for (Decl *Member : CD->getABIMembers())
      visit(Member);

    TypeChecker::checkPatternBindingCaptures(CD);

    // If this class requires all of its stored properties to have
    // in-class initializers, diagnose this now.
    if (CD->requiresStoredPropertyInits())
      checkRequiredInClassInits(CD);

    // Compute @objc for each superclass member, to catch selector
    // conflicts resulting from unintended overrides.
    //
    // FIXME: This should be a request so we can measure how much work
    // we're doing here.
    CD->walkSuperclasses(
      [&](ClassDecl *superclass) {
        if (!superclass->getParentSourceFile())
          return TypeWalker::Action::Stop;

        for (auto *member : superclass->getMembers()) {
          if (auto *vd = dyn_cast<ValueDecl>(member)) {
            if (vd->isSyntacticallyOverridable()) {
              (void) vd->isObjC();
            }
          }
        }

        return TypeWalker::Action::Continue;
      });

    if (auto superclassTy = CD->getSuperclass()) {
      ClassDecl *Super = superclassTy->getClassOrBoundGenericClass();
      bool isInvalidSuperclass = false;

      if (Super->isFinal()) {
        CD->diagnose(diag::inheritance_from_final_class,
                     Super->getDeclaredType());
        // FIXME: should this really be skipping the rest of decl-checking?
        return;
      }

      if (Super->hasClangNode() && Super->getGenericParams()
          && superclassTy->hasTypeParameter()) {
        CD->diagnose(diag::inheritance_from_unspecialized_objc_generic_class,
                     Super->getName());
      }

      switch (Super->getForeignClassKind()) {
      case ClassDecl::ForeignKind::Normal:
        break;
      case ClassDecl::ForeignKind::CFType:
        CD->diagnose(diag::inheritance_from_cf_class, Super->getName());
        isInvalidSuperclass = true;
        break;
      case ClassDecl::ForeignKind::RuntimeOnly:
        CD->diagnose(diag::inheritance_from_objc_runtime_visible_class,
                     Super->getName());
        isInvalidSuperclass = true;
        break;
      }

      if (!isInvalidSuperclass && Super->hasMissingVTableEntries() &&
          !Super->isResilient(CD->getParentModule(),
                              ResilienceExpansion::Minimal)) {
        auto *superFile = Super->getModuleScopeContext();
        if (auto *serialized = dyn_cast<SerializedASTFile>(superFile)) {
          const auto effVersion =
              Ctx.LangOpts.EffectiveLanguageVersion;
          if (serialized->getLanguageVersionBuiltWith() != effVersion) {
            CD->diagnose(
                diag::
                    inheritance_from_class_with_missing_vtable_entries_versioned,
                Super->getName(), serialized->getLanguageVersionBuiltWith(),
                effVersion);
            isInvalidSuperclass = true;
          }
        }
        if (!isInvalidSuperclass) {
          CD->diagnose(diag::inheritance_from_class_with_missing_vtable_entries,
                       Super->getName());
          for (const auto &member : Super->getMembers())
            if (const auto *MMD = dyn_cast<MissingMemberDecl>(member))
              CD->diagnose(diag::inheritance_from_class_with_missing_vtable_entry,
                           MMD->getName());
          isInvalidSuperclass = true;
        }
      }

      if (!Ctx.isAccessControlDisabled()) {
        // Require the superclass to be open if this is outside its
        // defining module.  But don't emit another diagnostic if we
        // already complained about the class being inherently
        // un-subclassable.
        if (!isInvalidSuperclass &&
            !Super->hasOpenAccess(CD->getDeclContext()) &&
            Super->getModuleContext() != CD->getModuleContext()) {
          CD->diagnose(diag::superclass_not_open, superclassTy);
          isInvalidSuperclass = true;
        }

        // Require superclasses to be open if the subclass is open.
        // This is a restriction we can consider lifting in the future,
        // e.g. to enable a "sealed" superclass whose subclasses are all
        // of one of several alternatives.
        if (!isInvalidSuperclass &&
            CD->getFormalAccess() == AccessLevel::Open &&
            Super->getFormalAccess() != AccessLevel::Open) {
          CD->diagnose(diag::superclass_of_open_not_open, superclassTy);
          Super->diagnose(diag::superclass_here);
        }
      }
    }

    checkInheritanceClause(CD);
    diagnoseMissingExplicitSendable(CD);

    checkAccessControl(CD);

    checkExplicitAvailability(CD);

    TypeChecker::checkDeclCircularity(CD);

    TypeChecker::checkConformancesInContext(CD);

    maybeDiagnoseClassWithoutInitializers(CD);

    diagnoseInverseOnClass(CD);
  }

  void visitProtocolDecl(ProtocolDecl *PD) {
    checkUnsupportedNestedType(PD);

    TypeChecker::checkDeclAttributes(PD);

    // Check that all named primary associated types are valid.
    if (!PD->getPrimaryAssociatedTypeNames().empty())
      (void) PD->getPrimaryAssociatedTypes();

    // Explicitly compute the requirement signature to detect errors.
    // Do this before visiting members, to avoid a request cycle if
    // a member references another declaration whose generic signature
    // has a conformance requirement to this protocol.
    auto reqSig = PD->getRequirementSignature();

    // Check the members.
    for (auto Member : PD->getMembers())
      visit(Member);

    checkAccessControl(PD);

    checkInheritanceClause(PD);

    checkProtocolRefinementRequirements(PD);

    TypeChecker::checkDeclCircularity(PD);
    if (PD->isResilient())
      if (!SF || SF->Kind != SourceFileKind::Interface)
        TypeChecker::inferDefaultWitnesses(PD);

    if (Ctx.TypeCheckerOpts.DebugGenericSignatures) {
      auto sig = PD->getRequirementSignature();
      PD->dumpRef(llvm::errs());
      llvm::errs() << "\n";
      llvm::errs() << "Requirement signature: ";
      PrintOptions Opts;
      Opts.ProtocolQualifiedDependentMemberTypes = true;
      Opts.PrintInverseRequirements =
          !Ctx.TypeCheckerOpts.DebugInverseRequirements;
      sig.print(PD, llvm::errs(), Opts);
      llvm::errs() << "\n";
    }

    if (!reqSig.getErrors()) {
      // Always verify signatures, even if building without asserts.
      //
      // An incorrect signature indicates a serious problem which can cause
      // miscompiles or inadvertent ABI dependencies on compiler bugs, so
      // we really want to avoid letting one slip by.
      PD->getGenericSignature().verify(reqSig.getRequirements());
    }

    checkExplicitAvailability(PD);
  }

  void visitVarDecl(VarDecl *VD) {
    // Delay type-checking on VarDecls until we see the corresponding
    // PatternBindingDecl.
  }

  /// FIXME: This is an egregious hack to turn off availability checking
  /// for specific functions that were missing availability in older versions
  /// of existing libraries that we must nonetheless still support.
  static bool hasHistoricallyWrongAvailability(FuncDecl *func) {
    return func->getName().isCompoundName("swift_deletedAsyncMethodError", { });
  }

  void visitFuncDecl(FuncDecl *FD) {
    // Force these requests in case they emit diagnostics.
    (void) FD->getInterfaceType();
    (void) FD->getOperatorDecl();
    (void) FD->getDynamicallyReplacedDecl();
    
    dumpGenericSignature(Ctx, FD);

    if (!isa<AccessorDecl>(FD)) {
      if (!FD->isInvalid()) {
        checkGenericParams(FD);
        TypeChecker::checkReferencedGenericParams(FD);
        TypeChecker::checkProtocolSelfRequirements(FD);
      }

      checkAccessControl(FD);

      TypeChecker::checkParameterList(FD->getParameters(), FD);
    }

    TypeChecker::checkDeclAttributes(FD);
    TypeChecker::checkDistributedFunc(FD);

    if (!checkOverrides(FD)) {
      // If a method has an 'override' keyword but does not
      // override anything, complain.
      if (auto *OA = FD->getAttrs().getAttribute<OverrideAttr>()) {
        if (!FD->getOverriddenDecl()) {
          auto DC = FD->getDeclContext();
          auto isClassContext = DC->getSelfClassDecl() != nullptr;
          auto isStructOrEnumContext = DC->getSelfEnumDecl() != nullptr ||
                                       DC->getSelfStructDecl() != nullptr;
          if (isStructOrEnumContext) {
            FD->diagnose(diag::override_nonclass_decl)
                .highlight(OA->getLocation())
                .fixItRemove(OA->getRange());
          } else {
            FD->diagnose(diag::method_does_not_override, isClassContext)
                .highlight(OA->getLocation());
          }
          OA->setInvalid();
        }
      }
    }

    checkImplementationOnlyOverride(FD);

    if (FD->getAsyncLoc().isValid() &&
        !hasHistoricallyWrongAvailability(FD))
      TypeChecker::checkConcurrencyAvailability(FD->getAsyncLoc(), FD);
    
    if (FD->getDeclContext()->isLocalContext()) {
      // Check local function bodies right away.
      (void)FD->getTypecheckedBody();
      TypeChecker::computeCaptures(FD);
    } else if (!FD->isBodySkipped()) {
      addDelayedFunction(FD);
    }

    checkExplicitAvailability(FD);

    // Skip this for accessors, since we should have diagnosed the
    // storage itself.
    if (!isa<AccessorDecl>(FD))
      if (FD->getDeclContext()->getSelfClassDecl())
        checkDynamicSelfType(FD, FD->getResultInterfaceType());

    checkDefaultArguments(FD->getParameters());
    checkVariadicParameters(FD->getParameters(), FD);

    // Validate 'static'/'class' on functions in extensions.
    auto StaticSpelling = FD->getStaticSpelling();
    if (StaticSpelling != StaticSpellingKind::None &&
        isa<ExtensionDecl>(FD->getDeclContext())) {
      if (auto *NTD = FD->getDeclContext()->getSelfNominalTypeDecl()) {
        if (!isa<ClassDecl>(NTD)) {
          if (StaticSpelling == StaticSpellingKind::KeywordClass) {
            FD->diagnose(diag::class_func_not_in_class, false)
                .fixItReplace(FD->getStaticLoc(), "static");
            NTD->diagnose(diag::extended_type_declared_here);
          }
        }
      }
    }

    // Reject "class" methods on actors.
    if (StaticSpelling == StaticSpellingKind::KeywordClass &&
        FD->getDeclContext()->getSelfClassDecl() &&
        FD->getDeclContext()->getSelfClassDecl()->isActor()) {
      FD->diagnose(diag::class_func_not_in_class, false)
          .fixItReplace(FD->getStaticLoc(), "static");
    }

    // Member functions need some special validation logic.
    if (FD->getDeclContext()->isTypeContext()) {
      if (FD->isOperator() && !isMemberOperator(FD, nullptr)) {
        auto selfNominal = FD->getDeclContext()->getSelfNominalTypeDecl();
        auto isProtocol = isa_and_nonnull<ProtocolDecl>(selfNominal);
        // We did not find 'Self'. Complain.
        FD->diagnose(diag::operator_in_unrelated_type,
                     FD->getDeclContext()->getDeclaredInterfaceType(),
                     isProtocol, FD);
      }
    }

    // If the function is exported to C, it must be representable in (Obj-)C.
    // FIXME: This needs to be moved to its own request if we want to
    // productize @_cdecl.
    if (auto CDeclAttr = FD->getAttrs().getAttribute<swift::CDeclAttr>()) {
      std::optional<ForeignAsyncConvention> asyncConvention;
      std::optional<ForeignErrorConvention> errorConvention;
      ObjCReason reason(ObjCReason::ExplicitlyCDecl, CDeclAttr);
      if (isRepresentableInObjC(FD, reason, asyncConvention, errorConvention)) {
        if (FD->hasAsync()) {
          FD->setForeignAsyncConvention(*asyncConvention);
          Ctx.Diags.diagnose(
              CDeclAttr->getLocation(), diag::attr_decl_async,
              CDeclAttr->getAttrName(), FD->getDescriptiveKind());
        } else if (FD->hasThrows()) {
          FD->setForeignErrorConvention(*errorConvention);
          Ctx.Diags.diagnose(CDeclAttr->getLocation(), diag::cdecl_throws);
        }
      } else {
        reason.setAttrInvalid();
      }
    }

    TypeChecker::checkObjCImplementation(FD);
  }

  void visitModuleDecl(ModuleDecl *) { }

  void visitEnumCaseDecl(EnumCaseDecl *ECD) {
    // The type-checker doesn't care about how these are grouped.
  }

  void visitEnumElementDecl(EnumElementDecl *EED) {
    (void) EED->getInterfaceType();
    auto *ED = EED->getParentEnum();

    TypeChecker::checkDeclAttributes(EED);

    if (auto *PL = EED->getParameterList()) {
      TypeChecker::checkParameterList(PL, EED);

      checkDefaultArguments(PL);
      checkVariadicParameters(PL, EED);
    }

    auto &DE = Ctx.Diags;
    // We don't yet support raw values on payload cases.
    if (EED->hasAssociatedValues()) {
      if (auto rawTy = ED->getRawType()) {
        EED->diagnose(diag::enum_with_raw_type_case_with_argument);
        DE.diagnose(ED->getInherited().getStartLoc(),
                    diag::enum_raw_type_here, rawTy);
        EED->setInvalid();
      }
    }

    // Force the raw value expr then yell if our parent doesn't have a raw type.
    Expr *RVE = EED->getRawValueExpr();
    if (RVE && !ED->hasRawType()) {
      DE.diagnose(RVE->getLoc(), diag::enum_raw_value_without_raw_type);
      EED->setInvalid();
    }

    checkAccessControl(EED);
  }

  /// The extended type must be '(repeat each Element)' or a generic
  /// typealias with that underlying type.
  static bool isValidExtendedTypeForTupleExtension(ExtensionDecl *ED) {
    auto extType = ED->getExtendedType();
    auto selfType = ED->getSelfInterfaceType();

    // The extended type must be '(repeat each Element)'.
    if (extType->is<UnboundGenericType>()) {
      auto *extDecl = extType->getAnyGeneric();
      if (!extDecl->getDeclaredInterfaceType()->isEqual(selfType))
        return false;
    } else if (extType->is<TupleType>()) {
      if (!extType->isEqual(selfType))
        return false;
    } else {
      assert(false && "Huh?");
    }

    return true;
  }

  /// Compiler-known marker protocols cannot be extended with members.
  static void diagnoseExtensionOfMarkerProtocol(ExtensionDecl *ED) {
    auto *nominal = ED->getExtendedNominal();
    if (auto *proto = dyn_cast_or_null<ProtocolDecl>(nominal)) {
      if (proto->getKnownProtocolKind() && proto->isMarkerProtocol()) {
        ED->diagnose(diag::cannot_extend_nominal, nominal);
      }
    }
  }

  static void checkTupleExtension(ExtensionDecl *ED) {
    auto *nominal = ED->getExtendedNominal();
    if (!nominal || !isa<BuiltinTupleDecl>(nominal))
      return;

    auto &ctx = ED->getASTContext();

    if (!ctx.LangOpts.hasFeature(Feature::TupleConformances)) {
      ED->diagnose(diag::experimental_tuple_extension);
    }

    if (!isValidExtendedTypeForTupleExtension(ED)) {
      ED->diagnose(diag::tuple_extension_wrong_type,
                   ED->getSelfInterfaceType());
    }

    // Make sure we declare conformance to exactly one protocol.
    auto protocols = ED->getLocalProtocols();
    if (protocols.size() != 1) {
      ED->diagnose(diag::tuple_extension_one_conformance);
      return;
    }

    auto *protocol = protocols[0];

    // Validate the generic signature.
    auto genericSig = ED->getGenericSignature();

    // We have a single parameter pack by construction, if we
    // get this far.
    auto params = genericSig.getGenericParams();
    assert(params.size() == 1);
    assert(params[0]->isParameterPack());

    // Make sure we have a single conditional requirement,
    // 'repeat each Element: P', where 'Element' is our pack
    // and 'P' is the protocol above, and nothing else.
    bool foundRequirement = false;
    auto reqs = genericSig.getRequirements();
    for (auto req : reqs) {
      if (req.getKind() == RequirementKind::Conformance &&
          req.getFirstType()->isEqual(params[0]) &&
          req.getProtocolDecl() == protocol) {
        assert(!foundRequirement);
        foundRequirement = true;
      } else {
        if (req.getKind() == RequirementKind::Layout) {
          ED->diagnose(diag::tuple_extension_extra_requirement,
                       req.getFirstType(),
                       unsigned(RequirementKind::Conformance),
                       ctx.getAnyObjectType());
        } else {
          ED->diagnose(diag::tuple_extension_extra_requirement,
                       req.getFirstType(),
                       unsigned(req.getKind()),
                       req.getSecondType());
        }
      }
    }

    if (!foundRequirement) {
      ED->diagnose(diag::tuple_extension_missing_requirement,
                   params[0], protocol->getDeclaredInterfaceType());
    }
  }

  void visitExtensionDecl(ExtensionDecl *ED) {
    // Produce any diagnostics for the extended type.
    auto extType = ED->getExtendedType();

    auto *nominal = ED->getExtendedNominal();

    if (nominal == nullptr) {
      const bool wasAlreadyInvalid = ED->isInvalid();
      ED->setInvalid();
      if (!extType->hasError() && extType->getAnyNominal()) {
        auto canExtType = extType->getCanonicalType();
        if (auto existential = canExtType->getAs<ExistentialType>()) {
          ED->diagnose(diag::unsupported_existential_extension, extType)
              .highlight(ED->getExtendedTypeRepr()->getSourceRange());
          ED->diagnose(diag::invalid_extension_rewrite,
                       existential->getConstraintType())
              .fixItReplace(ED->getExtendedTypeRepr()->getSourceRange(),
                            existential->getConstraintType()->getString());
          return;
        }

        // If we've got here, then we have some kind of extension of a prima
        // facie non-nominal type.  This can come up when we're projecting
        // typealiases out of bound generic types.
        //
        // struct Array<T> { typealias Indices = Range<Int> }
        // extension Array.Indices.Bound {}
        //
        // Offer to rewrite it to the underlying nominal type.
        if (canExtType.getPointer() != extType.getPointer()) {
          ED->diagnose(diag::invalid_nominal_extension, extType, canExtType)
              .highlight(ED->getExtendedTypeRepr()->getSourceRange());
          ED->diagnose(diag::invalid_extension_rewrite, canExtType)
              .fixItReplace(ED->getExtendedTypeRepr()->getSourceRange(),
                            canExtType->getString());
          return;
        }
      }

      if (!wasAlreadyInvalid) {
        // If nothing else applies, fall back to a generic diagnostic.
        ED->diagnose(diag::non_nominal_extension, extType);
      }

      return;
    }

    // Record a dependency from TypeCheckSourceFileRequest to
    // ExtendedNominalRequest, since the call to getExtendedNominal()
    // above doesn't record a dependency when reading a cached value.
    ED->computeExtendedNominal();

    if (!extType->hasError()) {
      // The first condition catches syntactic forms like
      //     protocol A & B { ... } // may be protocols or typealiases
      // The second condition also looks through typealiases and catches
      //    typealias T = P1 & P2 // P2 is a refined protocol of P1
      //    extension T { ... }
      // However, it is trickier to catch cases like
      //    typealias T = P2 & P1 // P2 is a refined protocol of P1
      //    extension T { ... }
      // so we don't do that here.
      auto extTypeRepr = ED->getExtendedTypeRepr();
      auto *extTypeNominal = extType->getAnyNominal();
      bool firstNominalIsNotMostSpecific =
        extTypeNominal && extTypeNominal != nominal;
      if ((extTypeRepr && isa<CompositionTypeRepr>(extTypeRepr))
          || firstNominalIsNotMostSpecific) {
        auto diag = ED->diagnose(diag::composition_in_extended_type,
                                 nominal->getDeclaredType());
        diag.highlight(extTypeRepr->getSourceRange());
        if (firstNominalIsNotMostSpecific) {
          diag.flush();
          Type mostSpecificProtocol = extTypeNominal->getDeclaredType();
          ED->diagnose(diag::composition_in_extended_type_alternative,
                       mostSpecificProtocol)
            .fixItReplace(extTypeRepr->getSourceRange(),
                          mostSpecificProtocol->getString());
        } else {
          diag.fixItReplace(extTypeRepr->getSourceRange(),
                            nominal->getDeclaredType()->getString());
        }
      }
    }

    // Produce any diagnostics for the generic signature.
    (void) ED->getGenericSignature();
    dumpGenericSignature(Ctx, ED);

    checkInheritanceClause(ED);

    diagnoseRetroactiveConformances(ED, Ctx.Diags);

    // Only generic and protocol types are permitted to have
    // trailing where clauses.
    if (auto trailingWhereClause = ED->getTrailingWhereClause()) {
      if (!ED->getGenericParams() && !ED->isInvalid()) {
        ED->diagnose(diag::extension_nongeneric_trailing_where,
                     nominal->getDeclaredType())
          .highlight(trailingWhereClause->getSourceRange());
      }
    }

    checkGenericParams(ED);

    TypeChecker::checkDeclAttributes(ED);

    // If this is an @_objcImplementation of a class, set up some aspects of the
    // class.
    if (auto CD = dyn_cast_or_null<ClassDecl>(ED->getImplementedObjCDecl())) {
      // Force lowering of stored properties.
      (void) CD->getStoredProperties();

      // Force creation of an implicit destructor, if any.
      (void) CD->getDestructor();
      
      // FIXME: Should we duplicate any other logic from visitClassDecl()?
    }

    TypeChecker::checkObjCImplementation(ED);

    for (Decl *Member : ED->getMembers())
      visit(Member);

    TypeChecker::checkPatternBindingCaptures(ED);

    TypeChecker::checkConformancesInContext(ED);

    checkAccessControl(ED);

    checkExplicitAvailability(ED);

    TypeChecker::checkDistributedActor(SF, nominal);

    diagnoseExtensionOfMarkerProtocol(ED);

    checkTupleExtension(ED);

    checkExtensionAddsSoloInvertibleProtocol(ED);
  }

  void visitTopLevelCodeDecl(TopLevelCodeDecl *TLCD) {
    // See swift::performTypeChecking for TopLevelCodeDecl handling.
    llvm_unreachable("TopLevelCodeDecls are handled elsewhere");
  }
  
  void visitIfConfigDecl(IfConfigDecl *ICD) {
    // The active members of the #if block will be type checked along with
    // their enclosing declaration.
    TypeChecker::checkDeclAttributes(ICD);
  }

  void visitPoundDiagnosticDecl(PoundDiagnosticDecl *PDD) {
    if (PDD->hasBeenEmitted()) { return; }
    PDD->markEmitted();
    Ctx.Diags
        .diagnose(PDD->getMessage()->getStartLoc(),
                  PDD->isError() ? diag::pound_error : diag::pound_warning,
                  PDD->getMessage()->getValue())
        .highlight(PDD->getMessage()->getSourceRange());
  }

  void visitConstructorDecl(ConstructorDecl *CD) {
    // Force creation of the generic signature.
    (void) CD->getGenericSignature();
    dumpGenericSignature(Ctx, CD);

    // Compute these requests in case they emit diagnostics.
    (void) CD->getInterfaceType();
    (void) CD->getInitKind();

    if (!CD->isInvalid()) {
      checkGenericParams(CD);
      TypeChecker::checkReferencedGenericParams(CD);
      TypeChecker::checkProtocolSelfRequirements(CD);
    }

    TypeChecker::checkDeclAttributes(CD);
    TypeChecker::checkParameterList(CD->getParameters(), CD);

    if (CD->getAsyncLoc().isValid())
      TypeChecker::checkConcurrencyAvailability(CD->getAsyncLoc(), CD);

    // Check whether this initializer overrides an initializer in its
    // superclass.
    if (!checkOverrides(CD)) {
      auto DC = CD->getDeclContext();
      auto isClassContext = DC->getSelfClassDecl() != nullptr;
      auto isStructOrEnumContext = DC->getSelfEnumDecl() != nullptr ||
                                   DC->getSelfStructDecl() != nullptr;
      // If an initializer has an override attribute but does not override
      // anything or overrides something that doesn't need an 'override'
      // keyword (e.g., a convenience initializer), complain.
      // anything, or overrides something that complain.
      if (auto *attr = CD->getAttrs().getAttribute<OverrideAttr>()) {
        if (!CD->getOverriddenDecl()) {
          if (isStructOrEnumContext) {
            CD->diagnose(diag::override_nonclass_decl)
                .highlight(attr->getLocation())
                .fixItRemove(attr->getRange());
          } else {
            CD->diagnose(diag::initializer_does_not_override, isClassContext)
                .highlight(attr->getLocation());
          }
          attr->setInvalid();
        } else if (attr->isImplicit()) {
          // Don't diagnose implicit attributes.
        } else if (overrideRequiresKeyword(CD->getOverriddenDecl())
                     == OverrideRequiresKeyword::Never) {
          // Special case: we are overriding a 'required' initializer, so we
          // need (only) the 'required' keyword.
          if (cast<ConstructorDecl>(CD->getOverriddenDecl())->isRequired()) {
            if (CD->getAttrs().hasAttribute<RequiredAttr>()) {
              CD->diagnose(diag::required_initializer_override_keyword)
                  .fixItRemove(attr->getLocation());
            } else {
              CD->diagnose(diag::required_initializer_override_wrong_keyword)
                  .fixItReplace(attr->getLocation(), "required");
              CD->getAttrs().add(new (Ctx) RequiredAttr(/*IsImplicit=*/true));
            }

            auto *reqInit =
                findNonImplicitRequiredInit(CD->getOverriddenDecl());
            reqInit->diagnose(diag::overridden_required_initializer_here);
          } else {
            // We tried to override a convenience initializer.
            CD->diagnose(diag::initializer_does_not_override, isClassContext)
                .highlight(attr->getLocation());
            CD->getOverriddenDecl()->diagnose(
                diag::convenience_init_override_here);
          }
        }
      }

      // A failable initializer cannot override a non-failable one.
      // This would normally be diagnosed by the covariance rules;
      // however, those are disabled so that we can provide a more
      // specific diagnostic here.
      if (CD->isFailable() &&
          CD->getOverriddenDecl() &&
          !CD->getOverriddenDecl()->isFailable()) {
        CD->diagnose(diag::failable_initializer_override, CD->getName());
        auto *OD = CD->getOverriddenDecl();
        OD->diagnose(diag::nonfailable_initializer_override_here,
                     OD->getName());
      }
    }

    checkImplementationOnlyOverride(CD);

    // If this initializer overrides a 'required' initializer, it must itself
    // be marked 'required'.
    if (!CD->getAttrs().hasAttribute<RequiredAttr>()) {
      if (CD->getOverriddenDecl() && CD->getOverriddenDecl()->isRequired()) {
        CD->diagnose(diag::required_initializer_missing_keyword)
            .fixItInsert(CD->getLoc(), "required ");

        auto *reqInit = findNonImplicitRequiredInit(CD->getOverriddenDecl());
        reqInit->diagnose(diag::overridden_required_initializer_here);

        CD->getAttrs().add(new (Ctx) RequiredAttr(/*IsImplicit=*/true));
      }
    }

    if (CD->isRequired()) {
      if (auto nominal = CD->getDeclContext()->getSelfNominalTypeDecl()) {
        AccessLevel requiredAccess;
        switch (nominal->getFormalAccess()) {
        case AccessLevel::Open:
          requiredAccess = AccessLevel::Public;
          break;
        case AccessLevel::Package:
        case AccessLevel::Public:
        case AccessLevel::Internal:
          requiredAccess = AccessLevel::Internal;
          break;
        case AccessLevel::FilePrivate:
        case AccessLevel::Private:
          requiredAccess = AccessLevel::FilePrivate;
          break;
        }
        if (CD->getFormalAccess() < requiredAccess) {
          auto diag = CD->diagnose(diag::required_initializer_not_accessible,
                                   nominal->getName());
          fixItAccess(diag, CD, requiredAccess);
        }
      }
    }

    checkAccessControl(CD);

    checkExplicitAvailability(CD);

    if (CD->getDeclContext()->isLocalContext()) {
      // Check local function bodies right away.
      (void)CD->getTypecheckedBody();
    } else if (!CD->isBodySkipped()) {
      addDelayedFunction(CD);
    }

    checkDefaultArguments(CD->getParameters());
    checkVariadicParameters(CD->getParameters(), CD);

    TypeChecker::checkObjCImplementation(CD);
  }

  void visitDestructorDecl(DestructorDecl *DD) {
    // Only check again for destructor decl outside of a struct/enum/class
    // if our destructor is not marked as invalid.
    if (!DD->isInvalid()) {
      auto *nom = dyn_cast<NominalTypeDecl>(
                             DD->getDeclContext()->getImplementedObjCContext());
      if (!nom || !isa<ClassDecl, StructDecl, EnumDecl>(nom)) {
        DD->diagnose(diag::destructor_decl_outside_class_or_noncopyable);
      }

      // Temporarily ban deinit on noncopyable enums, unless the experimental
      // feature flag is set.
      if (!Ctx.LangOpts.hasFeature(Feature::MoveOnlyEnumDeinits)
          && isa<EnumDecl>(nom)
          && !nom->canBeCopyable()) {
        DD->diagnose(diag::destructor_decl_on_noncopyable_enum);
      }
    }

    TypeChecker::checkDeclAttributes(DD);

    if (DD->getDeclContext()->isLocalContext()) {
      // Check local function bodies right away.
      (void)DD->getTypecheckedBody();
    } else if (!DD->isBodySkipped()) {
      addDelayedFunction(DD);
    }
  }

  void visitBuiltinTupleDecl(BuiltinTupleDecl *BTD) {
    llvm_unreachable("BuiltinTupleDecl should not show up here");
  }
};
} // end anonymous namespace

void TypeChecker::typeCheckDecl(Decl *D) {
  auto *SF = D->getDeclContext()->getParentSourceFile();
  DeclChecker(D->getASTContext(), SF).visit(D);
}

void TypeChecker::checkParameterList(ParameterList *params,
                                     DeclContext *owner) {
  std::optional<ParamDecl *> firstIsolatedParam;
  bool diagnosedDuplicateIsolatedParam = false;
  for (auto param: *params) {
    checkDeclAttributes(param);

    // async autoclosures can only occur as parameters to async functions.
    if (param->isAutoClosure()) {
      if (auto fnType = param->getInterfaceType()->getAs<FunctionType>()) {
        if (fnType->isAsync() &&
            !(isa<AbstractFunctionDecl>(owner) &&
              cast<AbstractFunctionDecl>(owner)->isAsyncContext())) {
          param->diagnose(diag::async_autoclosure_nonasync_function);
          if (auto func = dyn_cast<FuncDecl>(owner))
            addAsyncNotes(func);
        }
      }
    }

    // check for well-formed isolated parameters.
    if (!diagnosedDuplicateIsolatedParam) {
      if (param->isIsolated()) {
        if (firstIsolatedParam) {
          // cannot have more than one isolated parameter (SE-0313)
          param->diagnose(diag::isolated_parameter_duplicate)
              .highlight(param->getSourceRange())
              .warnUntilSwiftVersion(6);
          // I'd love to describe the context in which there is an isolated parameter,
          // we had a DescriptiveDeclContextKind, but that only
          // exists for Decls.

          auto prevIso = firstIsolatedParam.value();
          prevIso
              ->diagnose(diag::isolated_parameter_previous_note,
                         prevIso->getName())
              .highlight(prevIso->getSourceRange());

          // no need to complain about any further `isolated` params
          diagnosedDuplicateIsolatedParam = true;
        } else {
          firstIsolatedParam = param; // save first one we've seen.
        }
      }
    }

    // Opaque types cannot occur in parameter position.
    Type interfaceType = param->getInterfaceType();
    if (interfaceType->hasTypeParameter()) {
      interfaceType.findIf([&](Type type) {
        if (auto fnType = type->getAs<FunctionType>()) {
          for (auto innerParam : fnType->getParams()) {
            auto paramType = innerParam.getPlainType();
            if (!paramType->hasTypeParameter())
              continue;

            bool hadError = paramType.findIf([&](Type innerType) {
              auto genericParam = innerType->getAs<GenericTypeParamType>();
              if (!genericParam)
                return false;

              auto genericParamDecl = genericParam->getDecl();
              if (!genericParamDecl)
                return false;

              if (!genericParamDecl->isOpaqueType())
                return false;

              param->diagnose(
                 diag::opaque_type_in_parameter, true, interfaceType);
              return true;
            });

            if (hadError)
              return true;
          }

          return false;
        }

        return false;
      });
    }

    if (param->hasAttachedPropertyWrapper())
      (void) param->getPropertyWrapperInitializerInfo();

    auto *SF = param->getDeclContext()->getParentSourceFile();
    if (!param->isInvalid()) {
      param->visitAuxiliaryDecls([&](VarDecl *auxiliaryDecl) {
        if (!isa<ParamDecl>(auxiliaryDecl))
          DeclChecker(param->getASTContext(), SF).visitBoundVariable(auxiliaryDecl);
      });
    }

    // If we have a noimplicitcopy parameter, make sure that the underlying type
    // is not move only. It is redundant.
    if (auto attr = param->getAttrs().getAttribute<NoImplicitCopyAttr>()) {
      if (auto *nom = param->getInterfaceType()->getNominalOrBoundGenericNominal()) {
        if (!nom->canBeCopyable()) {
          param->diagnose(diag::noimplicitcopy_attr_not_allowed_on_moveonlytype)
            .fixItRemove(attr->getRange());
        }
      }
    }

    // @_staticExclusiveOnly types cannot be passed as 'inout', only as either
    // a borrow or as consuming.
    if (auto SD = param->getInterfaceType()->getStructOrBoundGenericStruct()) {
      if (SD->getAttrs().hasAttribute<StaticExclusiveOnlyAttr>() &&
          param->isInOut()) {
        SD->getASTContext().Diags.diagnoseWithNotes(
          param->diagnose(diag::attr_static_exclusive_only_let_only_param,
                          param->getInterfaceType()),
          [&]() {
            SD->diagnose(diag::attr_static_exclusive_only_type_nonmutating,
                       SD->getDeclaredInterfaceType());
          });
      }
    }
  }

  // For source compatibility, allow duplicate internal parameter names
  // on protocol requirements.
  //
  // FIXME: Consider turning this into a warning or error if we do
  // another -swift-version.
  if (!isa<ProtocolDecl>(owner->getParent())) {
    // Check for duplicate parameter names.
    diagnoseDuplicateDecls(*params);
  }
}

std::optional<unsigned>
ExpandMacroExpansionDeclRequest::evaluate(Evaluator &evaluator,
                                          MacroExpansionDecl *MED) const {
  auto &ctx = MED->getASTContext();
  auto *dc = MED->getDeclContext();

  // Resolve macro candidates.
  auto macro = evaluateOrDefault(ctx.evaluator, ResolveMacroRequest{MED, dc},
                                 ConcreteDeclRef());
  if (!macro)
    return std::nullopt;
  MED->setMacroRef(macro);

  auto roles = cast<MacroDecl>(macro.getDecl())->getMacroRoles();
  // If it's not a declaration macro or a code item macro, it must have been
  // parsed as an expression macro, and this decl is just its substitute decl.
  // So there's no thing to be done here.
  if (!roles.contains(MacroRole::Declaration) &&
      !roles.contains(MacroRole::CodeItem))
    return std::nullopt;

  return expandFreestandingMacro(MED);
}