1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
//===--- TypeCheckExprObjC.cpp - Type Checking for ObjC Expressions -------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for Objective-C-specific
// expressions.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "TypoCorrection.h"
#include "swift/Basic/Range.h"
using namespace swift;
std::optional<Type> TypeChecker::checkObjCKeyPathExpr(DeclContext *dc,
KeyPathExpr *expr,
bool requireResultType) {
// TODO: Native keypaths
assert(expr->isObjC() && "native keypaths not type-checked this way");
// If there is already a semantic expression, do nothing.
if (expr->getObjCStringLiteralExpr() && !requireResultType)
return std::nullopt;
// ObjC #keyPath only makes sense when we have the Objective-C runtime.
auto &Context = dc->getASTContext();
auto &diags = Context.Diags;
if (!Context.LangOpts.EnableObjCInterop) {
diags.diagnose(expr->getLoc(), diag::expr_keypath_no_objc_runtime);
expr->setObjCStringLiteralExpr(
new (Context) StringLiteralExpr("", expr->getSourceRange(),
/*Implicit=*/true));
return std::nullopt;
}
// The key path string we're forming.
SmallString<32> keyPathScratch;
llvm::raw_svector_ostream keyPathOS(keyPathScratch);
// Captures the state of semantic resolution.
enum State {
Beginning,
ResolvingType,
ResolvingProperty,
ResolvingArray,
ResolvingSet,
ResolvingDictionary,
} state = Beginning;
/// Determine whether we are currently resolving a property.
auto isResolvingProperty = [&] {
switch (state) {
case Beginning:
case ResolvingType:
return false;
case ResolvingProperty:
case ResolvingArray:
case ResolvingSet:
case ResolvingDictionary:
return true;
}
llvm_unreachable("Unhandled State in switch.");
};
// The type of AnyObject, which is used whenever we don't have
// sufficient type information.
Type anyObjectType = Context.getAnyObjectType();
// Local function to update the state after we've resolved a
// component.
Type currentType;
auto updateState = [&](bool isProperty, Type newType) {
// Strip off optionals.
newType = newType->lookThroughAllOptionalTypes();
// If updating to a type, just set the new type; there's nothing
// more to do.
if (!isProperty) {
assert(state == Beginning || state == ResolvingType);
state = ResolvingType;
currentType = newType;
return;
}
// We're updating to a property. Determine whether we're looking
// into a bridged Swift collection of some sort.
if (auto boundGeneric = newType->getAs<BoundGenericType>()) {
// Array<T>
if (boundGeneric->isArray()) {
// Further lookups into the element type.
state = ResolvingArray;
currentType = boundGeneric->getGenericArgs()[0];
return;
}
// Set<T>
if (boundGeneric->isSet()) {
// Further lookups into the element type.
state = ResolvingSet;
currentType = boundGeneric->getGenericArgs()[0];
return;
}
// Dictionary<K, V>
if (boundGeneric->isDictionary()) {
// Key paths look into the keys of a dictionary; further
// lookups into the value type.
state = ResolvingDictionary;
currentType = boundGeneric->getGenericArgs()[1];
return;
}
}
// Determine whether we're looking into a Foundation collection.
if (auto classDecl = newType->getClassOrBoundGenericClass()) {
if (classDecl->isObjC() && classDecl->hasClangNode()) {
SmallString<32> scratch;
StringRef objcClassName = classDecl->getObjCRuntimeName(scratch);
// NSArray
if (objcClassName == "NSArray") {
// The element type is unknown, so use AnyObject.
state = ResolvingArray;
currentType = anyObjectType;
return;
}
// NSSet
if (objcClassName == "NSSet") {
// The element type is unknown, so use AnyObject.
state = ResolvingSet;
currentType = anyObjectType;
return;
}
// NSDictionary
if (objcClassName == "NSDictionary") {
// Key paths look into the keys of a dictionary; there's no
// type to help us here.
state = ResolvingDictionary;
currentType = anyObjectType;
return;
}
}
}
// It's just a property.
state = ResolvingProperty;
currentType = newType;
};
// Local function to perform name lookup for the current index.
auto performLookup = [&](DeclNameRef componentName,
SourceLoc componentNameLoc,
Type &lookupType) -> LookupResult {
if (state == Beginning)
return lookupUnqualified(dc, componentName, componentNameLoc);
assert(currentType && "Non-beginning state must have a type");
if (!currentType->mayHaveMembers())
return LookupResult();
// Determine the type in which the lookup should occur. If we have
// a bridged value type, this will be the Objective-C class to
// which it is bridged.
if (auto bridgedClass = Context.getBridgedToObjC(dc, currentType))
lookupType = bridgedClass;
else
lookupType = currentType;
// Look for a member with the given name within this type.
return lookupMember(dc, lookupType, componentName);
};
// Local function to print a component to the string.
bool needDot = false;
auto printComponent = [&](DeclName component) {
if (needDot)
keyPathOS << ".";
else
needDot = true;
keyPathOS << component;
};
bool isInvalid = false;
SmallVector<KeyPathExpr::Component, 4> resolvedComponents;
for (auto &component : expr->getComponents()) {
auto componentNameLoc = component.getLoc();
// ObjC keypaths only support named segments.
// TODO: Perhaps we can map subscript components to dictionary keys.
switch (auto kind = component.getKind()) {
case KeyPathExpr::Component::Kind::Invalid:
case KeyPathExpr::Component::Kind::Identity:
case KeyPathExpr::Component::Kind::CodeCompletion:
continue;
case KeyPathExpr::Component::Kind::UnresolvedProperty:
break;
case KeyPathExpr::Component::Kind::UnresolvedSubscript:
case KeyPathExpr::Component::Kind::OptionalChain:
case KeyPathExpr::Component::Kind::OptionalForce:
case KeyPathExpr::Component::Kind::TupleElement:
diags.diagnose(componentNameLoc,
diag::expr_unsupported_objc_key_path_component,
(unsigned)kind);
continue;
case KeyPathExpr::Component::Kind::OptionalWrap:
case KeyPathExpr::Component::Kind::Property:
case KeyPathExpr::Component::Kind::Subscript:
case KeyPathExpr::Component::Kind::DictionaryKey:
llvm_unreachable("already resolved!");
}
auto componentName = component.getUnresolvedDeclName();
if (!componentName.isSimpleName()) {
diags.diagnose(componentNameLoc,
diag::expr_unsupported_objc_key_path_compound_name);
continue;
}
// If we are resolving into a dictionary, any component is
// well-formed because the keys are unknown dynamically.
if (state == ResolvingDictionary) {
// Just print the component unchanged; there's no checking we
// can do here.
printComponent(componentName.getBaseName());
// From here, we're resolving a property. Use the current type.
updateState(/*isProperty=*/true, currentType);
auto resolved = KeyPathExpr::Component::
forDictionaryKey(componentName, currentType, componentNameLoc);
resolvedComponents.push_back(resolved);
continue;
}
// Look for this component.
Type lookupType;
LookupResult lookup = performLookup(componentName, componentNameLoc,
lookupType);
// If we didn't find anything, try to apply typo-correction.
bool resultsAreFromTypoCorrection = false;
if (!lookup) {
TypoCorrectionResults corrections(componentName,
DeclNameLoc(componentNameLoc));
TypeChecker::performTypoCorrection(dc, DeclRefKind::Ordinary, lookupType,
(lookupType ? defaultMemberTypeLookupOptions
: defaultUnqualifiedLookupOptions),
corrections);
if (currentType)
diags.diagnose(componentNameLoc, diag::could_not_find_type_member,
currentType, componentName);
else
diags.diagnose(componentNameLoc, diag::cannot_find_in_scope,
componentName, false);
// Note all the correction candidates.
corrections.noteAllCandidates();
corrections.addAllCandidatesToLookup(lookup);
isInvalid = true;
if (!lookup) break;
// Remember that these are from typo correction.
resultsAreFromTypoCorrection = true;
}
// If we have more than one result, filter out unavailable or
// obviously unusable candidates.
if (lookup.size() > 1) {
lookup.filter([&](LookupResultEntry result, bool isOuter) -> bool {
// Drop unavailable candidates.
if (result.getValueDecl()->getAttrs().isUnavailable(Context))
return false;
// Drop non-property, non-type candidates.
if (!isa<VarDecl>(result.getValueDecl()) &&
!isa<TypeDecl>(result.getValueDecl()))
return false;
return true;
});
}
// If we *still* have more than one result, fail.
if (lookup.size() > 1) {
// Don't diagnose ambiguities if the results are from typo correction.
if (resultsAreFromTypoCorrection)
break;
if (lookupType)
diags.diagnose(componentNameLoc, diag::ambiguous_member_overload_set,
componentName);
else
diags.diagnose(componentNameLoc, diag::ambiguous_decl_ref,
componentName);
for (auto result : lookup) {
diags.diagnose(result.getValueDecl(), diag::decl_declared_here,
result.getValueDecl());
}
isInvalid = true;
break;
}
auto found = lookup.front().getValueDecl();
// Handle property references.
if (auto var = dyn_cast<VarDecl>(found)) {
// Resolve this component to the variable we found.
auto varRef = ConcreteDeclRef(var);
Type varTy = var->getInterfaceType();
// Updates currentType
updateState(/*isProperty=*/true, varTy);
auto resolved = KeyPathExpr::Component::forProperty(varRef, currentType,
componentNameLoc);
resolvedComponents.push_back(resolved);
// Check that the property is @objc.
if (!var->isObjC()) {
diags.diagnose(componentNameLoc, diag::expr_keypath_non_objc_property,
var->getName());
if (var->getLoc().isValid() && var->getDeclContext()->isTypeContext()) {
diags.diagnose(var, diag::make_decl_objc,
var->getDescriptiveKind())
.fixItInsert(var->getAttributeInsertionLoc(false),
"@objc ");
}
} else {
// FIXME: Warn about non-KVC-compliant getter/setter names?
}
// Print the Objective-C property name.
printComponent(var->getObjCPropertyName());
continue;
}
// Handle type references.
if (auto type = dyn_cast<TypeDecl>(found)) {
// We cannot refer to a type via a property.
if (isResolvingProperty()) {
diags.diagnose(componentNameLoc, diag::expr_keypath_type_of_property,
componentName, currentType);
isInvalid = true;
break;
}
// We cannot refer to a generic type.
if (type->getDeclaredInterfaceType()->hasTypeParameter()) {
diags.diagnose(componentNameLoc, diag::expr_keypath_generic_type,
type->getName());
isInvalid = true;
break;
}
Type newType;
if (lookupType && !lookupType->isAnyObject()) {
newType = lookupType->getTypeOfMember(dc->getParentModule(), type,
type->getDeclaredInterfaceType());
} else {
newType = type->getDeclaredInterfaceType();
}
if (!newType) {
isInvalid = true;
break;
}
// Updates currentType based on newType.
updateState(/*isProperty=*/false, newType);
// Resolve this component to the type we found.
auto typeRef = ConcreteDeclRef(type);
auto resolved = KeyPathExpr::Component::forProperty(typeRef, currentType,
componentNameLoc);
resolvedComponents.push_back(resolved);
continue;
}
// Declarations that cannot be part of a key-path.
diags.diagnose(componentNameLoc, diag::expr_keypath_not_property, found,
/*isForDynamicKeyPathMemberLookup=*/false);
isInvalid = true;
break;
}
// A successful check of an ObjC keypath shouldn't add or remove components,
// currently.
if (resolvedComponents.size() == expr->getComponents().size())
expr->setComponents(Context, resolvedComponents);
// Check for an empty key-path string.
auto keyPathString = keyPathOS.str();
if (keyPathString.empty() && !isInvalid)
diags.diagnose(expr->getLoc(), diag::expr_keypath_empty);
// Set the string literal expression for the ObjC key path.
if (!expr->getObjCStringLiteralExpr()) {
expr->setObjCStringLiteralExpr(
new (Context) StringLiteralExpr(Context.AllocateCopy(keyPathString),
expr->getSourceRange(),
/*Implicit=*/true));
}
if (!currentType)
return std::nullopt;
return currentType;
}
|