1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
|
//===--- TypeCheckNameLookup.cpp - Type Checker Name Lookup ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements name lookup within the type checker, which can
// involve additional type-checking operations and the implicit
// declaration of members (such as constructors).
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "TypoCorrection.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/TopCollection.h"
#include <algorithm>
using namespace swift;
namespace {
/// Builder that helps construct a lookup result from the raw lookup
/// data.
class LookupResultBuilder {
LookupResult &Result;
DeclContext *DC;
NameLookupOptions Options;
/// The vector of found declarations.
SmallVector<ValueDecl *, 4> FoundDecls;
/// The vector of found declarations.
SmallVector<ValueDecl *, 4> FoundOuterDecls;
/// The set of known declarations.
llvm::SmallDenseMap<std::pair<ValueDecl *, DeclContext *>, bool, 4> Known;
public:
LookupResultBuilder(LookupResult &result, DeclContext *dc,
NameLookupOptions options)
: Result(result), DC(dc), Options(options) {
if (dc->getASTContext().isAccessControlDisabled())
Options |= NameLookupFlags::IgnoreAccessControl;
}
~LookupResultBuilder() {
// Remove any overridden declarations from the found-declarations set.
removeOverriddenDecls(FoundDecls);
removeOverriddenDecls(FoundOuterDecls);
// Remove any shadowed declarations from the found-declarations set.
removeShadowedDecls(FoundDecls, DC);
removeShadowedDecls(FoundOuterDecls, DC);
// Filter out those results that have been removed from the
// found-declarations set.
unsigned foundIdx = 0, foundSize = FoundDecls.size(),
foundOuterSize = FoundOuterDecls.size();
Result.filter([&](LookupResultEntry result, bool isOuter) -> bool {
unsigned idx = foundIdx;
unsigned limit = foundSize;
ArrayRef<ValueDecl *> decls = FoundDecls;
if (isOuter) {
idx = foundIdx - foundSize;
limit = foundOuterSize;
decls = FoundOuterDecls;
}
// If the current result matches the remaining found declaration,
// keep it and move to the next found declaration.
if (idx < limit && result.getValueDecl() == decls[idx]) {
++foundIdx;
return true;
}
// Otherwise, this result should be filtered out.
return false;
});
}
/// Add a new result.
///
/// \param found The declaration we found.
///
/// \param baseDC The declaration context through which we found the
/// declaration.
///
/// \param baseDecl The declaration that defines the base of the
/// call to `found`
///
/// \param foundInType The type through which we found the
/// declaration.
///
/// \param isOuter Whether this is an outer result (i.e. a result that isn't
/// from the innermost scope with results)
void add(ValueDecl *found, DeclContext *baseDC, ValueDecl *baseDecl,
Type foundInType, bool isOuter) {
DeclContext *foundDC = found->getDeclContext();
auto addResult = [&](ValueDecl *result) {
if (Known.insert({{result, baseDC}, false}).second) {
// HERE, need to look up base decl
Result.add(LookupResultEntry(baseDC, baseDecl, result), isOuter);
if (isOuter)
FoundOuterDecls.push_back(result);
else
FoundDecls.push_back(result);
}
};
// If this isn't a protocol member to be given special
// treatment, just add the result.
if (!isa<ProtocolDecl>(foundDC) ||
isa<GenericTypeParamDecl>(found) ||
isa<TypeAliasDecl>(found) ||
(isa<FuncDecl>(found) && cast<FuncDecl>(found)->isOperator())) {
addResult(found);
return;
}
assert(isa<ProtocolDecl>(foundDC));
// If we found something within the protocol itself, and our
// search began somewhere that is not in a protocol or extension
// thereof, remap this declaration to the witness.
auto conformingType = foundInType;
// When performing a lookup on a subclass existential, we might
// find a member of the class that witnesses a requirement on a
// protocol that the class conforms to.
//
// Since subclass existentials don't normally conform to protocols,
// pull out the superclass instead, and use that below.
if (foundInType->isExistentialType()) {
auto layout = foundInType->getExistentialLayout();
if (auto superclass = layout.getSuperclass()) {
conformingType = superclass;
} else {
// Non-subclass existential: don't need to look for further
// conformance or witness.
addResult(found);
return;
}
}
// Dig out the protocol conformance.
auto *foundProto = cast<ProtocolDecl>(foundDC);
auto conformance = DC->getParentModule()->lookupConformance(
conformingType, foundProto);
if (conformance.isInvalid()) {
if (foundInType->isExistentialType()) {
// If there's no conformance, we have an existential
// and we found a member from one of the protocols, and
// not a class constraint if any.
addResult(found);
}
return;
}
if (conformance.isAbstract()) {
assert(foundInType->is<ArchetypeType>() ||
foundInType->isExistentialType());
addResult(found);
return;
}
// Dig out the witness.
ValueDecl *witness = nullptr;
auto concrete = conformance.getConcrete();
if (auto assocType = dyn_cast<AssociatedTypeDecl>(found)) {
witness = concrete->getTypeWitnessAndDecl(assocType).getWitnessDecl();
} else if (found->isProtocolRequirement()) {
witness = concrete->getWitnessDecl(found);
// It is possible that a requirement is visible to us, but
// not the witness. In this case, just return the requirement;
// we will perform virtual dispatch on the concrete type.
if (witness &&
!Options.contains(NameLookupFlags::IgnoreAccessControl) &&
!witness->isAccessibleFrom(DC)) {
addResult(found);
return;
}
} else if (isa<NominalTypeDecl>(found)) {
// Declaring nested types inside other types is currently
// not supported by lookup would still return such members
// so we have to account for that here as well.
addResult(found);
return;
}
// FIXME: the "isa<ProtocolDecl>()" check will be wrong for
// default implementations in protocols.
//
// If we have an imported conformance or the witness could
// not be deserialized, getWitnessDecl() will just return
// the requirement, so just drop the lookup result here.
if (witness && !isa<ProtocolDecl>(witness->getDeclContext()))
addResult(witness);
}
};
} // end anonymous namespace
static UnqualifiedLookupOptions
convertToUnqualifiedLookupOptions(NameLookupOptions options) {
UnqualifiedLookupOptions newOptions = UnqualifiedLookupFlags::AllowProtocolMembers;
if (options.contains(NameLookupFlags::IgnoreAccessControl))
newOptions |= UnqualifiedLookupFlags::IgnoreAccessControl;
if (options.contains(NameLookupFlags::IncludeOuterResults))
newOptions |= UnqualifiedLookupFlags::IncludeOuterResults;
if (options.contains(NameLookupFlags::IncludeUsableFromInline))
newOptions |= UnqualifiedLookupFlags::IncludeUsableFromInline;
if (options.contains(NameLookupFlags::ExcludeMacroExpansions))
newOptions |= UnqualifiedLookupFlags::ExcludeMacroExpansions;
return newOptions;
}
LookupResult TypeChecker::lookupUnqualified(DeclContext *dc, DeclNameRef name,
SourceLoc loc,
NameLookupOptions options) {
auto &ctx = dc->getASTContext();
// HACK: Qualified lookup cannot be allowed to synthesize CodingKeys because
// it would lead to a number of egregious cycles through
// QualifiedLookupRequest when we resolve the protocol conformance. Codable's
// magic has pushed its way so deeply into the compiler, we have to
// pessimistically force every nominal context above this one to synthesize
// it in the event the user needs it from e.g. a non-primary input.
// We can undo this if Codable's semantic content is divorced from its
// syntactic content - so we synthesize just enough to allow lookups to
// succeed, but don't force protocol conformances while we're doing it.
if (name.getBaseIdentifier() == ctx.Id_CodingKeys) {
for (auto typeCtx = dc->getInnermostTypeContext(); typeCtx != nullptr;
typeCtx = typeCtx->getParent()->getInnermostTypeContext()) {
if (auto *nominal = typeCtx->getSelfNominalTypeDecl()) {
nominal->synthesizeSemanticMembersIfNeeded(name.getFullName());
}
}
}
auto ulOptions = convertToUnqualifiedLookupOptions(options);
auto descriptor = UnqualifiedLookupDescriptor(name, dc, loc, ulOptions);
auto lookup = evaluateOrDefault(ctx.evaluator,
UnqualifiedLookupRequest{descriptor}, {});
LookupResult result;
LookupResultBuilder builder(result, dc, options);
for (auto idx : indices(lookup.allResults())) {
const auto &found = lookup[idx];
// Determine which type we looked through to find this result.
Type foundInType;
if (auto *typeDC = found.getDeclContext()) {
if (!typeDC->isTypeContext()) {
// If we don't have a type context this is an implicit 'self' reference.
if (auto *CE = dyn_cast<ClosureExpr>(typeDC)) {
typeDC = typeDC->getInnermostTypeContext();
} else {
// Otherwise, we must have the method context.
typeDC = typeDC->getParent();
}
assert(typeDC->isTypeContext());
}
foundInType = dc->mapTypeIntoContext(
typeDC->getDeclaredInterfaceType());
assert(foundInType && "bogus base declaration?");
}
builder.add(found.getValueDecl(), found.getDeclContext(),
found.getBaseDecl(), foundInType,
/*isOuter=*/idx >= lookup.getIndexOfFirstOuterResult());
}
return result;
}
LookupResult
TypeChecker::lookupUnqualifiedType(DeclContext *dc, DeclNameRef name,
SourceLoc loc,
NameLookupOptions options) {
auto &ctx = dc->getASTContext();
auto ulOptions = convertToUnqualifiedLookupOptions(options) |
UnqualifiedLookupFlags::TypeLookup;
{
// Try lookup without ProtocolMembers first.
auto desc = UnqualifiedLookupDescriptor(
name, dc, loc,
ulOptions - UnqualifiedLookupFlags::AllowProtocolMembers);
auto lookup =
evaluateOrDefault(ctx.evaluator, UnqualifiedLookupRequest{desc}, {});
if (!lookup.allResults().empty())
return lookup;
}
{
// Try again, this time with protocol members.
//
// FIXME: Fix the problem where if NominalTypeDecl::getAllProtocols()
// is called too early, we start resolving extensions -- even those
// which do provide not conformances.
auto desc = UnqualifiedLookupDescriptor(
name, dc, loc,
ulOptions | UnqualifiedLookupFlags::AllowProtocolMembers);
return evaluateOrDefault(ctx.evaluator, UnqualifiedLookupRequest{desc}, {});
}
}
LookupResult TypeChecker::lookupMember(DeclContext *dc,
Type type, DeclNameRef name,
SourceLoc loc,
NameLookupOptions options) {
assert(type->mayHaveMembers());
LookupResult result;
NLOptions subOptions = (NL_QualifiedDefault | NL_ProtocolMembers);
if (options.contains(NameLookupFlags::IgnoreAccessControl))
subOptions |= NL_IgnoreAccessControl;
// We handle our own overriding/shadowing filtering.
subOptions &= ~NL_RemoveOverridden;
subOptions &= ~NL_RemoveNonVisible;
// Make sure we've resolved implicit members, if we need them.
namelookup::installSemanticMembersIfNeeded(type, name);
LookupResultBuilder builder(result, dc, options);
SmallVector<ValueDecl *, 4> lookupResults;
dc->lookupQualified(type, name, loc, subOptions, lookupResults);
for (auto found : lookupResults)
builder.add(found, nullptr, /*baseDecl=*/nullptr, type, /*isOuter=*/false);
return result;
}
static bool doesTypeAliasFullyConstrainAllOuterGenericParams(
TypeAliasDecl *aliasDecl) {
auto parentSig = aliasDecl->getDeclContext()->getGenericSignatureOfContext();
auto genericSig = aliasDecl->getGenericSignature();
if (!parentSig || !genericSig)
return false;
for (auto *paramType : parentSig.getGenericParams()) {
if (!genericSig->isConcreteType(paramType))
return false;
}
return true;
}
TypeChecker::UnsupportedMemberTypeAccessKind
TypeChecker::isUnsupportedMemberTypeAccess(Type type, TypeDecl *typeDecl,
bool hasUnboundOpener,
bool isExtensionBinding) {
// We don't allow lookups of a non-generic typealias of an unbound
// generic type, because we have no way to model such a type in the
// AST.
//
// For generic typealiases, the typealias itself has an unbound
// generic form whose parent type can be another unbound generic
// type.
if (type->hasUnboundGenericType()) {
// Generic typealiases can be accessed with an unbound generic
// base, since we represent the member type as an unbound generic
// type.
//
// Non-generic type aliases can only be accessed if the
// underlying type is not dependent.
if (auto *aliasDecl = dyn_cast<TypeAliasDecl>(typeDecl)) {
if (!aliasDecl->isGeneric() &&
aliasDecl->getUnderlyingType()->hasTypeParameter() &&
!doesTypeAliasFullyConstrainAllOuterGenericParams(aliasDecl)) {
return UnsupportedMemberTypeAccessKind::TypeAliasOfUnboundGeneric;
}
}
if (isa<AssociatedTypeDecl>(typeDecl))
return UnsupportedMemberTypeAccessKind::AssociatedTypeOfUnboundGeneric;
if (isa<NominalTypeDecl>(typeDecl))
if (!hasUnboundOpener && !isExtensionBinding)
return UnsupportedMemberTypeAccessKind::NominalTypeOfUnboundGeneric;
}
if (type->isExistentialType() &&
typeDecl->getDeclContext()->getSelfProtocolDecl()) {
// Allow typealias member access on existential types if the underlying
// type does not have any type parameters.
if (auto *aliasDecl = dyn_cast<TypeAliasDecl>(typeDecl)) {
if (aliasDecl->getUnderlyingType()->getCanonicalType()
->hasTypeParameter())
return UnsupportedMemberTypeAccessKind::TypeAliasOfExistential;
} else if (isa<AssociatedTypeDecl>(typeDecl)) {
return UnsupportedMemberTypeAccessKind::AssociatedTypeOfExistential;
}
}
return UnsupportedMemberTypeAccessKind::None;
}
LookupTypeResult TypeChecker::lookupMemberType(DeclContext *dc,
Type type, DeclNameRef name,
SourceLoc loc,
NameLookupOptions options) {
LookupTypeResult result;
// Look for members with the given name.
SmallVector<ValueDecl *, 4> decls;
NLOptions subOptions = (NL_QualifiedDefault | NL_OnlyTypes | NL_ProtocolMembers);
if (options.contains(NameLookupFlags::IgnoreAccessControl))
subOptions |= NL_IgnoreAccessControl;
if (options.contains(NameLookupFlags::IncludeUsableFromInline))
subOptions |= NL_IncludeUsableFromInline;
// Make sure we've resolved implicit members, if we need them.
namelookup::installSemanticMembersIfNeeded(type, name);
if (!dc->lookupQualified(type, name, loc, subOptions, decls))
return result;
// Look through the declarations, keeping only the unique type declarations.
llvm::SmallPtrSet<CanType, 4> types;
SmallVector<AssociatedTypeDecl *, 4> inferredAssociatedTypes;
for (auto decl : decls) {
auto *typeDecl = cast<TypeDecl>(decl);
// HACK: Lookups rooted at a typealias are trying to look for its underlying
// type so they shouldn't also find that same typealias.
if (decl == dyn_cast<TypeAliasDecl>(dc)) {
continue;
}
if (isUnsupportedMemberTypeAccess(type, typeDecl, true)
!= TypeChecker::UnsupportedMemberTypeAccessKind::None) {
auto memberType = typeDecl->getDeclaredInterfaceType();
// Add the type to the result set, so that we can diagnose the
// reference instead of just saying the member does not exist.
if (types.insert(memberType->getCanonicalType()).second)
result.addResult({typeDecl, memberType, nullptr});
continue;
}
// If we're looking up an associated type of a concrete type,
// record it later for conformance checking; we might find a more
// direct typealias with the same name later.
if (typeDecl->getDeclContext()->getSelfProtocolDecl()) {
if (auto assocType = dyn_cast<AssociatedTypeDecl>(typeDecl)) {
if (!type->is<ArchetypeType>() &&
!type->isTypeParameter()) {
inferredAssociatedTypes.push_back(assocType);
continue;
}
}
// Nominal type members of protocols cannot be accessed with an
// archetype base, because we have no way to recover the correct
// substitutions.
if (type->is<ArchetypeType>() &&
isa<NominalTypeDecl>(typeDecl)) {
continue;
}
}
// Substitute the base into the member's type.
auto memberType = substMemberTypeWithBase(dc->getParentModule(),
typeDecl, type);
// If we haven't seen this type result yet, add it to the result set.
if (types.insert(memberType->getCanonicalType()).second)
result.addResult({typeDecl, memberType, nullptr});
}
if (!result) {
// We couldn't find any normal declarations. Let's try inferring
// associated types.
for (AssociatedTypeDecl *assocType : inferredAssociatedTypes) {
// If the type does not actually conform to the protocol, skip this
// member entirely.
auto *protocol = cast<ProtocolDecl>(assocType->getDeclContext());
auto conformance = dc->getParentModule()->lookupConformance(type, protocol);
if (!conformance) {
// FIXME: This is an error path. Should we try to recover?
continue;
}
// Use the type witness.
auto *concrete = conformance.getConcrete();
auto *normal = concrete->getRootNormalConformance();
// This is the only case where NormalProtocolConformance::
// getTypeWitnessAndDecl() returns a null type.
if (dc->getASTContext().evaluator.hasActiveRequest(
ResolveTypeWitnessesRequest{normal})) {
continue;
}
auto *typeDecl =
concrete->getTypeWitnessAndDecl(assocType).getWitnessDecl();
// Circularity.
if (!typeDecl)
continue;
auto memberType =
substMemberTypeWithBase(dc->getParentModule(), typeDecl, type);
if (types.insert(memberType->getCanonicalType()).second)
result.addResult({typeDecl, memberType, assocType});
}
}
return result;
}
unsigned TypeChecker::getCallEditDistance(DeclNameRef writtenName,
DeclName correctedName,
unsigned maxEditDistance) {
// TODO: consider arguments.
// TODO: maybe ignore certain kinds of missing / present labels for the
// first argument label?
// TODO: word-based rather than character-based?
if (writtenName.getBaseName().getKind() !=
correctedName.getBaseName().getKind()) {
return UnreasonableCallEditDistance;
}
if (writtenName.getBaseName().getKind() != DeclBaseName::Kind::Normal) {
return 0;
}
StringRef writtenBase = writtenName.getBaseName().userFacingName();
StringRef correctedBase = correctedName.getBaseName().userFacingName();
// Don't typo-correct to a name with a leading underscore unless the typed
// name also begins with an underscore.
if (correctedBase.starts_with("_") && !writtenBase.starts_with("_")) {
return UnreasonableCallEditDistance;
}
unsigned distance = writtenBase.edit_distance(correctedBase, maxEditDistance);
// Bound the distance to UnreasonableCallEditDistance.
if (distance >= maxEditDistance ||
distance > (correctedBase.size() + 2) / 3) {
return UnreasonableCallEditDistance;
}
return distance;
}
static bool isPlausibleTypo(DeclRefKind refKind, DeclNameRef typedName,
ValueDecl *candidate) {
// Ignore anonymous declarations.
if (!candidate->hasName())
return false;
// An operator / identifier mismatch is never a plausible typo.
auto fn = dyn_cast<FuncDecl>(candidate);
if (typedName.isOperator() != (fn && fn->isOperator()))
return false;
if (!typedName.isOperator())
return true;
// TODO: honor ref kind? This is trickier than it sounds because we
// may not have processed attributes and types on the candidate yet.
return true;
}
void TypeChecker::performTypoCorrection(DeclContext *DC, DeclRefKind refKind,
Type baseTypeOrNull,
NameLookupOptions lookupOptions,
TypoCorrectionResults &corrections,
GenericSignature genericSig,
unsigned maxResults) {
// Even when typo correction is disabled, we want to make sure people are
// calling into it the right way.
assert(!baseTypeOrNull || !baseTypeOrNull->hasTypeParameter() || genericSig);
// Disable typo-correction if we won't show the diagnostic anyway or if
// we've hit our typo correction limit.
auto &Ctx = DC->getASTContext();
if (!Ctx.shouldPerformTypoCorrection() ||
(Ctx.Diags.hasFatalErrorOccurred() &&
!Ctx.Diags.getShowDiagnosticsAfterFatalError()))
return;
// Fill in a collection of the most reasonable entries.
TopCollection<unsigned, ValueDecl *> entries(maxResults);
auto consumer = makeDeclConsumer([&](ValueDecl *decl,
DeclVisibilityKind reason) {
// Never match an operator with an identifier or vice-versa; this is
// not a plausible typo.
if (!isPlausibleTypo(refKind, corrections.WrittenName, decl))
return;
const auto candidateName = decl->getName();
// Don't waste time computing edit distances that are more than
// the worst in our collection.
unsigned maxDistance =
entries.getMinUninterestingScore(UnreasonableCallEditDistance);
unsigned distance =
getCallEditDistance(corrections.WrittenName, candidateName,
maxDistance);
// Ignore values that are further than a reasonable distance.
if (distance >= UnreasonableCallEditDistance)
return;
entries.insert(distance, std::move(decl));
});
if (baseTypeOrNull) {
lookupVisibleMemberDecls(consumer, baseTypeOrNull, SourceLoc(), DC,
/*includeInstanceMembers*/true,
/*includeDerivedRequirements*/false,
/*includeProtocolExtensionMembers*/true,
genericSig);
} else {
lookupVisibleDecls(consumer, corrections.Loc.getBaseNameLoc(), DC,
/*top level*/ true);
}
// Impose a maximum distance from the best score.
entries.filterMaxScoreRange(MaxCallEditDistanceFromBestCandidate);
for (auto &entry : entries)
corrections.Candidates.push_back(entry.Value);
}
void
TypoCorrectionResults::addAllCandidatesToLookup(LookupResult &lookup) const {
for (auto candidate : Candidates)
lookup.add(LookupResultEntry(candidate), /*isOuter=*/false);
}
static Decl *findExplicitParentForImplicitDecl(ValueDecl *decl) {
if (!decl->getLoc().isValid() && decl->getDeclContext()->isTypeContext()) {
Decl *parentDecl = dyn_cast<ExtensionDecl>(decl->getDeclContext());
if (!parentDecl) parentDecl = cast<NominalTypeDecl>(decl->getDeclContext());
if (parentDecl->getLoc().isValid())
return parentDecl;
}
return nullptr;
}
static InFlightDiagnostic
noteTypoCorrection(DeclNameLoc loc, ValueDecl *decl,
bool wasClaimed) {
if (auto var = dyn_cast<VarDecl>(decl)) {
// Suggest 'self' at the use point instead of pointing at the start
// of the function.
if (var->isSelfParameter()) {
if (wasClaimed) {
// We don't need an extra note for this case because the programmer
// knows what 'self' refers to.
return InFlightDiagnostic();
}
auto &Diags = decl->getASTContext().Diags;
return Diags.diagnose(loc.getBaseNameLoc(), diag::note_typo_candidate,
var->getName().str());
}
}
if (Decl *parentDecl = findExplicitParentForImplicitDecl(decl)) {
return parentDecl->diagnose(
wasClaimed ? diag::implicit_member_declared_here
: diag::note_typo_candidate_implicit_member,
decl);
}
if (wasClaimed) {
return decl->diagnose(diag::decl_declared_here_base, decl);
} else {
return decl->diagnose(diag::note_typo_candidate,
decl->getBaseName().userFacingName());
}
}
void TypoCorrectionResults::noteAllCandidates() const {
for (auto candidate : Candidates) {
auto &&diagnostic =
noteTypoCorrection(Loc, candidate, ClaimedCorrection);
// Don't add fix-its if we claimed the correction for the primary
// diagnostic.
if (!ClaimedCorrection) {
SyntacticTypoCorrection correction(WrittenName, Loc,
candidate->getName());
correction.addFixits(diagnostic);
}
}
}
void SyntacticTypoCorrection::addFixits(InFlightDiagnostic &diagnostic) const {
if (WrittenName.getBaseName() != CorrectedName.getBaseName())
diagnostic.fixItReplace(Loc.getBaseNameLoc(),
CorrectedName.getBaseName().userFacingName());
// TODO: add fix-its for typo'ed argument labels. This is trickier
// because of the reordering rules.
}
std::optional<SyntacticTypoCorrection>
TypoCorrectionResults::claimUniqueCorrection() {
// Look for a unique base name. We ignore the rest of the name for now
// because we don't actually typo-correct any of that.
DeclBaseName uniqueCorrectedName;
for (auto candidate : Candidates) {
auto candidateName = candidate->getBaseName();
// If this is the first name, record it.
if (uniqueCorrectedName.empty())
uniqueCorrectedName = candidateName;
// If this is a different name from the last candidate, we don't have
// a unique correction.
else if (uniqueCorrectedName != candidateName)
return std::nullopt;
}
// If we didn't find any candidates, we're done.
if (uniqueCorrectedName.empty())
return std::nullopt;
// If the corrected name doesn't differ from the written name in its base
// name, it's not simple enough for this (for now).
if (WrittenName.getBaseName() == uniqueCorrectedName)
return std::nullopt;
// Flag that we've claimed the correction.
ClaimedCorrection = true;
return SyntacticTypoCorrection(WrittenName, Loc, uniqueCorrectedName);
}
|