1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
|
//===--- TypeCheckGeneric.cpp - Generics ----------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements support for generics.
//
//===----------------------------------------------------------------------===//
#include "TypeCheckProtocol.h"
#include "TypeCheckType.h"
#include "TypeChecker.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeResolutionStage.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Defer.h"
#include "llvm/Support/ErrorHandling.h"
using namespace swift;
//
// Generic functions
//
/// Get the opaque type representing the return type of a declaration, or
/// create it if it does not yet exist.
OpaqueTypeDecl *
OpaqueResultTypeRequest::evaluate(Evaluator &evaluator,
ValueDecl *originatingDecl) const {
auto *repr = originatingDecl->getOpaqueResultTypeRepr();
assert(repr && "Declaration does not have an opaque result type");
auto *dc = originatingDecl->getInnermostDeclContext();
auto &ctx = dc->getASTContext();
// Protocol requirements can't have opaque return types.
//
// TODO: Maybe one day we could treat this as sugar for an associated type.
if (isa<ProtocolDecl>(originatingDecl->getDeclContext())
&& originatingDecl->isProtocolRequirement()) {
SourceLoc fixitLoc;
if (auto vd = dyn_cast<VarDecl>(originatingDecl)) {
fixitLoc = vd->getParentPatternBinding()->getStartLoc();
} else {
fixitLoc = originatingDecl->getStartLoc();
}
std::string result;
const char *const placeholder = "<#AssocType#>";
{
llvm::raw_string_ostream out(result);
out << "associatedtype " << placeholder << ": ";
// FIXME [OPAQUE SUPPORT]: to produce the right associate type for the
// replacement in general, we would need to recurse into the type repr and
// replace every `OpaqueReturnType` with its 'constraint'. Things get
// trickier when we allow named opaque return types.
if (isa<OpaqueReturnTypeRepr>(repr)) {
cast<OpaqueReturnTypeRepr>(repr)->getConstraint()->print(out);
} else {
out << "<#type#>";
}
out << "\n";
}
ctx.Diags
.diagnose(repr->getLoc(), diag::opaque_type_in_protocol_requirement)
.fixItInsert(fixitLoc, result)
.fixItReplace(repr->getSourceRange(), placeholder);
repr->setInvalid();
return nullptr;
}
// Check the availability of the opaque type runtime support.
TypeChecker::checkAvailability(
repr->getSourceRange(),
ctx.getOpaqueTypeAvailability(),
diag::availability_opaque_types_only_version_newer,
originatingDecl->getInnermostDeclContext());
// Create a generic signature for the opaque environment. This is the outer
// generic signature with an added generic parameters representing the opaque
// types and their interface constraints.
auto originatingDC = originatingDecl->getInnermostDeclContext();
auto outerGenericSignature = originatingDC->getGenericSignatureOfContext();
unsigned opaqueSignatureDepth =
outerGenericSignature
? outerGenericSignature.getGenericParams().back()->getDepth() + 1
: 0;
// Determine the context of the opaque type declaration we'll be creating.
auto parentDC = originatingDecl->getDeclContext();
auto originatingGenericContext = originatingDecl->getAsGenericContext();
GenericParamList *genericParams;
GenericSignature interfaceSignature;
CollectedOpaqueReprs opaqueReprs;
if (auto namedOpaque = dyn_cast<NamedOpaqueReturnTypeRepr>(repr)) {
// Produce the generic signature for the opaque type.
genericParams = namedOpaque->getGenericParams();
genericParams->setDepth(opaqueSignatureDepth);
InferredGenericSignatureRequest request{
outerGenericSignature.getPointer(),
genericParams,
WhereClauseOwner(),
/*addedRequirements=*/{},
/*inferenceSources=*/{},
repr->getLoc(),
/*isExtension=*/false,
/*allowInverses=*/true};
interfaceSignature = evaluateOrDefault(
ctx.evaluator, request, GenericSignatureWithError())
.getPointer();
if (!interfaceSignature) {
// Already produced an error.
return nullptr;
}
} else {
opaqueReprs = collectOpaqueTypeReprs(repr, ctx, dc);
if (opaqueReprs.empty()) {
return nullptr;
}
SmallVector<GenericTypeParamType *, 2> genericParamTypes;
SmallVector<Requirement, 2> requirements;
for (unsigned i = 0; i < opaqueReprs.size(); ++i) {
auto *currentRepr = opaqueReprs[i];
if( auto opaqueReturn = dyn_cast<OpaqueReturnTypeRepr>(currentRepr) ) {
// Usually, we resolve the opaque constraint and bail if it isn't a class
// or existential type (see below). However, in this case we know we will
// fail, so we can bail early and provide a better diagnostic.
if (auto *optionalRepr =
dyn_cast<OptionalTypeRepr>(opaqueReturn->getConstraint())) {
std::string buf;
llvm::raw_string_ostream stream(buf);
stream << "(some " << optionalRepr->getBase() << ")?";
ctx.Diags.diagnose(currentRepr->getLoc(),
diag::opaque_type_invalid_constraint);
ctx.Diags
.diagnose(currentRepr->getLoc(), diag::opaque_of_optional_rewrite)
.fixItReplaceChars(currentRepr->getStartLoc(),
currentRepr->getEndLoc(), stream.str());
repr->setInvalid();
return nullptr;
}
}
auto *paramType = GenericTypeParamType::get(/*isParameterPack*/ false,
opaqueSignatureDepth, i, ctx);
genericParamTypes.push_back(paramType);
TypeRepr *constraint = currentRepr;
if (auto opaqueReturn = dyn_cast<OpaqueReturnTypeRepr>(currentRepr)){
constraint = opaqueReturn->getConstraint();
}
// Try to resolve the constraint repr in the parent decl context. It
// should be some kind of existential type. Pass along the error type if
// resolving the repr failed.
auto constraintType = TypeResolution::forInterface(
dc, TypeResolverContext::GenericRequirement,
// Unbound generics and placeholders are
// meaningless in opaque types.
/*unboundTyOpener*/ nullptr,
/*placeholderHandler*/ nullptr,
/*packElementOpener*/ nullptr)
.resolveType(constraint);
if (constraintType->hasError())
return nullptr;
RequirementKind kind;
if (constraintType->isConstraintType())
kind = RequirementKind::Conformance;
else if (constraintType->getClassOrBoundGenericClass())
kind = RequirementKind::Superclass;
else {
// Error out if the constraint type isn't a class or existential type.
ctx.Diags.diagnose(currentRepr->getLoc(),
diag::opaque_type_invalid_constraint);
currentRepr->setInvalid();
return nullptr;
}
assert(!constraintType->hasArchetype());
requirements.emplace_back(kind, paramType, constraintType);
}
interfaceSignature = buildGenericSignature(ctx, outerGenericSignature,
genericParamTypes,
std::move(requirements),
/*allowInverses=*/true);
genericParams = originatingGenericContext
? originatingGenericContext->getGenericParams()
: nullptr;
}
// Create the OpaqueTypeDecl for the result type.
auto opaqueDecl = OpaqueTypeDecl::get(
originatingDecl, genericParams, parentDC, interfaceSignature,
opaqueReprs);
if (auto originatingSig = originatingDC->getGenericSignatureOfContext()) {
opaqueDecl->setGenericSignature(originatingSig);
} else {
// Avoid kicking off GenericSignatureRequest for the OpaqueTypeDecl.
opaqueDecl->setGenericSignature(GenericSignature());
}
// Resolving in the context of `opaqueDecl` allows type resolution to create
// opaque archetypes where needed
auto interfaceType =
TypeResolution::forInterface(opaqueDecl, TypeResolverContext::None,
/*unboundTyOpener*/ nullptr,
/*placeholderHandler*/ nullptr,
/*packElementOpener*/ nullptr)
.resolveType(repr);
// Opaque types cannot be used in parameter position.
Type desugared = interfaceType->getDesugaredType();
bool hasError = desugared.findIf([&](Type type) -> bool {
if (auto *fnType = type->getAs<FunctionType>()) {
for (auto param : fnType->getParams()) {
if (!param.getPlainType()->hasOpaqueArchetype())
continue;
ctx.Diags.diagnose(repr->getLoc(),
diag::opaque_type_in_parameter,
false, interfaceType);
repr->setInvalid();
return true;
}
}
return false;
});
if (hasError)
return nullptr;
auto metatype = MetatypeType::get(interfaceType);
opaqueDecl->setInterfaceType(metatype);
// Record the opaque return type decl in the parent source file,
// which will be used in IRGen to emit all opaque type decls
// in a Swift module for type reconstruction.
if (auto *sourceFile = dc->getParentSourceFile())
sourceFile->addOpaqueResultTypeDecl(opaqueDecl);
return opaqueDecl;
}
/// Determine whether the given type is \c Self, an associated type of \c Self,
/// or a concrete type.
static bool isSelfDerivedOrConcrete(Type protoSelf, Type type) {
// Check for a concrete type.
if (!type->hasTypeParameter())
return true;
if (type->isTypeParameter() &&
type->getRootGenericParam()->isEqual(protoSelf))
return true;
return false;
}
// For a generic requirement in a protocol, make sure that the requirement
// set didn't add any requirements to Self or its associated types.
void TypeChecker::checkProtocolSelfRequirements(ValueDecl *decl) {
// For a generic requirement in a protocol, make sure that the requirement
// set didn't add any requirements to Self or its associated types.
if (auto *proto = dyn_cast<ProtocolDecl>(decl->getDeclContext())) {
auto &ctx = proto->getASTContext();
auto protoSelf = proto->getSelfInterfaceType();
auto sig = decl->getInnermostDeclContext()->getGenericSignatureOfContext();
for (auto req : sig.getRequirements()) {
// If one of the types in the requirement is dependent on a non-Self
// type parameter, this requirement is okay.
if (!isSelfDerivedOrConcrete(protoSelf, req.getFirstType()) ||
!isSelfDerivedOrConcrete(protoSelf, req.getSecondType()))
continue;
// The conformance of 'Self' to the protocol is okay.
if (req.getKind() == RequirementKind::Conformance &&
req.getProtocolDecl() == proto &&
req.getFirstType()->is<GenericTypeParamType>())
continue;
static_assert((unsigned)RequirementKind::LAST_KIND == 4,
"update %select in diagnostic!");
ctx.Diags.diagnose(decl, diag::requirement_restricts_self, decl,
req.getFirstType().getString(),
static_cast<unsigned>(req.getKind()),
req.getSecondType().getString());
}
}
}
/// All generic parameters of a generic function must be referenced in the
/// declaration's type, otherwise we have no way to infer them.
void TypeChecker::checkReferencedGenericParams(GenericContext *dc) {
// Don't do this check for accessors: they're not used directly, so we
// never need to infer their generic arguments. This is mostly a
// compile-time optimization, but it also avoids problems with accessors
// like 'read' and 'modify' that would arise due to yields not being
// part of the formal type.
if (isa<AccessorDecl>(dc))
return;
auto *genericParams = dc->getGenericParams();
auto genericSig = dc->getGenericSignatureOfContext();
if (!genericParams)
return;
auto *decl = cast<ValueDecl>(dc->getInnermostDeclarationDeclContext());
// A helper class to collect referenced generic type parameters
// and dependent member types.
class ReferencedGenericTypeWalker : public TypeWalker {
SmallPtrSet<CanType, 4> ReferencedGenericParams;
public:
ReferencedGenericTypeWalker() {}
Action walkToTypePre(Type ty) override {
// Find generic parameters or dependent member types.
// Once such a type is found, don't recurse into its children.
if (!ty->hasTypeParameter())
return Action::SkipNode;
if (ty->isTypeParameter()) {
ReferencedGenericParams.insert(ty->getCanonicalType());
return Action::SkipNode;
}
// Skip the count type, which is always a generic parameter;
// we don't consider it a reference because it only binds the
// shape and not the metadata.
if (auto *expansionTy = ty->getAs<PackExpansionType>()) {
expansionTy->getPatternType().walk(*this);
return Action::SkipNode;
}
// Don't walk into generic type alias substitutions. This does
// not constrain `T`:
//
// typealias Foo<T> = Int
// func foo<T>(_: Foo<T>) {}
if (auto *aliasTy = dyn_cast<TypeAliasType>(ty.getPointer())) {
Type(aliasTy->getSinglyDesugaredType()).walk(*this);
return Action::SkipNode;
}
return Action::Continue;
}
SmallPtrSetImpl<CanType> &getReferencedGenericParams() {
return ReferencedGenericParams;
}
};
// Collect all generic params referenced in parameter types and
// return type.
ReferencedGenericTypeWalker paramsAndResultWalker;
auto *funcTy = decl->getInterfaceType()->castTo<GenericFunctionType>();
for (const auto ¶m : funcTy->getParams())
param.getPlainType().walk(paramsAndResultWalker);
funcTy->getResult().walk(paramsAndResultWalker);
// Set of generic params referenced in parameter types,
// return type or requirements.
auto &referencedGenericParams =
paramsAndResultWalker.getReferencedGenericParams();
// Check if at least one of the generic params in the requirement refers
// to an already referenced generic parameter. If this is the case,
// then the other type is also considered as referenced, because
// it is used to put requirements on the first type.
auto reqTypesVisitor = [&referencedGenericParams](Requirement req) -> bool {
Type first;
Type second;
switch (req.getKind()) {
case RequirementKind::SameShape:
case RequirementKind::Superclass:
case RequirementKind::SameType:
second = req.getSecondType();
LLVM_FALLTHROUGH;
case RequirementKind::Conformance:
case RequirementKind::Layout:
first = req.getFirstType();
break;
}
// Collect generic parameter types referenced by types used in a requirement.
ReferencedGenericTypeWalker walker;
if (first && first->hasTypeParameter())
first.walk(walker);
if (second && second->hasTypeParameter())
second.walk(walker);
auto &genericParamsUsedByRequirementTypes =
walker.getReferencedGenericParams();
// If at least one of the collected generic types or a root generic
// parameter of dependent member types is known to be referenced by
// parameter types, return types or other types known to be "referenced",
// then all the types used in the requirement are considered to be
// referenced, because they are used to defined something that is known
// to be referenced.
bool foundNewReferencedGenericParam = false;
if (std::any_of(genericParamsUsedByRequirementTypes.begin(),
genericParamsUsedByRequirementTypes.end(),
[&referencedGenericParams](CanType t) {
assert(t->isTypeParameter());
return referencedGenericParams.find(
t->getRootGenericParam()
->getCanonicalType()) !=
referencedGenericParams.end();
})) {
std::for_each(genericParamsUsedByRequirementTypes.begin(),
genericParamsUsedByRequirementTypes.end(),
[&referencedGenericParams,
&foundNewReferencedGenericParam](CanType t) {
// Add only generic type parameters, but ignore any
// dependent member types, because requirement
// on a dependent member type does not provide enough
// information to infer the base generic type
// parameter.
if (!t->is<GenericTypeParamType>())
return;
if (referencedGenericParams.insert(t).second)
foundNewReferencedGenericParam = true;
});
}
return foundNewReferencedGenericParam;
};
ArrayRef<Requirement> requirements;
auto FindReferencedGenericParamsInRequirements =
[&requirements, genericSig, &reqTypesVisitor] {
requirements = genericSig.getRequirements();
// Try to find new referenced generic parameter types in requirements until
// we reach a fix point. We need to iterate until a fix point, because we
// may have e.g. chains of same-type requirements like:
// not-yet-referenced-T1 == not-yet-referenced-T2.DepType2,
// not-yet-referenced-T2 == not-yet-referenced-T3.DepType3,
// not-yet-referenced-T3 == referenced-T4.DepType4.
// When we process the first of these requirements, we don't know yet that
// T2
// will be referenced, because T3 will be referenced,
// because T3 == T4.DepType4.
while (true) {
bool foundNewReferencedGenericParam = false;
for (auto req : requirements) {
if (reqTypesVisitor(req))
foundNewReferencedGenericParam = true;
}
if (!foundNewReferencedGenericParam)
break;
}
};
// Find the depth of the function's own generic parameters.
unsigned fnGenericParamsDepth = genericParams->getParams().front()->getDepth();
// Check that every generic parameter type from the signature is
// among referencedGenericParams.
for (auto *genParam : genericSig.getGenericParams()) {
auto *paramDecl = genParam->getDecl();
if (paramDecl->getDepth() != fnGenericParamsDepth)
continue;
if (!referencedGenericParams.count(genParam->getCanonicalType())) {
// Lazily search for generic params that are indirectly used in the
// function signature. Do it only if there is a generic parameter
// that is not known to be referenced yet.
if (requirements.empty()) {
FindReferencedGenericParamsInRequirements();
// Nothing to do if this generic parameter is considered to be
// referenced after analyzing the requirements from the generic
// signature.
if (referencedGenericParams.count(genParam->getCanonicalType()))
continue;
}
// Produce an error that this generic parameter cannot be bound.
if (paramDecl->isImplicit()) {
paramDecl->getASTContext().Diags
.diagnose(paramDecl->getOpaqueTypeRepr()->getLoc(),
diag::unreferenced_generic_parameter,
paramDecl->getNameStr());
} else {
paramDecl->diagnose(diag::unreferenced_generic_parameter,
paramDecl->getNameStr());
}
}
}
}
/// Ensure we don't re-declare any generic parameters in the current scope,
/// or shadow a generic parameter from an outer scope.
void TypeChecker::checkShadowedGenericParams(GenericContext *dc) {
// Collect all outer generic parameters for lookup.
llvm::SmallDenseMap<Identifier, GenericTypeParamDecl *, 4> genericParamDecls;
for (auto *parentDC = dc->getParent(); parentDC != nullptr;
parentDC = parentDC->getParentForLookup()) {
if (auto *extensionDecl = dyn_cast<ExtensionDecl>(parentDC)) {
parentDC = extensionDecl->getExtendedNominal();
// This can happen with invalid code.
if (parentDC == nullptr)
return;
}
if (auto *parentDecl = parentDC->getAsDecl()) {
if (auto *parentGeneric = parentDecl->getAsGenericContext()) {
if (auto *genericParamList = parentGeneric->getGenericParams()) {
for (auto *genericParamDecl : genericParamList->getParams()) {
if (genericParamDecl->isOpaqueType())
continue;
genericParamDecls[genericParamDecl->getName()] = genericParamDecl;
}
}
}
}
}
for (auto *genericParamDecl : dc->getGenericParams()->getParams()) {
if (genericParamDecl->isOpaqueType() || genericParamDecl->isImplicit())
continue;
auto found = genericParamDecls.find(genericParamDecl->getName());
if (found != genericParamDecls.end()) {
auto *existingParamDecl = found->second;
if (existingParamDecl->getDeclContext() == dc) {
genericParamDecl->diagnose(diag::invalid_redecl, genericParamDecl);
} else {
genericParamDecl->diagnose(
diag::shadowed_generic_param,
genericParamDecl).warnUntilSwiftVersion(6);
}
if (existingParamDecl->getLoc()) {
existingParamDecl->diagnose(diag::invalid_redecl_prev,
existingParamDecl);
}
continue;
}
genericParamDecls[genericParamDecl->getName()] = genericParamDecl;
}
}
///
/// Generic types
///
/// Collect additional requirements into \p extraReqs.
static void collectAdditionalExtensionRequirements(
Type type, SmallVectorImpl<Requirement> &extraReqs) {
if (type->is<ErrorType>())
return;
if (type->is<TupleType>())
return;
// Find the nominal type declaration and its parent type.
if (type->is<ProtocolCompositionType>())
type = type->getCanonicalType();
// A parameterized protocol type is not a nominal. Unwrap it to get
// the underlying nominal, and record same-type requirements for
// the primary associated types.
if (auto *paramProtoTy = type->getAs<ParameterizedProtocolType>()) {
auto *protoTy = paramProtoTy->getBaseType();
type = protoTy;
paramProtoTy->getRequirements(
protoTy->getDecl()->getSelfInterfaceType(),
extraReqs);
}
Type parentType = type->getNominalParent();
GenericTypeDecl *genericDecl = type->getAnyGeneric();
// Visit the parent type, if there is one.
if (parentType) {
collectAdditionalExtensionRequirements(parentType, extraReqs);
}
// Find the nominal type.
auto nominal = dyn_cast<NominalTypeDecl>(genericDecl);
auto typealias = dyn_cast<TypeAliasDecl>(genericDecl);
if (!nominal) {
type = typealias->getUnderlyingType();
nominal = type->getNominalOrBoundGenericNominal();
if (!nominal && type->is<TupleType>())
nominal = type->getASTContext().getBuiltinTupleDecl();
}
// If we have a bound generic type, add same-type requirements for each of
// its generic arguments.
if (auto currentBoundType = type->getAs<BoundGenericType>()) {
auto *genericParams = currentBoundType->getDecl()->getGenericParams();
for (unsigned gpIndex : indices(genericParams->getParams())) {
auto *gp = genericParams->getParams()[gpIndex];
auto gpType = gp->getDeclaredInterfaceType();
extraReqs.emplace_back(RequirementKind::SameType, gpType,
currentBoundType->getGenericArgs()[gpIndex]);
}
}
// If we have a passthrough typealias, add the requirements from its
// generic signature.
if (typealias && TypeChecker::isPassThroughTypealias(typealias, nominal)) {
for (auto req : typealias->getGenericSignature().getRequirements())
extraReqs.push_back(req);
}
}
GenericSignature
GenericSignatureRequest::evaluate(Evaluator &evaluator,
GenericContext *GC) const {
assert(!isa<OpaqueTypeDecl>(GC));
auto &ctx = GC->getASTContext();
// The signature of a Protocol is trivial (Self: TheProtocol) so let's compute
// it.
if (auto PD = dyn_cast<ProtocolDecl>(GC)) {
auto self = PD->getSelfInterfaceType()->castTo<GenericTypeParamType>();
auto req =
Requirement(RequirementKind::Conformance, self,
PD->getDeclaredInterfaceType());
return GenericSignature::get({self}, {req});
}
if (auto accessor = dyn_cast<AccessorDecl>(GC))
if (auto subscript = dyn_cast<SubscriptDecl>(accessor->getStorage()))
return subscript->getGenericSignature();
auto *genericParams = GC->getGenericParams();
const auto *where = GC->getTrailingWhereClause();
if (!genericParams && !where) {
// We can fast-path computing the generic signature of non-generic
// declarations by re-using the parent context's signature.
return GC->getParentForLookup()->getGenericSignatureOfContext();
}
if (genericParams) {
// Setup the depth of the generic parameters.
const_cast<GenericParamList *>(genericParams)
->setDepth(GC->getGenericContextDepth());
}
// ...or we may only have a contextual where clause.
if (where) {
// If there is no generic context for the where clause to
// rely on, diagnose that now and bail out.
if (!GC->isGenericContext()) {
ctx.Diags.diagnose(where->getWhereLoc(),
GC->getParent()->isModuleScopeContext()
? diag::where_nongeneric_toplevel
: diag::where_nongeneric_ctx);
return nullptr;
}
}
GenericSignature parentSig;
SmallVector<TypeBase *, 2> inferenceSources;
SmallVector<Requirement, 2> extraReqs;
SourceLoc loc;
bool inferInvertibleReqs = true;
if (auto VD = dyn_cast<ValueDecl>(GC->getAsDecl())) {
loc = VD->getLoc();
parentSig = GC->getParentForLookup()->getGenericSignatureOfContext();
auto func = dyn_cast<AbstractFunctionDecl>(VD);
auto subscr = dyn_cast<SubscriptDecl>(VD);
auto macro = dyn_cast<MacroDecl>(VD);
assert(func || subscr || macro || isa<NominalTypeDecl>(VD) ||
isa<TypeAliasDecl>(VD));
// For functions and subscripts, resolve the parameter and result types and
// note them as requirement inference sources.
if (subscr || func || (macro && macro->parameterList)) {
const auto baseOptions =
TypeResolutionOptions(func ? TypeResolverContext::AbstractFunctionDecl
: TypeResolverContext::SubscriptDecl);
const auto resolution =
TypeResolution::forStructural(GC, baseOptions,
/*unboundTyOpener*/ nullptr,
/*placeholderHandler*/ nullptr,
/*packElementOpener*/ nullptr);
auto params = func ? func->getParameters()
: subscr ? subscr->getIndices()
: macro->parameterList;
for (auto param : *params) {
auto *typeRepr = param->getTypeRepr();
if (typeRepr == nullptr)
continue;
auto paramOptions = baseOptions;
if (auto *specifier = dyn_cast<SpecifierTypeRepr>(typeRepr))
typeRepr = specifier->getBase();
if (auto *packExpansion = dyn_cast<VarargTypeRepr>(typeRepr)) {
paramOptions.setContext(TypeResolverContext::VariadicFunctionInput);
} else {
paramOptions.setContext(TypeResolverContext::FunctionInput);
}
paramOptions |= TypeResolutionFlags::Direct;
const auto type =
resolution.withOptions(paramOptions).resolveType(typeRepr);
inferenceSources.push_back(type.getPointer());
}
// Handle the thrown error type.
auto effectiveFunc = func ? func
: subscr ? subscr->getEffectfulGetAccessor()
: nullptr;
if (effectiveFunc) {
// Infer constraints from the thrown type of a declaration.
if (auto thrownTypeRepr = effectiveFunc->getThrownTypeRepr()) {
auto thrownOptions = baseOptions | TypeResolutionFlags::Direct;
const auto thrownType = resolution.withOptions(thrownOptions)
.resolveType(thrownTypeRepr);
// Add this type as an inference source.
inferenceSources.push_back(thrownType.getPointer());
// Add conformance of this type to the Error protocol.
if (auto errorProtocol = ctx.getErrorDecl()) {
extraReqs.push_back(
Requirement(RequirementKind::Conformance, thrownType,
errorProtocol->getDeclaredInterfaceType()));
}
}
}
// Gather requirements from the result type.
auto *resultTypeRepr = [&subscr, &func, ¯o]() -> TypeRepr * {
if (subscr) {
return subscr->getElementTypeRepr();
} else if (macro) {
return macro->resultType.getTypeRepr();
} else if (auto *FD = dyn_cast<FuncDecl>(func)) {
return FD->getResultTypeRepr();
} else {
return nullptr;
}
}();
if (resultTypeRepr && !resultTypeRepr->hasOpaque()) {
const auto resultType =
resolution.withOptions(TypeResolverContext::FunctionResult)
.resolveType(resultTypeRepr);
inferenceSources.push_back(resultType.getPointer());
}
}
} else if (auto *ext = dyn_cast<ExtensionDecl>(GC)) {
loc = ext->getLoc();
// If the extension introduces conformance to invertible protocol IP, do not
// infer any conditional requirements that the generic parameters to conform
// to invertible protocols. This forces people to write out the conditions.
inferInvertibleReqs = !ext->isAddingConformanceToInvertible();
// FIXME: to workaround a reverse condfail, always infer the requirements if
// the extension is in a swiftinterface file. This is temporary and should
// be removed soon. (rdar://130424971)
if (auto *sf = ext->getOutermostParentSourceFile()) {
if (sf->Kind == SourceFileKind::Interface
&& !ctx.LangOpts.hasFeature(Feature::SE427NoInferenceOnExtension))
inferInvertibleReqs = true;
}
collectAdditionalExtensionRequirements(ext->getExtendedType(), extraReqs);
auto *extendedNominal = ext->getExtendedNominal();
// Avoid building a generic signature if we have an unconstrained protocol
// extension of a protocol that does not suppress conformance to ~Copyable
// or ~Escapable. This avoids a request cycle when referencing a protocol
// extension type alias via an unqualified name from a `where` clause on
// the protocol.
if (auto *proto = dyn_cast<ProtocolDecl>(extendedNominal)) {
if (extraReqs.empty() &&
!ext->getTrailingWhereClause()) {
InvertibleProtocolSet protos;
for (auto *inherited : proto->getAllInheritedProtocols()) {
if (auto kind = inherited->getInvertibleProtocolKind())
protos.insert(*kind);
}
if (protos == InvertibleProtocolSet::allKnown())
return extendedNominal->getGenericSignatureOfContext();
}
}
if (isa<BuiltinTupleDecl>(extendedNominal)) {
genericParams = ext->getGenericParams();
} else {
parentSig = extendedNominal->getGenericSignatureOfContext();
genericParams = nullptr;
}
// Re-use the signature of the type being extended by default.
// For tuple extensions, always build a new signature to get
// the right sugared types, since we don't want to expose the
// name of the generic parameter of BuiltinTupleDecl itself.
if (extraReqs.empty() && !ext->getTrailingWhereClause() &&
!isa<BuiltinTupleDecl>(extendedNominal) &&
false/*!ctx.LangOpts.hasFeature(Feature::NoncopyableGenerics)*/) {
// FIXME: Recover this optimization even with NoncopyableGenerics on.
return parentSig;
}
} else {
llvm_unreachable("Unknown generic declaration kind");
}
auto request = InferredGenericSignatureRequest{
parentSig.getPointer(),
genericParams, WhereClauseOwner(GC),
extraReqs, inferenceSources, loc,
/*isExtension=*/isa<ExtensionDecl>(GC),
/*allowInverses=*/inferInvertibleReqs};
return evaluateOrDefault(ctx.evaluator, request,
GenericSignatureWithError()).getPointer();
}
///
/// Checking bound generic type arguments
///
/// Create a text string that describes the bindings of generic parameters
/// that are relevant to the given set of types, e.g.,
/// "[with T = Bar, U = Wibble]".
///
/// \param types The types that will be scanned for generic type parameters,
/// which will be used in the resulting type.
///
/// \param genericParams The generic parameters to use to resugar any
/// generic parameters that occur within the types.
///
/// \param substitutions The generic parameter -> generic argument
/// substitutions that will have been applied to these types.
/// These are used to produce the "parameter = argument" bindings in the test.
static std::string gatherGenericParamBindingsText(
ArrayRef<Type> types, ArrayRef<GenericTypeParamType *> genericParams,
TypeSubstitutionFn substitutions) {
llvm::SmallPtrSet<GenericTypeParamType *, 2> knownGenericParams;
for (auto type : types) {
if (type.isNull()) continue;
type.visit([&](Type type) {
if (auto gp = type->getAs<GenericTypeParamType>()) {
knownGenericParams.insert(
gp->getCanonicalType()->castTo<GenericTypeParamType>());
}
});
}
if (knownGenericParams.empty())
return "";
SmallString<128> result;
llvm::raw_svector_ostream OS(result);
auto options = PrintOptions::forDiagnosticArguments();
for (auto gp : genericParams) {
auto canonGP = gp->getCanonicalType()->castTo<GenericTypeParamType>();
if (!knownGenericParams.count(canonGP))
continue;
if (result.empty())
OS << " [with ";
else
OS << "; ";
if (gp->isParameterPack())
OS << "each ";
OS << gp->getName().str();
OS << " = ";
auto type = substitutions(canonGP);
if (!type)
return "";
type->print(OS, options);
}
OS << "]";
return std::string(result.str());
}
void TypeChecker::diagnoseRequirementFailure(
const CheckGenericArgumentsResult::RequirementFailureInfo &reqFailureInfo,
SourceLoc errorLoc, SourceLoc noteLoc, Type targetTy,
ArrayRef<GenericTypeParamType *> genericParams,
TypeSubstitutionFn substitutions, ModuleDecl *module) {
assert(errorLoc.isValid() && noteLoc.isValid());
const auto &req = reqFailureInfo.Req;
const auto &substReq = reqFailureInfo.SubstReq;
Diag<Type, Type, Type> diagnostic;
Diag<Type, Type, StringRef> diagnosticNote;
const auto reqKind = req.getKind();
switch (reqKind) {
case RequirementKind::SameShape:
diagnostic = diag::types_not_same_shape;
diagnosticNote = diag::same_shape_requirement;
break;
case RequirementKind::Conformance: {
diagnoseConformanceFailure(substReq.getFirstType(),
substReq.getProtocolDecl(), module, errorLoc);
if (reqFailureInfo.ReqPath.empty())
return;
diagnostic = diag::type_does_not_conform_owner;
diagnosticNote = diag::type_does_not_inherit_or_conform_requirement;
break;
}
case RequirementKind::Layout:
diagnostic = diag::type_is_not_a_class;
diagnosticNote = diag::anyobject_requirement;
break;
case RequirementKind::Superclass:
diagnostic = diag::type_does_not_inherit;
diagnosticNote = diag::type_does_not_inherit_or_conform_requirement;
break;
case RequirementKind::SameType:
diagnostic = diag::types_not_equal;
diagnosticNote = diag::types_not_equal_requirement;
break;
}
Type secondTy, substSecondTy;
if (req.getKind() != RequirementKind::Layout) {
secondTy = req.getSecondType();
substSecondTy = substReq.getSecondType();
}
ASTContext &ctx = module->getASTContext();
// FIXME: Poor source-location information.
ctx.Diags.diagnose(errorLoc, diagnostic, targetTy, substReq.getFirstType(),
substSecondTy);
const auto genericParamBindingsText = gatherGenericParamBindingsText(
{req.getFirstType(), secondTy}, genericParams, substitutions);
ctx.Diags.diagnose(noteLoc, diagnosticNote, req.getFirstType(), secondTy,
genericParamBindingsText);
ParentConditionalConformance::diagnoseConformanceStack(
ctx.Diags, noteLoc, reqFailureInfo.ReqPath);
}
CheckGenericArgumentsResult TypeChecker::checkGenericArgumentsForDiagnostics(
ModuleDecl *module, ArrayRef<Requirement> requirements,
TypeSubstitutionFn substitutions) {
using ParentConditionalConformances =
SmallVector<ParentConditionalConformance, 2>;
struct WorklistItem {
/// The requirement to check. This is either a top-level requirement or
/// a conditional requirements of the last conformancein \c ReqsPath
/// (if any).
Requirement Req;
/// The substituted requirement.
Requirement SubstReq;
/// The chain of conditional conformances that leads to the above
/// requirement set.
ParentConditionalConformances Path;
WorklistItem(Requirement Req, Requirement SubstReq,
ParentConditionalConformances Path)
: Req(Req), SubstReq(SubstReq), Path(Path) {}
};
bool hadSubstFailure = false;
SmallVector<WorklistItem, 4> worklist;
for (auto req : llvm::reverse(requirements)) {
auto substReq = req.subst(substitutions, LookUpConformanceInModule(module));
worklist.emplace_back(req, substReq, ParentConditionalConformances{});
}
while (!worklist.empty()) {
const auto item = worklist.pop_back_val();
auto req = item.Req;
auto substReq = item.SubstReq;
SmallVector<Requirement, 2> subReqs;
switch (substReq.checkRequirement(subReqs, /*allowMissing=*/true)) {
case CheckRequirementResult::Success:
break;
case CheckRequirementResult::ConditionalConformance: {
assert(substReq.getKind() == RequirementKind::Conformance);
auto reqsPath = item.Path;
reqsPath.push_back({substReq.getFirstType(), substReq.getProtocolDecl()});
for (auto subReq : llvm::reverse(subReqs))
worklist.emplace_back(subReq, subReq, reqsPath);
break;
}
case CheckRequirementResult::PackRequirement: {
for (auto subReq : llvm::reverse(subReqs)) {
// Note: we keep the original unsubstituted pack requirement here for
// the diagnostic
worklist.emplace_back(req, subReq, item.Path);
}
break;
}
case CheckRequirementResult::RequirementFailure:
return CheckGenericArgumentsResult::createRequirementFailure(
req, substReq, item.Path);
case CheckRequirementResult::SubstitutionFailure:
hadSubstFailure = true;
break;
}
}
if (hadSubstFailure)
return CheckGenericArgumentsResult::createSubstitutionFailure();
return CheckGenericArgumentsResult::createSuccess();
}
Requirement
RequirementRequest::evaluate(Evaluator &evaluator,
WhereClauseOwner owner,
unsigned index,
TypeResolutionStage stage) const {
auto &reqRepr = getRequirement();
// Figure out the type resolution.
TypeResolverContext context;
if (reqRepr.getKind() == RequirementReprKind::SameType) {
context = TypeResolverContext::SameTypeRequirement;
} else {
context = TypeResolverContext::GenericRequirement;
}
auto options = TypeResolutionOptions(context);
if (reqRepr.isExpansionPattern())
options |= TypeResolutionFlags::AllowPackReferences;
if (owner.dc->isInSpecializeExtensionContext())
options |= TypeResolutionFlags::AllowUsableFromInline;
std::optional<TypeResolution> resolution;
switch (stage) {
case TypeResolutionStage::Structural:
resolution = TypeResolution::forStructural(owner.dc, options,
/*unboundTyOpener*/ nullptr,
/*placeholderHandler*/ nullptr,
/*packElementOpener*/ nullptr);
break;
case TypeResolutionStage::Interface:
resolution = TypeResolution::forInterface(owner.dc, options,
/*unboundTyOpener*/ nullptr,
/*placeholderHandler*/ nullptr,
/*packElementOpener*/ nullptr);
break;
}
switch (reqRepr.getKind()) {
case RequirementReprKind::TypeConstraint: {
Type subject = resolution->resolveType(reqRepr.getSubjectRepr());
Type constraint = resolution->resolveType(reqRepr.getConstraintRepr());
return Requirement(constraint->getClassOrBoundGenericClass()
? RequirementKind::Superclass
: RequirementKind::Conformance,
subject, constraint);
}
case RequirementReprKind::SameType:
return Requirement(RequirementKind::SameType,
resolution->resolveType(reqRepr.getFirstTypeRepr()),
resolution->resolveType(reqRepr.getSecondTypeRepr()));
case RequirementReprKind::LayoutConstraint:
return Requirement(RequirementKind::Layout,
resolution->resolveType(reqRepr.getSubjectRepr()),
reqRepr.getLayoutConstraint());
}
llvm_unreachable("unhandled kind");
}
Type StructuralTypeRequest::evaluate(Evaluator &evaluator,
TypeAliasDecl *typeAlias) const {
TypeResolutionOptions options((typeAlias->getGenericParams()
? TypeResolverContext::GenericTypeAliasDecl
: TypeResolverContext::TypeAliasDecl));
auto parentDC = typeAlias->getDeclContext();
auto &ctx = parentDC->getASTContext();
auto underlyingTypeRepr = typeAlias->getUnderlyingTypeRepr();
// This can happen when code completion is attempted inside
// of typealias underlying type e.g. `typealias F = () -> Int#^TOK^#`
if (!underlyingTypeRepr) {
typeAlias->setInvalid();
return ErrorType::get(ctx);
}
auto result = TypeResolution::forStructural(typeAlias, options,
/*unboundTyOpener*/ nullptr,
/*placeholderHandler*/ nullptr,
/*packElementOpener*/ nullptr)
.resolveType(underlyingTypeRepr);
// Don't build a generic siganture for a protocol extension, because this
// request might be evaluated while building a protocol requirement signature.
if (parentDC->getSelfProtocolDecl())
return result;
auto genericSig = typeAlias->getGenericSignature();
SubstitutionMap subs;
if (genericSig)
subs = genericSig->getIdentitySubstitutionMap();
Type parent;
if (parentDC->isTypeContext())
parent = parentDC->getSelfInterfaceType();
return TypeAliasType::get(typeAlias, parent, subs, result);
}
|