File: TypeCheckEffects.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (4078 lines) | stat: -rw-r--r-- 139,826 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
//===--- TypeCheckEffects.cpp - Type Checking for Effects Coverage --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis to ensure that various effects (such
// as throwing and async) are properly handled.
//
//===----------------------------------------------------------------------===//

#include "TypeChecker.h"
#include "TypeCheckConcurrency.h"
#include "TypeCheckEffects.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/Effects.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/TypeCheckRequests.h"

using namespace swift;

static bool hasFunctionParameterWithEffect(EffectKind kind, Type type) {
  // Look through Optional types.
  type = type->lookThroughAllOptionalTypes();

  // Only consider function types with this effect.
  if (auto fnType = type->getAs<AnyFunctionType>()) {
    return fnType->hasEffect(kind);
  }

  // Look through tuples.
  if (auto tuple = type->getAs<TupleType>()) {
    for (auto eltType : tuple->getElementTypes()) {
      if (hasFunctionParameterWithEffect(kind, eltType))
        return true;
    }
    return false;
  }

  // Suppress diagnostics in the presence of errors.
  if (type->hasError()) {
    return true;
  }

  return false;
}

PolymorphicEffectRequirementList
PolymorphicEffectRequirementsRequest::evaluate(Evaluator &evaluator,
                                               EffectKind kind,
                                               ProtocolDecl *proto) const {
  ASTContext &ctx = proto->getASTContext();

  // only allow rethrowing requirements to be determined from marked protocols
  if (!proto->hasPolymorphicEffect(kind)) {
    return PolymorphicEffectRequirementList();
  }

  SmallVector<AbstractFunctionDecl *, 2> requirements;
  SmallVector<std::pair<Type, ProtocolDecl *>, 2> conformances;
  
  // check if immediate members of protocol are 'throws'
  for (auto member : proto->getMembers()) {
    auto fnDecl = dyn_cast<AbstractFunctionDecl>(member);
    if (!fnDecl || !fnDecl->hasEffect(kind))
      continue;

    requirements.push_back(fnDecl);
  }

  // check associated conformances of associated types or inheritance
  for (auto requirement : proto->getRequirementSignature().getRequirements()) {
    if (requirement.getKind() != RequirementKind::Conformance)
      continue;

    auto *protoDecl = requirement.getProtocolDecl();
    if (!protoDecl->hasPolymorphicEffect(kind))
      continue;

    conformances.emplace_back(requirement.getFirstType(), protoDecl);
  }
  
  return PolymorphicEffectRequirementList(ctx.AllocateCopy(requirements),
                                          ctx.AllocateCopy(conformances));
}

/// Determine whether the given protocol inherits from either
/// AsyncIteratorProtocol or AsyncSequence.
static bool inheritsFromAsyncSequenceProtocol(ProtocolDecl *proto) {
  // If it's exactly one of these, shortcut.
  if (proto->isSpecificProtocol(KnownProtocolKind::AsyncIteratorProtocol) ||
      proto->isSpecificProtocol(KnownProtocolKind::AsyncSequence))
    return false;

  auto &ctx = proto->getASTContext();
  if (auto iter = ctx.getProtocol(KnownProtocolKind::AsyncIteratorProtocol))
    if (proto->inheritsFrom(iter))
      return true;
  if (auto seq = ctx.getProtocol(KnownProtocolKind::AsyncSequence))
    if (proto->inheritsFrom(seq))
      return true;

  return false;
}

PolymorphicEffectKind
PolymorphicEffectKindRequest::evaluate(Evaluator &evaluator,
                                       EffectKind kind,
                                       AbstractFunctionDecl *decl) const {
  if (!decl->hasEffect(kind))
    return PolymorphicEffectKind::None;

  if (!decl->hasPolymorphicEffect(kind)) {
    if (auto proto = dyn_cast<ProtocolDecl>(decl->getDeclContext())) {
      if (proto->hasPolymorphicEffect(kind))
        return PolymorphicEffectKind::ByConformance;
    }

    return PolymorphicEffectKind::Always;
  }

  for (auto req : decl->getGenericSignature().getRequirements()) {
    if (req.getKind() == RequirementKind::Conformance) {
      auto proto = req.getProtocolDecl();

      if (proto->hasPolymorphicEffect(kind)) {
        // @rethrows protocols that inherit from AsyncIteratorProtocol or
        // AsyncSequence should be categorized like AsyncIteratorProtocol or
        // AsyncSequence.
        if (kind == EffectKind::Throws &&
            inheritsFromAsyncSequenceProtocol(proto))
          return PolymorphicEffectKind::AsyncSequenceRethrows;

        return PolymorphicEffectKind::ByConformance;
      }

      // Specifically recognize functions that are rethrows and would
      // have been ByConformance polymorphic when AsyncIteratorProtocol
      // and AsyncSequence were rethrowing protocols.
      if (kind == EffectKind::Throws &&
          (proto->isSpecificProtocol(
              KnownProtocolKind::AsyncIteratorProtocol) ||
           proto->isSpecificProtocol(KnownProtocolKind::AsyncSequence))) {
        // FIXME: We should diagnose that this function should use typed
        // throws instead.

        return PolymorphicEffectKind::AsyncSequenceRethrows;
      }
    }
  }

  for (auto param : *decl->getParameters()) {
    auto interfaceTy = param->getInterfaceType();
    if (hasFunctionParameterWithEffect(kind, interfaceTy)) {
      return PolymorphicEffectKind::ByClosure;
    }
  }

  return PolymorphicEffectKind::Invalid;
}

static bool classifyWitness(ModuleDecl *module, 
                            ProtocolConformance *conformance, 
                            AbstractFunctionDecl *req,
                            EffectKind kind) {
  auto declRef = conformance->getWitnessDeclRef(req);
  if (!declRef) {
    // Invalid conformance.
    return true;
  }

  auto witnessDecl = dyn_cast<AbstractFunctionDecl>(declRef.getDecl());
  if (!witnessDecl) {
    // Enum element constructors do not have effects.
    assert(isa<EnumElementDecl>(declRef.getDecl()));
    return false;
  }

  switch (witnessDecl->getPolymorphicEffectKind(kind)) {
    case PolymorphicEffectKind::None:
      // Witness doesn't have this effect at all, so it contributes nothing.
      return false;

    case PolymorphicEffectKind::AsyncSequenceRethrows: {
      // Witnesses that can only be polymorphic due to an
      // AsyncSequence/AsyncIteratorProtocol conformance don't contribute
      // anything; the thrown error result is captured by the Failure
      // type.
      return false;
    }

    case PolymorphicEffectKind::ByConformance: {
      // Witness has the effect if the concrete type's conformances
      // recursively have the effect.
      auto substitutions = conformance->getSubstitutionMap();
      for (auto conformanceRef : substitutions.getConformances()) {
        if (conformanceRef.hasEffect(kind)) {
          return true;
        }
      }
      return false;
    }

    case PolymorphicEffectKind::ByClosure:
      // Witness only has the effect if a closure argument has the effect,
      // so it contributes nothing to the conformance`s effect.
      return false;

    case PolymorphicEffectKind::Always:
      // Witness always has the effect.

      // If the witness's thrown type is explicitly specified as a type
      // parameter, then check whether the substituted type is `Never`.
      if (kind == EffectKind::Throws) {
        if (Type thrownError = witnessDecl->getThrownInterfaceType()) {
          if (thrownError->hasTypeParameter())
            thrownError = thrownError.subst(declRef.getSubstitutions());
          if (thrownError->isNever())
            return false;
        }
      }
      return true;

    case PolymorphicEffectKind::Invalid:
      // If something was invalid, just assume it has the effect.
      return true;
  }
}

bool ConformanceHasEffectRequest::evaluate(
  Evaluator &evaluator, EffectKind kind,
  ProtocolConformance *conformance) const {
  auto *module = conformance->getDeclContext()->getParentModule();

  llvm::SmallDenseSet<ProtocolConformance *, 2> visited;
  SmallVector<ProtocolConformance *, 2> worklist;

  worklist.push_back(conformance);

  while (!worklist.empty()) {
    auto *current = worklist.back();
    worklist.pop_back();

    if (!visited.insert(current).second)
      continue;

    auto protoDecl = current->getProtocol();

    auto list = protoDecl->getPolymorphicEffectRequirements(kind);
    for (auto req : list.getRequirements()) {
      if (classifyWitness(module, current, req, kind))
        return true;
    }

    for (auto pair : list.getConformances()) {
      auto assocConf = 
          current->getAssociatedConformance(
              pair.first, pair.second);
      if (!assocConf.isConcrete())
        return true;

      worklist.push_back(assocConf.getConcrete());
    }
  }

  return false;
}

/// \returns the getter decl iff its a prop/subscript with an effectful 'get'
static ConcreteDeclRef getEffectfulGetOnlyAccessor(ConcreteDeclRef cdr) {
  if (!cdr)
    return nullptr;

  if (auto storageDecl = dyn_cast<AbstractStorageDecl>(cdr.getDecl())) {
    if (auto getAccessor = storageDecl->getEffectfulGetAccessor())
      return ConcreteDeclRef(getAccessor, cdr.getSubstitutions());
  }

  return nullptr;
}

/// Determine whether this is the "Never" type that's used to indicate that the
/// function never throws.
static bool isNeverThrownError(Type type) {
  if (!type)
    return true;

  return type->isNever();
}

namespace {

/// A function reference.
class AbstractFunction {
public:
  enum Kind : uint8_t {
    Opaque, Function, Closure, Parameter,
  };

private:
  union {
    AbstractFunctionDecl *TheFunction;
    AbstractClosureExpr *TheClosure;
    ParamDecl *TheParameter;
    Expr *TheExpr;
  };
  Kind TheKind;
  PolymorphicEffectKind RethrowsKind = PolymorphicEffectKind::None;
  PolymorphicEffectKind ReasyncKind = PolymorphicEffectKind::None;
  SubstitutionMap Substitutions;

public:
  explicit AbstractFunction(Kind kind, Expr *fn)
    : TheKind(kind) {
    TheExpr = fn;
  }

  explicit AbstractFunction(AbstractFunctionDecl *fn, SubstitutionMap subs)
    : TheKind(Kind::Function),
      RethrowsKind(fn->getPolymorphicEffectKind(EffectKind::Throws)),
      ReasyncKind(fn->getPolymorphicEffectKind(EffectKind::Async)),
      Substitutions(subs) {
    TheFunction = fn;
  }

  explicit AbstractFunction(AbstractClosureExpr *closure)
    : TheKind(Kind::Closure) {
    TheClosure = closure;
  }

  explicit AbstractFunction(ParamDecl *parameter, SubstitutionMap subs)
    : TheKind(Kind::Parameter), Substitutions(subs) {
    TheParameter = parameter;

  }

  Kind getKind() const { return TheKind; }

  PolymorphicEffectKind getPolymorphicEffectKind(EffectKind kind) const {
    switch (kind) {
    case EffectKind::Throws: return RethrowsKind;
    case EffectKind::Async: return ReasyncKind;
    }
    llvm_unreachable("Bad effect kind");
  }

  Type getType() const {
    switch (getKind()) {
    case Kind::Opaque: return getOpaqueFunction()->getType();
    case Kind::Function: {
      auto *AFD = getFunction();
      if (AFD->hasImplicitSelfDecl())
        return AFD->getMethodInterfaceType();
      return AFD->getInterfaceType();
    }
    case Kind::Closure: return getClosure()->getType();
    case Kind::Parameter: return getParameter()->getInterfaceType();
    }
    llvm_unreachable("bad kind");
  }

  /// Retrieve the interface type for a parameter based on an index into the
  /// substituted parameter type. This
  Type getOrigParamInterfaceType(unsigned substIndex) const {
    switch (getKind()) {
    case Kind::Opaque:
    case Kind::Closure:
    case Kind::Parameter:
      return getType()->castTo<AnyFunctionType>()->getParams()[substIndex]
                 .getParameterType();

    case Kind::Function: {
      auto params = getParameterList(static_cast<ValueDecl *>(getFunction()));
      auto origIndex = params->getOrigParamIndex(getSubstitutions(), substIndex);
      return params->get(origIndex)->getInterfaceType();
    }
    }
  }

  bool isAutoClosure() const {
    if (getKind() == Kind::Closure)
      return isa<AutoClosureExpr>(getClosure());
    return false;
  }

  AbstractFunctionDecl *getFunction() const {
    assert(getKind() == Kind::Function);
    return TheFunction;
  }
  AbstractClosureExpr *getClosure() const {
    assert(getKind() == Kind::Closure);
    return TheClosure;
  }
  ParamDecl *getParameter() const {
    assert(getKind() == Kind::Parameter);
    return TheParameter;
  }
  Expr *getOpaqueFunction() const {
    assert(getKind() == Kind::Opaque);
    return TheExpr;
  }

  SubstitutionMap getSubstitutions() const {
    return Substitutions;
  }

  static AbstractFunction getAppliedFn(ApplyExpr *apply) {
    Expr *fn = apply->getFn()->getValueProvidingExpr();

    if (auto *selfCall = dyn_cast<SelfApplyExpr>(fn))
      fn = selfCall->getFn()->getValueProvidingExpr();

    return decomposeFunction(fn);
  }

  bool isPreconcurrency() const {
    switch (getKind()) {
    case Kind::Closure: {
      auto *closure = dyn_cast<ClosureExpr>(getClosure());
      return closure && closure->isIsolatedByPreconcurrency();
    }

    case Kind::Function:
      return getActorIsolation(getFunction()).preconcurrency();

    case Kind::Opaque:
    case Kind::Parameter:
      return false;
    }
  }

  static AbstractFunction decomposeFunction(Expr *fn) {
    assert(fn->getValueProvidingExpr() == fn);

    while (true) {
      // Look through Optional unwraps.
      if (auto conversion = dyn_cast<ForceValueExpr>(fn)) {
        fn = conversion->getSubExpr()->getValueProvidingExpr();
      } else if (auto conversion = dyn_cast<BindOptionalExpr>(fn)) {
        fn = conversion->getSubExpr()->getValueProvidingExpr();
      // Look through optional injections.
      } else if (auto injection = dyn_cast<InjectIntoOptionalExpr>(fn)) {
        fn = injection->getSubExpr()->getValueProvidingExpr();
      // Look through function conversions.
      } else if (auto conversion = dyn_cast<FunctionConversionExpr>(fn)) {
        fn = conversion->getSubExpr()->getValueProvidingExpr();
      // Look through base-ignored qualified references (Module.methodName).
      } else if (auto baseIgnored = dyn_cast<DotSyntaxBaseIgnoredExpr>(fn)) {
        fn = baseIgnored->getRHS();
      // Look through closure capture lists.
      } else if (auto captureList = dyn_cast<CaptureListExpr>(fn)) {
        fn = captureList->getClosureBody();
        // Look through optional evaluations.
      } else if (auto optionalEval = dyn_cast<OptionalEvaluationExpr>(fn)) {
        fn = optionalEval->getSubExpr()->getValueProvidingExpr();
      } else {
        break;
      }
    }
    
    // Constructor delegation.
    if (auto otherCtorDeclRef = dyn_cast<OtherConstructorDeclRefExpr>(fn)) {
      return AbstractFunction(otherCtorDeclRef->getDecl(),
                              otherCtorDeclRef->getDeclRef().getSubstitutions());
    }

    // Normal function references.
    if (auto DRE = dyn_cast<DeclRefExpr>(fn)) {
      ValueDecl *decl = DRE->getDecl();
      if (auto fn = dyn_cast<AbstractFunctionDecl>(decl)) {
        return AbstractFunction(fn, DRE->getDeclRef().getSubstitutions());
      } else if (auto param = dyn_cast<ParamDecl>(decl)) {
        SubstitutionMap subs;
        if (auto genericEnv = param->getDeclContext()->getGenericEnvironmentOfContext())
          subs = genericEnv->getForwardingSubstitutionMap();
        return AbstractFunction(param, subs);
      }

    // Closures.
    } else if (auto closure = dyn_cast<AbstractClosureExpr>(fn)) {
      return AbstractFunction(closure);
    }

    // Everything else is opaque.
    return AbstractFunction(Kind::Opaque, fn);
  }
};

enum ShouldRecurse_t : bool {
  ShouldNotRecurse = false, ShouldRecurse = true
};

/// A CRTP ASTWalker implementation that looks for interesting
/// nodes for effects handling.
template <class Impl>
class EffectsHandlingWalker : public ASTWalker {
  Impl &asImpl() { return *static_cast<Impl*>(this); }
public:
  LazyInitializerWalking getLazyInitializerWalkingBehavior() override {
    return LazyInitializerWalking::InAccessor;
  }

  /// Only look at the expansions for effects checking.
  MacroWalking getMacroWalkingBehavior() const override {
    return MacroWalking::Expansion;
  }

  PreWalkAction walkToDeclPre(Decl *D) override {
    ShouldRecurse_t recurse = ShouldRecurse;
    // Skip the implementations of all local declarations... except
    // PBD.  We should really just have a PatternBindingStmt.
    if (auto ic = dyn_cast<IfConfigDecl>(D)) {
      recurse = asImpl().checkIfConfig(ic);
    } else if (auto patternBinding = dyn_cast<PatternBindingDecl>(D)) {
      if (patternBinding->isAsyncLet())
        recurse = asImpl().checkAsyncLet(patternBinding);
    } else if (auto macroExpansionDecl = dyn_cast<MacroExpansionDecl>(D)) {
      recurse = ShouldRecurse;
    } else {
      recurse = ShouldNotRecurse;
    }
    return Action::VisitNodeIf(bool(recurse));
  }

  PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
    visitExprPre(E);
    ShouldRecurse_t recurse = ShouldRecurse;
    if (isa<ErrorExpr>(E)) {
      asImpl().flagInvalidCode();
    } else if (auto closure = dyn_cast<ClosureExpr>(E)) {
      recurse = asImpl().checkClosure(closure);
    } else if (auto autoclosure = dyn_cast<AutoClosureExpr>(E)) {
      recurse = asImpl().checkAutoClosure(autoclosure);
    } else if (auto awaitExpr = dyn_cast<AwaitExpr>(E)) {
      recurse = asImpl().checkAwait(awaitExpr);
    } else if (auto tryExpr = dyn_cast<TryExpr>(E)) {
      recurse = asImpl().checkTry(tryExpr);
    } else if (auto forceTryExpr = dyn_cast<ForceTryExpr>(E)) {
      recurse = asImpl().checkForceTry(forceTryExpr);
    } else if (auto optionalTryExpr = dyn_cast<OptionalTryExpr>(E)) {
      recurse = asImpl().checkOptionalTry(optionalTryExpr);
    } else if (auto apply = dyn_cast<ApplyExpr>(E)) {
      recurse = asImpl().checkApply(apply);
    } else if (auto lookup = dyn_cast<LookupExpr>(E)) {
      recurse = asImpl().checkLookup(lookup);
    } else if (auto declRef = dyn_cast<DeclRefExpr>(E)) {
      recurse = asImpl().checkDeclRef(declRef);
    } else if (auto interpolated = dyn_cast<InterpolatedStringLiteralExpr>(E)) {
      recurse = asImpl().checkInterpolatedStringLiteral(interpolated);
    } else if (auto macroExpansionExpr = dyn_cast<MacroExpansionExpr>(E)) {
      recurse = ShouldRecurse;
    } else if (auto *SVE = dyn_cast<SingleValueStmtExpr>(E)) {
      recurse = asImpl().checkSingleValueStmtExpr(SVE);
    }
    // Error handling validation (via checkTopLevelEffects) happens after
    // type checking. If an unchecked expression is still around, the code was
    // invalid.
#define UNCHECKED_EXPR(KIND, BASE) \
    else if (isa<KIND##Expr>(E)) return Action::Stop();
#include "swift/AST/ExprNodes.def"

    return Action::VisitNodeIf(bool(recurse), E);
  }

  PreWalkResult<Stmt *> walkToStmtPre(Stmt *S) override {
    ShouldRecurse_t recurse = ShouldRecurse;
    if (auto doCatch = dyn_cast<DoCatchStmt>(S)) {
      recurse = asImpl().checkDoCatch(doCatch);
    } else if (auto thr = dyn_cast<ThrowStmt>(S)) {
      recurse = asImpl().checkThrow(thr);
    } else if (auto forEach = dyn_cast<ForEachStmt>(S)) {
      recurse = asImpl().checkForEach(forEach);
    }
    if (!recurse)
      return Action::SkipNode(S);

    return Action::Continue(S);
  }

  ShouldRecurse_t checkDoCatch(DoCatchStmt *S) {
    auto bodyResult = (S->isSyntacticallyExhaustive()
        ? asImpl().checkExhaustiveDoBody(S)
        : asImpl().checkNonExhaustiveDoBody(S));
    for (auto clause : S->getCatches()) {
      asImpl().checkCatch(clause, bodyResult);
    }
    return ShouldNotRecurse;
  }

  ShouldRecurse_t checkForEach(ForEachStmt *S) {
    return ShouldRecurse;
  }

  void visitExprPre(Expr *expr) { asImpl().visitExprPre(expr); }
};

/// A potential reason why something might have an effect.
class PotentialEffectReason {
public:
  enum class Kind : uint8_t {
    /// The function calls an unconditionally throws/async function.
    Apply,

    /// The function is rethrows/reasync, and it was passed an explicit
    /// argument that was not rethrows/reasync-only in this context.
    ByClosure,

    /// The function is rethrows/reasync, and it was passed a default
    /// argument that was not rethrows/reasync-only in this context.
    ByDefaultClosure,

    /// The function is rethrows/reasync, and it was called with
    /// a throwing conformance as one of its generic arguments.
    ByConformance,

    /// The initializer of an 'async let' can throw.
    AsyncLet,

    /// The function accesses an unconditionally throws/async property.
    PropertyAccess,
    SubscriptAccess
  };

  static StringRef kindToString(Kind k) {
    switch (k) {
      case Kind::Apply:
        return "Apply";
      case Kind::PropertyAccess:
        return "PropertyAccess";
      case Kind::SubscriptAccess:
        return "SubscriptAccess";
      case Kind::ByClosure:
        return "ByClosure";
      case Kind::ByDefaultClosure:
        return "ByDefaultClosure";
      case Kind::ByConformance:
        return "ByConformance";
      case Kind::AsyncLet:
        return "AsyncLet";
    }
  }

private:
  Expr *TheExpression;
  Kind TheKind;

  explicit PotentialEffectReason(Kind kind) : TheKind(kind) {}
public:
  static PotentialEffectReason forApply() {
    return PotentialEffectReason(Kind::Apply);
  }
  static PotentialEffectReason forPropertyAccess() {
    return PotentialEffectReason(Kind::PropertyAccess);
  }
  static PotentialEffectReason forSubscriptAccess() {
    return PotentialEffectReason(Kind::SubscriptAccess);
  }
  static PotentialEffectReason forClosure(Expr *E) {
    PotentialEffectReason result(Kind::ByClosure);
    result.TheExpression = E;
    return result;
  }
  static PotentialEffectReason forDefaultClosure() {
    return PotentialEffectReason(Kind::ByDefaultClosure);
  }
  static PotentialEffectReason forConformance() {
    return PotentialEffectReason(Kind::ByConformance);
  }
  static PotentialEffectReason forAsyncLet() {
    return PotentialEffectReason(Kind::AsyncLet);
  }

  Kind getKind() const { return TheKind; }

  bool hasPolymorphicEffect() const {
    return (getKind() == Kind::ByClosure ||
            getKind() == Kind::ByDefaultClosure ||
            getKind() == Kind::ByConformance);
  }

  /// If this was built with forRethrowsArgument, return the expression.
  Expr *getArgument() const {
    assert(getKind() == Kind::ByClosure);
    return TheExpression;
  }
};

enum class ConditionalEffectKind {
  /// The call/function can't have this effect.
  None,

  /// The call/function can only have this effect if one of the parameters
  /// or conformances in the current context can throw.
  Conditional,

  /// The call/function can have this effect.
  Always,
};

static void simple_display(llvm::raw_ostream &out, ConditionalEffectKind kind) {
  out << "ConditionalEffectKind::";
  switch(kind) {
    case ConditionalEffectKind::None:         out << "None"; return;
    case ConditionalEffectKind::Conditional:  out << "Conditional"; return;
    case ConditionalEffectKind::Always:       out << "Always"; return;
  }
  llvm_unreachable("Bad conditional effect kind");
}

/// Remove the type erasure to an existential error, to extract the
/// underlying error.
static Expr *removeErasureToExistentialError(Expr *expr) {
  Type type = expr->getType();
  if (!type)
    return expr;

  ASTContext &ctx = type->getASTContext();
  if (!ctx.LangOpts.hasFeature(Feature::FullTypedThrows))
    return expr;

  // Look for an outer erasure expression.
  if (auto erasure = dyn_cast<ErasureExpr>(expr)) {
    if (type->isEqual(ctx.getErrorExistentialType()))
      return erasure->getSubExpr();
  }

  return expr;
}
}

bool swift::isRethrowLikeTypedThrows(AbstractFunctionDecl *func) {
  // This notion is only for compatibility in Swift 5 and is disabled
  // when FullTypedThrows is enabled.
  ASTContext &ctx = func->getASTContext();
  if (ctx.LangOpts.hasFeature(Feature::FullTypedThrows))
    return false;

  // It must have a thrown error type...
  auto thrownError = func->getThrownInterfaceType();
  if (!thrownError)
    return false;

  /// ... that is a generic parameter type (call it E)
  auto thrownErrorGP = thrownError->getAs<GenericTypeParamType>();
  if (!thrownErrorGP)
    return false;

  /// ... of the generic function.
  auto genericParams = func->getGenericParams();
  if (!genericParams ||
      thrownErrorGP->getDepth() !=
          genericParams->getParams().front()->getDepth())
    return false;

  // E: Error must be the only conformance requirement on the generic parameter.
  auto genericSig = func->getGenericSignature();
  if (!genericSig)
    return false;

  auto requiredProtocols = genericSig->getRequiredProtocols(thrownErrorGP);
  if (requiredProtocols.size() != 1 ||
      requiredProtocols[0]->getKnownProtocolKind() != KnownProtocolKind::Error)
    return false;

  // Any parameters that are of throwing function type must also throw 'E'.
  for (auto param : *func->getParameters()) {
    auto paramTy = param->getInterfaceType();
    if (auto paramFuncTy = paramTy->getAs<AnyFunctionType>()) {
      if (auto paramThrownErrorTy = paramFuncTy->getEffectiveThrownErrorType())
        if (!(*paramThrownErrorTy)->isEqual(thrownError))
          return false;
    }
  }

  return true;
}

namespace {

/// Determine whether the given rethrows context is only allowed to be
/// rethrowing because of the historically-rethrowing behavior of
/// AsyncSequence and AsyncIteratorProtocol.
static bool isRethrowingDueToAsyncSequence(DeclContext *rethrowsDC) {
  auto rethrowsFunc = dyn_cast<AbstractFunctionDecl>(rethrowsDC);
  if (!rethrowsFunc)
    return false;

  if (rethrowsFunc->getPolymorphicEffectKind(EffectKind::Throws) !=
        PolymorphicEffectKind::AsyncSequenceRethrows)
    return false;

  return true;
}

/// Type-erase the opened archetypes in the given type, if there is one.
static Type typeEraseOpenedArchetypes(Type type) {
  if (!type || !type->hasOpenedExistential())
    return type;

  const OpenedArchetypeType *root = nullptr;
  type.visit([&](Type type) {
    if (auto opened = dyn_cast<OpenedArchetypeType>(type.getPointer())) {
      root = opened->getRoot();
    }
  });

  if (!root)
    return type;

  return constraints::typeEraseOpenedArchetypesWithRoot(type, root);
}

/// A type expressing the result of classifying whether a call or function
/// throws or is async.
class Classification {
  bool IsInvalid = false;  // The AST is malformed.  Don't diagnose.

  bool downgradeToWarning = false;

  // Throwing
  ConditionalEffectKind ThrowKind = ConditionalEffectKind::None;
  std::optional<PotentialEffectReason> ThrowReason;
  Type ThrownError;

  // Async
  ConditionalEffectKind AsyncKind = ConditionalEffectKind::None;
  std::optional<PotentialEffectReason> AsyncReason;

  void print(raw_ostream &out) const {
    out << "{ IsInvalid = " << IsInvalid
        << ", ThrowKind = ";
    
    simple_display(out, ThrowKind);
         
    out << ", ThrowReason = ";
    if (!ThrowReason)
      out << "nil";
    else
      out << PotentialEffectReason::kindToString(ThrowReason->getKind());

    if (ThrownError)
      out << ", ThrownError = " << ThrownError.getString();

    out << ", AsyncKind = ";

    simple_display(out, AsyncKind);

    out << ", AsyncReason = ";
    if (!AsyncReason)
      out << "nil";
    else
      out << PotentialEffectReason::kindToString(AsyncReason->getKind());

    out << " }";
  }
  
public:
  Classification() {}

  /// Whether this classification involves any effects.
  bool hasAnyEffects() const { return hasAsync() || hasThrows(); }

  explicit operator bool() const { return hasAnyEffects(); }

  /// Whether there is an async effect.
  bool hasAsync() const { return AsyncKind != ConditionalEffectKind::None; }

  /// Whether there is a throws effect.
  bool hasThrows() const { return ThrowKind != ConditionalEffectKind::None; }

  /// Return a classification that only retains the async parts of the
  /// given classification.
  Classification onlyAsync() const {
    Classification result(*this);
    result.ThrowKind = ConditionalEffectKind::None;
    result.ThrowReason = std::nullopt;
    result.ThrownError = Type();
    return result;
  }
  
  /// Return a classification that only retains the throwing parts of the
  /// given classification.
  Classification onlyThrowing(std::optional<PotentialEffectReason>
                                  newThrowReason = std::nullopt) const {
    Classification result(*this);
    result.AsyncKind = ConditionalEffectKind::None;
    result.AsyncReason = std::nullopt;

    if (result.hasThrows() && newThrowReason)
      result.ThrowReason = newThrowReason;

    return result;
  }

  /// Return a classification that promotes a typed throws effect to an
  /// untyped throws effect.
  Classification promoteToUntypedThrows() const {
    if (!hasThrows())
      return *this;

    Classification result(*this);
    result.ThrownError = ThrownError->getASTContext().getErrorExistentialType();
    return result;
  }

  /// Return a classification that only retains the parts of this
  /// classification for the requested effect kind.
  Classification onlyEffect(EffectKind kind) const {
    switch (kind) {
    case EffectKind::Async: return onlyAsync();
    case EffectKind::Throws: return onlyThrowing();
    }
  }

  static Classification forConditionalPlaceholder(
      ASTContext &ctx, EffectKind kind,
      PotentialEffectReason reason
  ) {
    switch (kind) {
    case EffectKind::Async:
      return forAsync(ConditionalEffectKind::Conditional, reason);
    case EffectKind::Throws:
      return forThrows(
          ctx.getErrorExistentialType(), ConditionalEffectKind::Conditional,
          reason);
    }
  }

  /// Return a throwing classification.
  static Classification forThrows(Type thrownError,
                                  ConditionalEffectKind conditionalKind,
                                  PotentialEffectReason reason) {
    Classification result;
    if (isNeverThrownError(thrownError))
      return result;

    assert(!thrownError->hasError());

    result.ThrowKind = conditionalKind;
    result.ThrowReason = reason;
    result.ThrownError = typeEraseOpenedArchetypes(thrownError);
    return result;
  }

  /// Return an async classification.
  static Classification forAsync(ConditionalEffectKind conditionalKind,
                                 PotentialEffectReason reason) {
    Classification result;
    result.AsyncKind = conditionalKind;
    result.AsyncReason = reason;
    return result;
  }

  /// Return a classification for a given declaration reference.
  static Classification
  forDeclRef(ConcreteDeclRef declRef, ConditionalEffectKind conditionalKind,
             PotentialEffectReason reason,
             std::optional<EffectKind> onlyEffect = std::nullopt) {
    Classification result;
    bool considerAsync = !onlyEffect || *onlyEffect == EffectKind::Async;
    bool considerThrows = !onlyEffect || *onlyEffect == EffectKind::Throws;

    // Consider functions based on their specified effects.
    if (auto func = dyn_cast<AbstractFunctionDecl>(declRef.getDecl())) {
      if (considerAsync && func->hasAsync()) {
        result.merge(Classification::forAsync(conditionalKind, reason));
      }

      if (considerThrows) {
        if (auto thrownInterfaceType =
                func->getEffectiveThrownErrorType()) {
          Type thrownType =
              thrownInterfaceType->subst(declRef.getSubstitutions());
          result.merge(Classification::forThrows(thrownType,
                                                 conditionalKind,
                                                 reason));
        }
      }

      return result;
    }

    // Consider async let declarations.
    if (auto var = dyn_cast<VarDecl>(declRef.getDecl())) {
      // "Async let" declarations are treated as an asynchronous call
      // (to the underlying task's "get"). If the initializer was throwing,
      // then the access is also treated as throwing.
      if (var->isAsyncLet()) {
        // If the initializer could throw, we will have a 'try' in the
        // application of its autoclosure.
        // FIXME: The type checker should record the thrown error type in
        // the AST.
        bool throws = false;
        if (auto init = var->getParentInitializer()) {
          if (auto await = dyn_cast<AwaitExpr>(init))
            init = await->getSubExpr();
          if (isa<TryExpr>(init))
            throws = true;
        }

        result.merge(Classification::forAsync(
                        ConditionalEffectKind::Always,
                        PotentialEffectReason::forAsyncLet()));
        if (throws) {
          ASTContext &ctx = var->getASTContext();
          result.merge(Classification::forThrows(
                         /*FIXME:*/ctx.getErrorExistentialType(),
                         ConditionalEffectKind::Always,
                         PotentialEffectReason::forAsyncLet()));
        }

        return result;
      }
    }

    return result;
  }

  /// Used when invalid AST was detected.
  static Classification forInvalidCode() {
    Classification result;
    result.IsInvalid = true;
    return result;
  }

  void merge(Classification other) {
    if (other.isInvalid())
      IsInvalid = true;

    if (other.AsyncKind > AsyncKind) {
      AsyncKind = other.AsyncKind;
      AsyncReason = other.AsyncReason;
    }

    if (ThrowKind != ConditionalEffectKind::None ||
        other.ThrowKind != ConditionalEffectKind::None) {
      ThrownError =
          TypeChecker::errorUnion(ThrownError, other.ThrownError, nullptr);
      }

    if (other.ThrowKind > ThrowKind) {
      ThrowKind = other.ThrowKind;
      ThrowReason = other.ThrowReason;
    }
  }

  /// Merge implicitly-added effects.
  void mergeImplicitEffects(ASTContext &ctx,
                            bool implicitlyAsync, bool implicitlyThrows,
                            PotentialEffectReason reason) {
    if (implicitlyAsync) {
      merge(Classification::forAsync(ConditionalEffectKind::Always, reason));
    }

    if (implicitlyThrows) {
      // FIXME: Implicit throwing could be typed?
      merge(Classification::forThrows(ctx.getErrorExistentialType(),
                                      ConditionalEffectKind::Always, reason));
    }
  }

  void limitThrowingKind(ConditionalEffectKind otherKind) {
    ThrowKind = std::min(ThrowKind, otherKind);
  }

  bool isInvalid() const { return IsInvalid; }
  void makeInvalid() { IsInvalid = true; }

  bool shouldDowngradeToWarning() const {
    return downgradeToWarning;
  }
  void setDowngradeToWarning(bool downgrade) {
    downgradeToWarning = downgrade;
  }

  ConditionalEffectKind getConditionalKind(EffectKind kind) const {
    switch (kind) {
    case EffectKind::Throws: return ThrowKind;
    case EffectKind::Async: return AsyncKind;
    }
    llvm_unreachable("Bad effect kind");
  }
  Type getThrownError() const {
    assert(ThrowKind == ConditionalEffectKind::Always ||
           ThrowKind == ConditionalEffectKind::Conditional);
    return ThrownError;
  }
  PotentialEffectReason getThrowReason() const {
    assert(ThrowKind == ConditionalEffectKind::Always ||
           ThrowKind == ConditionalEffectKind::Conditional);
    return *ThrowReason;
  }
  PotentialEffectReason getAsyncReason() const {
    assert(AsyncKind == ConditionalEffectKind::Always ||
           AsyncKind == ConditionalEffectKind::Conditional);
    return *AsyncReason;
  }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  LLVM_DUMP_METHOD void dump() const { print(llvm::errs()); }
#endif
};


/// A class for collecting information about rethrowing and reasync functions.
class ApplyClassifier {
  /// The key to this cache is a local function decl or closure.
  llvm::DenseMap<AnyFunctionRef, Classification> ThrowsCache;
  llvm::DenseMap<AnyFunctionRef, Classification> AsyncCache;

  /// check the kind of property with an effect to give better diagnostics
  static PotentialEffectReason getKindOfEffectfulProp(ConcreteDeclRef cdr) {
    if (isa<SubscriptDecl>(cdr.getDecl()))
      return PotentialEffectReason::forSubscriptAccess();

    assert(isa<VarDecl>(cdr.getDecl()));
    return PotentialEffectReason::forPropertyAccess();
  }

public:
  ASTContext &Ctx;
  DeclContext *DC = nullptr;
  DeclContext *RethrowsDC = nullptr;
  DeclContext *ReasyncDC = nullptr;

  ApplyClassifier(ASTContext &ctx) : Ctx(ctx) { }

  DeclContext *getPolymorphicEffectDeclContext(EffectKind kind) const {
    switch (kind) {
    case EffectKind::Throws: return RethrowsDC;
    case EffectKind::Async: return ReasyncDC;
    }
  }

  Classification classifyConformance(Type type,
                                     ProtocolConformanceRef conformanceRef,
                                     EffectKind kind) {
    if (conformanceRef.isInvalid())
      return Classification::forInvalidCode();

    auto proto = conformanceRef.getRequirement();
    if (kind == EffectKind::Throws &&
        (proto->isSpecificProtocol(KnownProtocolKind::AsyncSequence) ||
         proto->isSpecificProtocol(
             KnownProtocolKind::AsyncIteratorProtocol))) {
      auto failureAssocType = proto->getAssociatedType(Ctx.Id_Failure);
      if (failureAssocType) {
        // Determine whether the async 'for' loop's thrown error is
        // conditional.
        ConditionalEffectKind conditional;
        if (RethrowsDC && isRethrowingDueToAsyncSequence(RethrowsDC))
          conditional = ConditionalEffectKind::Conditional;
        else
          conditional = ConditionalEffectKind::Always;

        // Use the Failure type witness, when present.
        Type thrownError = conformanceRef.getAssociatedType(
            type, failureAssocType->getDeclaredInterfaceType());
        return Classification::forThrows(
            thrownError, conditional,
            /*FIXME*/PotentialEffectReason::forConformance());
        }
    }

    if (conformanceRef.hasEffect(kind)) {
      assert(kind == EffectKind::Throws); // there is no async
      ASTContext &ctx = conformanceRef.getRequirement()->getASTContext();
      // FIXME: typed throws, if it becomes a thing for conformances
      return Classification::forThrows(
          ctx.getErrorExistentialType(),
          ConditionalEffectKind::Conditional,
          PotentialEffectReason::forConformance());
    }

    return Classification();
  }

  bool isContextPreconcurrency() const {
    if (!DC)
      return false;

    return getActorIsolationOfContext(DC).preconcurrency();
  }

  /// Whether a missing 'await' error on accessing an async var should be
  /// downgraded to a warning.
  ///
  /// Missing 'await' errors are downgraded for synchronous access to isolated
  /// global or static 'let' variables, which was previously accepted in
  /// compiler versions before 5.10, or for declarations marked preconcurrency.
  bool downgradeAsyncAccessToWarning(Decl *decl) {
    if (decl->preconcurrency() || isContextPreconcurrency()) {
      return true;
    }

    if (auto *var = dyn_cast<VarDecl>(decl)) {
      ActorReferenceResult::Options options = std::nullopt;
      ModuleDecl *module;
      if (DC != nullptr) {
        module = DC->getParentModule();
      } else {
        module = var->getDeclContext()->getParentModule();
      }
      if (!isLetAccessibleAnywhere(module, var, options)) {
        return options.contains(ActorReferenceResult::Flags::Preconcurrency);
      }
    }

    return false;
  }

  Classification classifyLookup(LookupExpr *E) {
    auto member = E->getMember();
    if (!member)
      return Classification::forInvalidCode();

    PotentialEffectReason reason =
        PotentialEffectReason::forPropertyAccess();
    Classification classification;
    if (auto getter = getEffectfulGetOnlyAccessor(member)) {
      reason = getKindOfEffectfulProp(member);
      classification = Classification::forDeclRef(
          getter, ConditionalEffectKind::Always, reason);
    } else if (isa<SubscriptExpr>(E) || isa<DynamicSubscriptExpr>(E)) {
      reason = PotentialEffectReason::forSubscriptAccess();
    }

    classification.setDowngradeToWarning(
        downgradeAsyncAccessToWarning(member.getDecl()));

    classification.mergeImplicitEffects(
        member.getDecl()->getASTContext(),
        E->isImplicitlyAsync().has_value(), E->isImplicitlyThrows(),
        reason);

    return classification;
  }

  Classification classifyDeclRef(DeclRefExpr *E) {
    if (!E->getDecl())
      return Classification::forInvalidCode();

    Classification classification;
    PotentialEffectReason reason = PotentialEffectReason::forPropertyAccess();
    ConcreteDeclRef declRef = E->getDeclRef();

    if (auto getter = getEffectfulGetOnlyAccessor(declRef)) {
      reason = getKindOfEffectfulProp(declRef);
      classification = Classification::forDeclRef(
          getter, ConditionalEffectKind::Always, reason);
    } else if (isa<VarDecl>(declRef.getDecl())) {
      // Handle async let.
      reason = PotentialEffectReason::forAsyncLet();
      classification = Classification::forDeclRef(
          declRef, ConditionalEffectKind::Always, reason);
    }

    classification.setDowngradeToWarning(
        downgradeAsyncAccessToWarning(E->getDecl()));

    classification.mergeImplicitEffects(
        E->getDeclRef().getDecl()->getASTContext(),
        E->isImplicitlyAsync().has_value(), E->isImplicitlyThrows(),
        reason);

    return classification;
  }

  Classification classifyThrow(ThrowStmt *S) {
    Expr *thrownValue = S->getSubExpr();
    if (!thrownValue)
      return Classification::forInvalidCode();

    // If we are doing full typed throws, look through an existential
    // conversion to find the underlying type.
    thrownValue = removeErasureToExistentialError(thrownValue);

    Type thrownType = thrownValue->getType();
    if (!thrownType)
      return Classification::forInvalidCode();

    // FIXME: Add a potential effect reason for a throw site.
    return Classification::forThrows(
        thrownType, ConditionalEffectKind::Always,
        PotentialEffectReason::forApply());
  }

  /// Check to see if the given function application throws or is async.
  Classification classifyApply(ApplyExpr *E) {
    // An apply expression is a potential throw site if the function throws.
    // But if the expression didn't type-check, suppress diagnostics.
    if (!E->getType() || E->getType()->hasError())
      return Classification::forInvalidCode();

    if (auto *SAE = dyn_cast<SelfApplyExpr>(E)) {
      assert(!E->isImplicitlyAsync());
    }

    auto type = E->getFn()->getType();
    if (!type) return Classification::forInvalidCode();
    auto fnType = type->getAs<AnyFunctionType>();
    if (!fnType) return Classification::forInvalidCode();

    auto fnRef = AbstractFunction::getAppliedFn(E);
    auto substitutions = fnRef.getSubstitutions();
    const bool hasAnyConformances =
        llvm::any_of(substitutions.getConformances(),
                     [](const ProtocolConformanceRef conformance) {
                       auto *requirement = conformance.getRequirement();
                       return !requirement->getInvertibleProtocolKind();
                     });

    // If the function doesn't have any effects or conformances, we're done
    // here.
    if (!fnType->isThrowing() &&
        !E->implicitlyThrows() &&
        !fnType->isAsync() &&
        !E->isImplicitlyAsync() &&
        !hasAnyConformances) {
      return Classification();
    }

    ASTContext &ctx = type->getASTContext();

    // Decompose the application.
    auto *args = E->getArgs();

    // If any of the arguments didn't type check, fail.
    for (auto arg : *args) {
      auto *argExpr = arg.getExpr();
      if (!argExpr->getType() || argExpr->getType()->hasError())
        return Classification::forInvalidCode();
    }

    Classification result;
    result.mergeImplicitEffects(
        ctx, E->isImplicitlyAsync().has_value(), E->implicitlyThrows(),
        PotentialEffectReason::forApply());

    // Downgrade missing 'await' errors for preconcurrency references.
    result.setDowngradeToWarning(
        result.hasAsync() &&
        (fnRef.isPreconcurrency() || isContextPreconcurrency()));

    auto classifyApplyEffect = [&](EffectKind kind) {
      if (!fnType->hasEffect(kind) &&
          !(kind == EffectKind::Async && E->isImplicitlyAsync()) &&
          !(kind == EffectKind::Throws && E->implicitlyThrows())) {
        return;
      }

      // Handle rethrowing and reasync functions.
      switch (auto polyKind = fnRef.getPolymorphicEffectKind(kind)) {
      case PolymorphicEffectKind::AsyncSequenceRethrows:
      case PolymorphicEffectKind::ByConformance: {
        auto requirements = substitutions.getGenericSignature()
                                .withoutMarkerProtocols()
                                .getRequirements();
        for (const auto &req : requirements) {
          if (req.getKind() != RequirementKind::Conformance)
            continue;

          Type type = req.getFirstType().subst(substitutions);

          auto conformanceRef = substitutions.lookupConformance(
              req.getFirstType()->getCanonicalType(), req.getProtocolDecl());
          assert(conformanceRef);

          result.merge(classifyConformance(type, conformanceRef, kind));
        }

        // 'ByConformance' is a superset of 'ByClosure', so check for
        // closure arguments too.
        LLVM_FALLTHROUGH;
      }

      case PolymorphicEffectKind::Always:
        if (polyKind == PolymorphicEffectKind::ByConformance ||
            polyKind == PolymorphicEffectKind::AsyncSequenceRethrows) {
          LLVM_FALLTHROUGH;
        } else if (RethrowsDC &&
            fnRef.getKind() == AbstractFunction::Function &&
            isRethrowLikeTypedThrows(fnRef.getFunction())) {
          // If we are in a rethrowing context and the function we're referring
          // to is a rethrow-like function using typed throws or we are
          // calling the next() or next(_:) of an async iterator,
          // then look at all of the closure arguments.
          LLVM_FALLTHROUGH;
        } else {
          break;
        }

      case PolymorphicEffectKind::ByClosure: {
        // We need to walk the original parameter types in parallel
        // because it only counts for rethrows/reasync purposes if it
        // lines up with a throws/async function parameter in the
        // original type.
        Type fnInterfaceType = fnRef.getType();
        if (!fnInterfaceType) {
          result.merge(Classification::forInvalidCode());
          return;
        }

        // Use the most significant result from the arguments.
        auto *fnSubstType = fnInterfaceType.subst(fnRef.getSubstitutions())
            ->getAs<AnyFunctionType>();
        if (!fnSubstType)  {
          result.merge(Classification::forInvalidCode());
          return;
        }

        if (fnSubstType->getParams().size() != args->size()) {
          result.merge(Classification::forInvalidCode());
          return;
        }

        for (unsigned i = 0, e = args->size(); i < e; ++i) {
          Type origParamType = fnRef.getOrigParamInterfaceType(i);
          auto argClassification = classifyArgument(
              args->getExpr(i), origParamType, fnRef.getSubstitutions(), kind);

          // Rethrows is untyped, so adjust the thrown error type.
          if (kind == EffectKind::Throws &&
              polyKind == PolymorphicEffectKind::ByClosure) {
            argClassification = argClassification.promoteToUntypedThrows();
          }

          result.merge(argClassification);
        }

        return;
      }

      case PolymorphicEffectKind::None:
      case PolymorphicEffectKind::Invalid:
        break;
      }

      // Try to classify the implementation of functions that we have
      // local knowledge of.
      //
      // An autoclosure callee here only appears in a narrow case where
      // we're in the initializer of an 'async let'.
      // FIXME: handle typed async let
      if (fnRef.isAutoClosure()) {
        switch (kind) {
        case EffectKind::Async:
          result.merge(Classification::forAsync(
                          ConditionalEffectKind::Always,
                          PotentialEffectReason::forApply()));
          break;
        case EffectKind::Throws:
          result.merge(Classification::forThrows(
                         /*FIXME:*/ctx.getErrorExistentialType(),
                         ConditionalEffectKind::Always,
                         PotentialEffectReason::forApply()));
        }
      } else {
        result.merge(
          classifyFunctionBody(fnRef,
                               PotentialEffectReason::forApply(),
                               kind));
      }
    };

    classifyApplyEffect(EffectKind::Throws);
    classifyApplyEffect(EffectKind::Async);

    return result;
  }

  /// Classify a single expression without considering its enclosing context.
  Classification classifyExpr(Expr *expr, EffectKind kind) {
    switch (kind) {
    case EffectKind::Throws: {
      FunctionThrowsClassifier classifier(*this);
      expr->walk(classifier);
      return classifier.classification.onlyThrowing();
    }
    case EffectKind::Async: {
      FunctionAsyncClassifier classifier(*this);
      expr->walk(classifier);
      return Classification::forAsync(
          classifier.AsyncKind, /*FIXME:*/PotentialEffectReason::forApply());
    }
    }
    llvm_unreachable("Bad effect");
  }

  // Classify a single statement without considering its enclosing context.
  Classification classifyStmt(Stmt *stmt, EffectKind kind) {
    switch (kind) {
    case EffectKind::Throws: {
      FunctionThrowsClassifier classifier(*this);
      stmt->walk(classifier);
      return classifier.classification.onlyThrowing();
    }
    case EffectKind::Async: {
      FunctionAsyncClassifier classifier(*this);
      stmt->walk(classifier);
      return Classification::forAsync(
          classifier.AsyncKind, /*FIXME:*/PotentialEffectReason::forApply());
    }
    }
  }

  /// Check to see if the given for-each statement to determine if it
  /// throws or is async.
  Classification classifyForEach(ForEachStmt *stmt) {
    // Only async for-each loops have effects.
    if (!stmt->getAwaitLoc().isValid())
      return Classification();

    // For-each loops with effects are always async.
    Classification result = Classification::forAsync(
        ConditionalEffectKind::Always,
        PotentialEffectReason::forApply());

    if (!stmt->getNextCall())
      return Classification::forInvalidCode();

    // Merge the thrown result from the next/nextElement call.
    result.merge(classifyExpr(stmt->getNextCall(), EffectKind::Throws));

    return result;
  }

private:
  /// Classify a throwing or async function according to our local
  /// knowledge of its implementation.
  Classification
  classifyFunctionBody(const AbstractFunction &fn,
                       PotentialEffectReason reason,
                       EffectKind kind) {
    switch (fn.getKind()) {
    case AbstractFunction::Opaque: {
      return classifyArgumentByType(fn.getType(), fn.getSubstitutions(),
                                    ConditionalEffectKind::Always, reason,
                                    kind);
    }
    case AbstractFunction::Parameter:
      return classifyParameterBody(fn.getParameter(), fn.getSubstitutions(),
                                   reason, kind);
    case AbstractFunction::Function:
      return classifyFunctionBody(fn.getFunction(), fn.getSubstitutions(),
                                  reason, kind);
    case AbstractFunction::Closure:
      return classifyFunctionBody(fn.getClosure(), reason, kind);
    }
    llvm_unreachable("bad abstract function kind");
  }

  Classification classifyParameterBody(ParamDecl *param,
                                       SubstitutionMap subs,
                                       PotentialEffectReason reason,
                                       EffectKind kind) {
    assert(param->getInterfaceType()
               ->lookThroughAllOptionalTypes()
               ->castTo<AnyFunctionType>()
               ->hasEffect(kind) ||
           !param->getInterfaceType()
               ->lookThroughAllOptionalTypes()
               ->castTo<AnyFunctionType>()
               ->getIsolation().isNonIsolated());

    ConditionalEffectKind conditional;

    // If we're currently doing rethrows-checking on the body of the
    // function which declares the parameter, it's rethrowing-only.
    auto *ParentDC = getPolymorphicEffectDeclContext(kind);
    if (ParentDC == param->getDeclContext())
      conditional = ConditionalEffectKind::Conditional;
    else // otherwise, it throws unconditionally.
      conditional = ConditionalEffectKind::Always;

    return classifyArgumentByType(
        param->getInterfaceType(), subs, conditional, reason, kind);
  }

  bool isLocallyDefinedInPolymorphicEffectDeclContext(DeclContext *DC,
                                                      EffectKind kind) {
    auto *ParentDC = getPolymorphicEffectDeclContext(kind);
    if (ParentDC == nullptr)
      return false;

    while (true) {
      assert(DC->isLocalContext());
      if (DC == ParentDC) return true;
      DC = DC->getParent();
      if (!DC->isLocalContext()) return false;
    }
  }

  Classification classifyFunctionBody(AbstractFunctionDecl *fn,
                                      SubstitutionMap subs,
                                      PotentialEffectReason reason,
                                      EffectKind kind) {
    // Functions can't be rethrowing-only unless they're defined
    // within the rethrows context.
    if (!isLocallyDefinedInPolymorphicEffectDeclContext(fn, kind) ||
        !fn->hasBody()) {
      auto conditional = ConditionalEffectKind::Always;

      // If we are within a rethrows context prior, treat some typed-throws
      // functions and async iterator functions as conditionally throwing.
      if (kind == EffectKind::Throws && RethrowsDC &&
          (isRethrowLikeTypedThrows(fn) ||
           isRethrowingDueToAsyncSequence(RethrowsDC)))
        conditional = ConditionalEffectKind::Conditional;

      return Classification::forDeclRef(
          ConcreteDeclRef(fn, subs), conditional, reason)
            .onlyEffect(kind);
    }

    return classifyFunctionBodyImpl(fn, fn->getBody(), /*allowNone*/ false,
                                    kind, reason);
  }

  Classification classifyFunctionBody(AbstractClosureExpr *closure,
                                      PotentialEffectReason reason,
                                      EffectKind kind) {
    bool isAutoClosure = isa<AutoClosureExpr>(closure);

    // Closures can't be rethrowing-only unless they're defined
    // within the rethrows context.
    if (!isAutoClosure &&
        !isLocallyDefinedInPolymorphicEffectDeclContext(closure, kind)) {
      switch (kind) {
      case EffectKind::Async:
        return Classification::forAsync(ConditionalEffectKind::Always, reason);

      case EffectKind::Throws:
        if (auto thrownType = closure->getEffectiveThrownType())
          return Classification::forThrows(*thrownType,
                                           ConditionalEffectKind::Always,
                                           reason);
        return Classification();
      }
    }

    BraceStmt *body;
    if (auto autoclosure = dyn_cast<AutoClosureExpr>(closure)) {
      body = autoclosure->getBody();
    } else {
      body = cast<ClosureExpr>(closure)->getBody();
    }
    if (!body) return Classification::forInvalidCode();

    return classifyFunctionBodyImpl(closure, body, /*allowNone*/ isAutoClosure,
                                    kind, reason);
  }

  class FunctionThrowsClassifier
      : public EffectsHandlingWalker<FunctionThrowsClassifier> {
    ApplyClassifier &Self;
  public:
    Classification classification;

    FunctionThrowsClassifier(ApplyClassifier &self) : Self(self) {}

    void flagInvalidCode() {
      classification.makeInvalid();
    }

    ShouldRecurse_t checkClosure(ClosureExpr *closure) {
      return ShouldNotRecurse;
    }
    ShouldRecurse_t checkAutoClosure(AutoClosureExpr *closure) {
      return ShouldNotRecurse;
    }
    ShouldRecurse_t checkAwait(AwaitExpr *E) {
      return ShouldRecurse;
    }
    ShouldRecurse_t checkTry(TryExpr *E) {
      return ShouldRecurse;
    }
    ShouldRecurse_t checkForceTry(ForceTryExpr *E) {
      return ShouldNotRecurse;
    }
    ShouldRecurse_t checkOptionalTry(OptionalTryExpr *E) {
      return ShouldNotRecurse;
    }
    ShouldRecurse_t checkApply(ApplyExpr *E) {
      classification.merge(Self.classifyApply(E).onlyThrowing());
      return ShouldRecurse;
    }
    ShouldRecurse_t checkLookup(LookupExpr *E) {
      classification.merge(Self.classifyLookup(E).onlyThrowing());
      return ShouldRecurse;
    }
    ShouldRecurse_t checkDeclRef(DeclRefExpr *E) {
      classification.merge(Self.classifyDeclRef(E).onlyThrowing());
      return ShouldNotRecurse;
    }
    ShouldRecurse_t checkAsyncLet(PatternBindingDecl *patternBinding) {
      return ShouldRecurse;
    }
    ShouldRecurse_t checkThrow(ThrowStmt *S) {
      classification.merge(Self.classifyThrow(S).onlyThrowing());
      return ShouldRecurse;
    }
    ShouldRecurse_t checkInterpolatedStringLiteral(InterpolatedStringLiteralExpr *E) {
      return ShouldRecurse;
    }

    ShouldRecurse_t checkIfConfig(IfConfigDecl *D) {
      return ShouldRecurse;
    }

    ShouldRecurse_t checkForEach(ForEachStmt *S) {
      classification.merge(Self.classifyForEach(S));
      return ShouldRecurse;
    }

    ShouldRecurse_t checkSingleValueStmtExpr(SingleValueStmtExpr *SVE) {
      return ShouldRecurse;
    }

    ConditionalEffectKind checkExhaustiveDoBody(DoCatchStmt *S) {
      // All errors thrown by the do body are caught, but any errors thrown
      // by the catch bodies are bounded by the throwing kind of the do body.
      llvm::SaveAndRestore<Classification> savedClassification(
          classification, Classification());
      S->getBody()->walk(*this);
      return classification.getConditionalKind(EffectKind::Throws);
    }

    ConditionalEffectKind checkNonExhaustiveDoBody(DoCatchStmt *S) {
      S->getBody()->walk(*this);
      // Because catch bodies can only be executed if the do body throws an
      // error, and because the do is non-exhaustive, we can skip checking the
      // catch bodies entirely.
      return ConditionalEffectKind::None;
    }

    void checkCatch(CaseStmt *S, ConditionalEffectKind doThrowingKind) {
      if (doThrowingKind != ConditionalEffectKind::None) {
        // This was an exhaustive do body, so bound our throwing kind by its
        // throwing kind.
        auto savedClassification = classification;
        classification = Classification();
        S->getBody()->walk(*this);
        classification.limitThrowingKind(doThrowingKind);
        classification.merge(savedClassification);
      } else {
        // We can skip the catch body, since bounding the result by None is
        // guaranteed to give back None, which leaves our ThrowKind unchanged.
      }
    }

    void visitExprPre(Expr *expr) { return; }
  };

  class FunctionAsyncClassifier
      : public EffectsHandlingWalker<FunctionAsyncClassifier> {
    ApplyClassifier &Self;
  public:
    bool IsInvalid = false;
    ConditionalEffectKind AsyncKind = ConditionalEffectKind::None;
    FunctionAsyncClassifier(ApplyClassifier &self) : Self(self) {}

    void flagInvalidCode() {
      IsInvalid = true;
    }

    ShouldRecurse_t checkClosure(ClosureExpr *closure) {
      return ShouldNotRecurse;
    }
    ShouldRecurse_t checkAutoClosure(AutoClosureExpr *closure) {
      return ShouldNotRecurse;
    }
    ShouldRecurse_t checkAwait(AwaitExpr *E) {
      return ShouldRecurse;
    }
    ShouldRecurse_t checkTry(TryExpr *E) {
      return ShouldRecurse;
    }
    ShouldRecurse_t checkForceTry(ForceTryExpr *E) {
      return ShouldRecurse;
    }
    ShouldRecurse_t checkOptionalTry(OptionalTryExpr *E) {
      return ShouldRecurse;
    }
    ShouldRecurse_t checkApply(ApplyExpr *E) {
      auto classification = Self.classifyApply(E);
      IsInvalid |= classification.isInvalid();
      AsyncKind = std::max(AsyncKind, classification.getConditionalKind(EffectKind::Async));
      return ShouldRecurse;
    }
    ShouldRecurse_t checkLookup(LookupExpr *E) {
      if (E->isImplicitlyAsync()) {
        AsyncKind = ConditionalEffectKind::Always;
      } else if (auto getter = getEffectfulGetOnlyAccessor(E->getMember())) {
        if (cast<AccessorDecl>(getter.getDecl())->hasAsync())
          AsyncKind = ConditionalEffectKind::Always;
      }

      return ShouldRecurse;
    }
    ShouldRecurse_t checkDeclRef(DeclRefExpr *E) {
      if (E->isImplicitlyAsync()) {
        AsyncKind = ConditionalEffectKind::Always;
      } else if (auto getter = getEffectfulGetOnlyAccessor(E->getDeclRef())) {
        if (cast<AccessorDecl>(getter.getDecl())->hasAsync())
          AsyncKind = ConditionalEffectKind::Always;
      }

      return ShouldNotRecurse;
    }
    ShouldRecurse_t checkAsyncLet(PatternBindingDecl *patternBinding) {
      AsyncKind = ConditionalEffectKind::Always;
      return ShouldRecurse;
    }
    ShouldRecurse_t checkThrow(ThrowStmt *E) {
      return ShouldRecurse;
    }
    ShouldRecurse_t checkInterpolatedStringLiteral(InterpolatedStringLiteralExpr *E) {
      return ShouldRecurse;
    }

    ShouldRecurse_t checkIfConfig(IfConfigDecl *D) {
      return ShouldRecurse;
    }

    ShouldRecurse_t checkDoCatch(DoCatchStmt *S) {
      return ShouldRecurse;
    }

    ShouldRecurse_t checkForEach(ForEachStmt *S) {
      if (S->getAwaitLoc().isValid()) {
        AsyncKind = std::max(AsyncKind, ConditionalEffectKind::Always);
      }

      return ShouldRecurse;
    }

    ShouldRecurse_t checkSingleValueStmtExpr(SingleValueStmtExpr *SVE) {
      return ShouldRecurse;
    }

    void visitExprPre(Expr *expr) { return; }
  };

  Classification
  classifyFunctionBodyImpl(AnyFunctionRef key, BraceStmt *body, bool allowNone,
                           EffectKind kind, PotentialEffectReason reason) {
    auto &Cache = (kind == EffectKind::Throws
                   ? ThrowsCache
                   : AsyncCache);

    // Look for the key in the cache.
    auto existingIter = Cache.find(key);
    if (existingIter != Cache.end())
      return existingIter->second;

    // For the purposes of finding a fixed point, consider the
    // function to be rethrowing-only within its body.  Autoclosures
    // aren't recursively referenceable, so their special treatment
    // isn't a problem for this.
    // FIXME: Look up type for typed rethrows?
    Cache.insert({key, Classification::forConditionalPlaceholder(
                          Ctx, kind, reason)});

    // Walk the body.
    Classification result;
    switch (kind) {
    case EffectKind::Throws: {
      FunctionThrowsClassifier classifier(*this);
      body->walk(classifier);
      result = classifier.classification.onlyThrowing(reason);
      break;
    }
    case EffectKind::Async: {
      FunctionAsyncClassifier classifier(*this);
      body->walk(classifier);
      if (classifier.IsInvalid)
        result = Classification::forInvalidCode();
      else {
        result = Classification::forAsync(classifier.AsyncKind, reason);
      }
      break;
    }
    }

    // The body result cannot be 'none' unless it's an autoclosure.
    // FIXME: This actually allows us to accept always-throwing closures
    // within rethrows functions, which is tracked by SR-680
    // (https://bugs.swift.org/browse/SR-680). That can be fixed by adding
    // the following condition:
    // \code
    // result.getConditionalKind(kind) == ConditionalEffectKind::None
    // \endcode
    if (!result.isInvalid() && !allowNone) {
      result = Classification::forConditionalPlaceholder(Ctx, kind, reason);
    }

    // Remember the result.
    Cache[key] = result;
    return result;
  }

  /// Classify an argument being passed to a rethrows/reasync function.
  Classification classifyArgument(
      Expr *arg, Type paramType, SubstitutionMap subs, EffectKind kind) {
    arg = arg->getValueProvidingExpr();

    if (auto *defaultArg = dyn_cast<DefaultArgumentExpr>(arg)) {
      // Special-case a 'nil' default argument, which is known not to throw.
      if (defaultArg->isCallerSide()) {
        auto *callerSideArg = defaultArg->getCallerSideDefaultExpr();
        if (isa<NilLiteralExpr>(callerSideArg)) {
          if (callerSideArg->getType()->getOptionalObjectType())
            return Classification();
        }
      }

      return classifyArgumentByType(arg->getType(), subs,
                                    ConditionalEffectKind::Always,
                                    PotentialEffectReason::forDefaultClosure(),
                                    kind);
    }

    // If this argument is `nil` literal, it doesn't cause the call to throw.
    if (isa<NilLiteralExpr>(arg)) {
      if (arg->getType()->getOptionalObjectType())
        return Classification();
    }

    // Neither does 'Optional<T>.none'.
    if (auto *DSCE = dyn_cast<DotSyntaxCallExpr>(arg)) {
      if (auto *DE = dyn_cast<DeclRefExpr>(DSCE->getFn())) {
        auto &ctx = paramType->getASTContext();
        if (DE->getDecl() == ctx.getOptionalNoneDecl())
          return Classification();
      }
    }

    // If the parameter was structurally a tuple, try to look through the
    // various tuple operations.
    if (auto paramTupleType = dyn_cast<TupleType>(paramType.getPointer())) {
      if (auto tuple = dyn_cast<TupleExpr>(arg)) {
        return classifyTupleArgument(tuple, paramTupleType, subs, kind);
      }

      if (paramTupleType->getNumElements() != 1) {
        // Otherwise, we're passing an opaque tuple expression, and we
        // should treat it as contributing to 'rethrows' if the original
        // parameter type included a throwing function type.
        return classifyArgumentByType(
                                    paramType,
                                    subs,
                                    ConditionalEffectKind::Always,
                                    PotentialEffectReason::forClosure(arg),
                                    kind);
      }

      // FIXME: There's a case where we can end up with an ApplyExpr that
      // has a single-element-tuple argument type, but the argument is just
      // a ClosureExpr and not a TupleExpr.
      paramType = paramTupleType->getElementType(0);
    }

    // Otherwise, if the original parameter type was not a throwing
    // function type, it does not contribute to 'rethrows'.
    auto paramFnType = paramType->lookThroughAllOptionalTypes()->getAs<AnyFunctionType>();
    if (!paramFnType || !paramFnType->hasEffect(kind))
      return Classification();

    PotentialEffectReason reason = PotentialEffectReason::forClosure(arg);

    // TODO: partial applications?

    // Decompose the function reference, then consider the type
    // of the decomposed function.
    AbstractFunction fn = AbstractFunction::decomposeFunction(arg);

    // If it doesn't have function type, we must have invalid code.
    Type argType = fn.getType();
    if (!argType) return Classification::forInvalidCode();

    auto argFnType =
        argType->lookThroughAllOptionalTypes()->getAs<AnyFunctionType>();
    if (!argFnType) return Classification::forInvalidCode();

    // If it doesn't throw, this argument does not cause the call to throw.
    if (!argFnType->hasEffect(kind))
      return Classification();

    // Otherwise, classify the function implementation.
    return classifyFunctionBody(fn, reason, kind);
  }

  /// Classify an argument to a rethrows/reasync function that's a tuple literal.
  Classification classifyTupleArgument(TupleExpr *tuple,
                                       TupleType *paramTupleType,
                                       SubstitutionMap subs,
                                       EffectKind kind) {
    if (paramTupleType->getNumElements() != tuple->getNumElements())
      return Classification::forInvalidCode();

    Classification result;
    for (unsigned i : indices(tuple->getElements())) {
      result.merge(classifyArgument(tuple->getElement(i),
                                    paramTupleType->getElementType(i),
                                    subs, kind));
    }
    return result;
  }

  /// Given the type of an argument, try to determine if it contains
  /// a throws/async function in a way that is permitted to cause a
  /// rethrows/reasync function to throw/async.
  static Classification
  classifyArgumentByType(Type paramType, SubstitutionMap subs,
                         ConditionalEffectKind conditional,
                         PotentialEffectReason reason, EffectKind kind) {
    if (!paramType || paramType->hasError())
      return Classification::forInvalidCode();

    // Look through Optional types.
    paramType = paramType->lookThroughAllOptionalTypes();

    // Consider function types.
    if (auto fnType = paramType->getAs<AnyFunctionType>()) {
      switch (kind) {
      case EffectKind::Async:
        if (fnType->isAsync())
          return Classification::forAsync(conditional, reason);

        return Classification();

      case EffectKind::Throws:
        if (auto thrownError = fnType->getEffectiveThrownErrorType()) {
          Type thrown = *thrownError;
          if (subs)
            thrown = thrown.subst(subs);
          return Classification::forThrows(thrown, conditional, reason);
        }

        return Classification();
      }
    }

    // Look through tuples.
    if (auto tuple = paramType->getAs<TupleType>()) {
      Classification result;

      for (auto eltType : tuple->getElementTypes()) {
        result.merge(
            classifyArgumentByType(eltType, subs, conditional, reason, kind));
      }

      return result;
    }

    return Classification();
  }
};

/// An context in which effects might be handled.
class Context {
public:
  enum class Kind : uint8_t {
    /// A context that potentially handles errors or async calls.
    PotentiallyHandled,

    /// A default argument expression.
    DefaultArgument,

    /// A property wrapper initialization expression.
    PropertyWrapper,

    /// The initializer for an instance variable.
    IVarInitializer,

    /// The initializer for a global variable.
    GlobalVarInitializer,

    /// The initializer for a `lazy` variable.
    LazyVarInitializer,

    /// The initializer for an enum element.
    EnumElementInitializer,

    /// The pattern of a catch.
    CatchPattern,

    /// The guard expression controlling a catch.
    CatchGuard,

    /// A defer body
    DeferBody,
  };

private:
  static Context getContextForPatternBinding(PatternBindingDecl *pbd) {
    auto *var = pbd->getSingleVar();

    if (!pbd->isStatic() && pbd->getDeclContext()->isTypeContext()) {
      return Context(Kind::IVarInitializer, pbd->getDeclContext());
    } else if (var && var->getAttrs().hasAttribute<LazyAttr>()) {
      return Context(Kind::LazyVarInitializer, pbd->getDeclContext());
    } else {
      return Context(Kind::GlobalVarInitializer, pbd->getDeclContext());
    }
  }

  Kind TheKind;
  std::optional<AnyFunctionRef> Function;
  DeclContext *DC;
  bool HandlesErrors = false;
  bool HandlesAsync = false;

  /// Whether error-handling queries should ignore the function context, e.g.,
  /// for autoclosure and rethrows checks.
  bool ErrorHandlingIgnoresFunction = false;
  bool IsNonExhaustiveCatch = false;
  bool DiagnoseErrorOnTry = false;
  InterpolatedStringLiteralExpr *InterpolatedString = nullptr;

  explicit Context(Kind kind, DeclContext *dc)
      : TheKind(kind), Function(std::nullopt), DC(dc), HandlesErrors(false) {
    assert(TheKind != Kind::PotentiallyHandled);
  }

  explicit Context(bool handlesErrors, bool handlesAsync,
                   std::optional<AnyFunctionRef> function, DeclContext *dc)
      : TheKind(Kind::PotentiallyHandled), Function(function), DC(dc),
        HandlesErrors(handlesErrors), HandlesAsync(handlesAsync) {}

public:
  bool shouldDiagnoseErrorOnTry() const {
    return DiagnoseErrorOnTry;
  }
  void setDiagnoseErrorOnTry(bool b) {
    DiagnoseErrorOnTry = b;
  }

  /// Return true when the current context is under an interpolated string
  bool isWithinInterpolatedString() const {
    return InterpolatedString != nullptr;
  }

  /// Stores the location of the innermost await
  SourceLoc awaitLoc = SourceLoc();

  /// Whether this is a function that rethrows.
  bool hasPolymorphicEffect(EffectKind kind) const {
    if (!Function)
      return false;

    auto fn = Function->getAbstractFunctionDecl();
    if (!fn)
      return false;

    switch (kind) {
    case EffectKind::Throws:
      if (!HandlesErrors)
        return false;

      if (ErrorHandlingIgnoresFunction)
        return false;

      break;

    case EffectKind::Async:
      if (!HandlesAsync)
        return false;

      break;
    }

    switch (fn->getPolymorphicEffectKind(kind)) {
    case PolymorphicEffectKind::ByClosure:
    case PolymorphicEffectKind::ByConformance:
    case PolymorphicEffectKind::AsyncSequenceRethrows:
      return true;

    case PolymorphicEffectKind::None:
    case PolymorphicEffectKind::Always:
    case PolymorphicEffectKind::Invalid:
      return false;
    }

    llvm_unreachable("Bad polymorphic effect kind");
  }

  /// Whether this is an autoclosure.
  bool isAutoClosure() const {
    if (!Function)
      return false;

    if (ErrorHandlingIgnoresFunction)
      return false;

    auto closure = Function->getAbstractClosureExpr();
    if (!closure)
      return false;

    return isa<AutoClosureExpr>(closure);
  }

  static Context forTopLevelCode(TopLevelCodeDecl *D) {
    // Top-level code implicitly handles errors.
    return Context(/*handlesErrors=*/true,
                   /*handlesAsync=*/D->isAsyncContext(), std::nullopt, D);
  }

  static Context forFunction(AbstractFunctionDecl *D) {
    // HACK: If the decl is the synthesized getter for a 'lazy' property, then
    // treat the context as a property initializer in order to produce a better
    // diagnostic; the only code we should be diagnosing on is within the
    // initializer expression that has been transplanted from the var's pattern
    // binding decl. We don't perform the analysis on the initializer while it's
    // still a part of that PBD, as it doesn't get a solution applied there.
    if (auto *accessor = dyn_cast<AccessorDecl>(D)) {
      if (auto *var = dyn_cast<VarDecl>(accessor->getStorage())) {
        if (accessor->isGetter() && var->getAttrs().hasAttribute<LazyAttr>()) {
          auto *pbd = var->getParentPatternBinding();
          assert(pbd && "lazy var didn't have a pattern binding decl");
          return getContextForPatternBinding(pbd);
        }
      }
    }

    return Context(D->hasThrows(), D->isAsyncContext(), AnyFunctionRef(D), D);
  }

  static Context forDeferBody(DeclContext *dc) {
    return Context(Kind::DeferBody, dc);
  }

  static Context forInitializer(Initializer *init) {
    if (isa<DefaultArgumentInitializer>(init)) {
      return Context(Kind::DefaultArgument, init);
    }

    if (isa<PropertyWrapperInitializer>(init)) {
      return Context(Kind::PropertyWrapper, init);
    }

    auto *binding = cast<PatternBindingInitializer>(init)->getBinding();
    assert(!binding->getDeclContext()->isLocalContext() &&
           "setting up error context for local pattern binding?");
    return getContextForPatternBinding(binding);
  }

  static Context forDefaultArgument(DeclContext *dc) {
    return Context(Kind::DefaultArgument, dc);
  }

  static Context forEnumElementInitializer(EnumElementDecl *elt) {
    return Context(Kind::EnumElementInitializer, elt);
  }

  static Context forClosure(AbstractClosureExpr *E) {
    // Determine whether the closure has throwing function type.
    bool closureTypeThrows = true;
    bool closureTypeIsAsync = true;
    if (auto closureType = E->getType()) {
      if (auto fnType = closureType->getAs<AnyFunctionType>()) {
        closureTypeThrows = fnType->isThrowing();
        closureTypeIsAsync = fnType->isAsync();
      }
    }

    return Context(closureTypeThrows, closureTypeIsAsync, AnyFunctionRef(E), E);
  }

  static Context forCatchPattern(CaseStmt *S, DeclContext *dc) {
    return Context(Kind::CatchPattern, dc);
  }

  static Context forCatchGuard(CaseStmt *S, DeclContext *dc) {
    return Context(Kind::CatchGuard, dc);
  }

  static Context forPatternBinding(PatternBindingDecl *binding) {
    return getContextForPatternBinding(binding);
  }

  Context withInterpolatedString(InterpolatedStringLiteralExpr *E) const {
    Context copy = *this;
    copy.InterpolatedString = E;
    return copy;
  }

  /// Form a subcontext that handles all errors, e.g., for the body of a
  /// do-catch with exhaustive catch clauses.
  Context withHandlesErrors() const {
    Context copy = *this;
    copy.HandlesErrors = true;
    copy.ErrorHandlingIgnoresFunction = true;
    return copy;
  }

  Kind getKind() const { return TheKind; }

  DeclContext *getDeclContext() const { return DC; }

  bool handlesThrows(ConditionalEffectKind errorKind) const {
    switch (errorKind) {
    case ConditionalEffectKind::None:
      return true;

    // A call that's rethrowing-only can be handled by 'rethrows'.
    case ConditionalEffectKind::Conditional:
      return HandlesErrors;

    // An operation that always throws can only be handled by an
    // all-handling context.
    case ConditionalEffectKind::Always:
      return HandlesErrors && !hasPolymorphicEffect(EffectKind::Throws);
    }
    llvm_unreachable("bad error kind");
  }

  bool handlesAsync(ConditionalEffectKind errorKind) const {
    switch (errorKind) {
    case ConditionalEffectKind::None:
      return true;

    // A call that's rethrowing-only can be handled by 'rethrows'.
    case ConditionalEffectKind::Conditional:
      return HandlesAsync;

    // An operation that always throws can only be handled by an
    // all-handling context.
    case ConditionalEffectKind::Always:
      return HandlesAsync && !hasPolymorphicEffect(EffectKind::Async);
    }
    llvm_unreachable("bad error kind");
  }

  DeclContext *getPolymorphicEffectDeclContext(EffectKind kind) const {
    if (!hasPolymorphicEffect(kind))
      return nullptr;

    return Function->getAbstractFunctionDecl();
  }

  InterpolatedStringLiteralExpr * getInterpolatedString() const {
    return InterpolatedString;
  }

  void setNonExhaustiveCatch(bool value) {
    IsNonExhaustiveCatch = value;
  }

  static void maybeAddRethrowsNote(DiagnosticEngine &Diags, SourceLoc loc,
                                   const PotentialEffectReason &reason) {
    switch (reason.getKind()) {
    case PotentialEffectReason::Kind::Apply:
    case PotentialEffectReason::Kind::PropertyAccess:
    case PotentialEffectReason::Kind::SubscriptAccess:
    case PotentialEffectReason::Kind::AsyncLet:
      // Already fully diagnosed.
      return;
    case PotentialEffectReason::Kind::ByClosure:
      Diags.diagnose(reason.getArgument()->getLoc(),
                     diag::because_rethrows_argument_throws);
      return;
    case PotentialEffectReason::Kind::ByDefaultClosure:
      Diags.diagnose(loc, diag::because_rethrows_default_argument_throws);
      return;
    case PotentialEffectReason::Kind::ByConformance:
      Diags.diagnose(loc, diag::because_rethrows_conformance_throws);
      return;
    }
    llvm_unreachable("bad reason kind");
  }

  /// get a user-friendly name for the source of the effect
  static StringRef getEffectSourceName(const PotentialEffectReason &reason) {
    switch (reason.getKind()) {
    case PotentialEffectReason::Kind::Apply:
    case PotentialEffectReason::Kind::ByClosure:
    case PotentialEffectReason::Kind::ByDefaultClosure:
    case PotentialEffectReason::Kind::ByConformance:
    case PotentialEffectReason::Kind::AsyncLet: // FIXME: not really the right name?
      return "call";

    case PotentialEffectReason::Kind::PropertyAccess:
      return "property access";
    case PotentialEffectReason::Kind::SubscriptAccess:
      return "subscript access";
    }
  }

  void diagnoseUncoveredThrowSite(ASTContext &ctx, ASTNode E,
                                  const Classification &classification) {
    auto &Diags = ctx.Diags;
    auto message = diag::throwing_call_without_try;
    const auto &reason = classification.getThrowReason();
    auto reasonKind = reason.getKind();

    bool suggestTryFixIt = reasonKind == PotentialEffectReason::Kind::Apply;

    if (reasonKind == PotentialEffectReason::Kind::AsyncLet) {
      message = diag::throwing_async_let_without_try;

    } else if (reasonKind == PotentialEffectReason::Kind::PropertyAccess) {
      message = diag::throwing_prop_access_without_try;
      suggestTryFixIt = true;

    } else if (reasonKind == PotentialEffectReason::Kind::SubscriptAccess) {
      message = diag::throwing_subscript_access_without_try;
      suggestTryFixIt = true;
    }

    auto loc = E.getStartLoc();
    SourceLoc insertLoc;
    SourceRange highlight;

    // Generate more specific messages in some cases.
    if (auto e = dyn_cast_or_null<ApplyExpr>(E.dyn_cast<Expr*>())) {
      if (isa<PrefixUnaryExpr>(e) || isa<PostfixUnaryExpr>(e) ||
          isa<BinaryExpr>(e)) {
        loc = e->getFn()->getStartLoc();
        message = diag::throwing_operator_without_try;
      }
      insertLoc = loc;
      highlight = e->getSourceRange();

      if (InterpolatedString &&
          e->getCalledValue() &&
          e->getCalledValue()->getBaseName() ==
          ctx.Id_appendInterpolation) {
        message = diag::throwing_interpolation_without_try;
        insertLoc = InterpolatedString->getLoc();
      }
    }

    Diags.diagnose(loc, message).highlight(highlight)
      .warnUntilSwiftVersionIf(classification.shouldDowngradeToWarning(), 6);
    maybeAddRethrowsNote(Diags, loc, reason);

    // If this is a call without expected 'try[?|!]', like this:
    //
    // func foo() throws {}
    // [let _ = ]foo()
    //
    // Let's suggest couple of alternative fix-its
    // because complete context is unavailable.
    if (!suggestTryFixIt)
      return;

    // 'try' should go before 'await'
    if (awaitLoc.isValid())
      insertLoc = awaitLoc;

    Diags.diagnose(loc, diag::note_forgot_try)
        .fixItInsert(insertLoc, "try ");
    Diags.diagnose(loc, diag::note_error_to_optional)
        .fixItInsert(insertLoc, "try? ");
    Diags.diagnose(loc, diag::note_disable_error_propagation)
        .fixItInsert(insertLoc, "try! ");
  }

  void diagnoseThrowInLegalContext(DiagnosticEngine &Diags, ASTNode node,
                                   bool isTryCovered,
                                   const PotentialEffectReason &reason,
                                   Diag<StringRef> diagForThrowingCall,
                                   Diag<StringRef> diagForTrylessThrowingCall) {
    auto loc = node.getStartLoc();

    // Allow the diagnostic to fire on the 'try' if we don't have
    // anything else to say.
    if (isTryCovered &&
        !reason.hasPolymorphicEffect() &&
        !hasPolymorphicEffect(EffectKind::Throws) &&
        !isAutoClosure()) {
      DiagnoseErrorOnTry = true;
      return;
    }

    auto effectSource = getEffectSourceName(reason);

    if (isTryCovered) {
      Diags.diagnose(loc, diagForThrowingCall, effectSource);
    } else {
      Diags.diagnose(loc, diagForTrylessThrowingCall, effectSource);
    }
    maybeAddRethrowsNote(Diags, loc, reason);
  }

  void diagnoseUnhandledThrowSite(DiagnosticEngine &Diags, ASTNode E,
                                  bool isTryCovered,
                                  const PotentialEffectReason &reason) {
    switch (getKind()) {
    case Kind::PotentiallyHandled:
      if (IsNonExhaustiveCatch) {
        diagnoseThrowInLegalContext(Diags, E, isTryCovered, reason,
                                    diag::throwing_call_in_nonexhaustive_catch,
                            diag::tryless_throwing_call_in_nonexhaustive_catch);
        return;
      }

      if (isAutoClosure()) {
        diagnoseThrowInLegalContext(Diags, E, isTryCovered, reason,
                              diag::throwing_call_in_nonthrowing_autoclosure,
                      diag::tryless_throwing_call_in_nonthrowing_autoclosure);
        return;
      }

      if (hasPolymorphicEffect(EffectKind::Throws)) {
        diagnoseThrowInLegalContext(Diags, E, isTryCovered, reason,
                                    diag::throwing_call_in_rethrows_function,
                            diag::tryless_throwing_call_in_rethrows_function);
        return;
      }

      diagnoseThrowInLegalContext(Diags, E, isTryCovered, reason,
                                  diag::throwing_call_unhandled,
                                  diag::tryless_throwing_call_unhandled);
      return;

    case Kind::EnumElementInitializer:
    case Kind::GlobalVarInitializer:
    case Kind::LazyVarInitializer:
    case Kind::IVarInitializer:
    case Kind::DefaultArgument:
    case Kind::PropertyWrapper:
    case Kind::CatchPattern:
    case Kind::CatchGuard:
    case Kind::DeferBody:
      Diags.diagnose(E.getStartLoc(), diag::throwing_op_in_illegal_context,
                 static_cast<unsigned>(getKind()), getEffectSourceName(reason));
      return;
    }
    llvm_unreachable("bad context kind");
  }

  void diagnoseUnhandledThrowStmt(DiagnosticEngine &Diags, Stmt *S) {
    switch (getKind()) {
    case Kind::PotentiallyHandled:
      if (IsNonExhaustiveCatch) {
        Diags.diagnose(S->getStartLoc(), diag::throw_in_nonexhaustive_catch);
        return;
      }

      if (isAutoClosure()) {
        Diags.diagnose(S->getStartLoc(), diag::throw_in_nonthrowing_autoclosure);
        return;
      }

      if (hasPolymorphicEffect(EffectKind::Throws)) {
        Diags.diagnose(S->getStartLoc(), diag::throw_in_rethrows_function);
        return;
      }

      Diags.diagnose(S->getStartLoc(), diag::throw_in_nonthrowing_function);
      return;

    case Kind::EnumElementInitializer:
    case Kind::GlobalVarInitializer:
    case Kind::LazyVarInitializer:
    case Kind::IVarInitializer:
    case Kind::DefaultArgument:
    case Kind::PropertyWrapper:
    case Kind::CatchPattern:
    case Kind::CatchGuard:
    case Kind::DeferBody:
      Diags.diagnose(S->getStartLoc(), diag::throw_in_illegal_context,
                     static_cast<unsigned>(getKind()));
      return;
    }
    llvm_unreachable("bad context kind");
  }

  void diagnoseUnhandledTry(DiagnosticEngine &Diags, TryExpr *E) {
    switch (getKind()) {
    case Kind::PotentiallyHandled:
      if (DiagnoseErrorOnTry) {
        Diags.diagnose(
            E->getTryLoc(),
            IsNonExhaustiveCatch ? diag::try_unhandled_in_nonexhaustive_catch
                                 : diag::try_unhandled);
      }
      return;

    case Kind::EnumElementInitializer:
    case Kind::GlobalVarInitializer:
    case Kind::LazyVarInitializer:
    case Kind::IVarInitializer:
    case Kind::DefaultArgument:
    case Kind::PropertyWrapper:
    case Kind::CatchPattern:
    case Kind::CatchGuard:
    case Kind::DeferBody:
      assert(!DiagnoseErrorOnTry);
      // Diagnosed at the call sites.
      return;
    }
    llvm_unreachable("bad context kind");
  }
  /// I did not want to add 'await' as a PotentialEffectReason, since it's
  /// not actually an effect. So, we have this odd boolean hanging around.
  unsigned effectReasonToIndex(std::optional<PotentialEffectReason> maybeReason,
                               bool forAwait = false) {
    // while not actually an effect, in some instances we diagnose the
    // appearance of an await within a non-async context.
    if (forAwait)
      return 2;

    if (!maybeReason.has_value())
      return 0; // Unspecified

    switch(maybeReason.value().getKind()) {
    case PotentialEffectReason::Kind::ByClosure:
    case PotentialEffectReason::Kind::ByDefaultClosure:
    case PotentialEffectReason::Kind::ByConformance:
    case PotentialEffectReason::Kind::Apply:
      return 1;

    case PotentialEffectReason::Kind::AsyncLet:
      return 3;

    case PotentialEffectReason::Kind::PropertyAccess:
      return 4;

    case PotentialEffectReason::Kind::SubscriptAccess:
      return 5;
    }
  }

  void diagnoseAsyncInIllegalContext(DiagnosticEngine &Diags, ASTNode node) {
    if (auto *e = node.dyn_cast<Expr*>()) {
      if (isa<ApplyExpr>(e)) {
        Diags.diagnose(e->getLoc(), diag::async_call_in_illegal_context,
                       static_cast<unsigned>(getKind()));
        return;
      }

      if (auto declRef = dyn_cast<DeclRefExpr>(e)) {
        if (auto var = dyn_cast<VarDecl>(declRef->getDecl())) {
          if (var->isAsyncLet()) {
            Diags.diagnose(
                e->getLoc(), diag::async_let_in_illegal_context,
                var, static_cast<unsigned>(getKind()));
            return;
          }
        }
      }
    } else if (auto patternBinding = dyn_cast_or_null<PatternBindingDecl>(
                   node.dyn_cast<Decl *>())) {
      if (patternBinding->isAsyncLet()) {
        Diags.diagnose(patternBinding->getLoc(),
                       diag::async_let_binding_illegal_context,
                       static_cast<unsigned>(getKind()));
        return;
      }
    }

    Diags.diagnose(node.getStartLoc(), diag::await_in_illegal_context,
                   static_cast<unsigned>(getKind()));
  }

  void maybeAddAsyncNote(DiagnosticEngine &Diags) {
    if (!Function)
      return;

    if (auto func = Function->getAbstractFunctionDecl())
      addAsyncNotes(func);
  }

  /// providing a \c kind helps tailor the emitted message.
  void diagnoseUnhandledAsyncSite(DiagnosticEngine &Diags, ASTNode node,
                             std::optional<PotentialEffectReason> maybeReason,
                             bool forAwait = false) {
    if (node.isImplicit()) {
      // The reason we return early on implicit nodes is that sometimes we
      // inject implicit closures, e.g. in 'async let' and we'd end up
      // "double reporting" some errors, with no great way to make sure the
      // "more specific diagnostic" is emitted. So instead, we avoid emitting
      // about implicit code.
      //
      // Some synthesized code, like macros, are NOT marked implicit, so we will
      // report about errors in them properly.
      return;
    }

    switch (getKind()) {
    case Kind::PotentiallyHandled: {
      Diags.diagnose(node.getStartLoc(), diag::async_in_nonasync_function,
                     effectReasonToIndex(maybeReason, forAwait),
                     isAutoClosure());
      maybeAddAsyncNote(Diags);
      return;
    }

    case Kind::EnumElementInitializer:
    case Kind::GlobalVarInitializer:
    case Kind::LazyVarInitializer:
    case Kind::IVarInitializer:
    case Kind::DefaultArgument:
    case Kind::PropertyWrapper:
    case Kind::CatchPattern:
    case Kind::CatchGuard:
    case Kind::DeferBody:
      diagnoseAsyncInIllegalContext(Diags, node);
      return;
    }
  }

};

/// A class to walk over a local context and validate the correctness
/// of its error coverage.
class CheckEffectsCoverage : public EffectsHandlingWalker<CheckEffectsCoverage> {
  friend class EffectsHandlingWalker<CheckEffectsCoverage>;

  ASTContext &Ctx;

  DeclContext *RethrowsDC = nullptr;
  DeclContext *ReasyncDC = nullptr;
  Context CurContext;

  class ContextFlags {
  public:
    enum ContextFlag : unsigned {
      /// Is the current context considered 'try'-covered?
      IsTryCovered = 0x1,

      /// Is the current context within a 'try' expression?
      IsInTry = 0x2,

      /// Is the current context top-level in a debugger function?  This
      /// causes 'try' suppression to apply recursively within a single
      /// level of do/catch.
      IsTopLevelDebuggerFunction = 0x4,

      /// Do we have any throw site in this context?
      HasAnyThrowSite = 0x8,

      /// Do we have a throw site using 'try' in this context?
      HasTryThrowSite = 0x10,

      /// Are we in the context of an 'await'?
      IsAsyncCovered = 0x20,

      /// Do we have any calls to 'async' functions in this context?
      HasAnyAsyncSite = 0x40,

      /// Do we have any 'await's in this context?
      HasAnyAwait = 0x80,

      /// Are we in an 'async let' initializer context?
      InAsyncLet = 0x100,

      /// Does an enclosing 'if' or 'switch' expr have a 'try'?
      StmtExprCoversTry = 0x200,

      /// Does an enclosing 'if' or 'switch' expr have an 'await'?
      StmtExprCoversAwait = 0x400,
    };
  private:
    unsigned Bits;
  public:
    ContextFlags() : Bits(0) {}

    void reset() { Bits = 0; }
    bool has(ContextFlag flag) const { return Bits & flag; }
    void set(ContextFlag flag) { Bits |= flag; }
    void clear(ContextFlag flag) { Bits &= ~flag; }
    void mergeFrom(ContextFlag flag, ContextFlags other) {
      Bits |= (other.Bits & flag);
    }

    void mergeFrom(ContextFlags flags, ContextFlags other) {
      Bits |= (other.Bits & flags.Bits);
    }

    // All of the flags that can be set by throw checking.
    static ContextFlags throwFlags() {
      ContextFlags result;
      result.set(IsTryCovered);
      result.set(IsInTry);
      result.set(HasAnyThrowSite);
      result.set(HasTryThrowSite);
      return result;
    }

    // All of the flags that can be set by async/await checking.
    static ContextFlags asyncAwaitFlags() {
      ContextFlags result;
      result.set(IsAsyncCovered);
      result.set(HasAnyAsyncSite);
      result.set(HasAnyAwait);
      return result;
    }
  };

  ContextFlags Flags;

  /// The maximum combined value of all throwing expressions in the current
  /// context.
  ConditionalEffectKind MaxThrowingKind;

  struct DiagnosticInfo {
    DiagnosticInfo(Expr &failingExpr,
                   PotentialEffectReason reason,
                   bool downgradeToWarning) :
      reason(reason),
      expr(failingExpr),
      downgradeToWarning(downgradeToWarning) {}

    /// Reason for throwing
    PotentialEffectReason reason;

    /// Failing expression
    Expr &expr;

    /// Whether the error should be downgraded to a warning.
    bool downgradeToWarning;
  };

  SmallVector<Expr *, 4> errorOrder;
  llvm::DenseMap<Expr *, std::vector<DiagnosticInfo>> uncoveredAsync;
  llvm::DenseMap<Expr *, Expr *> parentMap;

  static bool isEffectAnchor(Expr *e) {
    return isa<AbstractClosureExpr>(e) || isa<DiscardAssignmentExpr>(e) ||
           isa<AssignExpr>(e);
  }

  static bool isAnchorTooEarly(Expr *e) {
    return isa<AssignExpr>(e) || isa<DiscardAssignmentExpr>(e);
  }

  /// Find the top location where we should put the await
  static Expr *walkToAnchor(Expr *e, llvm::DenseMap<Expr *, Expr *> &parentMap,
                            bool isInterpolatedString) {
    Expr *parent = e;
    Expr *lastParent = e;
    while (parent && !isEffectAnchor(parent)) {
      lastParent = parent;
      parent = parentMap[parent];
    }

    if (parent && !isAnchorTooEarly(parent)) {
      return parent;
    }
    if (isInterpolatedString) {
      assert(parent == nullptr && "Expected to be at top of expression");
      if (ArgumentList *args = lastParent->getArgs()) {
        if (Expr *unaryArg = args->getUnlabeledUnaryExpr())
          return unaryArg;
      }
    }
    return lastParent;
  }

  void flagInvalidCode() {
    // Suppress warnings about useless try or catch.
    Flags.set(ContextFlags::HasAnyThrowSite);
    Flags.set(ContextFlags::HasTryThrowSite);
  }

  /// An RAII object for restoring all the interesting state in an
  /// error-coverage.
  class ContextScope {
    CheckEffectsCoverage &Self;
    Context OldContext;
    DeclContext *OldRethrowsDC;
    DeclContext *OldReasyncDC;
    ContextFlags OldFlags;
    ConditionalEffectKind OldMaxThrowingKind;
    SourceLoc OldAwaitLoc;

  public:
    ContextScope(CheckEffectsCoverage &self, std::optional<Context> newContext)
        : Self(self), OldContext(self.CurContext),
          OldRethrowsDC(self.RethrowsDC), OldReasyncDC(self.ReasyncDC),
          OldFlags(self.Flags), OldMaxThrowingKind(self.MaxThrowingKind),
          OldAwaitLoc(self.CurContext.awaitLoc) {
      if (newContext) self.CurContext = *newContext;
    }

    ContextScope(const ContextScope &) = delete;
    ContextScope &operator=(const ContextScope &) = delete;

    void enterSubFunction() {
      Self.RethrowsDC = nullptr;
      Self.ReasyncDC = nullptr;
    }

    void enterTry() {
      Self.Flags.set(ContextFlags::IsInTry);
      Self.Flags.set(ContextFlags::IsTryCovered);
      Self.Flags.clear(ContextFlags::HasTryThrowSite);
    }

    void enterAwait(SourceLoc awaitLoc) {
      Self.Flags.set(ContextFlags::IsAsyncCovered);
      Self.Flags.clear(ContextFlags::HasAnyAsyncSite);
      Self.CurContext.awaitLoc = awaitLoc;
    }

    void enterAsyncLet() {
      Self.Flags.set(ContextFlags::InAsyncLet);
    }

    void refineLocalContext(Context newContext) {
      Self.CurContext = newContext;
    }

    void resetCoverage() {
      Self.Flags.reset();
      Self.MaxThrowingKind = ConditionalEffectKind::None;
    }

    void resetCoverageForAutoclosureBody() {
      Self.Flags.clear(ContextFlags::IsAsyncCovered);
      Self.Flags.clear(ContextFlags::HasAnyAsyncSite);
      Self.Flags.clear(ContextFlags::HasAnyAwait);
    }

    void resetCoverageForDoCatch() {
      Self.Flags.reset();
      Self.MaxThrowingKind = ConditionalEffectKind::None;

      Self.Flags.mergeFrom(ContextFlags::StmtExprCoversTry, OldFlags);
      Self.Flags.mergeFrom(ContextFlags::StmtExprCoversAwait, OldFlags);

      // Suppress 'try' coverage checking within a single level of
      // do/catch in debugger functions.
      if (OldFlags.has(ContextFlags::IsTopLevelDebuggerFunction))
        Self.Flags.set(ContextFlags::IsTryCovered);
    }

    void preserveCoverageFromAutoclosureBody() {
      // An autoclosure body is the part of the enclosing function
      // body for the purposes of deciding whether a try contained
      // a throwing call.
      OldFlags.mergeFrom(ContextFlags::HasTryThrowSite, Self.Flags);

      // "await" doesn't work this way; the "await" needs to be part of
      // the autoclosure expression itself, and the autoclosure must be
      // 'async'.
    }

    void setCoverageForSingleValueStmtExpr() {
      resetCoverage();
      Self.Flags.mergeFrom(ContextFlags::InAsyncLet, OldFlags);

      if (OldFlags.has(ContextFlags::IsTryCovered))
        Self.Flags.set(ContextFlags::StmtExprCoversTry);

      if (OldFlags.has(ContextFlags::IsAsyncCovered))
        Self.Flags.set(ContextFlags::StmtExprCoversAwait);
    }

    void preserveCoverageFromSingleValueStmtExpr() {
      // We need to preserve whether we saw any throwing sites, to avoid warning
      // on 'do { let x = if .random() { try ... } else { ... } } catch { ... }'
      OldFlags.mergeFrom(ContextFlags::HasAnyThrowSite, Self.Flags);

      // We need to preserve the throwing kind to correctly handle rethrows.
      OldMaxThrowingKind = std::max(OldMaxThrowingKind, Self.MaxThrowingKind);
    }

    void preserveCoverageFromNonExhaustiveCatch() {
      OldFlags.mergeFrom(ContextFlags::HasAnyThrowSite, Self.Flags);
      OldMaxThrowingKind = std::max(OldMaxThrowingKind, Self.MaxThrowingKind);
    }

    void preserveDiagnoseErrorOnTryFlag() {
      // The "DiagnoseErrorOnTry" flag is a bit of mutable state
      // in the Context itself, used to postpone diagnostic emission
      // to a parent "try" expression. If something was diagnosed
      // during this ContextScope, the flag may have been set, and
      // we need to preserve its value when restoring the old Context.
      bool DiagnoseErrorOnTry = Self.CurContext.shouldDiagnoseErrorOnTry();
      OldContext.setDiagnoseErrorOnTry(DiagnoseErrorOnTry);
    }

    void preserveCoverageFromAwaitOperand() {
      OldFlags.mergeFrom(ContextFlags::HasAnyAwait, Self.Flags);
      OldFlags.mergeFrom(ContextFlags::throwFlags(), Self.Flags);
      OldMaxThrowingKind = std::max(OldMaxThrowingKind, Self.MaxThrowingKind);

      preserveDiagnoseErrorOnTryFlag();
    }

    void preserveCoverageFromTryOperand() {
      OldFlags.mergeFrom(ContextFlags::HasAnyThrowSite, Self.Flags);
      OldFlags.mergeFrom(ContextFlags::asyncAwaitFlags(), Self.Flags);
      OldMaxThrowingKind = std::max(OldMaxThrowingKind, Self.MaxThrowingKind);
    }

    void preserveCoverageFromOptionalOrForcedTryOperand() {
      OldFlags.mergeFrom(ContextFlags::asyncAwaitFlags(), Self.Flags);
    }

    void preserveCoverageFromInterpolatedString() {
      OldFlags.mergeFrom(ContextFlags::HasAnyThrowSite, Self.Flags);
      OldFlags.mergeFrom(ContextFlags::HasTryThrowSite, Self.Flags);
      OldFlags.mergeFrom(ContextFlags::HasAnyAsyncSite, Self.Flags);
      OldFlags.mergeFrom(ContextFlags::HasAnyAwait, Self.Flags);
      OldMaxThrowingKind = std::max(OldMaxThrowingKind, Self.MaxThrowingKind);

      preserveDiagnoseErrorOnTryFlag();
    }

    bool wasTopLevelDebuggerFunction() const {
      return OldFlags.has(ContextFlags::IsTopLevelDebuggerFunction);
    }

    ~ContextScope() {
      Self.CurContext = OldContext;
      Self.RethrowsDC = OldRethrowsDC;
      Self.ReasyncDC = OldReasyncDC;
      Self.Flags = OldFlags;
      Self.MaxThrowingKind = OldMaxThrowingKind;
      Self.CurContext.awaitLoc = OldAwaitLoc;
    }
  };

  /// Retrieve the type of the error that can be caught when an error is
  /// thrown from the given location.
  Type getCaughtErrorTypeAt(SourceLoc loc) {
    auto dc = CurContext.getDeclContext();
    auto module = dc->getParentModule();

    // Autoclosures can't be found via ASTScope lookup.
    if (CurContext.isAutoClosure()) {
      auto *closure = dyn_cast<AutoClosureExpr>(CurContext.getDeclContext());
      if (auto type = closure->getEffectiveThrownType())
        return *type;

      // Otherwise, the closure does not throw.
      return Ctx.getNeverType();
    }

    if (CatchNode catchNode = ASTScope::lookupCatchNode(module, loc)) {
      if (auto caughtType = catchNode.getThrownErrorTypeInContext(Ctx))
        return *caughtType;

      // If a catch node returns null for its thrown error type, we're
      // in a non-throwing context.
      return Ctx.getNeverType();
    }

    // Fall back to the error existential.
    return Ctx.getErrorExistentialType();
  }

public:
  CheckEffectsCoverage(ASTContext &ctx, Context initialContext)
    : Ctx(ctx), CurContext(initialContext),
      MaxThrowingKind(ConditionalEffectKind::None) {

    if (auto rethrowsDC = initialContext.getPolymorphicEffectDeclContext(
          EffectKind::Throws)) {
      RethrowsDC = rethrowsDC;
    }
    if (auto reasyncDC = initialContext.getPolymorphicEffectDeclContext(
          EffectKind::Async)) {
      ReasyncDC = reasyncDC;
    }
  }

  ~CheckEffectsCoverage() {
    for (Expr *anchor: errorOrder) {
      diagnoseUncoveredAsyncSite(anchor);
    }
  }


  /// Mark that the current context is top-level code with
  /// throw-without-try enabled.
  void setTopLevelThrowWithoutTry() {
    Flags.set(ContextFlags::IsTryCovered);
  }

  /// Mark that the current context is covered by a 'try', as
  /// appropriate for a debugger function.
  ///
  /// Top level code in the debugger is actually implicitly wrapped in
  /// a function with a do/catch block.
  void setTopLevelDebuggerFunction() {
    Flags.set(ContextFlags::IsTryCovered);
    Flags.set(ContextFlags::IsTopLevelDebuggerFunction);
  }

private:
  void visitExprPre(Expr *expr) {
    if (parentMap.count(expr) == 0)
      parentMap = expr->getParentMap();
    return;
  }

  ShouldRecurse_t checkClosure(ClosureExpr *E) {
    ContextScope scope(*this, Context::forClosure(E));
    scope.enterSubFunction();
    scope.resetCoverage();
    E->getBody()->walk(*this);
    return ShouldNotRecurse;
  }

  ShouldRecurse_t checkAutoClosure(AutoClosureExpr *E) {
    ContextScope scope(*this, Context::forClosure(E));
    scope.enterSubFunction();

    bool shouldPreserveCoverage = true;
    switch (E->getThunkKind()) {
    case AutoClosureExpr::Kind::DoubleCurryThunk:
    case AutoClosureExpr::Kind::SingleCurryThunk:
      // Curry thunks aren't actually a call to the asynchronous function.
      // Assume that async is covered in such contexts.
      scope.resetCoverageForAutoclosureBody();
      Flags.set(ContextFlags::IsAsyncCovered);
      break;

    case AutoClosureExpr::Kind::None:
      scope.resetCoverageForAutoclosureBody();
      break;

    case AutoClosureExpr::Kind::AsyncLet:
      scope.resetCoverage();
      scope.enterAsyncLet();
      shouldPreserveCoverage = false;
      break;
    }

    E->getBody()->walk(*this);

    if (shouldPreserveCoverage)
      scope.preserveCoverageFromAutoclosureBody();

    return ShouldNotRecurse;
  }

  ShouldRecurse_t
  checkSingleValueStmtExpr(SingleValueStmtExpr *SVE) {
    // For an if/switch expression, we reset coverage such that a 'try'/'await'
    // does not cover the branches.
    ContextScope scope(*this, /*newContext*/ std::nullopt);
    scope.setCoverageForSingleValueStmtExpr();
    SVE->getStmt()->walk(*this);
    scope.preserveCoverageFromSingleValueStmtExpr();
    return ShouldNotRecurse;
  }

  ConditionalEffectKind checkExhaustiveDoBody(DoCatchStmt *S) {
    // This is a context where errors are handled.
    ContextScope scope(*this, CurContext.withHandlesErrors());
    assert(!Flags.has(ContextFlags::IsInTry) && "do/catch within try?");
    scope.resetCoverageForDoCatch();

    S->getBody()->walk(*this);

    diagnoseNoThrowInDo(S, scope);

    return MaxThrowingKind;
  }

  ConditionalEffectKind checkNonExhaustiveDoBody(DoCatchStmt *S) {
    ContextScope scope(*this, std::nullopt);
    assert(!Flags.has(ContextFlags::IsInTry) && "do/catch within try?");
    scope.resetCoverageForDoCatch();

    // If the enclosing context doesn't handle anything, use a
    // specialized diagnostic about non-exhaustive catches.
    if (!CurContext.handlesThrows(ConditionalEffectKind::Conditional)) {
      CurContext.setNonExhaustiveCatch(true);
    } else if (Type rethrownErrorType = S->getCaughtErrorType()) {
      // We're implicitly rethrowing the error out of this do..catch, so make
      // sure that we can throw an error of this type out of this context.
      auto catches = S->getCatches();
      S->setRethrows(
          checkThrownErrorType(catches.back()->getEndLoc(), rethrownErrorType));
    }

    S->getBody()->walk(*this);

    diagnoseNoThrowInDo(S, scope);

    scope.preserveCoverageFromNonExhaustiveCatch();
    return MaxThrowingKind;
  }

  void diagnoseNoThrowInDo(DoCatchStmt *S, ContextScope &scope) {
    // Warn if nothing threw within the body, unless this is the
    // implicit do/catch in a debugger function.
    if (!Flags.has(ContextFlags::HasAnyThrowSite) &&
        !scope.wasTopLevelDebuggerFunction()) {
      Ctx.Diags.diagnose(S->getCatches().front()->getStartLoc(),
                         diag::no_throw_in_do_with_catch);
    }
  }

  void checkCatch(CaseStmt *S, ConditionalEffectKind doThrowingKind) {
    auto dc = CurContext.getDeclContext();
    for (auto &LabelItem : S->getMutableCaseLabelItems()) {
      // The pattern and guard aren't allowed to throw.
      {
        ContextScope scope(*this, Context::forCatchPattern(S, dc));
        LabelItem.getPattern()->walk(*this);
      }
      if (auto guard = LabelItem.getGuardExpr()) {
        ContextScope scope(*this, Context::forCatchGuard(S, dc));
        guard->walk(*this);
      }
    }

    auto savedContext = CurContext;
    if (doThrowingKind != ConditionalEffectKind::Always &&
        CurContext.hasPolymorphicEffect(EffectKind::Throws)) {
      // If this catch clause is reachable at all, it's because a function
      // parameter throws. So let's temporarily state that the body is allowed
      // to throw.
      CurContext = CurContext.withHandlesErrors();
    }

    // The catch body just happens in the enclosing context.
    S->getBody()->walk(*this);

    CurContext = savedContext;
  }

  ShouldRecurse_t checkApply(ApplyExpr *E) {
    // An apply expression is a potential throw site if the function throws.
    // But if the expression didn't type-check, suppress diagnostics.
    auto classification = getApplyClassifier().classifyApply(E);

    auto throwDest = checkThrowAsyncSite(
        E, /*requiresTry*/ true, classification);

    if (!classification.isInvalid()) {
      // HACK: functions can get queued multiple times in
      // definedFunctions, so be sure to be idempotent.
      if (!E->isThrowsSet()) {
        E->setThrows(throwDest);
      }

      auto asyncKind = classification.getConditionalKind(EffectKind::Async);
      E->setNoAsync(asyncKind == ConditionalEffectKind::None);
    } else {
      // HACK: functions can get queued multiple times in
      // definedFunctions, so be sure to be idempotent.
      if (!E->isThrowsSet()) {
        E->setThrows(ThrownErrorDestination());
      }

      E->setNoAsync(true);
    }

    // If current apply expression did not type-check, don't attempt
    // walking inside of it. This accounts for the fact that we don't
    // erase types without type variables to enable better code complication,
    // so DeclRefExpr(s) or ApplyExpr with DeclRefExpr as function contained
    // inside would have their types preserved, which makes classification
    // incorrect.
    auto type = E->getType();
    return !type || type->hasError() ? ShouldNotRecurse : ShouldRecurse;
  }

  ApplyClassifier getApplyClassifier() const {
    ApplyClassifier classifier(Ctx);
    classifier.DC = CurContext.getDeclContext();
    classifier.RethrowsDC = RethrowsDC;
    classifier.ReasyncDC = ReasyncDC;
    return classifier;
  }

  ShouldRecurse_t checkLookup(LookupExpr *E) {
    if (auto classification = getApplyClassifier().classifyLookup(E)) {
      auto throwDest = checkThrowAsyncSite(
          E, classification.hasThrows(), classification);
      E->setThrows(throwDest);
    }

    return ShouldRecurse;
  }

  ShouldRecurse_t checkDeclRef(DeclRefExpr *E) {
    if (auto classification = getApplyClassifier().classifyDeclRef(E)) {
      auto throwDest = checkThrowAsyncSite(
          E, classification.hasThrows(), classification);
      E->setThrows(throwDest);
    }

    return ShouldNotRecurse;
  }

  ShouldRecurse_t checkAsyncLet(PatternBindingDecl *patternBinding) {
    // Diagnose async let in a context that doesn't handle async.
    if (!CurContext.handlesAsync(ConditionalEffectKind::Always)) {
      CurContext.diagnoseUnhandledAsyncSite(Ctx.Diags, patternBinding,
                                          PotentialEffectReason::forAsyncLet());
    }

    return ShouldRecurse;
  }

  ShouldRecurse_t
  checkInterpolatedStringLiteral(InterpolatedStringLiteralExpr *E) {
    ContextScope scope(*this, CurContext.withInterpolatedString(E));
    if (E->getAppendingExpr())
      E->getAppendingExpr()->walk(*this);
    scope.preserveCoverageFromInterpolatedString();
    return ShouldNotRecurse;
  }

  ShouldRecurse_t checkIfConfig(IfConfigDecl *ICD) {
    // Check the inactive regions of a #if block to disable warnings that may
    // be due to platform specific code.
    struct ConservativeThrowChecker : public ASTWalker {
      CheckEffectsCoverage &CEC;
      ConservativeThrowChecker(CheckEffectsCoverage &CEC) : CEC(CEC) {}

      MacroWalking getMacroWalkingBehavior() const override {
        return MacroWalking::Arguments;
      }

      PostWalkResult<Expr *> walkToExprPost(Expr *E) override {
        if (isa<TryExpr>(E))
          CEC.Flags.set(ContextFlags::HasAnyThrowSite);
        return Action::Continue(E);
      }

      PostWalkResult<Stmt *> walkToStmtPost(Stmt *S) override {
        if (isa<ThrowStmt>(S))
          CEC.Flags.set(ContextFlags::HasAnyThrowSite);

        return Action::Continue(S);
      }
    };

    for (auto &clause : ICD->getClauses()) {
      // Active clauses are handled by the normal AST walk.
      if (clause.isActive) continue;

      for (auto elt : clause.Elements)
        elt.walk(ConservativeThrowChecker(*this));
    }
    return ShouldRecurse;
  }

  ShouldRecurse_t checkThrow(ThrowStmt *S) {
    if (auto classification = getApplyClassifier().classifyThrow(S)) {
      Flags.set(ContextFlags::HasAnyThrowSite);
      MaxThrowingKind = std::max(MaxThrowingKind, ConditionalEffectKind::Always);

      if (!CurContext.handlesThrows(ConditionalEffectKind::Always))
        CurContext.diagnoseUnhandledThrowStmt(Ctx.Diags, S);
      else {
        SourceLoc loc = S->getThrowLoc();
        Expr *thrownValue = S->getSubExpr();
        Type thrownErrorType = thrownValue->getType();
        Type caughtErrorType = getCaughtErrorTypeAt(loc);
        if (!caughtErrorType->isEqual(thrownErrorType)) {
          thrownValue = removeErasureToExistentialError(thrownValue);
          Type thrownErrorType = thrownValue->getType();
          if (checkThrownErrorType(loc, thrownErrorType))
            S->setSubExpr(thrownValue);
        }
      }
    }

    return ShouldRecurse;
  }

  ThrownErrorDestination
  checkThrowAsyncSite(ASTNode E, bool requiresTry,
                      Classification &classification) {
    // Suppress all diagnostics when there's an un-analyzable throw/async site.
    if (classification.isInvalid()) {
      Flags.set(ContextFlags::HasAnyThrowSite);
      Flags.set(ContextFlags::HasAnyAsyncSite);
      if (requiresTry) Flags.set(ContextFlags::HasTryThrowSite);
      return ThrownErrorDestination();
    }

    auto asyncKind = classification.getConditionalKind(EffectKind::Async);
    auto throwsKind = classification.getConditionalKind(EffectKind::Throws);

    // Check async calls.
    switch (asyncKind) {
    case ConditionalEffectKind::None:
      break;

    case ConditionalEffectKind::Conditional:
    case ConditionalEffectKind::Always:
      // Remember that we've seen an async call.
      Flags.set(ContextFlags::HasAnyAsyncSite);

      // Diagnose async calls in a context that doesn't handle async.
      if (!CurContext.handlesAsync(asyncKind)) {
        CurContext.diagnoseUnhandledAsyncSite(Ctx.Diags, E,
                                              classification.getAsyncReason());
      }
      // Diagnose async calls that are outside of an await context.
      else if (!(Flags.has(ContextFlags::IsAsyncCovered) ||
                 Flags.has(ContextFlags::InAsyncLet))) {
        Expr *expr = E.dyn_cast<Expr*>();
        Expr *anchor = walkToAnchor(expr, parentMap,
                                    CurContext.isWithinInterpolatedString());
        if (Flags.has(ContextFlags::StmtExprCoversAwait))
          classification.setDowngradeToWarning(true);
        if (uncoveredAsync.find(anchor) == uncoveredAsync.end())
          errorOrder.push_back(anchor);
        uncoveredAsync[anchor].emplace_back(
            *expr, classification.getAsyncReason(),
            classification.shouldDowngradeToWarning());
      }
    }

    // Check throwing calls.
    MaxThrowingKind = std::max(MaxThrowingKind, throwsKind); // FIXME: why is the left Never for property?

    switch (throwsKind) {
    // Completely ignores sites that don't throw.
    case ConditionalEffectKind::None:
      break;

    // For the purposes of handling and try-coverage diagnostics,
    // being rethrowing-only still makes this a throw site.
    case ConditionalEffectKind::Conditional:
    case ConditionalEffectKind::Always:
      Flags.set(ContextFlags::HasAnyThrowSite);
      if (requiresTry) Flags.set(ContextFlags::HasTryThrowSite);

      // We set the throwing bit of an apply expr after performing this
      // analysis, so ensure we don't emit duplicate diagnostics for functions
      // that have been queued multiple times.
      if (auto expr = E.dyn_cast<Expr*>())
        if (auto apply = dyn_cast<ApplyExpr>(expr))
          if (apply->isThrowsSet())
            break;

      bool isTryCovered =
        (!requiresTry || Flags.has(ContextFlags::IsTryCovered) ||
         Flags.has(ContextFlags::InAsyncLet));
      if (!CurContext.handlesThrows(throwsKind)) {
        CurContext.diagnoseUnhandledThrowSite(Ctx.Diags, E, isTryCovered,
                                              classification.getThrowReason());
      } else if (!isTryCovered) {
        if (Flags.has(ContextFlags::StmtExprCoversTry))
          classification.setDowngradeToWarning(true);
        CurContext.diagnoseUncoveredThrowSite(Ctx, E, // we want this one to trigger
                                              classification);
      } else {
        return checkThrownErrorType(
            E.getStartLoc(), classification.getThrownError());
      }
      break;
    }

    return ThrownErrorDestination();
  }

  /// Check the thrown error type against the type that can be caught or
  /// rethrown by the context.
  ///
  /// Returns a thrown error destination, which will be non-throwing if there
  /// was an error.
  ThrownErrorDestination
  checkThrownErrorType(SourceLoc loc, Type thrownErrorType) {
    Type caughtErrorType = getCaughtErrorTypeAt(loc);
    if (caughtErrorType->isEqual(thrownErrorType))
      return ThrownErrorDestination::forMatchingContextType(thrownErrorType);

    OpaqueValueExpr *opaque = new (Ctx) OpaqueValueExpr(loc, thrownErrorType);
    Expr *rethrowExpr = opaque;
    Type resultType = TypeChecker::typeCheckExpression(
        rethrowExpr, CurContext.getDeclContext(),
        {caughtErrorType, /*FIXME:*/CTP_ThrowStmt});
    if (resultType.isNull())
      return ThrownErrorDestination();

    return ThrownErrorDestination::forConversion(opaque, rethrowExpr);
  }

  ShouldRecurse_t checkAwait(AwaitExpr *E) {

    // Walk the operand.
    ContextScope scope(*this, std::nullopt);
    scope.enterAwait(E->getAwaitLoc());

    E->getSubExpr()->walk(*this);

    // Warn about 'await' expressions that weren't actually needed, unless of
    // course we're in a context that could never handle an 'async'. Then, we
    // produce an error.
    if (!Flags.has(ContextFlags::HasAnyAsyncSite)) {
      if (CurContext.handlesAsync(ConditionalEffectKind::Conditional)) {
        diagnoseRedundantAwait(E);
      } else {
        CurContext.diagnoseUnhandledAsyncSite(Ctx.Diags, E, std::nullopt,
                                              /*forAwait=*/true);
      }
    }

    // Inform the parent of the walk that an 'await' exists here.
    scope.preserveCoverageFromAwaitOperand();
    return ShouldNotRecurse;
  }
  
  ShouldRecurse_t checkTry(TryExpr *E) {
    // Walk the operand.
    ContextScope scope(*this, std::nullopt);
    scope.enterTry();

    E->getSubExpr()->walk(*this);

    // Warn about 'try' expressions that weren't actually needed.
    if (!Flags.has(ContextFlags::HasTryThrowSite)) {
      if (!E->isImplicit())
        diagnoseRedundantTry(E);

    // Diagnose all the call sites within a single unhandled 'try'
    // at the same time.
    } else if (!CurContext.handlesThrows(ConditionalEffectKind::Conditional)) {
      CurContext.diagnoseUnhandledTry(Ctx.Diags, E);
    }

    scope.preserveCoverageFromTryOperand();
    return ShouldNotRecurse;
  }

  ShouldRecurse_t checkForceTry(ForceTryExpr *E) {
    // Walk the operand.  'try!' handles errors.
    ContextScope scope(*this, CurContext.withHandlesErrors());
    scope.enterTry();

    E->getSubExpr()->walk(*this);

    // Warn about 'try' expressions that weren't actually needed.
    if (!Flags.has(ContextFlags::HasTryThrowSite))
      diagnoseRedundantTry(E);

    if (auto thrownError = TypeChecker::canThrow(Ctx, E->getSubExpr())) {
      E->setThrownError(*thrownError);
    } else {
      E->setThrownError(Ctx.getNeverType());
    }

    scope.preserveCoverageFromOptionalOrForcedTryOperand();
    return ShouldNotRecurse;
  }

  ShouldRecurse_t checkOptionalTry(OptionalTryExpr *E) {
    // Walk the operand.  'try?' handles errors.
    ContextScope scope(*this, CurContext.withHandlesErrors());
    scope.enterTry();

    E->getSubExpr()->walk(*this);

    // Warn about 'try' expressions that weren't actually needed.
    if (!Flags.has(ContextFlags::HasTryThrowSite))
      diagnoseRedundantTry(E);

    if (auto thrownError = TypeChecker::canThrow(Ctx, E->getSubExpr())) {
      E->setThrownError(*thrownError);
    } else {
      E->setThrownError(Ctx.getNeverType());
    }

    scope.preserveCoverageFromOptionalOrForcedTryOperand();
    return ShouldNotRecurse;
  }

  ShouldRecurse_t checkForEach(ForEachStmt *S) {
    if (!S->getAwaitLoc().isValid())
      return ShouldRecurse;

    // A 'for await' is always async. There's no effect polymorphism
    // via the conformance in a 'reasync' function body.
    Flags.set(ContextFlags::HasAnyAsyncSite);

    if (!CurContext.handlesAsync(ConditionalEffectKind::Always))
      CurContext.diagnoseUnhandledAsyncSite(Ctx.Diags, S, std::nullopt);

    // A 'for try await' has a thrown error type that depends on the
    // AsyncSequence conformance.
    auto classification =
        getApplyClassifier().classifyForEach(S).onlyThrowing();
    if (classification) {
      auto throwsKind = classification.getConditionalKind(EffectKind::Throws);

      if (throwsKind != ConditionalEffectKind::None)
        Flags.set(ContextFlags::HasAnyThrowSite);

      // Note: we don't need to check whether the throw error is handled,
      // because we will also be checking the generated next/nextElement
      // call.
    }

    return ShouldRecurse;
  }

  void diagnoseRedundantTry(AnyTryExpr *E) const {
    if (auto *SVE = SingleValueStmtExpr::tryDigOutSingleValueStmtExpr(E)) {
      // For an if/switch expression, produce a tailored warning.
      Ctx.Diags.diagnose(E->getTryLoc(),
                         diag::effect_marker_on_single_value_stmt,
                         "try", SVE->getStmt()->getKind())
        .highlight(E->getTryLoc());
      return;
    }
    Ctx.Diags.diagnose(E->getTryLoc(), diag::no_throw_in_try);
  }

  void diagnoseRedundantAwait(AwaitExpr *E) const {
    if (auto *SVE = SingleValueStmtExpr::tryDigOutSingleValueStmtExpr(E)) {
      // For an if/switch expression, produce a tailored warning.
      Ctx.Diags.diagnose(E->getAwaitLoc(),
                         diag::effect_marker_on_single_value_stmt,
                         "await", SVE->getStmt()->getKind())
        .highlight(E->getAwaitLoc());
      return;
    }
    Ctx.Diags.diagnose(E->getAwaitLoc(), diag::no_async_in_await);
  }

  void diagnoseUncoveredAsyncSite(const Expr *anchor) const {
    auto asyncPointIter = uncoveredAsync.find(anchor);
    if (asyncPointIter == uncoveredAsync.end())
      return;
    const std::vector<DiagnosticInfo> &errors = asyncPointIter->getSecond();
    SourceLoc awaitInsertLoc = anchor->getStartLoc();
    if (const AnyTryExpr *tryExpr = dyn_cast<AnyTryExpr>(anchor))
      awaitInsertLoc = tryExpr->getSubExpr()->getStartLoc();
    else if (const AutoClosureExpr *autoClosure = dyn_cast<AutoClosureExpr>(anchor)) {
      if (const AnyTryExpr *tryExpr = dyn_cast<AnyTryExpr>(autoClosure->getSingleExpressionBody()))
        awaitInsertLoc = tryExpr->getSubExpr()->getStartLoc();
    }

    bool downgradeToWarning = llvm::all_of(errors,
        [&](DiagnosticInfo diag) -> bool {
          return diag.downgradeToWarning;
        });

    Ctx.Diags.diagnose(anchor->getStartLoc(), diag::async_expr_without_await)
      .warnUntilSwiftVersionIf(downgradeToWarning, 6)
      .fixItInsert(awaitInsertLoc, "await ")
      .highlight(anchor->getSourceRange());

    for (const DiagnosticInfo &diag: errors) {
      switch (diag.reason.getKind()) {
        case PotentialEffectReason::Kind::AsyncLet:
          if (auto declR = dyn_cast<DeclRefExpr>(&diag.expr)) {
            if (auto var = dyn_cast<VarDecl>(declR->getDecl())) {
              if (var->isAsyncLet()) {
                Ctx.Diags.diagnose(declR->getLoc(),
                                   diag::async_let_without_await, var);
                continue;
              }
            }
          }
          LLVM_FALLTHROUGH; // fallthrough to a message about PropertyAccess
        case PotentialEffectReason::Kind::PropertyAccess:
          Ctx.Diags.diagnose(diag.expr.getStartLoc(),
                             diag::async_access_without_await, 1);
          continue;

        case PotentialEffectReason::Kind::SubscriptAccess:
          Ctx.Diags.diagnose(diag.expr.getStartLoc(),
                             diag::async_access_without_await, 2);
          continue;

        case PotentialEffectReason::Kind::ByClosure:
        case PotentialEffectReason::Kind::ByDefaultClosure:
        case PotentialEffectReason::Kind::ByConformance:
        case PotentialEffectReason::Kind::Apply: {
         if (auto autoclosure = dyn_cast<AutoClosureExpr>(anchor)) {
           switch(autoclosure->getThunkKind()) {
             case AutoClosureExpr::Kind::None:
               Ctx.Diags.diagnose(diag.expr.getStartLoc(),
                                  diag::async_call_without_await_in_autoclosure);
               break;
             case AutoClosureExpr::Kind::AsyncLet:
               Ctx.Diags.diagnose(diag.expr.getStartLoc(),
                                  diag::async_call_without_await_in_async_let);
               break;
             case AutoClosureExpr::Kind::SingleCurryThunk:
             case AutoClosureExpr::Kind::DoubleCurryThunk:
               Ctx.Diags.diagnose(diag.expr.getStartLoc(),
                                  diag::async_access_without_await, 0);
               break;
           }
          continue;
         }

         auto *call = dyn_cast<ApplyExpr>(&diag.expr);
         if (call && call->isImplicitlyAsync()) {
           // Emit a tailored note if the call is implicitly async, meaning the
           // callee is isolated to an actor.
           auto callee = call->getCalledValue(/*skipFunctionConversions=*/true);
           if (callee) {
             Ctx.Diags.diagnose(diag.expr.getStartLoc(), diag::actor_isolated_sync_func,
                                callee);
           } else {
             Ctx.Diags.diagnose(
                 diag.expr.getStartLoc(), diag::actor_isolated_sync_func_value,
                 call->getFn()->getType());
           }
         } else {
           Ctx.Diags.diagnose(diag.expr.getStartLoc(),
                              diag::async_access_without_await, 0);
         }

         continue;
        }
      }
    }
  }
};

// Find nested functions and perform effects checking on them.
struct LocalFunctionEffectsChecker : ASTWalker {
  MacroWalking getMacroWalkingBehavior() const override {
    return MacroWalking::Expansion;
  }

  PreWalkAction walkToDeclPre(Decl *D) override {
    if (auto func = dyn_cast<AbstractFunctionDecl>(D)) {
      if (func->getDeclContext()->isLocalContext())
        TypeChecker::checkFunctionEffects(func);

      return Action::SkipNode();
    }

    return Action::Continue();
  }
};

} // end anonymous namespace

void TypeChecker::checkTopLevelEffects(TopLevelCodeDecl *code) {
  auto &ctx = code->getDeclContext()->getASTContext();
  CheckEffectsCoverage checker(ctx, Context::forTopLevelCode(code));

  // In some language modes, we allow top-level code to omit 'try' marking.
  if (ctx.LangOpts.EnableThrowWithoutTry)
    checker.setTopLevelThrowWithoutTry();

  if (auto *body = code->getBody()) {
    body->walk(checker);
    body->walk(LocalFunctionEffectsChecker());
  }
}

void TypeChecker::checkFunctionEffects(AbstractFunctionDecl *fn) {
#ifndef NDEBUG
  PrettyStackTraceDecl debugStack("checking effects handling for", fn);
#endif

  auto isDeferBody = isa<FuncDecl>(fn) && cast<FuncDecl>(fn)->isDeferBody();
  auto context =
      isDeferBody ? Context::forDeferBody(fn) : Context::forFunction(fn);
  auto &ctx = fn->getASTContext();
  CheckEffectsCoverage checker(ctx, context);

  // If this is a debugger function, suppress 'try' marking at the top level.
  if (fn->getAttrs().hasAttribute<LLDBDebuggerFunctionAttr>())
    checker.setTopLevelDebuggerFunction();

  if (auto body = fn->getBody()) {
    body->walk(checker);
    body->walk(LocalFunctionEffectsChecker());
  }

  if (auto ctor = dyn_cast<ConstructorDecl>(fn))
    if (auto superInit = ctor->getSuperInitCall())
      superInit->walk(checker);
}

void TypeChecker::checkInitializerEffects(Initializer *initCtx,
                                                Expr *init) {
  auto &ctx = initCtx->getASTContext();
  CheckEffectsCoverage checker(ctx, Context::forInitializer(initCtx));
  init->walk(checker);
  init->walk(LocalFunctionEffectsChecker());
}

void TypeChecker::checkCallerSideDefaultArgumentEffects(DeclContext *initCtx,
                                                        Expr *init) {
  auto &ctx = initCtx->getASTContext();
  CheckEffectsCoverage checker(ctx, Context::forDefaultArgument(initCtx));
  init->walk(checker);
  init->walk(LocalFunctionEffectsChecker());
}

/// Check the correctness of effects within the given enum
/// element's raw value expression.
///
/// The syntactic restrictions on such expressions should make it
/// impossible for errors to ever arise, but checking them anyway (1)
/// ensures correctness if those restrictions are ever loosened,
/// perhaps accidentally, and (2) allows the verifier to assert that
/// all calls have been checked.
void TypeChecker::checkEnumElementEffects(EnumElementDecl *elt, Expr *E) {
  auto &ctx = elt->getASTContext();
  CheckEffectsCoverage checker(ctx, Context::forEnumElementInitializer(elt));
  E->walk(checker);
  E->walk(LocalFunctionEffectsChecker());
}

void TypeChecker::checkPropertyWrapperEffects(
    PatternBindingDecl *binding, Expr *expr) {
  auto &ctx = binding->getASTContext();
  CheckEffectsCoverage checker(ctx, Context::forPatternBinding(binding));
  expr->walk(checker);
  expr->walk(LocalFunctionEffectsChecker());
}

std::optional<Type> TypeChecker::canThrow(ASTContext &ctx, Expr *expr) {
  ApplyClassifier classifier(ctx);
  auto classification = classifier.classifyExpr(expr, EffectKind::Throws);
  if (classification.getConditionalKind(EffectKind::Throws) ==
        ConditionalEffectKind::None)
    return std::nullopt;

  return classification.getThrownError();
}

std::optional<Type> TypeChecker::canThrow(ASTContext &ctx,
                                          ForEachStmt *forEach) {
  ApplyClassifier classifier(ctx);
  auto classification = classifier.classifyForEach(forEach).onlyThrowing();
  if (classification.getConditionalKind(EffectKind::Throws) ==
        ConditionalEffectKind::None)
    return std::nullopt;

  return classification.getThrownError();
}

Type TypeChecker::catchErrorType(DeclContext *dc, DoCatchStmt *stmt) {
  ASTContext &ctx = dc->getASTContext();

  // If the do..catch statement explicitly specifies that it throws, use
  // that type.
  if (Type explicitError = stmt->getExplicitCaughtType()) {
    return explicitError;
  }

  // Otherwise, infer the thrown error type from the "do" body.
  ApplyClassifier classifier(ctx);
  Classification classification = classifier.classifyStmt(
      stmt->getBody(), EffectKind::Throws);

  // If it doesn't throw at all, the type is Never.
  if (!classification.hasThrows()) {
    // Source compatibility: if the do..catch was already exhaustive,
    // and we aren't doing full typed throws, treat the caught error
    // type as 'any Error' to allow pattern-matches to continue to
    // type check.
    if (!ctx.LangOpts.hasFeature(Feature::FullTypedThrows) &&
        stmt->isSyntacticallyExhaustive())
      return ctx.getErrorExistentialType();

    return ctx.getNeverType();
  }

  return classification.getThrownError();
}

/// Explode the given type into the set of error unions.
///
/// \returns \c true if any of the types is the error existential type, which
/// means the entire error union is any Error.
static bool expandErrorUnions(Type type,
                              llvm::function_ref<Type(Type)> simplifyType,
                              SmallVectorImpl<Type> &terms) {
  // If we have a type variable in the type and a type simplification function,
  // apply it first.
  if (type->hasTypeVariable() && simplifyType)
    type = simplifyType(type);

  // If we have an error union type, handle it's terms individually.
  if (auto errorUnionType = type->getAs<ErrorUnionType>()) {
    for (auto term : errorUnionType->getTerms())
      if (expandErrorUnions(term, simplifyType, terms))
        return true;

    return false;
  }

  // If we have 'any Error', we're done.
  if (type->isErrorExistentialType())
    return true;

  // If we have anything other than 'Never', record it.
  if (!isNeverThrownError(type))
    terms.push_back(type);

  return false;
}

Type TypeChecker::errorUnion(Type type1, Type type2,
                             llvm::function_ref<Type(Type)> simplifyType) {
  // If one type is NULL, return the other.
  if (!type1)
    return type2;
  if (!type2)
    return type1;

  // Expand the error types we're given.
  //   - If any term is 'any Error', early return 'any Error'
  //   - Every 'Never' term is dropped.
  SmallVector<Type, 2> terms;
  if (expandErrorUnions(type1, simplifyType, terms))
    return type1->getASTContext().getErrorExistentialType();
  if (expandErrorUnions(type2, simplifyType, terms))
    return type1->getASTContext().getErrorExistentialType();

  // If we have more than one term, filter out duplicates and look to see if
  // we have obviously-different types.
  if (terms.size() > 1) {
    llvm::SmallDenseMap<CanType, Type> knownTypes;
    unsigned distinctConcreteTypes = 0;
    auto newEnd = std::remove_if(terms.begin(), terms.end(),
                                 [&](Type type) -> bool {
      // If we have already seen this type, remove it from the list of terms.
      if (!knownTypes.insert({type->getCanonicalType(), type}).second)
        return true;

      // We have not seen this type before. If it doesn't involve any
      // type variables, note that we've seen another concrete type.
      if (!type->hasTypeVariable())
        ++distinctConcreteTypes;

      return false;
    });

    // If we saw more than one distinct concrete type, return 'any Error'.
    if (distinctConcreteTypes > 1)
      return type1->getASTContext().getErrorExistentialType();

    // Remove any duplicated terms.
    terms.erase(newEnd, terms.end());
  }

  return ErrorUnionType::get(type1->getASTContext(), terms);
}

namespace {

/// Classifies a thrown error kind as Never, a specific type, or 'any Error'.
enum class ThrownErrorClassification {
  /// The `Never` type, which represents a non-throwing function.
  Never,

  /// A specific error type that is neither `Never` nor `any Error`.
  Specific,

  /// A specific error type that depends on a type variable or type parameter,
  /// and therefore we cannot determine whether it is a subtype of another
  /// type or not.
  Dependent,

  /// The type `any Error`, used for untyped throws.
  AnyError,
};

}

/// Classify the given thrown error type.
static ThrownErrorClassification classifyThrownErrorType(Type type) {
  if (type->isNever())
    return ThrownErrorClassification::Never;

  if (type->isExistentialType()) {
    Type anyError = type->getASTContext().getErrorExistentialType();
    if (anyError->isEqual(type))
      return ThrownErrorClassification::AnyError;
  }

  if (type->hasTypeVariable() || type->hasTypeParameter())
    return ThrownErrorClassification::Dependent;

  return ThrownErrorClassification::Specific;
}

ThrownErrorSubtyping
swift::compareThrownErrorsForSubtyping(
    Type subThrownError, Type superThrownError, DeclContext *dc
) {
  // Deal with NULL errors. This should only occur when there is no standard
  // library.
  if (!subThrownError || !superThrownError) {
    assert(!dc->getASTContext().getStdlibModule() && "NULL thrown error type");
    return ThrownErrorSubtyping::ExactMatch;
  }

  // Easy case: exact match.
  if (superThrownError->isEqual(subThrownError))
    return ThrownErrorSubtyping::ExactMatch;

  auto superThrownErrorKind = classifyThrownErrorType(superThrownError);
  auto subThrownErrorKind = classifyThrownErrorType(subThrownError);

  switch (subThrownErrorKind) {
  case ThrownErrorClassification::Dependent:
    switch (superThrownErrorKind) {
    case ThrownErrorClassification::AnyError:
      // This is a clear subtype relationship, because the supertype throws
      // anything.
      return ThrownErrorSubtyping::Subtype;

    case ThrownErrorClassification::Never:
    case ThrownErrorClassification::Dependent:
    case ThrownErrorClassification::Specific:
      // We have to compare the types. Do so below.
      break;
    }
    break;

  case ThrownErrorClassification::Specific:
    switch (superThrownErrorKind) {
    case ThrownErrorClassification::AnyError:
      // This is a clear subtype relationship, because the supertype throws
      // anything.
      return ThrownErrorSubtyping::Subtype;

    case ThrownErrorClassification::Never:
      // The supertype doesn't throw, so this has to drop 'throws' to work.
      return ThrownErrorSubtyping::DropsThrows;

    case ThrownErrorClassification::Dependent:
    case ThrownErrorClassification::Specific:
      // We have to compare the types. Do so below.
      break;
    }
    break;

  case ThrownErrorClassification::Never:
    // A function type throwing 'Never' is a subtype of all function types.
    return ThrownErrorSubtyping::Subtype;

  case ThrownErrorClassification::AnyError:
    switch (superThrownErrorKind) {
    case ThrownErrorClassification::Dependent:
    case ThrownErrorClassification::Specific:
      // We have to compare the types. Do so below.
      break;

    case ThrownErrorClassification::Never:
      // We're going to have to drop the "throws" entirely.
      return ThrownErrorSubtyping::DropsThrows;

    case ThrownErrorClassification::AnyError:
      llvm_unreachable("The thrown error types should have been equal");
    }
    break;
  }

  // If either of the types was dependent on a type variable or type parameter,
  // we can't do the comparison at all.
  if (superThrownErrorKind == ThrownErrorClassification::Dependent ||
      subThrownErrorKind == ThrownErrorClassification::Dependent)
    return ThrownErrorSubtyping::Dependent;

  // Check whether the subtype's thrown error type is convertible to the
  // supertype's thrown error type.
  if (TypeChecker::isConvertibleTo(subThrownError, superThrownError, dc))
    return ThrownErrorSubtyping::Subtype;

  // We know it doesn't work.
  return ThrownErrorSubtyping::Mismatch;
}