1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
|
//===--- TypeCheckProtocol.cpp - Protocol Checking ------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for protocols, in particular, checking
// whether a given type conforms to a given protocol.
//===----------------------------------------------------------------------===//
#include "TypeCheckProtocol.h"
#include "DerivedConformances.h"
#include "MiscDiagnostics.h"
#include "TypeAccessScopeChecker.h"
#include "TypeCheckAccess.h"
#include "TypeCheckAvailability.h"
#include "TypeCheckBitwise.h"
#include "TypeCheckConcurrency.h"
#include "TypeCheckDistributed.h"
#include "TypeCheckEffects.h"
#include "TypeCheckInvertible.h"
#include "TypeCheckObjC.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/AccessScope.h"
#include "swift/AST/ClangModuleLoader.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DistributedDecl.h"
#include "swift/AST/Effects.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PotentialMacroExpansions.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/RequirementMatch.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeDeclFinder.h"
#include "swift/AST/TypeMatcher.h"
#include "swift/AST/TypeWalker.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/Statistic.h"
#include "swift/Basic/StringExtras.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/Sema/IDETypeChecking.h"
#include "swift/Serialization/SerializedModuleLoader.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SaveAndRestore.h"
#define DEBUG_TYPE "Protocol conformance checking"
#include "llvm/Support/Debug.h"
using namespace swift;
namespace {
/// Whether any of the given optional adjustments is an error (vs. a
/// warning).
bool hasAnyError(ArrayRef<OptionalAdjustment> adjustments) {
for (const auto &adjustment : adjustments)
if (adjustment.isError())
return true;
return false;
}
}
namespace {
/// The kind of variance (none, covariance, contravariance) to apply
/// when comparing types from a witness to types in the requirement
/// we're matching it against.
enum class VarianceKind {
None,
Covariant,
Contravariant
};
} // end anonymous namespace
static std::tuple<Type, Type, OptionalAdjustmentKind>
getTypesToCompare(ValueDecl *reqt, Type reqtType, bool reqtTypeIsIUO,
Type witnessType, bool witnessTypeIsIUO,
VarianceKind variance) {
// If the witness type is noescape but the requirement type is not,
// adjust the witness type to be escaping; likewise for sendability. This
// permits a limited form of covariance.
auto applyAdjustment = [&](TypeAdjustment adjustment) {
// Sometimes the witness has a function type, but the requirement has
// something else (a dependent type we need to infer, in the most relevant
// case). In that situation, should we behave as though the requirement type
// *did* need the adjustment, or as though it *did not*?
//
// For noescape, we want to behave as though it was necessary because any
// function type not in a parameter is, more or less, implicitly @escaping.
// For Sendable, we want to behave as though it was not necessary because
// function types that aren't in a parameter can be Sendable or not.
// FIXME: Should we check for a Sendable bound on the requirement type?
bool inRequirement = (adjustment != TypeAdjustment::NoescapeToEscaping);
Type adjustedReqtType =
adjustInferredAssociatedType(adjustment, reqtType, inRequirement);
bool inWitness = false;
Type adjustedWitnessType =
adjustInferredAssociatedType(adjustment, witnessType, inWitness);
switch (variance) {
case VarianceKind::None:
break;
case VarianceKind::Covariant:
if (inRequirement && !inWitness)
reqtType = adjustedReqtType;
break;
case VarianceKind::Contravariant:
if (inWitness && !inRequirement)
witnessType = adjustedWitnessType;
break;
}
};
applyAdjustment(TypeAdjustment::NoescapeToEscaping);
applyAdjustment(TypeAdjustment::NonsendableToSendable);
// For @objc protocols, deal with differences in the optionality.
// FIXME: It probably makes sense to extend this to non-@objc
// protocols as well, but this requires more testing.
OptionalAdjustmentKind optAdjustment = OptionalAdjustmentKind::None;
if (!reqt->isObjC())
return std::make_tuple(reqtType, witnessType, optAdjustment);
bool reqtIsOptional = false;
if (Type reqtValueType = reqtType->getOptionalObjectType()) {
reqtIsOptional = true;
reqtType = reqtValueType;
}
bool witnessIsOptional = false;
if (Type witnessValueType = witnessType->getOptionalObjectType()) {
witnessIsOptional = true;
witnessType = witnessValueType;
}
// When the requirement is an IUO, all is permitted, because we
// assume that the user knows more about the signature than we
// have information in the protocol.
if (reqtTypeIsIUO)
return std::make_tuple(reqtType, witnessType, optAdjustment);
if (reqtIsOptional) {
if (witnessIsOptional) {
if (witnessTypeIsIUO)
optAdjustment = OptionalAdjustmentKind::IUOToOptional;
} else {
switch (variance) {
case VarianceKind::None:
case VarianceKind::Contravariant:
optAdjustment = OptionalAdjustmentKind::ConsumesUnhandledNil;
break;
case VarianceKind::Covariant:
optAdjustment = OptionalAdjustmentKind::WillNeverProduceNil;
break;
}
}
} else if (witnessIsOptional) {
if (witnessTypeIsIUO) {
optAdjustment = OptionalAdjustmentKind::RemoveIUO;
} else {
switch (variance) {
case VarianceKind::None:
case VarianceKind::Covariant:
optAdjustment = OptionalAdjustmentKind::ProducesUnhandledNil;
break;
case VarianceKind::Contravariant:
optAdjustment = OptionalAdjustmentKind::WillNeverConsumeNil;
break;
}
}
}
return std::make_tuple(reqtType, witnessType, optAdjustment);
}
/// Check that the Objective-C method(s) provided by the witness have
/// the same selectors as those required by the requirement.
static bool checkObjCWitnessSelector(ValueDecl *req, ValueDecl *witness) {
// Simple case: for methods and initializers, check that the selectors match.
if (auto reqFunc = dyn_cast<AbstractFunctionDecl>(req)) {
auto witnessFunc = cast<AbstractFunctionDecl>(witness);
if (reqFunc->getObjCSelector() == witnessFunc->getObjCSelector())
return false;
auto diagInfo = getObjCMethodDiagInfo(witnessFunc);
auto diag = witness->diagnose(
diag::objc_witness_selector_mismatch, diagInfo.first, diagInfo.second,
witnessFunc->getObjCSelector(), reqFunc->getObjCSelector());
fixDeclarationObjCName(diag, witnessFunc,
witnessFunc->getObjCSelector(),
reqFunc->getObjCSelector());
return true;
}
// Otherwise, we have an abstract storage declaration.
auto reqStorage = cast<AbstractStorageDecl>(req);
auto witnessStorage = cast<AbstractStorageDecl>(witness);
// FIXME: Check property names!
// Check the getter.
if (auto reqGetter = reqStorage->getParsedAccessor(AccessorKind::Get)) {
auto *witnessGetter =
witnessStorage->getSynthesizedAccessor(AccessorKind::Get);
if (checkObjCWitnessSelector(reqGetter, witnessGetter))
return true;
}
// Check the setter.
if (auto reqSetter = reqStorage->getParsedAccessor(AccessorKind::Set)) {
auto *witnessSetter =
witnessStorage->getSynthesizedAccessor(AccessorKind::Set);
if (checkObjCWitnessSelector(reqSetter, witnessSetter))
return true;
}
return false;
}
// Find a standin declaration to place the diagnostic at for the
// given accessor kind.
static ValueDecl *getStandinForAccessor(AbstractStorageDecl *witness,
AccessorKind requirementKind) {
// If the storage actually explicitly provides that accessor, great.
if (auto accessor = witness->getParsedAccessor(requirementKind))
return accessor;
// If it didn't, check to see if it provides something else that corresponds
// to the requirement.
switch (requirementKind) {
case AccessorKind::Get:
case AccessorKind::DistributedGet:
if (auto read = witness->getParsedAccessor(AccessorKind::Read))
return read;
if (auto addressor = witness->getParsedAccessor(AccessorKind::Address))
return addressor;
break;
case AccessorKind::Read:
if (auto getter = witness->getParsedAccessor(AccessorKind::Get))
return getter;
if (auto addressor = witness->getParsedAccessor(AccessorKind::Address))
return addressor;
break;
case AccessorKind::Modify:
if (auto setter = witness->getParsedAccessor(AccessorKind::Set))
return setter;
if (auto addressor = witness->getParsedAccessor(AccessorKind::MutableAddress))
return addressor;
break;
case AccessorKind::Set:
if (auto modify = witness->getParsedAccessor(AccessorKind::Modify))
return modify;
if (auto addressor = witness->getParsedAccessor(AccessorKind::MutableAddress))
return addressor;
break;
#define OPAQUE_ACCESSOR(ID, KEYWORD)
#define ACCESSOR(ID) \
case AccessorKind::ID:
#include "swift/AST/AccessorKinds.def"
llvm_unreachable("unexpected accessor requirement");
}
// Otherwise, just diagnose starting at the storage declaration itself.
return witness;
}
/// Given a witness, a requirement, and an existing `RequirementMatch` result,
/// check if the requirement's `@differentiable` attributes are met by the
/// witness.
/// - If `result` is not viable, do nothing.
/// - If requirement's `@differentiable` attributes are met, update `result`
/// with the matched derivative generic signature.
/// - Otherwise, returns a "missing `@differentiable` attribute"
/// `RequirementMatch`.
static void
matchWitnessDifferentiableAttr(DeclContext *dc, ValueDecl *req,
ValueDecl *witness, RequirementMatch &result) {
if (!result.isViable())
return;
// Get the requirement and witness attributes.
const auto &reqAttrs = req->getAttrs();
const auto &witnessAttrs = witness->getAttrs();
// For all `@differentiable` attributes of the protocol requirement, check
// that the witness has a derivative configuration with exactly the same
// parameter indices, or one with "superset" parameter indices. If there
// exists a witness derivative configuration with "superset" parameter
// indices, create an implicit `@differentiable` attribute for the witness
// with the exact parameter indices from the requirement `@differentiable`
// attribute.
ASTContext &ctx = witness->getASTContext();
auto *witnessAFD = dyn_cast<AbstractFunctionDecl>(witness);
if (auto *witnessASD = dyn_cast<AbstractStorageDecl>(witness))
witnessAFD = witnessASD->getOpaqueAccessor(AccessorKind::Get);
// NOTE: Validate `@differentiable` attributes by calling
// `getParameterIndices`. This is important for type-checking
// `@differentiable` attributes in non-primary files to skip invalid
// attributes and to resolve derivative configurations, used below.
for (auto *witnessDiffAttr :
witnessAttrs.getAttributes<DifferentiableAttr>()) {
(void)witnessDiffAttr->getParameterIndices();
}
for (auto *reqDiffAttr : reqAttrs.getAttributes<DifferentiableAttr>()) {
(void)reqDiffAttr->getParameterIndices();
}
for (auto *reqDiffAttr : reqAttrs.getAttributes<DifferentiableAttr>()) {
bool foundExactConfig = false;
std::optional<AutoDiffConfig> supersetConfig = std::nullopt;
for (auto witnessConfig :
witnessAFD->getDerivativeFunctionConfigurations()) {
// All the witness's derivative generic requirements must be satisfied
// by the requirement's derivative generic requirements OR by the
// conditional conformance requirements.
if (witnessConfig.derivativeGenericSignature) {
bool genericRequirementsSatisfied = true;
auto reqDiffGenSig = reqDiffAttr->getDerivativeGenericSignature();
auto conformanceGenSig = dc->getGenericSignatureOfContext();
for (const auto &req :
witnessConfig.derivativeGenericSignature.getRequirements()) {
auto substReq = req.subst(result.WitnessSubstitutions);
bool reqDiffGenSigSatisfies =
reqDiffGenSig && !substReq.hasError() &&
reqDiffGenSig->isRequirementSatisfied(substReq);
bool conformanceGenSigSatisfies =
conformanceGenSig &&
conformanceGenSig->isRequirementSatisfied(req);
if (!reqDiffGenSigSatisfies && !conformanceGenSigSatisfies) {
genericRequirementsSatisfied = false;
break;
}
}
if (!genericRequirementsSatisfied)
continue;
}
if (witnessConfig.parameterIndices ==
reqDiffAttr->getParameterIndices()) {
foundExactConfig = true;
// Store the matched witness derivative generic signature.
result.DerivativeGenSig = witnessConfig.derivativeGenericSignature;
break;
}
if (witnessConfig.parameterIndices->isSupersetOf(
reqDiffAttr->getParameterIndices()))
supersetConfig = witnessConfig;
}
// If no exact witness derivative configuration was found, check conditions
// for creating an implicit witness `@differentiable` attribute with the
// exact derivative configuration.
if (!foundExactConfig) {
auto witnessInDifferentFile =
dc->getParentSourceFile() !=
witness->getDeclContext()->getParentSourceFile();
auto witnessInDifferentTypeContext =
dc->getInnermostTypeContext() !=
witness->getDeclContext()->getInnermostTypeContext();
// Produce an error instead of creating an implicit `@differentiable`
// attribute if any of the following conditions are met:
// - The witness is in a different file than the conformance
// declaration.
// - The witness is in a different type context (i.e. extension) than
// the conformance declaration, and there is no existing
// `@differentiable` attribute that covers the required differentiation
// parameters.
if (witnessInDifferentFile ||
(witnessInDifferentTypeContext && !supersetConfig)) {
// FIXME(TF-1014): `@differentiable` attribute diagnostic does not
// appear if associated type inference is involved.
if (auto *vdWitness = dyn_cast<VarDecl>(witness)) {
result = RequirementMatch(
getStandinForAccessor(vdWitness, AccessorKind::Get),
MatchKind::MissingDifferentiableAttr, reqDiffAttr);
} else {
result = RequirementMatch(
witness, MatchKind::MissingDifferentiableAttr, reqDiffAttr);
}
}
// Otherwise, the witness must:
// - Have a "superset" derivative configuration.
// - Have less than public visibility.
// - `@differentiable` attributes are really only significant for
// public declarations: it improves usability to not require
// explicit `@differentiable` attributes for less-visible
// declarations.
//
// If these conditions are met, an implicit `@differentiable` attribute
// with the exact derivative configuration can be created.
bool success = false;
bool createImplicitWitnessAttribute =
supersetConfig || witness->getFormalAccess() < AccessLevel::Public;
if (createImplicitWitnessAttribute) {
auto derivativeGenSig = witnessAFD->getGenericSignature();
if (supersetConfig)
derivativeGenSig = supersetConfig->derivativeGenericSignature;
// Use source location of the witness declaration as the source location
// of the implicit `@differentiable` attribute.
auto *newAttr = DifferentiableAttr::create(
witnessAFD, /*implicit*/ true, witness->getLoc(), witness->getLoc(),
reqDiffAttr->getDifferentiabilityKind(),
reqDiffAttr->getParameterIndices(),
derivativeGenSig);
// If the implicit attribute is inherited from a protocol requirement's
// attribute, store the protocol requirement attribute's location for
// use in diagnostics.
if (witness->getFormalAccess() < AccessLevel::Public) {
newAttr->getImplicitlyInheritedDifferentiableAttrLocation(
reqDiffAttr->getLocation());
}
auto insertion = ctx.DifferentiableAttrs.try_emplace(
{witnessAFD, newAttr->getParameterIndices()}, newAttr);
// Valid `@differentiable` attributes are uniqued by original function
// and parameter indices. Reject duplicate attributes.
if (!insertion.second) {
newAttr->setInvalid();
} else {
witness->getAttrs().add(newAttr);
success = true;
// Register derivative function configuration.
auto *resultIndices =
autodiff::getFunctionSemanticResultIndices(witnessAFD,
newAttr->getParameterIndices());
witnessAFD->addDerivativeFunctionConfiguration(
{newAttr->getParameterIndices(), resultIndices,
newAttr->getDerivativeGenericSignature()});
// Store the witness derivative generic signature.
result.DerivativeGenSig = newAttr->getDerivativeGenericSignature();
}
}
if (!success) {
LLVM_DEBUG({
llvm::dbgs() << "Protocol requirement match failure: missing "
"`@differentiable` attribute for witness ";
witnessAFD->dumpRef(llvm::dbgs());
llvm::dbgs() << " from requirement ";
req->dumpRef(llvm::dbgs());
llvm::dbgs() << '\n';
});
// FIXME(TF-1014): `@differentiable` attribute diagnostic does not
// appear if associated type inference is involved.
if (auto *vdWitness = dyn_cast<VarDecl>(witness)) {
result = RequirementMatch(
getStandinForAccessor(vdWitness, AccessorKind::Get),
MatchKind::MissingDifferentiableAttr, reqDiffAttr);
} else {
result = RequirementMatch(
witness, MatchKind::MissingDifferentiableAttr, reqDiffAttr);
}
}
}
}
}
/// A property or subscript witness must have the same or fewer
/// effects specifiers than the protocol requirement.
///
/// \returns None iff the witness satisfies the requirement's effects limit.
/// Otherwise, it returns the RequirementMatch that describes the
/// problem.
static std::optional<RequirementMatch>
checkEffects(AbstractStorageDecl *witness, AbstractStorageDecl *req) {
if (!witness->isLessEffectfulThan(req, EffectKind::Async))
return RequirementMatch(getStandinForAccessor(witness, AccessorKind::Get),
MatchKind::AsyncConflict);
if (!witness->isLessEffectfulThan(req, EffectKind::Throws))
return RequirementMatch(getStandinForAccessor(witness, AccessorKind::Get),
MatchKind::ThrowsConflict);
return std::nullopt; // OK
}
RequirementMatch swift::matchWitness(
DeclContext *dc, ValueDecl *req, ValueDecl *witness,
llvm::function_ref<
std::tuple<std::optional<RequirementMatch>, Type, Type>(void)>
setup,
llvm::function_ref<std::optional<RequirementMatch>(Type, Type)> matchTypes,
llvm::function_ref<RequirementMatch(bool, ArrayRef<OptionalAdjustment>)>
finalize) {
assert(!req->isInvalid() && "Cannot have an invalid requirement here");
/// Make sure the witness is of the same kind as the requirement.
if (req->getKind() != witness->getKind()) {
// An enum case can witness:
// 1. A static get-only property requirement, as long as the property's
// type is `Self` or it matches the type of the enum explicitly.
// 2. A static function requirement, if the enum case has a payload
// and the payload types and labels match the function and the
// function returns `Self` or the type of the enum.
//
// If there are any discrepencies, we'll diagnose it later. For now,
// let's assume the match is valid.
if (!((isa<VarDecl>(req) || isa<FuncDecl>(req)) &&
isa<EnumElementDecl>(witness)))
return RequirementMatch(witness, MatchKind::KindConflict);
}
// If we're currently validating the witness, bail out.
if (witness->isRecursiveValidation()) {
return RequirementMatch(witness, MatchKind::Circularity);
}
// If the witness is invalid, record that and stop now.
if (witness->isInvalid()) {
return RequirementMatch(witness, MatchKind::WitnessInvalid);
}
// Get the requirement and witness attributes.
const auto &reqAttrs = req->getAttrs();
const auto &witnessAttrs = witness->getAttrs();
// Perform basic matching of the requirement and witness.
bool decomposeFunctionType = false;
bool ignoreReturnType = false;
Type reqThrownError;
Type witnessThrownError;
if (isa<FuncDecl>(req) && isa<FuncDecl>(witness)) {
auto funcReq = cast<FuncDecl>(req);
auto funcWitness = cast<FuncDecl>(witness);
// Either both must be 'static' or neither.
if (funcReq->isStatic() != funcWitness->isStatic() &&
!(funcReq->isOperator() &&
!funcWitness->getDeclContext()->isTypeContext()))
return RequirementMatch(witness, MatchKind::StaticNonStaticConflict);
// If we require a prefix operator and the witness is not a prefix operator,
// these don't match.
if (reqAttrs.hasAttribute<PrefixAttr>() &&
!witnessAttrs.hasAttribute<PrefixAttr>())
return RequirementMatch(witness, MatchKind::PrefixNonPrefixConflict);
// If we require a postfix operator and the witness is not a postfix
// operator, these don't match.
if (reqAttrs.hasAttribute<PostfixAttr>() &&
!witnessAttrs.hasAttribute<PostfixAttr>())
return RequirementMatch(witness, MatchKind::PostfixNonPostfixConflict);
// Check that the mutating bit is ok.
if (!funcReq->isMutating() && funcWitness->isMutating())
return RequirementMatch(witness, MatchKind::MutatingConflict);
// If the requirement has an explicit 'rethrows' argument, the witness
// must be 'rethrows', too.
if (reqAttrs.hasAttribute<RethrowsAttr>()) {
auto reqRethrowingKind =
funcReq->getPolymorphicEffectKind(EffectKind::Throws);
auto witnessRethrowingKind =
funcWitness->getPolymorphicEffectKind(EffectKind::Throws);
assert(reqRethrowingKind != PolymorphicEffectKind::Always &&
reqRethrowingKind != PolymorphicEffectKind::None);
switch (witnessRethrowingKind) {
case PolymorphicEffectKind::None:
case PolymorphicEffectKind::Invalid:
case PolymorphicEffectKind::ByClosure:
case PolymorphicEffectKind::AsyncSequenceRethrows:
break;
case PolymorphicEffectKind::ByConformance: {
// A by-conformance `rethrows` witness cannot witness a
// by-conformance `rethrows` requirement unless the protocol
// is @rethrows. Otherwise, we don't have enough information
// at the call site to assess if the conformance actually
// throws or not.
auto *proto = cast<ProtocolDecl>(req->getDeclContext());
if (reqRethrowingKind == PolymorphicEffectKind::ByConformance &&
proto->hasPolymorphicEffect(EffectKind::Throws))
break;
return RequirementMatch(witness,
MatchKind::RethrowsByConformanceConflict);
}
case PolymorphicEffectKind::Always:
// If the witness is using typed throws in a manner that looks
// like rethrows, allow it.
if (isRethrowLikeTypedThrows(funcWitness))
break;
return RequirementMatch(witness, MatchKind::RethrowsConflict);
}
}
// We want to decompose the parameters to handle them separately.
decomposeFunctionType = true;
} else if (auto *witnessASD = dyn_cast<AbstractStorageDecl>(witness)) {
auto *reqASD = cast<AbstractStorageDecl>(req);
// Check that the static-ness matches.
if (reqASD->isStatic() != witnessASD->isStatic())
return RequirementMatch(witness, MatchKind::StaticNonStaticConflict);
// Check that the compile-time constness matches.
if (reqASD->isCompileTimeConst() && !witnessASD->isCompileTimeConst()) {
return RequirementMatch(witness, MatchKind::CompileTimeConstConflict);
}
// If the requirement is settable and the witness is not, reject it.
if (reqASD->isSettable(req->getDeclContext()) &&
!witnessASD->isSettable(witness->getDeclContext()))
return RequirementMatch(witness, MatchKind::SettableConflict);
// Validate that the 'mutating' bit lines up for getters and setters.
if (!reqASD->isGetterMutating() && witnessASD->isGetterMutating())
return RequirementMatch(getStandinForAccessor(witnessASD, AccessorKind::Get),
MatchKind::MutatingConflict);
if (reqASD->isSettable(req->getDeclContext())) {
if (!reqASD->isSetterMutating() && witnessASD->isSetterMutating())
return RequirementMatch(getStandinForAccessor(witnessASD, AccessorKind::Set),
MatchKind::MutatingConflict);
}
// Check for async mismatches.
if (!witnessASD->isLessEffectfulThan(reqASD, EffectKind::Async)) {
return RequirementMatch(
getStandinForAccessor(witnessASD, AccessorKind::Get),
MatchKind::AsyncConflict);
}
// Check that the witness has no more effects than the requirement.
if (auto problem = checkEffects(witnessASD, reqASD))
return problem.value();
// Decompose the parameters for subscript declarations.
decomposeFunctionType = isa<SubscriptDecl>(req);
// Dig out the thrown error types from the getter so we can compare them
// later.
auto getThrownErrorType = [](AbstractStorageDecl *asd) -> Type {
if (auto getter = asd->getEffectfulGetAccessor()) {
if (Type thrownErrorType = getter->getThrownInterfaceType()) {
return thrownErrorType;
} else if (getter->hasThrows()) {
return asd->getASTContext().getAnyExistentialType();
}
}
return asd->getASTContext().getNeverType();
};
reqThrownError = getThrownErrorType(reqASD);
witnessThrownError = getThrownErrorType(witnessASD);
} else if (isa<ConstructorDecl>(witness)) {
decomposeFunctionType = true;
ignoreReturnType = true;
} else if (auto *enumCase = dyn_cast<EnumElementDecl>(witness)) {
// An enum case with associated values can satisfy only a
// method requirement.
if (enumCase->hasAssociatedValues() && isa<VarDecl>(req))
return RequirementMatch(witness, MatchKind::EnumCaseWithAssociatedValues);
// An enum case can satisfy only a method or property requirement.
if (!isa<VarDecl>(req) && !isa<FuncDecl>(req))
return RequirementMatch(witness, MatchKind::KindConflict);
// An enum case can satisfy only a static requirement.
if (!req->isStatic())
return RequirementMatch(witness, MatchKind::StaticNonStaticConflict);
// An enum case cannot satisfy a settable property requirement.
if (isa<VarDecl>(req) &&
cast<VarDecl>(req)->isSettable(req->getDeclContext()))
return RequirementMatch(witness, MatchKind::SettableConflict);
decomposeFunctionType = enumCase->hasAssociatedValues();
}
// If the requirement is @objc, the witness must not be marked with @nonobjc.
// @objc-ness will be inferred (separately) and the selector will be checked
// later.
if (req->isObjC() && witness->getAttrs().hasAttribute<NonObjCAttr>())
return RequirementMatch(witness, MatchKind::NonObjC);
// Set up the match, determining the requirement and witness types
// in the process.
Type reqType, witnessType;
{
std::optional<RequirementMatch> result;
std::tie(result, reqType, witnessType) = setup();
if (result) {
return std::move(result.value());
}
}
SmallVector<OptionalAdjustment, 2> optionalAdjustments;
const bool anyRenaming = req->getName() != witness->getName();
if (decomposeFunctionType) {
// Decompose function types into parameters and result type.
auto reqFnType = reqType->castTo<AnyFunctionType>();
auto reqResultType = reqFnType->getResult()->getRValueType();
auto witnessFnType = witnessType->castTo<AnyFunctionType>();
auto witnessResultType = witnessFnType->getResult()->getRValueType();
// Result types must match.
// FIXME: Could allow (trivial?) subtyping here.
if (!ignoreReturnType) {
auto reqTypeIsIUO = req->isImplicitlyUnwrappedOptional();
auto witnessTypeIsIUO = witness->isImplicitlyUnwrappedOptional();
auto types =
getTypesToCompare(req, reqResultType, reqTypeIsIUO, witnessResultType,
witnessTypeIsIUO, VarianceKind::Covariant);
// Record optional adjustment, if any.
if (std::get<2>(types) != OptionalAdjustmentKind::None) {
optionalAdjustments.push_back(
OptionalAdjustment(std::get<2>(types)));
}
if (!req->isObjC() &&
!isa_and_nonnull<clang::CXXMethodDecl>(witness->getClangDecl()) &&
reqTypeIsIUO != witnessTypeIsIUO)
return RequirementMatch(witness, MatchKind::TypeConflict, witnessType);
// If our requirement says that it has a sending result, then our witness
// must also have a sending result since otherwise, in generic contexts,
// we would be returning non-disconnected values as disconnected.
if (dc->getASTContext().LangOpts.isSwiftVersionAtLeast(6)) {
if (reqFnType->hasExtInfo() && reqFnType->hasSendingResult() &&
(!witnessFnType->hasExtInfo() || !witnessFnType->hasSendingResult()))
return RequirementMatch(witness, MatchKind::TypeConflict, witnessType);
}
if (auto result = matchTypes(std::get<0>(types), std::get<1>(types))) {
return std::move(result.value());
}
}
// Parameter types and kinds must match. Start by decomposing the input
// types into sets of tuple elements.
// Decompose the input types into parameters.
auto reqParams = reqFnType->getParams();
auto witnessParams = witnessFnType->getParams();
// If the number of parameters doesn't match, we're done.
if (reqParams.size() != witnessParams.size())
return RequirementMatch(witness, MatchKind::TypeConflict,
witnessType);
ParameterList *witnessParamList = getParameterList(witness);
assert(witnessParamList->size() == witnessParams.size());
ParameterList *reqParamList = getParameterList(req);
assert(reqParamList->size() == reqParams.size());
// Match each of the parameters.
for (unsigned i = 0, n = reqParams.size(); i != n; ++i) {
// Variadic bits must match.
// FIXME: Specialize the match failure kind
if (reqParams[i].isVariadic() != witnessParams[i].isVariadic())
return RequirementMatch(witness, MatchKind::TypeConflict, witnessType);
if (reqParams[i].isInOut() != witnessParams[i].isInOut())
return RequirementMatch(witness, MatchKind::TypeConflict, witnessType);
// If we have a requirement without sending and our witness expects a
// sending parameter, error.
if (dc->getASTContext().isSwiftVersionAtLeast(6)) {
if (!reqParams[i].getParameterFlags().isSending() &&
witnessParams[i].getParameterFlags().isSending())
return RequirementMatch(witness, MatchKind::TypeConflict, witnessType);
}
auto reqParamDecl = reqParamList->get(i);
auto witnessParamDecl = witnessParamList->get(i);
auto reqParamTypeIsIUO = reqParamDecl->isImplicitlyUnwrappedOptional();
auto witnessParamTypeIsIUO =
witnessParamDecl->isImplicitlyUnwrappedOptional();
// Gross hack: strip a level of unchecked-optionality off both
// sides when matching against a protocol imported from Objective-C.
auto types =
getTypesToCompare(req, reqParams[i].getOldType(), reqParamTypeIsIUO,
witnessParams[i].getOldType(), witnessParamTypeIsIUO,
VarianceKind::Contravariant);
// Record any optional adjustment that occurred.
if (std::get<2>(types) != OptionalAdjustmentKind::None) {
optionalAdjustments.push_back(
OptionalAdjustment(std::get<2>(types), i));
}
if (!req->isObjC() && reqParamTypeIsIUO != witnessParamTypeIsIUO)
return RequirementMatch(witness, MatchKind::TypeConflict, witnessType);
if (auto result = matchTypes(std::get<0>(types), std::get<1>(types))) {
return std::move(result.value());
}
}
if (witnessFnType->hasExtInfo()) {
// If the witness is 'async', the requirement must be.
if (witnessFnType->getExtInfo().isAsync() &&
!reqFnType->getExtInfo().isAsync()) {
return RequirementMatch(witness, MatchKind::AsyncConflict);
}
// If witness is sync, the requirement cannot be @objc and 'async'
if (!witnessFnType->getExtInfo().isAsync() &&
(req->isObjC() && reqFnType->getExtInfo().isAsync())) {
return RequirementMatch(witness, MatchKind::AsyncConflict);
}
if (!reqThrownError) {
// Save the thrown error types of the requirement and witness so we
// can check them later.
reqThrownError = reqFnType->getEffectiveThrownErrorTypeOrNever();
witnessThrownError = witnessFnType->getEffectiveThrownErrorTypeOrNever();
}
}
} else {
auto reqTypeIsIUO = req->isImplicitlyUnwrappedOptional();
auto witnessTypeIsIUO = witness->isImplicitlyUnwrappedOptional();
auto types = getTypesToCompare(req, reqType, reqTypeIsIUO, witnessType,
witnessTypeIsIUO, VarianceKind::None);
// Record optional adjustment, if any.
if (std::get<2>(types) != OptionalAdjustmentKind::None) {
optionalAdjustments.push_back(
OptionalAdjustment(std::get<2>(types)));
}
if (!req->isObjC() && reqTypeIsIUO != witnessTypeIsIUO)
return RequirementMatch(witness, MatchKind::TypeConflict, witnessType);
if (auto result = matchTypes(std::get<0>(types), std::get<1>(types))) {
return std::move(result.value());
}
}
// Check the thrown error types. This includes 'any Error' and 'Never' for
// untyped throws and non-throwing cases as well.
if (reqThrownError && witnessThrownError) {
auto thrownErrorTypes = getTypesToCompare(
req, reqThrownError, false, witnessThrownError, false,
VarianceKind::None);
Type reqThrownError = std::get<0>(thrownErrorTypes);
Type witnessThrownError = std::get<1>(thrownErrorTypes);
switch (compareThrownErrorsForSubtyping(witnessThrownError, reqThrownError,
dc)) {
case ThrownErrorSubtyping::DropsThrows:
case ThrownErrorSubtyping::Mismatch:
return RequirementMatch(witness, MatchKind::ThrowsConflict);
case ThrownErrorSubtyping::ExactMatch:
// All is well.
break;
case ThrownErrorSubtyping::Subtype:
// If there were no type parameters, we're done.
if (!reqThrownError->hasTypeParameter())
break;
LLVM_FALLTHROUGH;
case ThrownErrorSubtyping::Dependent:
// We need to perform type matching
if (auto result = matchTypes(reqThrownError, witnessThrownError)) {
return std::move(result.value());
}
break;
}
}
// Now finalize the match.
auto result = finalize(anyRenaming, optionalAdjustments);
// Check if the requirement's `@differentiable` attributes are satisfied by
// the witness.
matchWitnessDifferentiableAttr(dc, req, witness, result);
return result;
}
/// Checks \p reqEnvCache for a requirement environment appropriate for
/// \p reqSig and \p covariantSelf. If one isn't there, it gets created from
/// the rest of the parameters.
///
/// Note that this means RequirementEnvironmentCaches must not be shared across
/// multiple protocols or conformances.
static const RequirementEnvironment &getOrCreateRequirementEnvironment(
WitnessChecker::RequirementEnvironmentCache &reqEnvCache,
DeclContext *dc, GenericSignature reqSig, ProtocolDecl *proto,
ClassDecl *covariantSelf, RootProtocolConformance *conformance) {
WitnessChecker::RequirementEnvironmentCacheKey cacheKey(reqSig.getPointer(),
covariantSelf);
auto cacheIter = reqEnvCache.find(cacheKey);
if (cacheIter == reqEnvCache.end()) {
RequirementEnvironment reqEnv(dc, reqSig, proto, covariantSelf,
conformance);
cacheIter = reqEnvCache.insert({cacheKey, std::move(reqEnv)}).first;
}
return cacheIter->getSecond();
}
static std::optional<RequirementMatch>
findMissingGenericRequirementForSolutionFix(
constraints::Solution &solution, constraints::ConstraintFix *fix,
ValueDecl *witness, ProtocolConformance *conformance,
const RequirementEnvironment &reqEnvironment) {
Type type, missingType;
RequirementKind requirementKind;
using namespace constraints;
switch (fix->getKind()) {
case FixKind::AddConformance: {
auto missingConform = (MissingConformance *)fix;
requirementKind = RequirementKind::Conformance;
type = missingConform->getNonConformingType();
missingType = missingConform->getProtocolType();
break;
}
case FixKind::SkipSameTypeRequirement: {
requirementKind = RequirementKind::SameType;
auto requirementFix = (SkipSameTypeRequirement *)fix;
type = requirementFix->lhsType();
missingType = requirementFix->rhsType();
break;
}
case FixKind::SkipSameShapeRequirement: {
requirementKind = RequirementKind::SameShape;
auto requirementFix = (SkipSameShapeRequirement *)fix;
type = requirementFix->lhsType();
missingType = requirementFix->rhsType();
break;
}
case FixKind::SkipSuperclassRequirement: {
requirementKind = RequirementKind::Superclass;
auto requirementFix = (SkipSuperclassRequirement *)fix;
type = requirementFix->subclassType();
missingType = requirementFix->superclassType();
break;
}
default:
return std::optional<RequirementMatch>();
}
type = solution.simplifyType(type);
missingType = solution.simplifyType(missingType);
if (auto *env = conformance->getGenericEnvironment()) {
// We use subst() with LookUpConformanceInModule here, because
// associated type inference failures mean that we can end up
// here with a DependentMemberType with an ArchetypeType base.
missingType = missingType.subst(
[&](SubstitutableType *type) -> Type {
return env->mapTypeIntoContext(type->mapTypeOutOfContext());
},
LookUpConformanceInModule(conformance->getDeclContext()->getParentModule()));
}
auto missingRequirementMatch = [&](Type type) -> RequirementMatch {
Requirement requirement(requirementKind, type, missingType);
return RequirementMatch(witness, MatchKind::MissingRequirement,
requirement);
};
if (type->is<DependentMemberType>())
return missingRequirementMatch(type);
type = type->mapTypeOutOfContext();
if (type->hasTypeParameter())
if (auto env = conformance->getGenericEnvironment())
if (auto assocType = env->mapTypeIntoContext(type))
return missingRequirementMatch(assocType);
auto reqSubMap = reqEnvironment.getRequirementToWitnessThunkSubs();
auto proto = conformance->getProtocol();
Type selfTy = proto->getSelfInterfaceType().subst(reqSubMap);
if (type->isEqual(selfTy)) {
type = conformance->getType();
// e.g. `extension P where Self == C { func foo() { ... } }`
// and `C` doesn't actually conform to `P`.
if (type->isEqual(missingType)) {
requirementKind = RequirementKind::Conformance;
missingType = proto->getDeclaredInterfaceType();
}
if (auto agt = type->getAs<AnyGenericType>())
type = agt->getDecl()->getDeclaredInterfaceType();
return missingRequirementMatch(type);
}
return std::optional<RequirementMatch>();
}
/// Determine the set of effects on a given declaration.
static PossibleEffects getEffects(ValueDecl *value) {
if (auto func = dyn_cast<AbstractFunctionDecl>(value)) {
PossibleEffects result;
if (func->hasThrows())
result |= EffectKind::Throws;
if (func->hasAsync())
result |= EffectKind::Async;
return result;
}
if (auto storage = dyn_cast<AbstractStorageDecl>(value)) {
if (auto accessor = storage->getEffectfulGetAccessor())
return getEffects(accessor);
}
return PossibleEffects();
}
RequirementMatch
swift::matchWitness(WitnessChecker::RequirementEnvironmentCache &reqEnvCache,
ProtocolDecl *proto, RootProtocolConformance *conformance,
DeclContext *dc, ValueDecl *req, ValueDecl *witness) {
using namespace constraints;
// Initialized by the setup operation.
std::optional<ConstraintSystem> cs;
ConstraintLocator *reqLocator = nullptr;
ConstraintLocator *witnessLocator = nullptr;
Type witnessType, openWitnessType;
Type reqType;
GenericSignature reqSig = proto->getGenericSignature();
if (auto *funcDecl = dyn_cast<AbstractFunctionDecl>(req)) {
if (funcDecl->isGeneric())
reqSig = funcDecl->getGenericSignature();
} else if (auto *subscriptDecl = dyn_cast<SubscriptDecl>(req)) {
if (subscriptDecl->isGeneric())
reqSig = subscriptDecl->getGenericSignature();
}
ClassDecl *covariantSelf = nullptr;
if (witness->getDeclContext()->getExtendedProtocolDecl()) {
if (auto *classDecl = dc->getSelfClassDecl()) {
if (!classDecl->isSemanticallyFinal()) {
// If the requirement's type does not involve any associated types,
// we use a class-constrained generic parameter as the 'Self' type
// in the witness thunk.
//
// This allows the following code to type check:
//
// protocol P {
// func f() -> Self
// }
//
// extension P {
// func f() { return self }
// }
//
// class C : P {}
//
// When we call (C() as P).f(), we want to pass the 'Self' type
// from the call site, not the static 'Self' type of the conformance.
//
// On the other hand, if the requirement's type contains associated
// types, we use the static 'Self' type, to preserve backward
// compatibility with code that uses this pattern:
//
// protocol P {
// associatedtype T = Self
// func f() -> T
// }
//
// extension P where Self.T == Self {
// func f() -> Self { return self }
// }
//
// class C : P {}
//
// It would have been much nicer to just ban this completely if
// the class 'C' is not final, but there is a great deal of existing
// code out there that relies on this behavior, most commonly by
// defining a non-final class conforming to 'Collection' which uses
// the default witness for 'Collection.Iterator', which is defined
// as 'IndexingIterator<Self>'.
const auto selfRefInfo = req->findExistentialSelfReferences(
proto->getDeclaredInterfaceType(),
/*treatNonResultCovariantSelfAsInvariant=*/true);
if (!selfRefInfo.assocTypeRef) {
covariantSelf = classDecl;
}
}
}
}
const RequirementEnvironment &reqEnvironment =
getOrCreateRequirementEnvironment(reqEnvCache, dc, reqSig, proto,
covariantSelf, conformance);
// Set up the constraint system for matching.
auto setup =
[&]() -> std::tuple<std::optional<RequirementMatch>, Type, Type> {
// Construct a constraint system to use to solve the equality between
// the required type and the witness type.
cs.emplace(dc, ConstraintSystemFlags::AllowFixes);
auto syntheticSig = reqEnvironment.getWitnessThunkSignature();
auto *syntheticEnv = syntheticSig.getGenericEnvironment();
auto reqSubMap = reqEnvironment.getRequirementToWitnessThunkSubs();
Type selfTy = proto->getSelfInterfaceType().subst(reqSubMap);
if (syntheticEnv)
selfTy = syntheticEnv->mapTypeIntoContext(selfTy);
// Open up the type of the requirement.
reqLocator =
cs->getConstraintLocator(req, ConstraintLocator::ProtocolRequirement);
OpenedTypeMap reqReplacements;
reqType = cs->getTypeOfMemberReference(selfTy, req, dc,
/*isDynamicResult=*/false,
FunctionRefKind::DoubleApply,
reqLocator,
&reqReplacements)
.adjustedReferenceType;
reqType = reqType->getRValueType();
// For any type parameters we replaced in the witness, map them
// to the corresponding archetypes in the witness's context.
for (const auto &replacement : reqReplacements) {
auto replacedInReq = Type(replacement.first).subst(reqSubMap);
// If substitution failed, skip the requirement. This only occurs in
// invalid code.
if (replacedInReq->hasError())
continue;
if (syntheticEnv) {
replacedInReq = syntheticEnv->mapTypeIntoContext(replacedInReq);
}
if (auto packType = replacedInReq->getAs<PackType>()) {
if (auto unwrapped = packType->unwrapSingletonPackExpansion())
replacedInReq = unwrapped->getPatternType();
}
cs->addConstraint(ConstraintKind::Bind, replacement.second, replacedInReq,
reqLocator);
}
// Open up the witness type.
witnessType = witness->getInterfaceType();
witnessLocator =
cs->getConstraintLocator(req, LocatorPathElt::Witness(witness));
if (witness->getDeclContext()->isTypeContext()) {
openWitnessType = cs->getTypeOfMemberReference(
selfTy, witness, dc, /*isDynamicResult=*/false,
FunctionRefKind::DoubleApply, witnessLocator)
.adjustedReferenceType;
} else {
openWitnessType = cs->getTypeOfReference(
witness, FunctionRefKind::DoubleApply, witnessLocator,
/*useDC=*/nullptr)
.adjustedReferenceType;
}
openWitnessType = openWitnessType->getRValueType();
return std::make_tuple(std::nullopt, reqType, openWitnessType);
};
// Match a type in the requirement to a type in the witness.
auto matchTypes = [&](Type reqType,
Type witnessType) -> std::optional<RequirementMatch> {
cs->addConstraint(ConstraintKind::Bind, reqType, witnessType,
witnessLocator);
// FIXME: Check whether this has already failed.
return std::nullopt;
};
// Finalize the match.
auto finalize = [&](bool anyRenaming,
ArrayRef<OptionalAdjustment> optionalAdjustments)
-> RequirementMatch {
// Try to solve the system disallowing free type variables, because
// that would resolve in incorrect substitution matching when witness
// type has free type variables present as well.
auto solution = cs->solveSingle(FreeTypeVariableBinding::Disallow,
/* allowFixes */ true);
// If the types would match but for some other missing conformance, find and
// call that out.
if (solution && conformance && solution->Fixes.size()) {
for (auto fix : solution->Fixes) {
if (auto result = findMissingGenericRequirementForSolutionFix(
*solution, fix, witness, conformance, reqEnvironment))
return *result;
}
}
bool requiresNonSendable = [&]() {
if (!solution)
return false;
// If the *only* problems are that `@Sendable` attributes are missing,
// allow the match in some circumstances.
if (!solution->Fixes.empty()) {
return llvm::all_of(solution->Fixes,
[](constraints::ConstraintFix *fix) {
return fix->getKind() ==
constraints::FixKind::AddSendableAttribute;
});
}
// If there are no other issues, let's check whether this are
// missing Sendable conformances when matching ObjC requirements.
// This is not an error until Swift 6 because `swift_attr` wasn't
// allowed in type contexts initially.
return req->isObjC() &&
solution->getFixedScore()
.Data[SK_MissingSynthesizableConformance] > 0;
}();
if (!solution || !solution->Fixes.empty()) {
if (!requiresNonSendable)
return RequirementMatch(witness, MatchKind::TypeConflict,
witnessType);
}
MatchKind matchKind = MatchKind::ExactMatch;
if (hasAnyError(optionalAdjustments))
matchKind = MatchKind::OptionalityConflict;
else if (anyRenaming)
matchKind = MatchKind::RenamedMatch;
else if (requiresNonSendable)
matchKind = MatchKind::RequiresNonSendable;
else if (getEffects(req) - getEffects(witness))
// when the difference is non-empty, the witness has fewer effects.
matchKind = MatchKind::FewerEffects;
assert(getEffects(req).contains(getEffects(witness))
&& "witness has more effects than requirement?");
// Success. Form the match result.
RequirementMatch result(witness,
matchKind,
witnessType,
reqEnvironment,
optionalAdjustments);
// Compute the set of substitutions we'll need for the witness.
auto witnessSig =
witness->getInnermostDeclContext()->getGenericSignatureOfContext();
result.WitnessSubstitutions =
solution->computeSubstitutions(witness, witnessSig, witnessLocator);
return result;
};
return matchWitness(dc, req, witness, setup, matchTypes, finalize);
}
bool
swift::witnessHasImplementsAttrForRequiredName(ValueDecl *witness,
ValueDecl *requirement) {
if (auto A = witness->getAttrs().getAttribute<ImplementsAttr>()) {
return A->getMemberName() == requirement->getName();
}
return false;
}
bool
swift::witnessHasImplementsAttrForExactRequirement(ValueDecl *witness,
ValueDecl *requirement) {
assert(requirement->isProtocolRequirement());
auto *PD = cast<ProtocolDecl>(requirement->getDeclContext());
if (auto A = witness->getAttrs().getAttribute<ImplementsAttr>()) {
if (auto *OtherPD = A->getProtocol(witness->getDeclContext())) {
if (OtherPD == PD) {
return A->getMemberName() == requirement->getName();
}
}
}
return false;
}
/// Determine whether one requirement match is better than the other.
static bool isBetterMatch(DeclContext *dc, ValueDecl *requirement,
const RequirementMatch &match1,
const RequirementMatch &match2) {
// Special case to prefer a witness with @_implements(Foo, bar) over one without
// it, when the requirement was exactly for Foo.bar.
bool match1ImplementsAttr =
witnessHasImplementsAttrForExactRequirement(match1.Witness,
requirement);
bool match2ImplementsAttr =
witnessHasImplementsAttrForExactRequirement(match2.Witness,
requirement);
if (match1ImplementsAttr && !match2ImplementsAttr) {
return true;
} else if (!match1ImplementsAttr && match2ImplementsAttr) {
return false;
}
// Check whether one declaration is better than the other.
const auto comparisonResult =
TypeChecker::compareDeclarations(dc, match1.Witness, match2.Witness);
switch (comparisonResult) {
case Comparison::Better:
return true;
case Comparison::Worse:
return false;
case Comparison::Unordered:
break;
}
// Earlier match kinds are better. This prefers exact matches over matches
// that require renaming, for example.
if (match1.Kind != match2.Kind)
return static_cast<unsigned>(match1.Kind)
< static_cast<unsigned>(match2.Kind);
return false;
}
WitnessChecker::WitnessChecker(ASTContext &ctx, ProtocolDecl *proto,
Type adoptee, DeclContext *dc)
: Context(ctx), Proto(proto), Adoptee(adoptee), DC(dc) {}
static void
lookupValueWitnessesViaImplementsAttr(
DeclContext *DC, ValueDecl *req, SmallVector<ValueDecl *, 4> &witnesses) {
auto name = req->createNameRef();
auto *nominal = DC->getSelfNominalTypeDecl();
NLOptions subOptions = (NL_ProtocolMembers | NL_IncludeAttributeImplements);
nominal->synthesizeSemanticMembersIfNeeded(name.getFullName());
SmallVector<ValueDecl *, 4> lookupResults;
DC->lookupQualified(nominal, name, nominal->getLoc(),
subOptions, lookupResults);
for (auto decl : lookupResults) {
if (!isa<ProtocolDecl>(decl->getDeclContext()))
if (witnessHasImplementsAttrForExactRequirement(decl, req))
witnesses.push_back(decl);
}
removeOverriddenDecls(witnesses);
removeShadowedDecls(witnesses, DC);
}
/// Determine whether the given context may expand an operator with the given name.
static bool contextMayExpandOperator(
DeclContext *dc, DeclBaseName operatorName
) {
TypeOrExtensionDecl decl;
if (auto nominal = dyn_cast<NominalTypeDecl>(dc))
decl = nominal;
else if (auto ext = dyn_cast<ExtensionDecl>(dc))
decl = ext;
else
return false;
// If the context declaration itself is within a macro expansion, it may
// have an operator.
if (auto sourceFile = dc->getParentSourceFile()) {
if (sourceFile->getFulfilledMacroRole())
return true;
}
ASTContext &ctx = dc->getASTContext();
auto potentialExpansions = evaluateOrDefault(
ctx.evaluator, PotentialMacroExpansionsInContextRequest{decl},
PotentialMacroExpansions());
return potentialExpansions.shouldExpandForName(operatorName);
}
SmallVector<ValueDecl *, 4>
swift::lookupValueWitnesses(DeclContext *DC, ValueDecl *req, bool *ignoringNames) {
assert(!isa<AssociatedTypeDecl>(req) && "Not for lookup for type witnesses*");
assert(req->isProtocolRequirement());
SmallVector<ValueDecl *, 4> witnesses;
// Do an initial check to see if there are any @_implements remappings
// for this requirement.
lookupValueWitnessesViaImplementsAttr(DC, req, witnesses);
auto reqName = req->createNameRef();
auto reqBaseName = reqName.withoutArgumentLabels();
// An operator function is the only kind of witness that requires global
// lookup. However, because global lookup doesn't enter local contexts,
// an additional, qualified lookup is warranted when the conforming type
// is declared in a local context or when the operator could come from a
// macro expansion.
const bool doUnqualifiedLookup = req->isOperator();
const bool doQualifiedLookup =
!req->isOperator() || DC->getParent()->getLocalContext() ||
contextMayExpandOperator(DC, req->getName().getBaseName());
if (doUnqualifiedLookup) {
auto lookup = TypeChecker::lookupUnqualified(DC->getModuleScopeContext(),
reqBaseName, SourceLoc(),
defaultUnqualifiedLookupOptions);
for (auto candidate : lookup) {
auto decl = candidate.getValueDecl();
if (!isa<ProtocolDecl>(decl->getDeclContext()) &&
swift::isMemberOperator(cast<FuncDecl>(decl), DC->getSelfInterfaceType())) {
witnesses.push_back(decl);
}
}
}
if (doQualifiedLookup) {
auto *nominal = DC->getSelfNominalTypeDecl();
nominal->synthesizeSemanticMembersIfNeeded(reqName.getFullName());
// Unqualified lookup would have already found candidates from protocol
// extensions, including those that match only by base name. Take care not
// to restate them in the resulting list, or else an otherwise valid
// conformance will become ambiguous.
const NLOptions options =
doUnqualifiedLookup ? NLOptions(0) : NL_ProtocolMembers;
SmallVector<ValueDecl *, 4> lookupResults;
bool addedAny = false;
DC->lookupQualified(nominal, reqName, nominal->getLoc(),
options, lookupResults);
for (auto *decl : lookupResults) {
// a distributed thunk is the witness
if (!isa<ProtocolDecl>(decl->getDeclContext())) {
auto func = dyn_cast<AbstractFunctionDecl>(req);
if (func && func->isDistributedThunk()) {
if (auto candidate = dyn_cast<AbstractFunctionDecl>(decl)) {
if (auto thunk = candidate->getDistributedThunk()) {
witnesses.push_back(thunk);
addedAny = true;
}
}
} else {
witnesses.push_back(decl);
addedAny = true;
}
}
};
// If we didn't find anything with the appropriate name, look
// again using only the base name.
if (!addedAny && ignoringNames) {
lookupResults.clear();
DC->lookupQualified(nominal, reqBaseName, nominal->getLoc(),
options, lookupResults);
for (auto *decl : lookupResults) {
if (!isa<ProtocolDecl>(decl->getDeclContext())) {
witnesses.push_back(decl);
}
}
*ignoringNames = true;
}
removeOverriddenDecls(witnesses);
removeShadowedDecls(witnesses, DC);
}
assert(llvm::none_of(witnesses, [](ValueDecl *decl) {
return isa<ProtocolDecl>(decl->getDeclContext());
}));
return witnesses;
}
bool WitnessChecker::findBestWitness(
ValueDecl *requirement,
bool *ignoringNames,
NormalProtocolConformance *conformance,
SmallVectorImpl<RequirementMatch> &matches,
unsigned &numViable,
unsigned &bestIdx,
bool &doNotDiagnoseMatches) {
enum Attempt {
Regular,
OperatorsFromOverlay,
Done
};
bool anyFromUnconstrainedExtension;
numViable = 0;
for (Attempt attempt = Regular; numViable == 0 && attempt != Done;
attempt = static_cast<Attempt>(attempt + 1)) {
SmallVector<ValueDecl *, 4> witnesses;
switch (attempt) {
case Regular:
witnesses = lookupValueWitnesses(DC, requirement, ignoringNames);
break;
case OperatorsFromOverlay: {
// If we have a Clang declaration, the matching operator might be in the
// overlay for that module.
if (!requirement->isOperator())
continue;
auto *clangModule =
dyn_cast<ClangModuleUnit>(DC->getModuleScopeContext());
if (!clangModule)
continue;
DeclContext *overlay = clangModule->getOverlayModule();
if (!overlay)
continue;
auto lookup = TypeChecker::lookupUnqualified(
overlay, requirement->createNameRef(), SourceLoc(),
defaultUnqualifiedLookupOptions);
for (auto candidate : lookup)
witnesses.push_back(candidate.getValueDecl());
break;
}
case Done:
llvm_unreachable("should have exited loop");
}
// Match each of the witnesses to the requirement.
anyFromUnconstrainedExtension = false;
bestIdx = 0;
for (auto witness : witnesses) {
// Don't match anything in a protocol.
// FIXME: When default implementations come along, we can try to match
// these when they're default implementations coming from another
// (unrelated) protocol.
if (isa<ProtocolDecl>(witness->getDeclContext())) {
continue;
}
auto match = matchWitness(ReqEnvironmentCache, Proto, conformance,
DC, requirement, witness);
if (match.isViable()) {
++numViable;
bestIdx = matches.size();
} else if (match.Kind == MatchKind::WitnessInvalid) {
doNotDiagnoseMatches = true;
}
if (auto *ext = dyn_cast<ExtensionDecl>(match.Witness->getDeclContext())){
if (!ext->isConstrainedExtension() && ext->getExtendedProtocolDecl())
anyFromUnconstrainedExtension = true;
}
matches.push_back(std::move(match));
}
}
// If there are multiple viable matches, drop any that are less available than the
// requirement.
if (numViable > 1) {
SmallVector<RequirementMatch, 2> checkedMatches;
bool foundCheckedMatch = false;
for (auto match : matches) {
if (!match.isViable()) {
checkedMatches.push_back(match);
} else if (checkWitness(requirement, match).Kind != CheckKind::Availability) {
foundCheckedMatch = true;
checkedMatches.push_back(match);
}
}
// If none of the matches were at least as available as the requirement, don't
// drop any of them; this will produce better diagnostics.
if (foundCheckedMatch)
std::swap(checkedMatches, matches);
}
if (numViable == 0) {
// Assume any missing value witnesses for a conformance in a module
// interface can be treated as opaque.
// FIXME: ...but we should do something better about types.
if (conformance && !conformance->isInvalid()) {
if (auto *SF = DC->getParentSourceFile()) {
if (SF->Kind == SourceFileKind::Interface) {
auto match = matchWitness(ReqEnvironmentCache, Proto,
conformance, DC, requirement, requirement);
if (match.isViable()) {
numViable = 1;
bestIdx = matches.size();
matches.push_back(std::move(match));
return true;
}
}
}
}
if (anyFromUnconstrainedExtension &&
conformance != nullptr &&
conformance->isInvalid()) {
doNotDiagnoseMatches = true;
}
return false;
}
// If there numerous viable matches, throw out the non-viable matches
// and try to find a "best" match.
bool isReallyBest = true;
if (numViable > 1) {
matches.erase(std::remove_if(matches.begin(), matches.end(),
[](const RequirementMatch &match) {
return !match.isViable();
}),
matches.end());
// Find the best match.
bestIdx = 0;
for (unsigned i = 1, n = matches.size(); i != n; ++i) {
if (isBetterMatch(DC, requirement, matches[i], matches[bestIdx]))
bestIdx = i;
}
// Make sure it is, in fact, the best.
for (unsigned i = 0, n = matches.size(); i != n; ++i) {
if (i == bestIdx)
continue;
if (!isBetterMatch(DC, requirement, matches[bestIdx], matches[i])) {
isReallyBest = false;
break;
}
}
}
// If there are multiple equally-good candidates, we fail.
return isReallyBest;
}
ConformanceAccessScope ConformanceAccessScopeRequest::evaluate(
Evaluator &evaluator, DeclContext *dc, ProtocolDecl *proto) const {
AccessScope result = proto->getFormalAccessScope(dc);
bool witnessesMustBeUsableFromInline = false;
auto *nominal = dc->getSelfNominalTypeDecl();
// We're either looking at a concrete conformance, or the default witness
// table for a resilient protocol.
if (!isa<ProtocolDecl>(nominal)) {
// Compute the intersection of the conforming type's access scope
// and the protocol's access scope.
auto scopeIntersection =
result.intersectWith(nominal->getFormalAccessScope(dc));
assert(scopeIntersection.has_value());
result = scopeIntersection.value();
if (!result.isPublic()) {
witnessesMustBeUsableFromInline =
proto->getFormalAccessScope(
dc, /*usableFromInlineAsPublic*/true).isPublic() &&
nominal->getFormalAccessScope(
dc, /*usableFromInlineAsPublic*/true).isPublic();
}
} else {
if (!result.isPublic()) {
witnessesMustBeUsableFromInline =
proto->getFormalAccessScope(
dc, /*usableFromInlineAsPublic*/true).isPublic();
}
}
return std::make_pair(result, witnessesMustBeUsableFromInline);
}
static bool checkWitnessAccess(DeclContext *dc,
ValueDecl *requirement,
ValueDecl *witness,
bool *isSetter) {
*isSetter = false;
auto *proto = cast<ProtocolDecl>(requirement->getDeclContext());
auto requiredAccessScope = evaluateOrDefault(
dc->getASTContext().evaluator, ConformanceAccessScopeRequest{dc, proto},
std::make_pair(AccessScope::getPublic(), false));
auto actualScopeToCheck = requiredAccessScope.first;
// Setting the 'forConformance' flag means that we admit witnesses in
// protocol extensions that we can see, but are not necessarily as
// visible as the conforming type and protocol.
if (!witness->isAccessibleFrom(actualScopeToCheck.getDeclContext(),
/*forConformance=*/true)) {
// Special case: if we have `@testable import` of the witness's module,
// allow the witness to match if it would have matched for just this file.
// That is, if '@testable' allows us to see the witness here, it should
// allow us to see it anywhere, because any other client could also add
// their own `@testable import`.
// Same with @_private(sourceFile:) import.
if (auto parentFile = dc->getParentSourceFile()) {
const ModuleDecl *witnessModule = witness->getModuleContext();
if (parentFile->getParentModule() != witnessModule &&
parentFile->hasTestableOrPrivateImport(witness->getFormalAccess(),
witness) &&
witness->isAccessibleFrom(parentFile)) {
actualScopeToCheck = parentFile;
}
}
if (actualScopeToCheck.hasEqualDeclContextWith(requiredAccessScope.first))
return true;
}
if (auto *requirementASD = dyn_cast<AbstractStorageDecl>(requirement)) {
if (requirementASD->isSettable(dc)) {
*isSetter = true;
auto witnessASD = cast<AbstractStorageDecl>(witness);
// See above about the forConformance flag.
if (!witnessASD->isSetterAccessibleFrom(actualScopeToCheck.getDeclContext(),
/*forConformance=*/true))
return true;
}
}
return false;
}
bool WitnessChecker::
checkWitnessAvailability(ValueDecl *requirement,
ValueDecl *witness,
AvailabilityContext *requiredAvailability) {
return (!getASTContext().LangOpts.DisableAvailabilityChecking &&
!TypeChecker::isAvailabilitySafeForConformance(
Proto, requirement, witness, DC, *requiredAvailability));
}
RequirementCheck WitnessChecker::checkWitness(ValueDecl *requirement,
const RequirementMatch &match) {
auto &ctx = getASTContext();
if (!match.OptionalAdjustments.empty())
return CheckKind::OptionalityConflict;
auto requiredAccessScope = evaluateOrDefault(
Context.evaluator, ConformanceAccessScopeRequest{DC, Proto},
std::make_pair(AccessScope::getPublic(), false));
bool isSetter = false;
if (checkWitnessAccess(DC, requirement, match.Witness, &isSetter)) {
CheckKind kind = (isSetter
? CheckKind::AccessOfSetter
: CheckKind::Access);
return RequirementCheck(kind, requiredAccessScope.first);
}
if (requiredAccessScope.second) {
bool witnessIsUsableFromInline = match.Witness->getFormalAccessScope(
DC, /*usableFromInlineAsPublic*/true).isPublic();
if (!witnessIsUsableFromInline)
return CheckKind::UsableFromInline;
}
auto requiredAvailability = AvailabilityContext::alwaysAvailable();
if (checkWitnessAvailability(requirement, match.Witness,
&requiredAvailability)) {
return RequirementCheck(CheckKind::Availability, requiredAvailability);
}
if (requirement->getAttrs().isUnavailable(ctx) &&
match.Witness->getDeclContext() == DC) {
return RequirementCheck(CheckKind::Unavailable);
}
// A non-failable initializer requirement cannot be satisfied
// by a failable initializer.
if (auto ctor = dyn_cast<ConstructorDecl>(requirement)) {
if (!ctor->isFailable()) {
auto witnessCtor = cast<ConstructorDecl>(match.Witness);
if (witnessCtor->isFailable()) {
if (witnessCtor->isImplicitlyUnwrappedOptional()) {
// Only allowed for non-@objc protocols.
if (Proto->isObjC())
return CheckKind::ConstructorFailability;
} else {
return CheckKind::ConstructorFailability;
}
}
}
}
if (match.Witness->getAttrs().isUnavailable(ctx) &&
!requirement->getAttrs().isUnavailable(ctx)) {
auto nominalOrExtensionIsUnavailable = [&]() {
if (auto extension = dyn_cast<ExtensionDecl>(DC)) {
if (extension->getAttrs().isUnavailable(ctx))
return true;
}
if (auto adoptingNominal = DC->getSelfNominalTypeDecl()) {
if (adoptingNominal->getSemanticUnavailableAttr())
return true;
}
return false;
};
// Allow unavailable nominals or extension to have unavailable witnesses.
if (!nominalOrExtensionIsUnavailable())
return CheckKind::WitnessUnavailable;
}
// Warn about deprecated default implementations if the requirement is
// not deprecated, and the conformance is not deprecated.
bool isDefaultWitness = false;
if (auto *nominal = match.Witness->getDeclContext()->getSelfNominalTypeDecl())
isDefaultWitness = isa<ProtocolDecl>(nominal);
if (isDefaultWitness &&
match.Witness->getAttrs().isDeprecated(ctx) &&
!requirement->getAttrs().isDeprecated(ctx)) {
auto conformanceContext = ExportContext::forConformance(DC, Proto);
if (!conformanceContext.isDeprecated()) {
return RequirementCheck(CheckKind::DefaultWitnessDeprecated);
}
}
return CheckKind::Success;
}
# pragma mark Witness resolution
/// Retrieve the Objective-C method key from the given function.
ObjCRequirementMap::MethodKey
ObjCRequirementMap::getObjCMethodKey(AbstractFunctionDecl *func) {
return std::make_pair(func->getObjCSelector(), func->isInstanceMember());
}
/// Precompute map for getObjCRequirements().
ObjCRequirementMap
ObjCRequirementMapRequest::evaluate(Evaluator &evaluator,
const ProtocolDecl *proto) const {
// This map only applies to Obj-C protocols so it's wasteful to evaluate this
// request and cache the result for non-Obj-C protocols.
assert(proto->isObjC());
ObjCRequirementMap map;
for (auto requirement : proto->getProtocolRequirements()) {
auto funcRequirement = dyn_cast<AbstractFunctionDecl>(requirement);
if (!funcRequirement)
continue;
map.addRequirement(funcRequirement);
}
return map;
}
/// @returns a non-null requirement if the given requirement is part of a
/// group of ObjC requirements that share the same ObjC method key.
/// The first such requirement that the predicate function returns true for
/// is the requirement required by this function. Otherwise, nullptr is
/// returned.
static ValueDecl *getObjCRequirementSibling(
ProtocolDecl *proto, ValueDecl *requirement,
llvm::function_ref<bool(AbstractFunctionDecl *)> predicate) {
if (!proto->isObjC())
return nullptr;
assert(requirement->isProtocolRequirement());
assert(proto == requirement->getDeclContext()->getAsDecl());
// We only care about functions
if (auto fnRequirement = dyn_cast<AbstractFunctionDecl>(requirement)) {
auto map = proto->getObjCRequiremenMap();
auto similarRequirements = map.getRequirements(fnRequirement);
// ... whose selector is one that maps to multiple requirement declarations.
for (auto candidate : similarRequirements) {
if (candidate == fnRequirement)
continue; // skip the requirement we're trying to resolve.
if (!predicate(candidate))
continue; // skip if doesn't match requirements
return candidate;
}
}
return nullptr;
}
static void emitDelayedDiags(NormalProtocolConformance *conformance) {
auto *dc = conformance->getDeclContext();
auto diags = dc->getASTContext().takeDelayedConformanceDiags(conformance);
bool alreadyComplained = false;
for (const auto &diag: diags) {
// Complain that the type does not conform, once.
if (diag.IsError && !alreadyComplained) {
diagnoseConformanceFailure(dc->getSelfInterfaceType(),
conformance->getProtocol(),
dc,
conformance->getLoc());
alreadyComplained = true;
}
diag.Callback(conformance);
}
}
namespace {
/// This is a wrapper of multiple instances of ConformanceChecker to allow us
/// to diagnose and fix code from a more global perspective; for instance,
/// having this wrapper can help issue a fixit that inserts protocol stubs from
/// multiple protocols under checking.
class MultiConformanceChecker {
ASTContext &Context;
llvm::SmallVector<ValueDecl*, 16> UnsatisfiedReqs;
llvm::SmallVector<NormalProtocolConformance*, 4> AllConformances;
llvm::SmallPtrSet<ValueDecl *, 8> CoveredMembers;
/// Check one conformance.
void checkIndividualConformance(
NormalProtocolConformance *conformance);
/// Determine whether the given requirement was left unsatisfied.
bool isUnsatisfiedReq(NormalProtocolConformance *conformance, ValueDecl *req);
public:
MultiConformanceChecker(ASTContext &ctx) : Context(ctx) {}
ASTContext &getASTContext() const { return Context; }
/// Add a conformance into the batched checker.
void addConformance(NormalProtocolConformance *conformance) {
AllConformances.push_back(conformance);
}
/// Peek the unsatisfied requirements collected during conformance checking.
ArrayRef<ValueDecl*> getUnsatisfiedRequirements() {
return llvm::ArrayRef(UnsatisfiedReqs);
}
/// Whether this member is "covered" by one of the conformances.
bool isCoveredMember(ValueDecl *member) const {
return CoveredMembers.count(member) > 0;
}
/// Check all conformances and emit diagnosis globally.
void checkAllConformances();
};
}
bool MultiConformanceChecker::isUnsatisfiedReq(
NormalProtocolConformance *conformance, ValueDecl *req) {
if (conformance->isInvalid()) return false;
if (isa<TypeDecl>(req)) return false;
auto witness = conformance->hasWitness(req)
? conformance->getWitnessUncached(req).getDecl()
: nullptr;
if (!witness) {
auto *proto = conformance->getProtocol();
// If another @objc requirement refers to the same Objective-C
// method, this requirement isn't unsatisfied.
if (getObjCRequirementSibling(
proto, req, [conformance](AbstractFunctionDecl *cand) {
return static_cast<bool>(conformance->getWitness(cand));
})) {
return false;
}
// An optional requirement might not have a witness.
return req->getAttrs().hasAttribute<OptionalAttr>();
}
// If the witness lands within the declaration context of the conformance,
// record it as a "covered" member.
if (witness->getDeclContext() == conformance->getDeclContext())
CoveredMembers.insert(witness);
// The witness might come from a protocol or protocol extension.
if (witness->getDeclContext()->getSelfProtocolDecl())
return true;
return false;
}
static void
diagnoseMatch(ModuleDecl *module, NormalProtocolConformance *conformance,
ValueDecl *req, const RequirementMatch &match);
static void diagnoseProtocolStubFixit(
ASTContext &ctx,
NormalProtocolConformance *conformance,
ArrayRef<ASTContext::MissingWitness> missingWitnesses);
void MultiConformanceChecker::checkAllConformances() {
llvm::SmallVector<ASTContext::MissingWitness, 2> MissingWitnesses;
bool anyInvalid = false;
for (auto *conformance : AllConformances) {
checkIndividualConformance(conformance);
anyInvalid |= conformance->isInvalid();
if (!anyInvalid) {
// Check whether there are any unsatisfied requirements.
auto proto = conformance->getProtocol();
for (auto *req : proto->getProtocolRequirements()) {
// If the requirement is unsatisfied, we might want to warn
// about near misses; record it.
if (isUnsatisfiedReq(conformance, req)) {
UnsatisfiedReqs.push_back(req);
continue;
}
}
}
// Don't diagnose missing witnesses if we can't conform to the protocol
// at all.
if (conformance->getProtocol()->hasMissingRequirements()) {
assert(conformance->isInvalid());
continue;
}
auto LocalMissing = Context.takeDelayedMissingWitnesses(conformance);
if (LocalMissing.empty())
continue;
MissingWitnesses.append(LocalMissing.begin(), LocalMissing.end());
// Diagnose the missing witnesses.
for (auto &Missing : LocalMissing) {
auto requirement = Missing.requirement;
auto matches = Missing.matches;
Context.addDelayedConformanceDiag(conformance, true,
[requirement, matches](NormalProtocolConformance *conformance) {
auto dc = conformance->getDeclContext();
auto *protocol = conformance->getProtocol();
auto *nominal = dc->getSelfNominalTypeDecl();
// Possibly diagnose reason for automatic derivation failure
DerivedConformance::tryDiagnoseFailedDerivation(dc, nominal, protocol);
// Diagnose each of the matches.
for (const auto &match : matches) {
diagnoseMatch(dc->getParentModule(), conformance, requirement, match);
}
});
}
}
// Emit missing witness fixits for all conformances in the batch.
if (!MissingWitnesses.empty()) {
for (auto *conformance : llvm::reverse(AllConformances)) {
if (Context.hasDelayedConformanceErrors(conformance)) {
diagnoseProtocolStubFixit(Context, conformance,
MissingWitnesses);
break;
}
}
}
// Emit diagnostics at the very end.
for (auto *conformance : AllConformances) {
emitDelayedDiags(conformance);
}
}
static void diagnoseConformanceImpliedByConditionalConformance(
DiagnosticEngine &Diags, NormalProtocolConformance *conformance,
NormalProtocolConformance *implyingConf) {
auto proto = conformance->getProtocol();
Type protoType = proto->getDeclaredInterfaceType();
auto implyingProto = implyingConf->getProtocol()->getDeclaredInterfaceType();
auto loc = extractNearestSourceLoc(implyingConf->getDeclContext());
Diags.diagnose(loc, diag::conditional_conformances_cannot_imply_conformances,
conformance->getType(), implyingProto, protoType);
// Now we get down to business: constructing a few options for new
// extensions. They all look like:
//
// extension T: ProtoType where ... {
// <# witnesses #>
// }
//
// The options are:
//
// - if possible, the original bounds relaxed, when the requirements match the
// conforming protocol, e.g. 'X: Hashable where T: Hashable' often
// corresponds to 'X: Equatable where T: Equatable'. This fixit is included
// if all the requirements are conformance constraints to the protocol
// that implies the conformance.
// - the same bounds: ... is copied from the implying extension
// - new bounds: ... becomes a placeholder
//
// We could also suggest adding ", ProtoType" to the existing extension,
// but we don't think having multiple conformances in a single extension
// (especially conditional ones) is good Swift style, and so we don't
// want to encourage it.
auto ext = cast<ExtensionDecl>(implyingConf->getDeclContext());
auto &ctxt = ext->getASTContext();
auto &SM = ctxt.SourceMgr;
StringRef extraIndent;
StringRef indent = Lexer::getIndentationForLine(SM, loc, &extraIndent);
// First, the bits that aren't the requirements are the same for all the
// types.
llvm::SmallString<128> prefix;
llvm::SmallString<128> suffix;
{
llvm::raw_svector_ostream prefixStream(prefix);
llvm::raw_svector_ostream suffixStream(suffix);
prefixStream << "extension " << ext->getExtendedType() << ": " << protoType << " ";
suffixStream << " {\n"
<< indent << extraIndent << "<#witnesses#>\n"
<< indent << "}\n\n"
<< indent;
}
if (!ctxt.LangOpts.DiagnosticsEditorMode) {
// The fixits below are too complicated for the command line: the suggested
// code ends up not being displayed, and the text by itself doesn't help. So
// instead we skip all that and just have some text.
Diags.diagnose(loc,
diag::note_explicitly_state_conditional_conformance_noneditor,
prefix.str());
return;
}
// First, we do the fixit for "matching" requirements (i.e. X: P where T: P).
bool matchingIsValid = true;
llvm::SmallString<128> matchingFixit = prefix;
{
llvm::raw_svector_ostream matchingStream(matchingFixit);
matchingStream << "where ";
bool first = true;
for (const auto &req : implyingConf->getConditionalRequirements()) {
auto firstType = req.getFirstType();
// T: ImplyingProto => T: Proto
if (req.getKind() == RequirementKind::Conformance &&
req.getSecondType()->isEqual(implyingProto)) {
auto comma = first ? "" : ", ";
matchingStream << comma << firstType << ": " << protoType;
first = false;
continue;
}
// something didn't work out, so give up on this fixit.
matchingIsValid = false;
break;
}
}
if (matchingIsValid) {
matchingFixit += suffix;
Diags
.diagnose(loc,
diag::note_explicitly_state_conditional_conformance_relaxed)
.fixItInsert(loc, matchingFixit);
}
// Next, do the fixit for using the same requirements, but be resilient to a
// missing `where` clause: this is one of a few fixits that get emitted here,
// and so is a very low priority diagnostic, and so shouldn't crash.
if (auto TWC = ext->getTrailingWhereClause()) {
llvm::SmallString<128> sameFixit = prefix;
auto CSR =
Lexer::getCharSourceRangeFromSourceRange(SM, TWC->getSourceRange());
sameFixit += SM.extractText(CSR);
sameFixit += suffix;
Diags
.diagnose(loc, diag::note_explicitly_state_conditional_conformance_same)
.fixItInsert(loc, sameFixit);
}
// And finally, just the generic new-requirements one:
llvm::SmallString<128> differentFixit = prefix;
differentFixit += "where <#requirements#>";
differentFixit += suffix;
Diags
.diagnose(loc,
diag::note_explicitly_state_conditional_conformance_different)
.fixItInsert(loc, differentFixit);
}
/// Determine whether there are additional semantic checks for conformance
/// to the given protocol. This should return true when @unchecked can be
/// used to disable those semantic checks.
static bool hasAdditionalSemanticChecks(ProtocolDecl *proto) {
return proto->isSpecificProtocol(KnownProtocolKind::Sendable);
}
/// Determine whether a conformance to this protocol can be determined at
/// runtime for an arbitrary type.
static bool hasRuntimeConformanceInfo(ProtocolDecl *proto) {
return !proto->isMarkerProtocol()
|| proto->isSpecificProtocol(KnownProtocolKind::Copyable)
|| proto->isSpecificProtocol(KnownProtocolKind::Escapable);
}
static void ensureRequirementsAreSatisfied(ASTContext &ctx,
NormalProtocolConformance *conformance);
/// Determine whether the type \c T conforms to the protocol \c Proto,
/// recording the complete witness table if it does.
void MultiConformanceChecker::
checkIndividualConformance(NormalProtocolConformance *conformance) {
PrettyStackTraceConformance trace("type-checking", conformance);
switch (conformance->getState()) {
case ProtocolConformanceState::Incomplete:
// Check the rest of the conformance below.
break;
case ProtocolConformanceState::Checking:
case ProtocolConformanceState::Complete:
// Nothing to do.
return;
}
// Dig out some of the fields from the conformance.
Type T = conformance->getType();
DeclContext *DC = conformance->getDeclContext();
auto Proto = conformance->getProtocol();
auto ProtoType = Proto->getDeclaredInterfaceType();
SourceLoc ComplainLoc = conformance->getLoc();
// Note that we are checking this conformance now.
conformance->setState(ProtocolConformanceState::Checking);
SWIFT_DEFER { conformance->setState(ProtocolConformanceState::Complete); };
// If the protocol itself is invalid, there's nothing we can do.
if (Proto->isInvalid()) {
conformance->setInvalid();
return;
}
// If the protocol requires a class, non-classes are a non-starter.
if (Proto->requiresClass() && !DC->getSelfClassDecl()) {
Context.Diags.diagnose(ComplainLoc,
diag::non_class_cannot_conform_to_class_protocol, T,
ProtoType);
conformance->setInvalid();
return;
}
if (T->isActorType()) {
if (auto globalActor = Proto->getGlobalActorAttr()) {
Context.Diags.diagnose(ComplainLoc,
diag::actor_cannot_conform_to_global_actor_protocol, T,
ProtoType);
CustomAttr *attr;
NominalTypeDecl *actor;
std::tie(attr, actor) = *globalActor;
Context.Diags.diagnose(attr->getLocation(),
diag::protocol_isolated_to_global_actor_here, ProtoType,
actor->getDeclaredInterfaceType());
conformance->setInvalid();
return;
}
}
if (Proto->isObjC()) {
// Foreign classes cannot conform to objc protocols.
if (auto clazz = DC->getSelfClassDecl()) {
std::optional<decltype(diag::cf_class_cannot_conform_to_objc_protocol)>
diagKind;
switch (clazz->getForeignClassKind()) {
case ClassDecl::ForeignKind::Normal:
break;
case ClassDecl::ForeignKind::CFType:
diagKind = diag::cf_class_cannot_conform_to_objc_protocol;
break;
case ClassDecl::ForeignKind::RuntimeOnly:
diagKind = diag::objc_runtime_visible_cannot_conform_to_objc_protocol;
break;
}
if (diagKind) {
Context.Diags.diagnose(ComplainLoc, diagKind.value(), T, ProtoType);
conformance->setInvalid();
return;
}
}
// @objc protocols can't be conditionally-conformed to. We could, in theory,
// front-load the requirement checking to generic-instantiation time (rather
// than conformance-lookup/construction time) and register the conformance
// with the Obj-C runtime when they're satisfied, but we'd still have solve
// the problem with extensions that we check for below.
if (!conformance->getConditionalRequirements().empty()) {
Context.Diags.diagnose(ComplainLoc,
diag::objc_protocol_cannot_have_conditional_conformance,
T, ProtoType);
conformance->setInvalid();
return;
}
// And... even if it isn't conditional, we still don't currently support
// @objc protocols in extensions of Swift generic classes, because there's
// no stable Objective-C class object to install the protocol conformance
// category onto.
if (auto ext = dyn_cast<ExtensionDecl>(DC)) {
if (auto classDecl = ext->getSelfClassDecl()) {
if (classDecl->isGenericContext()) {
if (!classDecl->isTypeErasedGenericClass()) {
Context.Diags.diagnose(ComplainLoc,
diag::objc_protocol_in_generic_extension,
classDecl->isGeneric(), T, ProtoType);
conformance->setInvalid();
return;
}
}
}
}
}
// Not every protocol/type is compatible with conditional conformances.
auto conditionalReqs = conformance->getConditionalRequirements();
if (!conditionalReqs.empty()) {
auto nestedType = DC->getSelfInterfaceType();
if (nestedType->getAnyNominal()) {
// Obj-C generics cannot be looked up at runtime, so we don't support
// conditional conformances involving them. Check the full stack of nested
// types for any obj-c ones.
while (nestedType) {
if (auto clazz = nestedType->getClassOrBoundGenericClass()) {
if (clazz->isTypeErasedGenericClass()) {
Context.Diags.diagnose(ComplainLoc,
diag::objc_generics_cannot_conditionally_conform,
T, ProtoType);
conformance->setInvalid();
return;
}
}
nestedType = nestedType->getNominalParent();
}
}
// If the protocol to which we are conditionally conforming is not a marker
// protocol, the conditional requirements must not involve conformance to a
// protocol that cannot be evaluated at runtime, like most marker protocols.
if (!Proto->isMarkerProtocol()) {
for (const auto &req : conditionalReqs) {
if (req.getKind() == RequirementKind::Conformance &&
!hasRuntimeConformanceInfo(req.getProtocolDecl())) {
Context.Diags.diagnose(
ComplainLoc, diag::marker_protocol_conditional_conformance,
Proto->getName(), req.getFirstType(),
req.getProtocolDecl()->getName());
conformance->setInvalid();
}
}
}
}
// If the protocol contains missing requirements, it can't be conformed to
// at all.
if (Proto->hasMissingRequirements()) {
bool hasDiagnosed = false;
auto *protoFile = Proto->getModuleScopeContext();
if (auto *serialized = dyn_cast<SerializedASTFile>(protoFile)) {
const auto effectiveVers =
getASTContext().LangOpts.EffectiveLanguageVersion;
if (serialized->getLanguageVersionBuiltWith() != effectiveVers) {
Context.Diags.diagnose(ComplainLoc,
diag::protocol_has_missing_requirements_versioned,
T, ProtoType, serialized->getLanguageVersionBuiltWith(),
effectiveVers);
hasDiagnosed = true;
}
}
if (!hasDiagnosed) {
Context.Diags.diagnose(ComplainLoc, diag::protocol_has_missing_requirements,
T, ProtoType);
}
conformance->setInvalid();
return;
}
// Complain about the use of @unchecked for protocols that don't have
// additional semantic checks.
if (conformance->isUnchecked() && !hasAdditionalSemanticChecks(Proto)) {
Context.Diags.diagnose(
ComplainLoc, diag::unchecked_conformance_not_special, ProtoType);
}
bool allowImpliedConditionalConformance = false;
if (Proto->isSpecificProtocol(KnownProtocolKind::Sendable)) {
// In -swift-version 5 mode, a conditional conformance to a protocol can imply
// a Sendable conformance.
if (!Context.LangOpts.isSwiftVersionAtLeast(6))
allowImpliedConditionalConformance = true;
} else if (Proto->isMarkerProtocol()) {
allowImpliedConditionalConformance = true;
}
if (conformance->getSourceKind() == ConformanceEntryKind::Implied &&
!allowImpliedConditionalConformance) {
// We've got something like:
//
// protocol Foo : Proto {}
// extension SomeType : Foo {}
//
// We don't want to allow this when the SomeType : Foo conformance is
// conditional
auto implyingConf = conformance->getImplyingConformance();
// There might be a long chain of implications, e.g. protocol Foo: Proto {}
// protocol Bar: Foo {} extension SomeType: Bar {}, so keep looking all the
// way up.
while (implyingConf->getSourceKind() == ConformanceEntryKind::Implied) {
implyingConf = implyingConf->getImplyingConformance();
}
// If the conditional requirements all have the form `T : Copyable`, then
// we accept the implied conformance with the same conditional requirements.
auto implyingCondReqs = implyingConf->getConditionalRequirements();
bool allCondReqsInvertible = llvm::all_of(implyingCondReqs,
[&](Requirement req) {
return (req.getKind() == RequirementKind::Conformance &&
req.getProtocolDecl()->getInvertibleProtocolKind());
});
if (!allCondReqsInvertible) {
// FIXME:
// We shouldn't suggest including witnesses for the conformance, because
// those suggestions will go in the current DeclContext, but really they
// should go into the new extension we (might) suggest here.
diagnoseConformanceImpliedByConditionalConformance(
Context.Diags, conformance, implyingConf);
conformance->setInvalid();
}
}
// Check that T conforms to all inherited protocols.
for (auto InheritedProto : Proto->getInheritedProtocols()) {
auto InheritedConformance =
DC->getParentModule()->lookupConformance(T, InheritedProto);
if (InheritedConformance.isInvalid() ||
!InheritedConformance.isConcrete()) {
diagnoseConformanceFailure(T, InheritedProto, DC, ComplainLoc);
// Recursive call already diagnosed this problem, but tack on a note
// to establish the relationship.
if (ComplainLoc.isValid()) {
Context.Diags.diagnose(Proto, diag::inherited_protocol_does_not_conform,
T, InheritedProto->getDeclaredInterfaceType());
}
conformance->setInvalid();
return;
}
}
if (conformance->isComplete())
return;
// Resolve all of the type witnesses.
evaluateOrDefault(Context.evaluator,
ResolveTypeWitnessesRequest{conformance},
evaluator::SideEffect());
// Check the requirements from the requirement signature.
ensureRequirementsAreSatisfied(Context, conformance);
// Check non-type requirements.
conformance->resolveValueWitnesses();
}
/// Add the next associated type deduction to the string representation
/// of the deductions, used in diagnostics.
static void addAssocTypeDeductionString(llvm::SmallString<128> &str,
AssociatedTypeDecl *assocType,
Type deduced) {
if (str.empty())
str = " [with ";
else
str += ", ";
str += assocType->getName().str();
str += " = ";
str += deduced.getString();
}
/// Clean up the given declaration type for display purposes.
static Type getTypeForDisplay(ModuleDecl *module, ValueDecl *decl) {
// For a constructor, we only care about the parameter types.
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
return AnyFunctionType::composeTuple(
module->getASTContext(),
ctor->getMethodInterfaceType()->castTo<FunctionType>()->getParams(),
ParameterFlagHandling::IgnoreNonEmpty);
}
Type type = decl->getInterfaceType();
// Redeclaration checking might mark a candidate as `invalid` and
// reset it's type to ErrorType, let's dig out original type to
// make the diagnostic better.
//
// FIXME: Remove this once setInvalid() goes away.
if (auto errorType = type->getAs<ErrorType>()) {
auto originalType = errorType->getOriginalType();
if (!originalType || !originalType->is<AnyFunctionType>())
return type;
type = originalType;
}
// If we're not in a type context, just grab the interface type.
if (!decl->getDeclContext()->isTypeContext())
return type;
// For functions, strip off the 'Self' parameter clause.
if (isa<AbstractFunctionDecl>(decl)) {
if (auto genericFn = type->getAs<GenericFunctionType>()) {
auto sig = genericFn->getGenericSignature();
auto resultFn = genericFn->getResult()->castTo<FunctionType>();
return GenericFunctionType::get(sig,
resultFn->getParams(),
resultFn->getResult(),
resultFn->getExtInfo());
}
return type->castTo<FunctionType>()->getResult();
}
return type;
}
/// Clean up the given requirement type for display purposes.
static Type getRequirementTypeForDisplay(ModuleDecl *module,
NormalProtocolConformance *conformance,
ValueDecl *req) {
auto type = getTypeForDisplay(module, req);
auto substType = [&](Type type, bool isResult) -> Type {
// Replace generic type parameters and associated types with their
// witnesses, when we have them.
auto selfTy = conformance->getProtocol()->getSelfInterfaceType();
auto substSelfTy = conformance->getType();
if (isResult && substSelfTy->getClassOrBoundGenericClass())
substSelfTy = DynamicSelfType::get(selfTy, module->getASTContext());
return type.subst([&](SubstitutableType *dependentType) {
if (dependentType->isEqual(selfTy))
return substSelfTy;
return Type(dependentType);
},
LookUpConformanceInModule(module));
};
if (auto fnTy = type->getAs<AnyFunctionType>()) {
SmallVector<AnyFunctionType::Param, 4> params;
for (auto param : fnTy->getParams()) {
params.push_back(
param.withType(
substType(param.getPlainType(),
/*result*/false)));
}
auto result = substType(fnTy->getResult(), /*result*/true);
auto genericSig = fnTy->getOptGenericSignature();
if (genericSig) {
if (genericSig.getGenericParams().size() > 1) {
genericSig = GenericSignature::get(
genericSig.getGenericParams().slice(1),
genericSig.getRequirements());
} else {
genericSig = nullptr;
}
}
if (genericSig) {
return GenericFunctionType::get(genericSig, params, result,
fnTy->getExtInfo());
}
return FunctionType::get(params, result, fnTy->getExtInfo());
}
return substType(type, /*result*/ true);
}
diag::RequirementKind
swift::getProtocolRequirementKind(ValueDecl *Requirement) {
assert(Requirement->isProtocolRequirement());
if (isa<ConstructorDecl>(Requirement))
return diag::RequirementKind::Constructor;
if (isa<FuncDecl>(Requirement))
return diag::RequirementKind::Func;
if (isa<VarDecl>(Requirement))
return diag::RequirementKind::Var;
assert(isa<SubscriptDecl>(Requirement) && "Unhandled requirement kind");
return diag::RequirementKind::Subscript;
}
SourceLoc OptionalAdjustment::getOptionalityLoc(ValueDecl *witness) const {
// For non-parameter adjustments, use the result type or whole type,
// as appropriate.
if (!isParameterAdjustment()) {
// For a function, use the result type.
if (auto func = dyn_cast<FuncDecl>(witness)) {
return getOptionalityLoc(
func->getResultTypeRepr());
}
// For a subscript, use the element type.
if (auto subscript = dyn_cast<SubscriptDecl>(witness)) {
return getOptionalityLoc(subscript->getElementTypeRepr());
}
// Otherwise, we have a variable.
// FIXME: Dig into the pattern.
return SourceLoc();
}
// For parameter adjustments, dig out the pattern.
ParameterList *params = nullptr;
if (isa<AbstractFunctionDecl>(witness) || isa<SubscriptDecl>(witness)) {
params = getParameterList(witness);
} else {
return SourceLoc();
}
return getOptionalityLoc(params->get(getParameterIndex())->getTypeRepr());
}
SourceLoc OptionalAdjustment::getOptionalityLoc(TypeRepr *tyR) const {
if (!tyR)
return SourceLoc();
switch (getKind()) {
case OptionalAdjustmentKind::None:
llvm_unreachable("not an adjustment");
case OptionalAdjustmentKind::ConsumesUnhandledNil:
case OptionalAdjustmentKind::WillNeverProduceNil:
// The location of the '?' to be inserted is after the type.
return tyR->getEndLoc();
case OptionalAdjustmentKind::ProducesUnhandledNil:
case OptionalAdjustmentKind::WillNeverConsumeNil:
case OptionalAdjustmentKind::RemoveIUO:
case OptionalAdjustmentKind::IUOToOptional:
// Find the location of optionality, below.
break;
}
if (auto optRepr = dyn_cast<OptionalTypeRepr>(tyR))
return optRepr->getQuestionLoc();
if (auto iuoRepr = dyn_cast<ImplicitlyUnwrappedOptionalTypeRepr>(tyR))
return iuoRepr->getExclamationLoc();
return SourceLoc();
}
namespace {
/// Describes the position for optional adjustment made to a witness.
///
/// This is used by the following diagnostics:
/// 1) 'err_protocol_witness_optionality',
/// 2) 'warn_protocol_witness_optionality'
/// 3) 'protocol_witness_optionality_conflict'
enum class OptionalAdjustmentPosition : unsigned {
/// The type of a variable.
VarType = 0,
/// The result type of something.
Result = 1,
/// The parameter type of something.
Param = 2,
/// The parameter types of something.
MultipleParam = 3,
/// Both return and parameter adjustments.
ParamAndReturn = 4,
};
} // end anonymous namespace
/// Classify the provided optionality issues for use in diagnostics.
static OptionalAdjustmentPosition classifyOptionalityIssues(
const SmallVectorImpl<OptionalAdjustment> &adjustments,
ValueDecl *requirement) {
unsigned numParameterAdjustments = 0;
bool hasNonParameterAdjustment = false;
for (const auto &adjustment : adjustments) {
if (adjustment.isParameterAdjustment())
++numParameterAdjustments;
else
hasNonParameterAdjustment = true;
}
if (hasNonParameterAdjustment) {
if (numParameterAdjustments > 0)
return OptionalAdjustmentPosition::ParamAndReturn;
if (isa<VarDecl>(requirement))
return OptionalAdjustmentPosition::VarType;
return OptionalAdjustmentPosition::Result;
}
// Only parameter adjustments.
assert(numParameterAdjustments > 0 && "No adjustments?");
return numParameterAdjustments == 1
? OptionalAdjustmentPosition::Param
: OptionalAdjustmentPosition::MultipleParam;
}
static void addOptionalityFixIts(
const SmallVectorImpl<OptionalAdjustment> &adjustments,
const ASTContext &ctx,
ValueDecl *witness,
InFlightDiagnostic &diag) {
for (const auto &adjustment : adjustments) {
SourceLoc adjustmentLoc = adjustment.getOptionalityLoc(witness);
if (adjustmentLoc.isInvalid())
continue;
switch (adjustment.getKind()) {
case OptionalAdjustmentKind::None:
llvm_unreachable("not an optional adjustment");
case OptionalAdjustmentKind::ProducesUnhandledNil:
case OptionalAdjustmentKind::WillNeverConsumeNil:
case OptionalAdjustmentKind::RemoveIUO:
diag.fixItRemove(adjustmentLoc);
break;
case OptionalAdjustmentKind::WillNeverProduceNil:
case OptionalAdjustmentKind::ConsumesUnhandledNil:
diag.fixItInsertAfter(adjustmentLoc, "?");
break;
case OptionalAdjustmentKind::IUOToOptional:
diag.fixItReplace(adjustmentLoc, "?");
break;
}
}
}
/// Diagnose a requirement match, describing what went wrong (or not).
static void
diagnoseMatch(ModuleDecl *module, NormalProtocolConformance *conformance,
ValueDecl *req, const RequirementMatch &match) {
// If the name doesn't match and that's not the only problem,
// it is likely this witness wasn't intended to be a match at all, so omit
// diagnosis.
if (match.Kind != MatchKind::RenamedMatch &&
!match.Witness->getAttrs().hasAttribute<ImplementsAttr>() &&
match.Witness->getName() &&
req->getName() != match.Witness->getName() &&
!isa<EnumElementDecl>(match.Witness))
return;
// Form a string describing the associated type deductions.
// FIXME: Determine which associated types matter, and only print those.
llvm::SmallString<128> withAssocTypes;
for (auto assocType : conformance->getProtocol()->getAssociatedTypeMembers()) {
if (conformance->usesDefaultDefinition(assocType)) {
Type witness = conformance->getTypeWitness(assocType);
addAssocTypeDeductionString(withAssocTypes, assocType, witness);
}
}
if (!withAssocTypes.empty())
withAssocTypes += "]";
auto &diags = module->getASTContext().Diags;
switch (match.Kind) {
case MatchKind::ExactMatch:
case MatchKind::FewerEffects:
diags.diagnose(match.Witness, diag::protocol_witness_exact_match,
withAssocTypes);
break;
case MatchKind::RequiresNonSendable:
diags.diagnose(match.Witness, diag::protocol_witness_non_sendable,
withAssocTypes,
module->getASTContext().isSwiftVersionAtLeast(6));
break;
case MatchKind::RenamedMatch: {
auto diag = diags.diagnose(match.Witness, diag::protocol_witness_renamed,
req->getName(), withAssocTypes);
// Fix the name.
fixDeclarationName(diag, match.Witness, req->getName());
// Also fix the Objective-C name, if needed.
if (!match.Witness->canInferObjCFromRequirement(req))
fixDeclarationObjCName(diag, match.Witness,
match.Witness->getObjCRuntimeName(),
req->getObjCRuntimeName());
break;
}
case MatchKind::KindConflict:
diags.diagnose(match.Witness, diag::protocol_witness_kind_conflict,
getProtocolRequirementKind(req));
break;
case MatchKind::WitnessInvalid:
// Don't bother to diagnose invalid witnesses; we've already complained
// about them.
break;
case MatchKind::Circularity:
diags.diagnose(match.Witness, diag::protocol_witness_circularity);
break;
case MatchKind::TypeConflict: {
auto witnessType = getTypeForDisplay(module, match.Witness);
if (!isa<TypeDecl>(req) && !isa<EnumElementDecl>(match.Witness)) {
computeFixitsForOverriddenDeclaration(match.Witness, req, [&](bool){
return diags.diagnose(match.Witness,
diag::protocol_witness_type_conflict,
witnessType, withAssocTypes);
});
} else {
diags.diagnose(match.Witness,
diag::protocol_witness_type_conflict,
witnessType, withAssocTypes);
}
break;
}
case MatchKind::MissingRequirement:
diags.diagnose(match.Witness, diag::protocol_witness_missing_requirement,
match.WitnessType, match.MissingRequirement->getSecondType(),
(unsigned)match.MissingRequirement->getKind());
break;
case MatchKind::AsyncConflict:
diags.diagnose(match.Witness, diag::protocol_witness_async_conflict,
cast<AbstractFunctionDecl>(match.Witness)->hasAsync(),
req->isObjC());
break;
case MatchKind::ThrowsConflict:
diags.diagnose(match.Witness, diag::protocol_witness_throws_conflict);
break;
case MatchKind::OptionalityConflict: {
auto &adjustments = match.OptionalAdjustments;
auto issues =
static_cast<unsigned>(classifyOptionalityIssues(adjustments, req));
auto diag = diags.diagnose(match.Witness,
diag::protocol_witness_optionality_conflict,
issues, withAssocTypes);
addOptionalityFixIts(adjustments,
match.Witness->getASTContext(),
match.Witness,
diag);
break;
}
case MatchKind::CompileTimeConstConflict: {
auto witness = match.Witness;
auto missing = !witness->getAttrs().getAttribute<CompileTimeConstAttr>();
auto diag = diags.diagnose(witness, diag::protocol_witness_const_conflict,
missing);
if (missing) {
diag.fixItInsert(witness->getAttributeInsertionLoc(true), "_const");
}
break;
}
case MatchKind::StaticNonStaticConflict: {
auto witness = match.Witness;
auto diag = diags.diagnose(witness, diag::protocol_witness_static_conflict,
!req->isInstanceMember());
if (isa<EnumElementDecl>(witness))
break;
if (req->isInstanceMember()) {
SourceLoc loc;
if (auto FD = dyn_cast<FuncDecl>(witness)) {
loc = FD->getStaticLoc();
} else if (auto VD = dyn_cast<VarDecl>(witness)) {
if (auto PBD = VD->getParentPatternBinding()) {
loc = PBD->getStaticLoc();
}
} else if (auto SD = dyn_cast<SubscriptDecl>(witness)) {
loc = SD->getStaticLoc();
} else {
llvm_unreachable("Unexpected witness");
}
if (loc.isValid())
diag.fixItRemove(loc);
} else {
diag.fixItInsert(witness->getAttributeInsertionLoc(true), "static ");
}
break;
}
case MatchKind::SettableConflict: {
auto witness = match.Witness;
auto diag =
diags.diagnose(witness, diag::protocol_witness_settable_conflict);
if (auto VD = dyn_cast<VarDecl>(witness)) {
if (VD->hasStorage()) {
if (auto PBD = VD->getParentPatternBinding()) {
diag.fixItReplace(PBD->getStartLoc(), getTokenText(tok::kw_var));
}
}
}
break;
}
case MatchKind::PrefixNonPrefixConflict: {
auto witness = match.Witness;
auto diag = diags.diagnose(
witness, diag::protocol_witness_prefix_postfix_conflict, false,
witness->getAttrs().hasAttribute<PostfixAttr>() ? 2 : 0);
// We already emit a fix-it when we're missing the attribute, so only
// emit a fix-it if the attribute is there, but is not correct.
if (auto attr = witness->getAttrs().getAttribute<PostfixAttr>()) {
diag.fixItReplace(attr->getLocation(), "prefix");
}
break;
}
case MatchKind::PostfixNonPostfixConflict: {
auto witness = match.Witness;
auto diag = diags.diagnose(
witness, diag::protocol_witness_prefix_postfix_conflict, true,
witness->getAttrs().hasAttribute<PrefixAttr>() ? 1 : 0);
// We already emit a fix-it when we're missing the attribute, so only
// emit a fix-it if the attribute is there, but is not correct.
if (auto attr = witness->getAttrs().getAttribute<PrefixAttr>()) {
diag.fixItReplace(attr->getLocation(), "postfix");
}
break;
}
case MatchKind::MutatingConflict:
diags.diagnose(match.Witness,
diag::protocol_witness_mutation_modifier_conflict,
SelfAccessKind::Mutating);
break;
case MatchKind::NonMutatingConflict:
// Don't bother about this, because a non-mutating witness can satisfy
// a mutating requirement.
break;
case MatchKind::ConsumingConflict:
diags.diagnose(match.Witness,
diag::protocol_witness_mutation_modifier_conflict,
SelfAccessKind::Consuming);
break;
case MatchKind::RethrowsConflict: {
auto witness = match.Witness;
auto diag =
diags.diagnose(witness, diag::protocol_witness_rethrows_conflict);
auto FD = cast<FuncDecl>(witness);
diag.fixItReplace(FD->getThrowsLoc(), getTokenText(tok::kw_rethrows));
break;
}
case MatchKind::RethrowsByConformanceConflict: {
auto witness = match.Witness;
auto diag =
diags.diagnose(witness,
diag::protocol_witness_rethrows_by_conformance_conflict);
break;
}
case MatchKind::NonObjC:
diags.diagnose(match.Witness, diag::protocol_witness_not_objc);
break;
case MatchKind::MissingDifferentiableAttr: {
auto *witness = match.Witness;
// Emit a note and fix-it showing the missing requirement `@differentiable`
// attribute.
auto *reqAttr = cast<DifferentiableAttr>(match.UnmetAttribute);
assert(reqAttr);
// Omit printing `wrt:` clause if attribute's differentiability
// parameters match inferred differentiability parameters.
auto *original = cast<AbstractFunctionDecl>(witness);
auto *whereClauseGenEnv =
reqAttr->getDerivativeGenericEnvironment(original);
auto *inferredParameters = TypeChecker::inferDifferentiabilityParameters(
original, whereClauseGenEnv);
bool omitWrtClause = reqAttr->getParameterIndices()->getNumIndices() ==
inferredParameters->getNumIndices();
std::string reqDiffAttrString;
llvm::raw_string_ostream os(reqDiffAttrString);
reqAttr->print(os, req, omitWrtClause);
os.flush();
diags
.diagnose(
witness,
diag::protocol_witness_missing_differentiable_attr_invalid_context,
reqDiffAttrString, req, conformance->getType(),
conformance->getProtocol()->getDeclaredInterfaceType())
.fixItInsert(match.Witness->getStartLoc(), reqDiffAttrString + ' ');
break;
}
case MatchKind::EnumCaseWithAssociatedValues:
diags.diagnose(match.Witness, diag::protocol_witness_enum_case_payload);
break;
}
}
ConformanceChecker::ConformanceChecker(
ASTContext &ctx, NormalProtocolConformance *conformance)
: WitnessChecker(ctx, conformance->getProtocol(), conformance->getType(),
conformance->getDeclContext()),
Conformance(conformance), Loc(conformance->getLoc()) {}
ConformanceChecker::~ConformanceChecker() {}
void ConformanceChecker::recordWitness(ValueDecl *requirement,
const RequirementMatch &match) {
// If we already recorded this witness, don't do so again.
if (Conformance->hasWitness(requirement)) {
assert(Conformance->getWitnessUncached(requirement).getDecl() ==
match.Witness &&
"Deduced different witnesses?");
return;
}
// Record this witness in the conformance.
auto witness = match.getWitness(getASTContext());
Conformance->setWitness(requirement, witness);
}
void ConformanceChecker::recordOptionalWitness(ValueDecl *requirement) {
// If we already recorded this witness, don't do so again.
if (Conformance->hasWitness(requirement)) {
assert(!Conformance->getWitnessUncached(requirement).getDecl() &&
"Already have a non-optional witness?");
return;
}
// Record that there is no witness.
Conformance->setWitness(requirement, Witness());
}
void ConformanceChecker::recordInvalidWitness(ValueDecl *requirement) {
assert(Conformance->isInvalid());
// If we already recorded this witness, don't do so again.
if (Conformance->hasWitness(requirement)) {
assert(!Conformance->getWitnessUncached(requirement).getDecl() &&
"Already have a non-optional witness?");
return;
}
// Record that there is no witness.
Conformance->setWitness(requirement, Witness());
}
/// Returns the location we should use for a primary diagnostic (an error or
/// warning) that concerns \p witness but arose as part of checking
/// \p conformance.
///
/// Ideally we'd like to use the location of \p witness for this, but that
/// could be confusing if the conformance is declared somewhere else. Moreover,
/// if the witness and the conformance declaration are in different files, we
/// could be issuing diagnostics in one file that wouldn't be present if we
/// recompiled just that file. Therefore, we only use the witness's location if
/// it's in the same type or extension that declares the conformance.
static SourceLoc
getLocForDiagnosingWitness(const NormalProtocolConformance *conformance,
const ValueDecl *witness) {
if (witness && witness->getDeclContext() == conformance->getDeclContext()) {
SourceLoc witnessLoc = witness->getLoc();
if (witnessLoc.isValid())
return witnessLoc;
}
return conformance->getLoc();
}
/// Emits a "'foo' declared here" note unless \p mainDiagLoc is already the
/// location of \p value.
static void emitDeclaredHereIfNeeded(DiagnosticEngine &diags,
SourceLoc mainDiagLoc,
const ValueDecl *value) {
if (!value)
return;
if (mainDiagLoc == value->getLoc())
return;
diags.diagnose(value, diag::decl_declared_here, value);
}
/// Whether this declaration has the 'distributed' modifier on it.
static bool isDistributedDecl(ValueDecl *decl) {
if (auto func = dyn_cast<AbstractFunctionDecl>(decl))
return func->isDistributed();
if (auto var = dyn_cast<VarDecl>(decl))
return var->isDistributed();
return false;
}
/// Determine whether there was an explicit global actor attribute on the
/// given declaration.
static bool hasExplicitGlobalActorAttr(ValueDecl *decl) {
auto globalActorAttr = decl->getGlobalActorAttr();
if (!globalActorAttr)
return false;
return !globalActorAttr->first->isImplicit();
}
std::optional<ActorIsolation>
ConformanceChecker::checkActorIsolation(ValueDecl *requirement,
ValueDecl *witness,
bool &usesPreconcurrency) {
// Determine the isolation of the requirement itself.
auto requirementIsolation = getActorIsolation(requirement);
if (requirementIsolation.requiresSubstitution()) {
auto substitutingType = DC->mapTypeIntoContext(Conformance->getType());
auto subs = SubstitutionMap::getProtocolSubstitutions(
Proto, substitutingType, ProtocolConformanceRef(Conformance));
requirementIsolation = requirementIsolation.subst(subs);
}
SourceLoc loc = witness->getLoc();
if (loc.isInvalid())
loc = Conformance->getLoc();
auto refResult = ActorReferenceResult::forReference(
getDeclRefInContext(witness), witness->getLoc(), DC, std::nullopt,
std::nullopt, std::nullopt, requirementIsolation);
bool sameConcurrencyDomain = false;
// If the requirement is isolated (explicitly or implicitly) or
// explicitly marked as `nonisolated` it means that the protocol
// has adopted concurrency and `@preconcurrency` doesn't apply.
bool isPreconcurrency =
Conformance->isPreconcurrency() &&
!(requirementIsolation.isActorIsolated() ||
requirement->getAttrs().hasAttribute<NonisolatedAttr>());
switch (refResult) {
case ActorReferenceResult::SameConcurrencyDomain:
// If the witness has distributed-actor isolation, we have extra
// checking to do.
if (refResult.isolation.isDistributedActor()) {
sameConcurrencyDomain = true;
break;
}
// Witnessing `async` requirement with an isolated synchronous
// declaration is done via async witness thunk which requires
// a hop to the expected concurrency domain.
if (isAsyncDecl(requirement) && !isAsyncDecl(witness))
return refResult.isolation;
// Otherwise, we're done.
return std::nullopt;
case ActorReferenceResult::ExitsActorToNonisolated:
if (!isPreconcurrency) {
diagnoseNonSendableTypesInReference(
/*base=*/nullptr, getDeclRefInContext(witness),
DC, loc, SendableCheckReason::Conformance);
} else {
// We depended on @preconcurrency since we were exiting an isolation
// domain.
usesPreconcurrency = true;
}
return std::nullopt;
case ActorReferenceResult::EntersActor:
// Handled below.
break;
}
// Keep track of what modifiers are missing from the requirement and witness,
// so we can decide what to diagnose.
enum class MissingFlags {
RequirementAsync = 1 << 0,
RequirementThrows = 1 << 1,
WitnessDistributed = 1 << 2,
};
OptionSet<MissingFlags> missingOptions;
// If the witness is accessible across actors and the requirement is not
// async, we need an async requirement.
// FIXME: feels like ActorReferenceResult should be reporting this back to
// us somehow.
// To enter the actor, we always need the requirement to be `async`.
if (!sameConcurrencyDomain &&
!isAsyncDecl(requirement) &&
!isAccessibleAcrossActors(witness, refResult.isolation, DC))
missingOptions |= MissingFlags::RequirementAsync;
// If we are entering a distributed actor, the witness must be 'distributed'
// and we need the requirement to be 'throws'.
bool isDistributed = refResult.isolation.isDistributedActor() &&
!witness->getAttrs().hasAttribute<NonisolatedAttr>();
if (isDistributed) {
// Check if the protocol where the requirement originates from
// is a distributed actor constrained one.
if (cast<ProtocolDecl>(requirement->getDeclContext())->isDistributedActor()) {
// The requirement was declared in a DistributedActor constrained proto.
//
// This means casting up to this `P` won't "strip off" the
// "distributed-ness" of the type, and all call-sites will be checking
// distributed isolation.
//
// This means that we can actually allow these specific requirements,
// to be witnessed without the distributed keyword (!), but they won't be
// possible to be called unless:
// - from inside the distributed actor (self),
// - on a known-to-be-local distributed actor reference.
//
// This allows us to implement protocols where a local distributed actor
// registers "call me when something happens", and that call can be
// expressed as non-distributed function which we are guaranteed to be
// able to call, since the whenLocal will give us access to this actor as
// known-to-be-local, so we can invoke this method.
// If the requirement is distributed, we still need to require it on the witness though.
// We DO allow a non-distributed requirement to be witnessed here though!
if (isDistributedDecl(requirement) && !isDistributedDecl(witness))
missingOptions |= MissingFlags::WitnessDistributed;
} else {
// The protocol requirement comes from a normal (non-distributed actor)
// protocol; so the only witnesses allowed are such that we can witness
// them using a distributed, or nonisolated functions.
// If we're coming from a non-distributed requirement,
// then the requirement must be 'throws' to accommodate failure.
if (!isThrowsDecl(requirement))
missingOptions |= MissingFlags::RequirementThrows;
// If the witness is distributed, it is able to witness a requirement
// only if the requirement is `async throws`.
if (!isDistributedDecl(witness) && !missingOptions)
missingOptions |= MissingFlags::WitnessDistributed;
}
}
// If we aren't missing anything or this is a witness to a `@preconcurrency`
// conformance, do a Sendable check and move on.
if (!missingOptions || isPreconcurrency) {
// FIXME: Disable Sendable checking when the witness is an initializer
// that is explicitly marked nonisolated.
if (isa<ConstructorDecl>(witness) &&
witness->getAttrs().hasAttribute<NonisolatedAttr>())
return std::nullopt;
if (!isPreconcurrency) {
// Check that the results of the witnessing method are sendable
diagnoseNonSendableTypesInReference(
/*base=*/nullptr, getDeclRefInContext(witness),
DC, loc, SendableCheckReason::Conformance,
getActorIsolation(witness), FunctionCheckKind::Results);
// If this requirement is a function, check that its parameters are Sendable as well
if (isa<AbstractFunctionDecl>(requirement)) {
diagnoseNonSendableTypesInReference(
/*base=*/nullptr, getDeclRefInContext(requirement),
requirement->getInnermostDeclContext(), requirement->getLoc(),
SendableCheckReason::Conformance, getActorIsolation(witness),
FunctionCheckKind::Params, loc);
}
} else {
// We depended on @preconcurrency to suppress Sendable checking.
usesPreconcurrency = true;
}
// If the witness is accessible across actors, we don't need to consider it
// isolated.
if (isAccessibleAcrossActors(witness, refResult.isolation, DC))
return std::nullopt;
if (refResult.isolation.isActorIsolated()) {
if (isAsyncDecl(requirement) && !isAsyncDecl(witness))
return refResult.isolation;
// Always treat `@preconcurrency` witnesses as isolated.
if (isPreconcurrency &&
missingOptions.contains(MissingFlags::RequirementAsync))
return refResult.isolation;
}
return std::nullopt;
}
// Limit the behavior of the diagnostic based on context.
// If we're working with requirements imported from Clang, or with global
// actor isolation in general, use the default diagnostic behavior based
// on the conformance context.
DiagnosticBehavior behavior = DiagnosticBehavior::Unspecified;
if (requirement->hasClangNode() ||
refResult.isolation.isGlobalActor() ||
requirementIsolation.isGlobalActor()) {
// If the witness or requirement has global actor isolation, downgrade
// based on context. Use the witness itself as the context, because
// an explicitly isolated witness should not suppress diagnostics.
behavior = SendableCheckContext(
witness->getInnermostDeclContext()).defaultDiagnosticBehavior();
}
// If the witness is a non-Sendable 'let', compiler versions <= 5.10
// didn't diagnose this code, so downgrade the error to an warning
// until Swift 6.
if (auto *var = dyn_cast<VarDecl>(witness)) {
ActorReferenceResult::Options options = std::nullopt;
isLetAccessibleAnywhere(
witness->getDeclContext()->getParentModule(),
var, options);
if (options.contains(ActorReferenceResult::Flags::Preconcurrency)) {
behavior = DiagnosticBehavior::Warning;
}
}
// Complain that this witness cannot conform to the requirement due to
// actor isolation.
witness->diagnose(diag::actor_isolated_witness,
isDistributed && !isDistributedDecl(witness),
refResult.isolation, witness, requirementIsolation)
.limitBehaviorUntilSwiftVersion(behavior, 6);
// If we need 'distributed' on the witness, add it.
if (missingOptions.contains(MissingFlags::WitnessDistributed)) {
witness->diagnose(
diag::note_add_distributed_to_decl, witness)
.fixItInsert(witness->getAttributeInsertionLoc(true),
"distributed ");
missingOptions -= MissingFlags::WitnessDistributed;
}
// If 'nonisolated' or 'preconcurrency' might help us, provide those as
// options.
if (!isDistributedDecl(requirement) && !isDistributedDecl(witness)) {
// One way to address the issue is to make the witness function nonisolated.
if ((isa<AbstractFunctionDecl>(witness) || isa<SubscriptDecl>(witness)) &&
!hasExplicitGlobalActorAttr(witness)) {
witness->diagnose(diag::note_add_nonisolated_to_decl, witness)
.fixItInsert(witness->getAttributeInsertionLoc(true), "nonisolated ");
}
// Another way to address the issue is to mark the conformance as
// "preconcurrency".
if (Conformance->getSourceKind() == ConformanceEntryKind::Explicit &&
!Conformance->isPreconcurrency() &&
!suggestedPreconcurrency &&
!requirementIsolation.isActorIsolated()) {
Context.Diags.diagnose(Conformance->getProtocolNameLoc(),
diag::add_preconcurrency_to_conformance,
Proto->getName())
.fixItInsert(Conformance->getProtocolNameLoc(), "@preconcurrency ");
suggestedPreconcurrency = true;
}
}
// If there are remaining options, they are missing async/throws on the
// requirement itself. If we have a source location for the requirement,
// provide those in a note.
if (missingOptions && requirement->getLoc().isValid() &&
isa<AbstractFunctionDecl>(requirement)) {
int suggestAddingModifiers = 0;
std::string modifiers;
if (missingOptions.contains(MissingFlags::RequirementAsync)) {
suggestAddingModifiers += 1;
modifiers += "async ";
}
if (missingOptions.contains(MissingFlags::RequirementThrows)) {
suggestAddingModifiers += 2;
modifiers += "throws ";
}
auto diag = requirement->diagnose(diag::note_add_async_and_throws_to_decl,
witness, suggestAddingModifiers);
// Figure out where to insert the modifiers so we can emit a Fix-It.
SourceLoc insertLoc;
bool insertAfter = false;
if (auto requirementAbstractFunc =
dyn_cast<AbstractFunctionDecl>(requirement)) {
if (requirementAbstractFunc->getAsyncLoc().isValid()) {
// Insert before the "async" (we only have throws).
insertLoc = requirementAbstractFunc->getAsyncLoc();
insertAfter = true;
modifiers = " throws";
} else if (requirementAbstractFunc->getThrowsLoc().isValid()) {
// Insert before the "throws" (we only have async)".
insertLoc = requirementAbstractFunc->getThrowsLoc();
}
// Insert after the parentheses.
if (insertLoc.isInvalid()) {
insertLoc = requirementAbstractFunc->getParameters()->getRParenLoc();
insertAfter = true;
modifiers = " " + modifiers.substr(0, modifiers.size() - 1);
}
}
if (insertLoc.isValid()) {
if (insertAfter)
diag.fixItInsertAfter(insertLoc, modifiers);
else
diag.fixItInsert(insertLoc, modifiers);
}
} else {
requirement->diagnose(diag::decl_declared_here, requirement);
}
return std::nullopt;
}
/// Check for ill-formed uses of Objective-C generics in a type witness.
static bool checkObjCTypeErasedGenerics(NormalProtocolConformance *conformance,
AssociatedTypeDecl *assocType,
Type type, TypeDecl *typeDecl) {
auto *dc = conformance->getDeclContext();
auto *proto = conformance->getProtocol();
// Objective-C's type-erased generics don't allow the type arguments
// to be extracted from an instance (or a metatype), so we cannot refer to
// the type parameters from an associated type. Check that here.
auto &ctx = dc->getASTContext();
if (!ctx.LangOpts.EnableObjCInterop && type->hasError())
return false;
auto classDecl = dc->getSelfClassDecl();
if (!classDecl) return false;
if (!classDecl->isTypeErasedGenericClass()) return false;
// Concrete types are okay.
if (!type->getCanonicalType()->hasTypeParameter()) return false;
// Find one of the generic parameters named. It doesn't matter
// which one.
Type genericParam;
(void)type.findIf([&](Type type) {
if (auto gp = type->getAs<GenericTypeParamType>()) {
genericParam = gp;
return true;
}
return false;
});
// Diagnose the problem.
SourceLoc diagLoc = getLocForDiagnosingWitness(conformance, typeDecl);
ctx.Diags.diagnose(diagLoc, diag::type_witness_objc_generic_parameter,
type, genericParam, !genericParam.isNull(), assocType,
proto);
emitDeclaredHereIfNeeded(ctx.Diags, diagLoc, typeDecl);
return true;
}
namespace {
/// Helper class for use with ConformanceChecker::diagnoseOrDefer when a witness
/// needs to be marked as '\@usableFromInline'.
class DiagnoseUsableFromInline {
const ValueDecl *witness;
public:
explicit DiagnoseUsableFromInline(const ValueDecl *witness)
: witness(witness) {
assert(witness);
}
void operator()(const NormalProtocolConformance *conformance) {
auto proto = conformance->getProtocol();
ASTContext &ctx = proto->getASTContext();
SourceLoc diagLoc = getLocForDiagnosingWitness(conformance, witness);
ctx.Diags.diagnose(diagLoc, diag::witness_not_usable_from_inline, witness,
proto)
.warnUntilSwiftVersion(5);
emitDeclaredHereIfNeeded(ctx.Diags, diagLoc, witness);
}
};
}
/// Helper function for diagnostics when a witness needs to be seated at a
/// required access level.
static void diagnoseWitnessFixAccessLevel(DiagnosticEngine &diags,
ValueDecl *decl,
AccessLevel requiredAccess,
bool isForSetter = false) {
bool shouldMoveToAnotherExtension = false;
bool shouldUseDefaultAccess = false;
if (auto extDecl = dyn_cast<ExtensionDecl>(decl->getDeclContext())) {
if (auto attr = extDecl->getAttrs().getAttribute<AccessControlAttr>()) {
auto extAccess = std::max(attr->getAccess(), AccessLevel::FilePrivate);
if (extAccess < requiredAccess) {
shouldMoveToAnotherExtension = true;
} else if (extAccess == requiredAccess) {
assert(decl->getFormalAccess() < requiredAccess &&
"witness is accessible?");
shouldUseDefaultAccess = true;
}
}
}
// If decl lives in an extension that forbids the required level, we should
// move it to another extension where the required level is possible;
// otherwise, we simply mark decl as the required level.
if (shouldMoveToAnotherExtension) {
diags.diagnose(decl, diag::witness_move_to_another_extension,
decl->getDescriptiveKind(), requiredAccess);
} else {
auto fixItDiag = diags.diagnose(decl, diag::witness_fix_access,
decl->getDescriptiveKind(),
requiredAccess);
fixItAccess(fixItDiag, decl, requiredAccess, isForSetter,
shouldUseDefaultAccess);
}
}
/// Whether this protocol is the Objective-C "NSObject" protocol.
static bool isNSObjectProtocol(ProtocolDecl *proto) {
if (proto->getNameStr() != "NSObjectProtocol")
return false;
return proto->hasClangNode();
}
static Type getTupleConformanceTypeWitness(DeclContext *dc,
AssociatedTypeDecl *assocType) {
auto genericSig = dc->getGenericSignatureOfContext();
assert(genericSig.getGenericParams().size() == 1);
auto paramTy = genericSig.getGenericParams()[0];
auto elementTy = DependentMemberType::get(paramTy, assocType);
auto expansionTy = PackExpansionType::get(elementTy, paramTy);
return TupleType::get(TupleTypeElt(expansionTy), dc->getASTContext());
}
bool swift::
printRequirementStub(ValueDecl *Requirement, DeclContext *Adopter,
Type AdopterTy, SourceLoc TypeLoc, raw_ostream &OS) {
if (isa<ConstructorDecl>(Requirement)) {
if (auto CD = Adopter->getSelfClassDecl()) {
if (!CD->isSemanticallyFinal() && isa<ExtensionDecl>(Adopter)) {
// In this case, user should mark class as 'final' or define
// 'required' initializer directly in the class definition.
return false;
}
}
}
if (auto MissingTypeWitness = dyn_cast<AssociatedTypeDecl>(Requirement)) {
if (MissingTypeWitness->hasDefaultDefinitionType()) {
// For type witnesses with default definitions, we don't print the stub.
return false;
}
}
// FIXME: Infer body indentation from the source rather than hard-coding
// 4 spaces.
ASTContext &Ctx = Requirement->getASTContext();
StringRef ExtraIndent;
StringRef CurrentIndent =
Lexer::getIndentationForLine(Ctx.SourceMgr, TypeLoc, &ExtraIndent);
std::string StubIndent = (CurrentIndent + ExtraIndent).str();
ExtraIndentStreamPrinter Printer(OS, StubIndent);
Printer.printNewline();
AccessLevel Access =
std::min(
/* Access of the context */
Adopter->getSelfNominalTypeDecl()->getFormalAccess(),
/* Access of the protocol */
Requirement->getDeclContext()->getSelfProtocolDecl()->
getFormalAccess());
if (Access == AccessLevel::Public)
Printer << "public ";
if (auto MissingTypeWitness = dyn_cast<AssociatedTypeDecl>(Requirement)) {
Printer << "typealias " << MissingTypeWitness->getName() << " = ";
if (isa<BuiltinTupleDecl>(Adopter->getSelfNominalTypeDecl())) {
auto expectedTy = getTupleConformanceTypeWitness(Adopter, MissingTypeWitness);
Printer << expectedTy.getString();
} else {
Printer << "<#type#>";
}
Printer << "\n";
} else {
if (isa<ConstructorDecl>(Requirement)) {
if (auto CD = Adopter->getSelfClassDecl()) {
if (!CD->isFinal()) {
Printer << "required ";
} else if (isa<ExtensionDecl>(Adopter)) {
Printer << "convenience ";
}
}
}
PrintOptions Options = PrintOptions::printForDiagnostics(
AccessLevel::Private, Ctx.TypeCheckerOpts.PrintFullConvention);
Options.PrintDocumentationComments = false;
Options.PrintAccess = false;
Options.SkipAttributes = true;
Options.FunctionDefinitions = true;
Options.PrintAccessorBodiesInProtocols = true;
Options.FullyQualifiedTypesIfAmbiguous = true;
bool AdopterIsClass = Adopter->getSelfClassDecl() != nullptr;
// Skip 'mutating' only inside classes: mutating methods usually
// don't have a sensible non-mutating implementation.
if (AdopterIsClass)
Options.ExcludeAttrList.push_back(DeclAttrKind::Mutating);
// 'nonmutating' is only meaningful on value type member accessors.
if (AdopterIsClass || !isa<AbstractStorageDecl>(Requirement))
Options.ExcludeAttrList.push_back(DeclAttrKind::NonMutating);
// FIXME: Once we support move-only types in generics, remove this if the
// conforming type is move-only. Until then, don't suggest printing
// ownership modifiers on a protocol requirement.
Options.ExcludeAttrList.push_back(DeclAttrKind::LegacyConsuming);
Options.ExcludeAttrList.push_back(DeclAttrKind::Consuming);
Options.ExcludeAttrList.push_back(DeclAttrKind::Borrowing);
Options.FunctionBody = [&](const ValueDecl *VD, ASTPrinter &Printer) {
Printer << " {";
Printer.printNewline();
Printer << ExtraIndent << getCodePlaceholder();
Printer.printNewline();
Printer << "}";
};
Options.setBaseType(AdopterTy);
Options.CurrentModule = Adopter->getParentModule();
if (isa<NominalTypeDecl>(Adopter)) {
// Create a variable declaration instead of a computed property in
// nominal types...
Options.PrintPropertyAccessors = false;
// ...but a non-mutating setter requirement will force us into a
// computed property in non-class adopters; don't leave the user
// wondering why a conformance fails.
if (!AdopterIsClass)
if (const auto VD = dyn_cast<VarDecl>(Requirement))
if (const auto Set = VD->getOpaqueAccessor(AccessorKind::Set))
if (Set->getAttrs().hasAttribute<NonMutatingAttr>())
Options.PrintPropertyAccessors = true;
}
Requirement->print(Printer, Options);
Printer << "\n";
}
return true;
}
/// Print the stubs for an array of witnesses, either type or value, to
/// FixitString. If for a witness we cannot have stub printed, insert it to
/// NoStubRequirements.
static void
printProtocolStubFixitString(SourceLoc TypeLoc, ProtocolConformance *Conf,
ArrayRef<ASTContext::MissingWitness> MissingWitnesses,
std::string &FixitString,
llvm::SetVector<ValueDecl*> &NoStubRequirements) {
llvm::raw_string_ostream FixitStream(FixitString);
std::for_each(MissingWitnesses.begin(), MissingWitnesses.end(),
[&](const ASTContext::MissingWitness &Missing) {
if (!printRequirementStub(
Missing.requirement, Conf->getDeclContext(), Conf->getType(),
TypeLoc, FixitStream)) {
NoStubRequirements.insert(Missing.requirement);
}
});
}
/// Filter the given array of protocol requirements and produce a new vector
/// containing the non-conflicting requirements to be implemented by the given
/// \c Adoptee type.
static llvm::SmallVector<ASTContext::MissingWitness, 4>
filterProtocolRequirements(
ArrayRef<ASTContext::MissingWitness> MissingWitnesses, Type Adoptee) {
llvm::SmallVector<ASTContext::MissingWitness, 4> Filtered;
if (MissingWitnesses.empty()) {
return Filtered;
}
const auto getProtocolSubstitutionMap = [&](ValueDecl *Req) {
auto *const PD = cast<ProtocolDecl>(Req->getDeclContext());
return SubstitutionMap::getProtocolSubstitutions(
PD, Adoptee, ProtocolConformanceRef(PD));
};
llvm::SmallDenseMap<DeclName, llvm::SmallVector<ValueDecl *, 2>, 4>
DeclsByName;
for (const auto &Missing: MissingWitnesses) {
auto Req = Missing.requirement;
if (DeclsByName.find(Req->getName()) == DeclsByName.end()) {
DeclsByName[Req->getName()] = {Req};
Filtered.push_back(Missing);
continue;
}
auto OverloadTy = Req->getOverloadSignatureType();
if (OverloadTy) {
OverloadTy =
OverloadTy.subst(getProtocolSubstitutionMap(Req))->getCanonicalType();
}
if (llvm::any_of(DeclsByName[Req->getName()], [&](ValueDecl *OtherReq) {
auto OtherOverloadTy = OtherReq->getOverloadSignatureType();
if (OtherOverloadTy) {
OtherOverloadTy =
OtherOverloadTy.subst(getProtocolSubstitutionMap(OtherReq))
->getCanonicalType();
}
return conflicting(Req->getASTContext(), Req->getOverloadSignature(),
OverloadTy, OtherReq->getOverloadSignature(),
OtherOverloadTy,
/*wouldConflictInSwift5*/ nullptr,
/*skipProtocolExtensionCheck*/ true);
})) {
continue;
}
DeclsByName[Req->getName()].push_back(Req);
Filtered.push_back(Missing);
}
return Filtered;
}
/// Sometimes a witness isn't really diagnosed as missing if we have two
/// complementary Objective-C protocol requirements, only one of which must
/// be witnessed.
static bool
hasSatisfiedObjCSiblingRequirement(ProtocolDecl *proto,
NormalProtocolConformance *conformance,
ValueDecl *requirement) {
assert(proto == requirement->getDeclContext());
assert(proto == conformance->getProtocol());
// We only care about functions.
auto fnRequirement = dyn_cast<AbstractFunctionDecl>(requirement);
if (fnRequirement == nullptr)
return false;
if (!proto->isObjC())
return false;
if (getObjCRequirementSibling(
proto, fnRequirement,
[proto, conformance](AbstractFunctionDecl *candidate) {
// FIXME: This performs a recursive lookup in the lazy case, so
// we have to dodge the cycle.
auto &ctx = proto->getASTContext();
// If we've already resolved the sibling candidate to a valid
// witness, don't record a missing witness.
if (conformance->getWitnessUncached(candidate))
return true;
// If we're currently resolving the sibling candidate, it may
// be that the sibling is missing also, so we must record a
// missing witness.
if (ctx.evaluator.hasActiveRequest(
ValueWitnessRequest{conformance, candidate}))
return false;
// Otherwise, resolve the sibling cadidate; if its valid, don't
// record a missing witness.
return static_cast<bool>(conformance->getWitness(candidate));
})) {
return true;
}
return false;
}
static void diagnoseProtocolStubFixit(
NormalProtocolConformance *Conf,
llvm::SmallVector<ASTContext::MissingWitness, 4> MissingWitnesses) {
DeclContext *DC = Conf->getDeclContext();
auto &Ctx = DC->getASTContext();
SourceLoc ComplainLoc = Conf->getLoc();
// The location where to insert stubs.
SourceLoc FixitLocation;
// The location where the type starts.
SourceLoc TypeLoc;
if (auto Extension = dyn_cast<ExtensionDecl>(DC)) {
FixitLocation = Extension->getBraces().Start;
TypeLoc = Extension->getStartLoc();
} else if (auto Nominal = dyn_cast<NominalTypeDecl>(DC)) {
FixitLocation = Nominal->getBraces().Start;
TypeLoc = Nominal->getStartLoc();
} else {
llvm_unreachable("Unknown adopter kind");
}
std::string FixIt;
llvm::SetVector<ValueDecl*> NoStubRequirements;
// Print stubs for all known missing witnesses.
printProtocolStubFixitString(TypeLoc, Conf, MissingWitnesses, FixIt,
NoStubRequirements);
auto &Diags = Ctx.Diags;
// If we are in editor mode, squash all notes into a single fixit.
if (Ctx.LangOpts.DiagnosticsEditorMode) {
if (!FixIt.empty()) {
Diags.diagnose(ComplainLoc, diag::missing_witnesses_general).
fixItInsertAfter(FixitLocation, FixIt);
}
return;
}
auto &SM = Ctx.SourceMgr;
auto FixitBufferId = SM.findBufferContainingLoc(FixitLocation);
for (const auto &Missing : MissingWitnesses) {
auto VD = Missing.requirement;
// Don't ever emit a diagnostic for a requirement in the NSObject
// protocol. They're not implementable.
if (isNSObjectProtocol(VD->getDeclContext()->getSelfProtocolDecl()))
continue;
// Whether this VD has a stub printed.
bool AddFixit = !NoStubRequirements.count(VD);
bool SameFile = VD->getLoc().isValid() ?
SM.findBufferContainingLoc(VD->getLoc()) == FixitBufferId : false;
// Issue diagnostics for witness types.
if (auto MissingTypeWitness = dyn_cast<AssociatedTypeDecl>(VD)) {
std::optional<InFlightDiagnostic> diag;
if (isa<BuiltinTupleDecl>(DC->getSelfNominalTypeDecl())) {
auto expectedTy = getTupleConformanceTypeWitness(DC, MissingTypeWitness);
diag.emplace(Diags.diagnose(MissingTypeWitness, diag::no_witnesses_type_tuple,
MissingTypeWitness, expectedTy));
} else {
diag.emplace(Diags.diagnose(MissingTypeWitness, diag::no_witnesses_type,
MissingTypeWitness));
}
if (SameFile) {
// If the protocol member decl is in the same file of the stub,
// we can directly associate the fixit with the note issued to the
// requirement.
diag->fixItInsertAfter(FixitLocation, FixIt);
} else {
diag.value().flush();
// Otherwise, we have to issue another note to carry the fixit,
// because editor may assume the fixit is in the same file with the note.
if (Ctx.LangOpts.DiagnosticsEditorMode) {
Diags.diagnose(ComplainLoc, diag::missing_witnesses_general)
.fixItInsertAfter(FixitLocation, FixIt);
}
}
continue;
}
// Issue diagnostics for witness values.
Type RequirementType =
getRequirementTypeForDisplay(DC->getParentModule(), Conf, VD);
if (AddFixit) {
if (SameFile) {
// If the protocol member decl is in the same file of the stub,
// we can directly associate the fixit with the note issued to the
// requirement.
Diags
.diagnose(VD, diag::no_witnesses, getProtocolRequirementKind(VD),
VD, RequirementType, true)
.fixItInsertAfter(FixitLocation, FixIt);
} else {
// Otherwise, we have to issue another note to carry the fixit,
// because editor may assume the fixit is in the same file with the note.
Diags.diagnose(VD, diag::no_witnesses, getProtocolRequirementKind(VD),
VD, RequirementType, false);
if (Ctx.LangOpts.DiagnosticsEditorMode) {
Diags.diagnose(ComplainLoc, diag::missing_witnesses_general)
.fixItInsertAfter(FixitLocation, FixIt);
}
}
} else {
Diags.diagnose(VD, diag::no_witnesses, getProtocolRequirementKind(VD),
VD, RequirementType, true);
}
}
}
static void diagnoseProtocolStubFixit(
ASTContext &ctx,
NormalProtocolConformance *conformance,
ArrayRef<ASTContext::MissingWitness> missingWitnesses) {
auto selfInterfaceType = conformance->getDeclContext()->getSelfInterfaceType();
const auto filteredWitnesses = filterProtocolRequirements(
missingWitnesses, selfInterfaceType);
assert(!filteredWitnesses.empty());
ctx.addDelayedConformanceDiag(conformance, true,
[filteredWitnesses](NormalProtocolConformance *conf) {
diagnoseProtocolStubFixit(conf, filteredWitnesses);
});
}
/// Whether the given protocol requirement has a "Self ==" constraint.
static bool hasSelfSameTypeConstraint(const ValueDecl *req) {
const auto *proto = cast<ProtocolDecl>(req->getDeclContext());
const auto *genCtx = req->getAsGenericContext();
if (!genCtx)
return false;
const auto genericSig = genCtx->getGenericSignature();
const auto selfTy = proto->getSelfInterfaceType();
for (const auto &constr : genericSig.getRequirements()) {
if (constr.getKind() != RequirementKind::SameType)
continue;
if (constr.getFirstType()->isEqual(selfTy) ||
constr.getSecondType()->isEqual(selfTy))
return true;
}
return false;
}
/// Determine the given witness has a same-type constraint constraining the
/// given 'Self' type, and return the requirement that does.
///
/// \returns None if there is no such constraint; a non-empty optional that
/// may have the \c RequirementRepr for the actual constraint.
static std::optional<std::pair<RequirementRepr *, Requirement>>
getAdopteeSelfSameTypeConstraint(ClassDecl *selfClass, ValueDecl *witness) {
auto genericSig =
witness->getInnermostDeclContext()->getGenericSignatureOfContext();
// First, search for any bogus requirements.
auto it = llvm::find_if(genericSig.getRequirements(),
[&selfClass](const auto &req) {
if (req.getKind() != RequirementKind::SameType)
return false;
return req.getFirstType()->getAnyNominal() == selfClass
|| req.getSecondType()->getAnyNominal() == selfClass;
});
if (it == genericSig.getRequirements().end()) {
return std::nullopt;
}
// Got it! Now try to find the requirement-as-written.
TrailingWhereClause *where = nullptr;
if (auto func = dyn_cast<AbstractFunctionDecl>(witness))
where = func->getTrailingWhereClause();
else if (auto subscript = dyn_cast<SubscriptDecl>(witness))
where = subscript->getTrailingWhereClause();
// A null repr indicates we don't have a valid location to diagnose. But
// at least we have a requirement we can signal is bogus.
std::optional<std::pair<RequirementRepr *, Requirement>> target =
std::make_pair((RequirementRepr *)nullptr, Requirement(*it));
if (!where) {
return target;
}
// Resolve and search for a written requirement to match our bogus one.
WhereClauseOwner(cast<GenericContext>(witness), where)
.visitRequirements(TypeResolutionStage::Structural,
[&](Requirement req, RequirementRepr *repr) {
if (req.getKind() != RequirementKind::SameType) {
return false;
}
if (req.getFirstType()->getAnyNominal() != selfClass &&
req.getSecondType()->getAnyNominal() != selfClass) {
return false;
}
target.emplace(repr, req);
return true;
});
return target;
}
static bool allowOptionalWitness(ProtocolDecl *proto,
NormalProtocolConformance *conformance,
ValueDecl *requirement) {
auto Attrs = requirement->getAttrs();
// An optional requirement is trivially satisfied with an empty requirement.
if (Attrs.hasAttribute<OptionalAttr>())
return true;
// An 'unavailable' requirement is treated like an optional requirement.
if (Attrs.isUnavailable(proto->getASTContext()))
return true;
// A requirement with a satisfied Obj-C alternative requirement is effectively
// optional.
if (hasSatisfiedObjCSiblingRequirement(proto, conformance, requirement))
return true;
return false;
}
void ConformanceChecker::checkNonFinalClassWitness(ValueDecl *requirement,
ValueDecl *witness) {
auto *classDecl = DC->getSelfClassDecl();
// If we have an initializer requirement and the conforming type
// is a non-final class, the witness must be 'required'.
// We exempt Objective-C initializers from this requirement
// because there is no equivalent to 'required' in Objective-C.
if (auto ctor = dyn_cast<ConstructorDecl>(witness)) {
if (!ctor->isRequired() &&
!ctor->getDeclContext()->getSelfProtocolDecl() &&
!ctor->hasClangNode()) {
// FIXME: We're not recovering (in the AST), so the Fix-It
// should move.
getASTContext().addDelayedConformanceDiag(Conformance, false,
[ctor, requirement](NormalProtocolConformance *conformance) {
bool inExtension = isa<ExtensionDecl>(ctor->getDeclContext());
auto &diags = ctor->getASTContext().Diags;
SourceLoc diagLoc = getLocForDiagnosingWitness(conformance, ctor);
std::optional<InFlightDiagnostic> fixItDiag =
diags.diagnose(diagLoc, diag::witness_initializer_not_required,
requirement, inExtension, conformance->getType());
if (diagLoc != ctor->getLoc() && !ctor->isImplicit()) {
// If the main diagnostic is emitted on the conformance, we want to
// attach the fix-it to the note that shows where the initializer is
// defined.
fixItDiag.value().flush();
fixItDiag.emplace(diags.diagnose(ctor, diag::decl_declared_here,
ctor));
}
if (!inExtension) {
fixItDiag->fixItInsert(ctor->getAttributeInsertionLoc(true),
"required ");
}
});
}
}
// Check whether this requirement uses Self in a way that might
// prevent conformance from succeeding.
const auto selfRefInfo = requirement->findExistentialSelfReferences(
Proto->getDeclaredInterfaceType(),
/*treatNonResultCovariantSelfAsInvariant=*/true);
if (selfRefInfo.selfRef == TypePosition::Invariant) {
// References to Self in a position where subclasses cannot do
// the right thing. Complain if the adoptee is a non-final
// class.
getASTContext().addDelayedConformanceDiag(Conformance, false,
[witness, requirement](NormalProtocolConformance *conformance) {
auto proto = conformance->getProtocol();
auto &diags = proto->getASTContext().Diags;
SourceLoc diagLoc = getLocForDiagnosingWitness(conformance, witness);
diags.diagnose(diagLoc, diag::witness_self_non_subtype,
proto->getDeclaredInterfaceType(), requirement,
conformance->getType());
emitDeclaredHereIfNeeded(diags, diagLoc, witness);
});
} else if (selfRefInfo.hasCovariantSelfResult) {
// The reference to Self occurs in the result type of a method/subscript
// or the type of a property. A non-final class can satisfy this requirement
// by holding onto Self accordingly.
if (witness->getDeclContext()->getSelfClassDecl()) {
const bool hasDynamicSelfResult = [&] {
if (auto func = dyn_cast<AbstractFunctionDecl>(witness)) {
return func->hasDynamicSelfResult();
} else if (auto var = dyn_cast<VarDecl>(witness)) {
return var->getInterfaceType()->hasDynamicSelfType();
}
return cast<SubscriptDecl>(witness)
->getElementInterfaceType()
->hasDynamicSelfType();
}();
if (!hasDynamicSelfResult) {
getASTContext().addDelayedConformanceDiag(Conformance, false,
[witness, requirement](NormalProtocolConformance *conformance) {
auto proto = conformance->getProtocol();
auto &diags = proto->getASTContext().Diags;
SourceLoc diagLoc = getLocForDiagnosingWitness(conformance,witness);
diags.diagnose(diagLoc, diag::witness_requires_dynamic_self,
getProtocolRequirementKind(requirement),
requirement,
conformance->getType(),
proto->getDeclaredInterfaceType());
emitDeclaredHereIfNeeded(diags, diagLoc, witness);
});
}
}
} else if (hasSelfSameTypeConstraint(requirement)) {
if (auto targetPair = getAdopteeSelfSameTypeConstraint(classDecl,
witness)) {
// A "Self ==" constraint works incorrectly with subclasses. Complain.
auto proto = Conformance->getProtocol();
auto &diags = proto->getASTContext().Diags;
SourceLoc diagLoc = getLocForDiagnosingWitness(Conformance, witness);
diags.diagnose(diagLoc, diag::witness_self_same_type,
witness,
Conformance->getType(),
requirement,
proto->getDeclaredInterfaceType());
emitDeclaredHereIfNeeded(diags, diagLoc, witness);
if (auto requirementRepr = targetPair->first) {
diags.diagnose(requirementRepr->getSeparatorLoc(),
diag::witness_self_weaken_same_type,
targetPair->second.getFirstType(),
targetPair->second.getSecondType())
.fixItReplace(requirementRepr->getSeparatorLoc(), ":");
}
}
}
// A non-final class can model a protocol requirement with a
// contravariant Self, because here the witness will always have
// a more general type than the requirement.
// If the witness is in a protocol extension, there's an additional
// constraint that either the requirement not produce 'Self' in a
// covariant position, or the type of the requirement does not involve
// associated types.
if (isa<FuncDecl>(witness) || isa<SubscriptDecl>(witness)) {
if (witness->getDeclContext()->getExtendedProtocolDecl()) {
if (selfRefInfo.hasCovariantSelfResult && selfRefInfo.assocTypeRef) {
getASTContext().addDelayedConformanceDiag(Conformance, false,
[witness, requirement](NormalProtocolConformance *conformance) {
auto proto = conformance->getProtocol();
auto &diags = proto->getASTContext().Diags;
diags.diagnose(conformance->getLoc(),
diag::witness_requires_class_implementation,
getProtocolRequirementKind(requirement),
requirement, conformance->getType());
diags.diagnose(witness, diag::decl_declared_here, witness);
});
}
}
}
}
ResolveWitnessResult
ConformanceChecker::resolveWitnessViaLookup(ValueDecl *requirement) {
assert(!isa<AssociatedTypeDecl>(requirement) && "Use resolveTypeWitnessVia*");
auto *nominal = DC->getSelfNominalTypeDecl();
// Determine whether we can derive a witness for this requirement.
bool canDerive = false;
auto *SF = DC->getParentSourceFile();
if (!(SF == nullptr || SF->Kind == SourceFileKind::Interface)) {
// Can a witness for this requirement be derived for this nominal type?
if (auto derivable = DerivedConformance::getDerivableRequirement(
nominal,
requirement)) {
if (derivable == requirement) {
// If it's the same requirement, we can derive it here.
canDerive = true;
} else {
// Otherwise, go satisfy the derivable requirement, which can introduce
// a member that could in turn satisfy *this* requirement.
auto derivableProto = cast<ProtocolDecl>(derivable->getDeclContext());
auto conformance =
DC->getParentModule()->lookupConformance(Adoptee, derivableProto);
if (conformance.isConcrete()) {
(void) conformance.getConcrete()->getWitnessDecl(derivable);
}
}
}
}
// Find the best witness for the requirement.
SmallVector<RequirementMatch, 4> matches;
unsigned numViable = 0;
unsigned bestIdx = 0;
bool doNotDiagnoseMatches = false;
bool ignoringNames = false;
bool considerRenames =
!canDerive && !requirement->getAttrs().hasAttribute<OptionalAttr>() &&
!requirement->getAttrs().isUnavailable(getASTContext());
if (findBestWitness(requirement,
considerRenames ? &ignoringNames : nullptr,
Conformance,
/* out parameters: */
matches, numViable, bestIdx, doNotDiagnoseMatches)) {
const auto &best = matches[bestIdx];
auto witness = best.Witness;
// If the name didn't actually line up, complain.
if (ignoringNames &&
requirement->getName() != best.Witness->getName() &&
!witnessHasImplementsAttrForRequiredName(best.Witness, requirement)) {
getASTContext().addDelayedConformanceDiag(Conformance, false,
[witness, requirement](NormalProtocolConformance *conformance) {
auto proto = conformance->getProtocol();
auto &diags = proto->getASTContext().Diags;
{
SourceLoc diagLoc = getLocForDiagnosingWitness(conformance,witness);
auto diag = diags.diagnose(
diagLoc, diag::witness_argument_name_mismatch, witness,
proto->getDeclaredInterfaceType(), requirement);
if (diagLoc == witness->getLoc()) {
fixDeclarationName(diag, witness, requirement->getName());
} else {
diag.flush();
diags.diagnose(witness, diag::decl_declared_here, witness);
}
}
diags.diagnose(requirement, diag::kind_declname_declared_here,
DescriptiveDeclKind::Requirement,
requirement->getName());
});
}
if (best.Kind == MatchKind::RequiresNonSendable) {
SendableCheckContext sendFrom(witness->getDeclContext(),
SendableCheck::Explicit);
auto *nominal = Conformance->getProtocol();
auto behavior = sendFrom.diagnosticBehavior(nominal);
if (behavior != DiagnosticBehavior::Ignore) {
bool isError = behavior < DiagnosticBehavior::Warning;
// Avoid relying on the lifetime of 'this'.
const DeclContext *DC = this->DC;
getASTContext().addDelayedConformanceDiag(Conformance, isError,
[DC, requirement, witness, sendFrom, nominal](
NormalProtocolConformance *conformance) {
diagnoseSendabilityErrorBasedOn(conformance->getProtocol(), sendFrom,
[&](DiagnosticBehavior limit) {
auto &diags = DC->getASTContext().Diags;
diags.diagnose(getLocForDiagnosingWitness(conformance, witness),
diag::witness_not_as_sendable,
witness, conformance->getProtocol())
.limitBehaviorUntilSwiftVersion(limit, 6)
.limitBehaviorIf(sendFrom.preconcurrencyBehavior(nominal));
diags.diagnose(requirement, diag::less_sendable_reqt_here);
return false;
});
});
}
}
auto check = checkWitness(requirement, best);
switch (check.Kind) {
case CheckKind::Success:
break;
case CheckKind::Access:
case CheckKind::AccessOfSetter: {
// Swift 4.2 relaxed some rules for protocol witness matching.
//
// This meant that it was possible for an optional protocol requirement
// to have a witness where previously in Swift 4.1 it did not.
//
// Since witnesses must be as visible as the protocol, this caused a
// source compatibility break if the witness was not sufficiently
// visible.
//
// Work around this by discarding the witness if its not sufficiently
// visible.
if (!getASTContext().isSwiftVersionAtLeast(5))
if (requirement->getAttrs().hasAttribute<OptionalAttr>())
return ResolveWitnessResult::Missing;
// Avoid relying on the lifetime of 'this'.
const DeclContext *DC = this->DC;
getASTContext().addDelayedConformanceDiag(Conformance, false,
[DC, witness, check, requirement](
NormalProtocolConformance *conformance) {
auto requiredAccessScope = check.RequiredAccessScope;
AccessLevel requiredAccess =
requiredAccessScope.requiredAccessForDiagnostics();
auto proto = conformance->getProtocol();
auto protoAccessScope = proto->getFormalAccessScope(DC);
bool protoForcesAccess =
requiredAccessScope.hasEqualDeclContextWith(protoAccessScope);
auto diagKind = protoForcesAccess
? diag::witness_not_accessible_proto
: diag::witness_not_accessible_type;
bool isSetter = (check.Kind == CheckKind::AccessOfSetter);
auto &diags = DC->getASTContext().Diags;
diags.diagnose(getLocForDiagnosingWitness(conformance, witness),
diagKind, getProtocolRequirementKind(requirement),
witness, isSetter, requiredAccess,
protoAccessScope.accessLevelForDiagnostics(),
proto);
auto *decl = dyn_cast<AbstractFunctionDecl>(witness);
if (decl && decl->isSynthesized())
return;
diagnoseWitnessFixAccessLevel(diags, witness, requiredAccess,
isSetter);
});
break;
}
case CheckKind::UsableFromInline:
getASTContext().addDelayedConformanceDiag(Conformance, false,
DiagnoseUsableFromInline(witness));
break;
case CheckKind::Availability: {
getASTContext().addDelayedConformanceDiag(Conformance, false,
[witness, requirement, check](
NormalProtocolConformance *conformance) {
// FIXME: The problem may not be the OS version.
ASTContext &ctx = witness->getASTContext();
auto &diags = ctx.Diags;
SourceLoc diagLoc = getLocForDiagnosingWitness(conformance, witness);
diags.diagnose(
diagLoc, diag::availability_protocol_requires_version,
conformance->getProtocol()->getName(),
witness->getName(),
prettyPlatformString(targetPlatform(ctx.LangOpts)),
check.RequiredAvailability.getOSVersion().getLowerEndpoint());
emitDeclaredHereIfNeeded(diags, diagLoc, witness);
diags.diagnose(requirement,
diag::availability_protocol_requirement_here);
});
break;
}
case CheckKind::Unavailable: {
auto *attr = requirement->getAttrs().getUnavailable(getASTContext());
diagnoseOverrideOfUnavailableDecl(witness, requirement, attr);
break;
}
case CheckKind::OptionalityConflict: {
auto adjustments = best.OptionalAdjustments;
getASTContext().addDelayedConformanceDiag(Conformance, false,
[witness, adjustments, requirement](NormalProtocolConformance *conformance) {
auto proto = conformance->getProtocol();
auto &ctx = witness->getASTContext();
auto &diags = ctx.Diags;
{
SourceLoc diagLoc = getLocForDiagnosingWitness(conformance,witness);
auto issues = static_cast<unsigned>(
classifyOptionalityIssues(adjustments, requirement));
auto diag = diags.diagnose(
diagLoc,
hasAnyError(adjustments)
? diag::err_protocol_witness_optionality
: diag::warn_protocol_witness_optionality,
issues, witness, proto);
if (diagLoc == witness->getLoc()) {
addOptionalityFixIts(adjustments, ctx, witness, diag);
} else {
diag.flush();
diags.diagnose(witness, diag::decl_declared_here, witness);
}
}
diags.diagnose(requirement, diag::kind_declname_declared_here,
DescriptiveDeclKind::Requirement,
requirement->getName());
});
break;
}
case CheckKind::ConstructorFailability:
getASTContext().addDelayedConformanceDiag(Conformance, false,
[witness, requirement](NormalProtocolConformance *conformance) {
auto ctor = cast<ConstructorDecl>(requirement);
auto witnessCtor = cast<ConstructorDecl>(witness);
auto &diags = witness->getASTContext().Diags;
SourceLoc diagLoc = getLocForDiagnosingWitness(conformance, witness);
diags.diagnose(diagLoc, diag::witness_initializer_failability,
ctor, witnessCtor->isImplicitlyUnwrappedOptional())
.highlight(witnessCtor->getFailabilityLoc());
emitDeclaredHereIfNeeded(diags, diagLoc, witness);
});
break;
case CheckKind::WitnessUnavailable:
getASTContext().addDelayedConformanceDiag(Conformance, true,
[witness, requirement](NormalProtocolConformance *conformance) {
auto &diags = witness->getASTContext().Diags;
SourceLoc diagLoc = getLocForDiagnosingWitness(conformance, witness);
auto *attr = AvailableAttr::isUnavailable(witness);
EncodedDiagnosticMessage EncodedMessage(attr->Message);
diags.diagnose(diagLoc, diag::witness_unavailable,
witness, conformance->getProtocol()->getName(),
EncodedMessage.Message);
emitDeclaredHereIfNeeded(diags, diagLoc, witness);
diags.diagnose(requirement, diag::kind_declname_declared_here,
DescriptiveDeclKind::Requirement,
requirement->getName());
});
break;
case CheckKind::DefaultWitnessDeprecated:
getASTContext().addDelayedConformanceDiag(
Conformance, /*isError=*/false,
[witness, requirement](NormalProtocolConformance *conformance) {
auto &ctx = witness->getASTContext();
auto &diags = ctx.Diags;
SourceLoc diagLoc = getLocForDiagnosingWitness(conformance, witness);
auto *attr = witness->getAttrs().getDeprecated(ctx);
EncodedDiagnosticMessage EncodedMessage(attr->Message);
diags.diagnose(diagLoc, diag::witness_deprecated,
witness, conformance->getProtocol()->getName(),
EncodedMessage.Message);
emitDeclaredHereIfNeeded(diags, diagLoc, witness);
diags.diagnose(requirement, diag::kind_declname_declared_here,
DescriptiveDeclKind::Requirement,
requirement->getName());
});
break;
}
if (auto *classDecl = DC->getSelfClassDecl()) {
if (!classDecl->isSemanticallyFinal()) {
checkNonFinalClassWitness(requirement, witness);
}
}
// Record the match.
recordWitness(requirement, best);
return ResolveWitnessResult::Success;
// We have an ambiguity; diagnose it below.
}
// We have either no matches or an ambiguous match.
// If we can derive a definition for this requirement, just call it missing.
if (canDerive) {
return ResolveWitnessResult::Missing;
}
// If the requirement is optional, it's okay. We'll satisfy this via
// our handling of default definitions.
//
// FIXME: revisit this once we get default definitions in protocol bodies.
//
// Treat 'unavailable' implicitly as if it were 'optional'.
// The compiler will reject actual uses.
if (allowOptionalWitness(Proto, Conformance, requirement)) {
return ResolveWitnessResult::Missing;
}
// Diagnose the error.
// If there was an invalid witness that might have worked, just
// suppress the diagnostic entirely. This stops the diagnostic cascade.
// FIXME: We could do something crazy, like try to fix up the witness.
if (doNotDiagnoseMatches) {
return ResolveWitnessResult::ExplicitFailed;
}
if (!numViable) {
// Save the missing requirement for later diagnosis.
getASTContext().addDelayedMissingWitness(Conformance, {requirement, matches});
return ResolveWitnessResult::Missing;
}
getASTContext().addDelayedConformanceDiag(Conformance, true,
[requirement, matches, ignoringNames](
NormalProtocolConformance *conformance) {
auto dc = conformance->getDeclContext();
// Determine the type that the requirement is expected to have.
Type reqType = getRequirementTypeForDisplay(dc->getParentModule(),
conformance, requirement);
auto &diags = dc->getASTContext().Diags;
auto diagnosticMessage = diag::ambiguous_witnesses;
if (ignoringNames) {
diagnosticMessage = diag::ambiguous_witnesses_wrong_name;
}
diags.diagnose(requirement, diagnosticMessage,
getProtocolRequirementKind(requirement), requirement,
reqType);
// Diagnose each of the matches.
for (const auto &match : matches)
diagnoseMatch(dc->getParentModule(), conformance, requirement, match);
});
return ResolveWitnessResult::ExplicitFailed;
}
static ValueDecl *
deriveProtocolRequirement(const NormalProtocolConformance *Conformance,
NominalTypeDecl *TypeDecl, ValueDecl *Requirement) {
// Note: whenever you update this function, also update
// DerivedConformance::getDerivableRequirement.
const auto protocol = cast<ProtocolDecl>(Requirement->getDeclContext());
const auto derivableKind = protocol->getKnownDerivableProtocolKind();
if (!derivableKind)
return nullptr;
auto *DC = Conformance->getDeclContext();
const auto Decl = DC->getInnermostDeclarationDeclContext();
if (Decl->isInvalid())
return nullptr;
DerivedConformance derived(Conformance, TypeDecl, protocol);
switch (*derivableKind) {
case KnownDerivableProtocolKind::RawRepresentable:
return derived.deriveRawRepresentable(Requirement);
case KnownDerivableProtocolKind::CaseIterable:
return derived.deriveCaseIterable(Requirement);
case KnownDerivableProtocolKind::Comparable:
return derived.deriveComparable(Requirement);
case KnownDerivableProtocolKind::Equatable:
return derived.deriveEquatable(Requirement);
case KnownDerivableProtocolKind::Hashable:
return derived.deriveHashable(Requirement);
case KnownDerivableProtocolKind::BridgedNSError:
return derived.deriveBridgedNSError(Requirement);
case KnownDerivableProtocolKind::CodingKey:
return derived.deriveCodingKey(Requirement);
case KnownDerivableProtocolKind::Encodable:
return derived.deriveEncodable(Requirement);
case KnownDerivableProtocolKind::Decodable:
return derived.deriveDecodable(Requirement);
case KnownDerivableProtocolKind::AdditiveArithmetic:
return derived.deriveAdditiveArithmetic(Requirement);
case KnownDerivableProtocolKind::Actor:
return derived.deriveActor(Requirement);
case KnownDerivableProtocolKind::Differentiable:
return derived.deriveDifferentiable(Requirement);
case KnownDerivableProtocolKind::Identifiable:
if (derived.Nominal->isDistributedActor()) {
return derived.deriveDistributedActor(Requirement);
} else {
// No synthesis is required for other types; we should only end up
// attempting synthesis if the nominal was a distributed actor.
llvm_unreachable("Identifiable is synthesized for distributed actors");
}
case KnownDerivableProtocolKind::DistributedActor:
return derived.deriveDistributedActor(Requirement);
case KnownDerivableProtocolKind::DistributedActorSystem:
return derived.deriveDistributedActorSystem(Requirement);
case KnownDerivableProtocolKind::OptionSet:
llvm_unreachable(
"When possible, OptionSet is derived via memberwise init synthesis");
}
llvm_unreachable("unknown derivable protocol kind");
}
/// Attempt to resolve a witness via derivation.
ResolveWitnessResult ConformanceChecker::resolveWitnessViaDerivation(
ValueDecl *requirement) {
assert(!isa<AssociatedTypeDecl>(requirement) && "Use resolveTypeWitnessVia*");
auto *SF = DC->getParentSourceFile();
if (SF != nullptr && SF->Kind == SourceFileKind::Interface)
return ResolveWitnessResult::Missing;
// Find the declaration that derives the protocol conformance.
NominalTypeDecl *derivingTypeDecl = nullptr;
auto *nominal = DC->getSelfNominalTypeDecl();
if (DerivedConformance::derivesProtocolConformance(DC, nominal, Proto))
derivingTypeDecl = nominal;
if (!derivingTypeDecl) {
return ResolveWitnessResult::Missing;
}
// Attempt to derive the witness.
auto derived =
deriveProtocolRequirement(Conformance, derivingTypeDecl, requirement);
if (!derived) {
return ResolveWitnessResult::ExplicitFailed;
}
// Try to match the derived requirement.
auto match = matchWitness(ReqEnvironmentCache, Proto, Conformance, DC,
requirement, derived);
if (match.isViable()) {
recordWitness(requirement, match);
return ResolveWitnessResult::Success;
}
// Derivation failed.
getASTContext().addDelayedConformanceDiag(Conformance, true,
[](NormalProtocolConformance *conformance) {
auto proto = conformance->getProtocol();
auto &diags = proto->getASTContext().Diags;
diags.diagnose(conformance->getLoc(), diag::protocol_derivation_is_broken,
proto->getDeclaredInterfaceType(),
conformance->getType());
});
return ResolveWitnessResult::ExplicitFailed;
}
// FIXME: revisit this once we get default implementations in protocol bodies.
ResolveWitnessResult ConformanceChecker::resolveWitnessViaDefault(
ValueDecl *requirement) {
assert(!isa<AssociatedTypeDecl>(requirement) && "Use resolveTypeWitnessVia*");
if (allowOptionalWitness(Proto, Conformance, requirement)) {
recordOptionalWitness(requirement);
return ResolveWitnessResult::Success;
}
return ResolveWitnessResult::ExplicitFailed;
}
ResolveWitnessResult
ConformanceChecker::resolveWitnessTryingAllStrategies(ValueDecl *requirement) {
decltype(&ConformanceChecker::resolveWitnessViaLookup) strategies[] = {
&ConformanceChecker::resolveWitnessViaLookup,
&ConformanceChecker::resolveWitnessViaDerivation,
&ConformanceChecker::resolveWitnessViaDefault};
for (auto strategy : strategies) {
ResolveWitnessResult result = (this->*strategy)(requirement);
switch (result) {
case ResolveWitnessResult::Success:
case ResolveWitnessResult::ExplicitFailed:
return result;
case ResolveWitnessResult::Missing:
// Continue trying.
break;
}
}
return ResolveWitnessResult::Missing;
}
void ConformanceChecker::resolveSingleWitness(ValueDecl *requirement) {
assert(!isa<AssociatedTypeDecl>(requirement) && "Not a value witness");
assert(!Conformance->hasWitness(requirement) && "Already resolved");
// Make sure we've validated the requirement.
if (requirement->isInvalid()) {
Conformance->setInvalid();
return;
}
if (!requirement->isProtocolRequirement())
return;
// Resolve the type witnesses for all associated types referenced by
// the requirement. If any are erroneous, don't bother resolving the
// witness.
auto referenced = evaluateOrDefault(getASTContext().evaluator,
ReferencedAssociatedTypesRequest{requirement},
TinyPtrVector<AssociatedTypeDecl *>());
for (auto assocType : referenced) {
if (Conformance->getTypeWitness(assocType)->hasError()) {
Conformance->setInvalid();
return;
}
}
// Try to resolve the witness.
switch (resolveWitnessTryingAllStrategies(requirement)) {
case ResolveWitnessResult::Success:
return;
case ResolveWitnessResult::ExplicitFailed:
Conformance->setInvalid();
recordInvalidWitness(requirement);
return;
case ResolveWitnessResult::Missing:
llvm_unreachable("Should have failed");
}
}
/// FIXME: It feels like this could be part of findExistentialSelfReferences().
static std::optional<Requirement>
hasInvariantSelfRequirement(const ProtocolDecl *proto,
ArrayRef<Requirement> reqSig) {
auto selfTy = proto->getSelfInterfaceType();
auto containsInvariantSelf = [&](Type t) -> bool {
struct Walker : public TypeWalker {
Type SelfTy;
bool Found = false;
Walker(Type selfTy) : SelfTy(selfTy) {}
Action walkToTypePre(Type ty) override {
// Check for 'Self'.
if (ty->isEqual(SelfTy)) {
Found = true;
return Action::Stop;
}
// 'Self.A' is OK.
if (ty->is<DependentMemberType>())
return Action::SkipNode;
return Action::Continue;
}
};
Walker walker(selfTy);
t.walk(walker);
return walker.Found;
};
for (auto req : reqSig) {
switch (req.getKind()) {
case RequirementKind::SameShape:
llvm_unreachable("Same-shape requirement not supported here");
case RequirementKind::SameType:
if (req.getSecondType()->isTypeParameter()) {
if (req.getFirstType()->isEqual(selfTy))
return req;
} else {
if (containsInvariantSelf(req.getSecondType()))
return req;
}
continue;
case RequirementKind::Superclass:
if (containsInvariantSelf(req.getSecondType()))
return req;
continue;
case RequirementKind::Conformance:
case RequirementKind::Layout:
continue;
}
llvm_unreachable("Bad requirement kind");
}
return std::nullopt;
}
static void diagnoseInvariantSelfRequirement(
SourceLoc loc, Type adoptee, const ProtocolDecl *proto,
Requirement req, DiagnosticEngine &diags) {
Type firstType, secondType;
unsigned kind = 0;
switch (req.getKind()) {
case RequirementKind::SameShape:
llvm_unreachable("Same-shape requirement not supported here");
case RequirementKind::SameType:
if (req.getSecondType()->isTypeParameter()) {
// eg, 'Self == Self.A.B'
firstType = req.getSecondType();
secondType = req.getFirstType();
} else {
// eg, 'Self.A.B == G<Self>'
firstType = req.getFirstType();
secondType = req.getSecondType();
}
kind = 0;
break;
case RequirementKind::Superclass:
// eg, 'Self.A.B : G<Self>'
firstType = req.getFirstType();
secondType = req.getSecondType();
kind = 1;
break;
case RequirementKind::Conformance:
case RequirementKind::Layout:
llvm_unreachable("Invalid requirement kind");
}
diags.diagnose(loc, diag::non_final_class_cannot_conform_to_self_same_type,
adoptee, proto->getDeclaredInterfaceType(),
firstType, kind, secondType)
.warnUntilSwiftVersion(6);
}
/// Check whether the type witnesses satisfy the protocol's requirement
/// signature. Also checks access level of type witnesses and availiability
/// of associated conformances.
static void ensureRequirementsAreSatisfied(ASTContext &ctx,
NormalProtocolConformance *conformance) {
auto *dc = conformance->getDeclContext();
auto proto = conformance->getProtocol();
auto &diags = ctx.Diags;
auto *const module = dc->getParentModule();
auto substitutingType = dc->mapTypeIntoContext(conformance->getType());
auto substitutions = SubstitutionMap::getProtocolSubstitutions(
proto, substitutingType, ProtocolConformanceRef(conformance));
auto reqSig = proto->getRequirementSignature().getRequirements();
// Non-final classes should not be able to conform to protocols with a
// same-type requirement on 'Self', since such a conformance would no
// longer be covariant. For now, this is a warning. Once this becomes
// an error, we can handle it as part of the above checkGenericArguments()
// call by passing in a superclass-bound archetype for the 'self' type
// instead of the concrete class type itself.
if (auto *classDecl = dc->getSelfClassDecl()) {
if (!classDecl->isSemanticallyFinal()) {
if (auto req = hasInvariantSelfRequirement(proto, reqSig)) {
diagnoseInvariantSelfRequirement(conformance->getLoc(),
dc->getSelfInterfaceType(),
proto, *req, diags);
}
}
}
const auto result = TypeChecker::checkGenericArgumentsForDiagnostics(
module, reqSig, QuerySubstitutionMap{substitutions});
switch (result.getKind()) {
case CheckRequirementsResult::Success:
// Go on to check exportability.
break;
case CheckRequirementsResult::RequirementFailure:
case CheckRequirementsResult::SubstitutionFailure:
// Diagnose the failure generically.
// FIXME: Would be nice to give some more context here!
if (!conformance->isInvalid()) {
if (result.getKind() == CheckRequirementsResult::RequirementFailure) {
ctx.addDelayedConformanceDiag(conformance, /*isError=*/true,
[result, proto, substitutions, module](NormalProtocolConformance *conformance) {
TypeChecker::diagnoseRequirementFailure(
result.getRequirementFailureInfo(),
conformance->getLoc(), conformance->getLoc(),
proto->getDeclaredInterfaceType(),
{proto->getSelfInterfaceType()->castTo<GenericTypeParamType>()},
QuerySubstitutionMap{substitutions}, module);
});
}
conformance->setInvalid();
}
return;
}
bool isTupleConformance = isa<BuiltinTupleDecl>(dc->getSelfNominalTypeDecl());
auto where = ExportContext::forConformance(dc, proto);
conformance->forEachTypeWitness([&](AssociatedTypeDecl *assocType,
Type type, TypeDecl *typeDecl) -> bool {
checkObjCTypeErasedGenerics(conformance, assocType, type, typeDecl);
// Tuple conformances can only witness associated types by projecting them
// element-wise.
if (isTupleConformance) {
auto expectedTy = getTupleConformanceTypeWitness(dc, assocType);
if (!type->hasError() && !expectedTy->isEqual(type)) {
ctx.addDelayedConformanceDiag(conformance, true,
[dc, type, typeDecl, expectedTy](NormalProtocolConformance *conformance) {
dc->getASTContext().Diags.diagnose(
getLocForDiagnosingWitness(conformance, typeDecl),
diag::protocol_type_witness_tuple,
type, expectedTy);
});
}
}
if (typeDecl && !typeDecl->isImplicit()) {
auto requiredAccessScope = evaluateOrDefault(
ctx.evaluator, ConformanceAccessScopeRequest{dc, proto},
std::make_pair(AccessScope::getPublic(), false));
// Check access.
bool isSetter = false;
if (checkWitnessAccess(dc, assocType, typeDecl, &isSetter)) {
assert(!isSetter);
ctx.addDelayedConformanceDiag(conformance, false,
[dc, requiredAccessScope, typeDecl](
NormalProtocolConformance *conformance) {
AccessLevel requiredAccess =
requiredAccessScope.first.requiredAccessForDiagnostics();
auto proto = conformance->getProtocol();
auto protoAccessScope = proto->getFormalAccessScope(dc);
bool protoForcesAccess =
requiredAccessScope.first.hasEqualDeclContextWith(protoAccessScope);
auto diagKind = protoForcesAccess
? diag::type_witness_not_accessible_proto
: diag::type_witness_not_accessible_type;
auto &diags = dc->getASTContext().Diags;
diags.diagnose(getLocForDiagnosingWitness(conformance, typeDecl),
diagKind, typeDecl, requiredAccess, proto);
diagnoseWitnessFixAccessLevel(diags, typeDecl, requiredAccess);
});
}
if (requiredAccessScope.second) {
bool witnessIsUsableFromInline = typeDecl->getFormalAccessScope(
dc, /*usableFromInlineAsPublic*/true).isPublic();
if (!witnessIsUsableFromInline)
ctx.addDelayedConformanceDiag(conformance, false,
DiagnoseUsableFromInline(typeDecl));
}
}
// Make sure any associated type witnesses don't make reference to a
// type we can't emit metadata for, or we're going to have trouble at
// runtime.
checkTypeMetadataAvailability(type, typeDecl->getLoc(),
where.getDeclContext());
return false;
});
// Now check that our associated conformances are at least as visible as
// the conformance itself.
if (where.isImplicit())
return;
conformance->forEachAssociatedConformance(
[&](Type depTy, ProtocolDecl *proto, unsigned index) {
auto assocConf = conformance->getAssociatedConformance(depTy, proto);
if (assocConf.isConcrete()) {
auto *concrete = assocConf.getConcrete();
auto replacementTy = dc->mapTypeIntoContext(concrete->getType());
diagnoseConformanceAvailability(conformance->getLoc(),
assocConf, where,
depTy, replacementTy);
}
return false;
});
}
#pragma mark Protocol conformance checking
/// Determine whether mapping the interface type of the given protocol non-type
/// requirement into the context of the given conformance produces a well-formed
/// type.
static bool
hasInvalidTypeInConformanceContext(const ValueDecl *requirement,
NormalProtocolConformance *conformance) {
assert(!isa<TypeDecl>(requirement));
assert(requirement->getDeclContext()->getSelfProtocolDecl() ==
conformance->getProtocol());
// FIXME: getInterfaceType() on properties returns contextual types that have
// been mapped out of context, but mapTypeOutOfContext() does not reconstitute
// type parameters that were substituted with concrete types. Instead,
// patterns should be refactored to use interface types, at least if they
// appear in type contexts.
auto interfaceTy = requirement->getInterfaceType();
// Skip the curried 'self' parameter.
if (requirement->hasCurriedSelf())
interfaceTy = interfaceTy->castTo<AnyFunctionType>()->getResult();
// For subscripts, build a regular function type to skip walking generic
// requirements.
if (auto *gft = interfaceTy->getAs<GenericFunctionType>()) {
interfaceTy = FunctionType::get(gft->getParams(), gft->getResult(),
gft->getExtInfo());
}
if (!interfaceTy->hasTypeParameter())
return false;
const auto subs = SubstitutionMap::getProtocolSubstitutions(
conformance->getProtocol(),
conformance->getDeclContext()->mapTypeIntoContext(conformance->getType()),
ProtocolConformanceRef(conformance));
class Walker final : public TypeWalker {
const SubstitutionMap &Subs;
const ProtocolDecl *Proto;
public:
explicit Walker(const SubstitutionMap &Subs, const ProtocolDecl *Proto)
: Subs(Subs), Proto(Proto) {}
Action walkToTypePre(Type ty) override {
if (!ty->hasTypeParameter())
return Action::SkipNode;
auto *const dmt = ty->getAs<DependentMemberType>();
if (!dmt)
return Action::Continue;
// We only care about 'Self'-rooted type parameters.
if (!dmt->getRootGenericParam()->isEqual(Proto->getSelfInterfaceType()))
return Action::SkipNode;
if (ty.subst(Subs)->hasError())
return Action::Stop;
return Action::SkipNode;
}
};
return interfaceTy.walk(Walker(subs, conformance->getProtocol()));
}
void ConformanceChecker::resolveValueWitnesses() {
bool usesPreconcurrency = false;
for (auto *requirement : Proto->getProtocolRequirements()) {
// Associated type requirements handled elsewhere.
if (isa<TypeDecl>(requirement))
continue;
/// Local function to finalize the witness.
auto finalizeWitness = [&] {
// Find the witness.
auto witness = Conformance->getWitnessUncached(requirement).getDecl();
if (!witness) {
return;
}
auto &C = witness->getASTContext();
// Check actor isolation. If we need to enter into the actor's
// isolation within the witness thunk, record that.
if (auto enteringIsolation = checkActorIsolation(requirement, witness,
usesPreconcurrency)) {
Conformance->overrideWitness(
requirement,
Conformance->getWitnessUncached(requirement)
.withEnterIsolation(*enteringIsolation));
}
// Objective-C checking for @objc requirements.
if (requirement->isObjC() &&
requirement->getName() == witness->getName() &&
!requirement->getAttrs().isUnavailable(getASTContext())) {
// The witness must also be @objc.
if (!witness->isObjC()) {
bool isOptional =
requirement->getAttrs().hasAttribute<OptionalAttr>();
SourceLoc diagLoc = getLocForDiagnosingWitness(Conformance, witness);
if (auto witnessFunc = dyn_cast<AbstractFunctionDecl>(witness)) {
auto diagInfo = getObjCMethodDiagInfo(witnessFunc);
std::optional<InFlightDiagnostic> fixItDiag = C.Diags.diagnose(
diagLoc,
isOptional ? diag::witness_non_objc_optional
: diag::witness_non_objc,
diagInfo.first, diagInfo.second, Proto->getName());
if (diagLoc != witness->getLoc()) {
// If the main diagnostic is emitted on the conformance, we want
// to attach the fix-it to the note that shows where the
// witness is defined.
fixItDiag.value().flush();
fixItDiag.emplace(witness->diagnose(
diag::make_decl_objc, witness->getDescriptiveKind()));
}
if (!witness->canInferObjCFromRequirement(requirement)) {
fixDeclarationObjCName(
fixItDiag.value(), witness,
witness->getObjCRuntimeName(),
requirement->getObjCRuntimeName());
}
} else if (isa<VarDecl>(witness)) {
std::optional<InFlightDiagnostic> fixItDiag = C.Diags.diagnose(
diagLoc,
isOptional ? diag::witness_non_objc_storage_optional
: diag::witness_non_objc_storage,
/*isSubscript=*/false, witness->getName(), Proto->getName());
if (diagLoc != witness->getLoc()) {
// If the main diagnostic is emitted on the conformance, we want
// to attach the fix-it to the note that shows where the
// witness is defined.
fixItDiag.value().flush();
fixItDiag.emplace(witness->diagnose(
diag::make_decl_objc, witness->getDescriptiveKind()));
}
if (!witness->canInferObjCFromRequirement(requirement)) {
fixDeclarationObjCName(
fixItDiag.value(), witness,
witness->getObjCRuntimeName(),
requirement->getObjCRuntimeName());
}
} else if (isa<SubscriptDecl>(witness)) {
std::optional<InFlightDiagnostic> fixItDiag = C.Diags.diagnose(
diagLoc,
isOptional ? diag::witness_non_objc_storage_optional
: diag::witness_non_objc_storage,
/*isSubscript=*/true, witness->getName(), Proto->getName());
if (diagLoc != witness->getLoc()) {
// If the main diagnostic is emitted on the conformance, we want
// to attach the fix-it to the note that shows where the
// witness is defined.
fixItDiag.value().flush();
fixItDiag.emplace(witness->diagnose(
diag::make_decl_objc, witness->getDescriptiveKind()));
}
fixItDiag->fixItInsert(witness->getAttributeInsertionLoc(false),
"@objc ");
}
// If the requirement is optional, @nonobjc suppresses the
// diagnostic.
if (isOptional) {
witness->diagnose(diag::req_near_match_nonobjc, false)
.fixItInsert(witness->getAttributeInsertionLoc(false),
"@nonobjc ");
}
requirement->diagnose(diag::kind_declname_declared_here,
DescriptiveDeclKind::Requirement,
requirement->getName());
Conformance->setInvalid();
return;
}
// The selectors must coincide.
if (checkObjCWitnessSelector(requirement, witness)) {
Conformance->setInvalid();
return;
}
}
};
// If we've already determined this witness, skip it.
if (Conformance->hasWitness(requirement)) {
finalizeWitness();
continue;
}
// Make sure we've got an interface type.
if (requirement->isInvalid()) {
Conformance->setInvalid();
continue;
}
// If this requirement is part of a pair of imported async requirements,
// where one has already been witnessed, we can skip it.
//
// This situation primarily arises when the ClangImporter translates an
// async-looking ObjC protocol method requirement into two Swift protocol
// requirements: an async version and a sync version. Exactly one of the two
// must be witnessed by the conformer.
if (getObjCRequirementSibling(Proto, requirement,
[this](AbstractFunctionDecl *cand) {
return static_cast<bool>(
this->Conformance->getWitness(cand));
})) {
recordOptionalWitness(requirement);
finalizeWitness();
continue;
}
// Try substituting into the requirement's interface type. If we fail,
// either a generic requirement was not satisfied or we tripped on an
// invalid type witness, and there's no point in resolving a witness.
if (hasInvalidTypeInConformanceContext(requirement, Conformance)) {
continue;
}
// Try to resolve the witness.
switch (resolveWitnessTryingAllStrategies(requirement)) {
case ResolveWitnessResult::Success:
finalizeWitness();
continue;
case ResolveWitnessResult::ExplicitFailed:
Conformance->setInvalid();
continue;
case ResolveWitnessResult::Missing:
// Let it get diagnosed later.
break;
}
}
if (Conformance->isPreconcurrency() && !usesPreconcurrency) {
auto diag = DC->getASTContext().Diags.diagnose(
Conformance->getLoc(), diag::preconcurrency_conformance_not_used,
Proto->getDeclaredInterfaceType());
SourceLoc preconcurrencyLoc = Conformance->getPreconcurrencyLoc();
if (preconcurrencyLoc.isValid()) {
SourceLoc endLoc = preconcurrencyLoc.getAdvancedLoc(1);
diag.fixItRemove(SourceRange(preconcurrencyLoc, endLoc));
}
}
// Finally, check some ad-hoc protocol requirements.
//
// These protocol requirements are not expressible in Swift today, but as
// the type system gains the required abilities, we should strive to move
// them to plain-old protocol requirements.
if (Proto->isSpecificProtocol(KnownProtocolKind::DistributedActorSystem) ||
Proto->isSpecificProtocol(KnownProtocolKind::DistributedTargetInvocationEncoder) ||
Proto->isSpecificProtocol(KnownProtocolKind::DistributedTargetInvocationDecoder) ||
Proto->isSpecificProtocol(KnownProtocolKind::DistributedTargetInvocationResultHandler)) {
checkDistributedActorSystemAdHocProtocolRequirements(
Context, Proto, Conformance, Adoptee, /*diagnose=*/true);
}
}
evaluator::SideEffect
ResolveValueWitnessesRequest::evaluate(Evaluator &evaluator,
NormalProtocolConformance *conformance) const {
auto &ctx = conformance->getDeclContext()->getASTContext();
ConformanceChecker checker(ctx, conformance);
checker.resolveValueWitnesses();
return evaluator::SideEffect();
}
void swift::diagnoseConformanceFailure(Type T,
ProtocolDecl *Proto,
DeclContext *DC,
SourceLoc ComplainLoc) {
if (T->hasError())
return;
ASTContext &ctx = DC->getASTContext();
auto &diags = ctx.Diags;
// If we're checking conformance of an existential type to a protocol,
// do a little bit of extra work to produce a better diagnostic.
if (T->isExistentialType() &&
TypeChecker::containsProtocol(T, Proto, DC->getParentModule())) {
if (!T->isObjCExistentialType()) {
Type constraintType = T;
if (auto existential = T->getAs<ExistentialType>())
constraintType = existential->getConstraintType();
diags.diagnose(ComplainLoc, diag::type_cannot_conform,
T, Proto->getDeclaredInterfaceType());
diags.diagnose(ComplainLoc,
diag::only_concrete_types_conform_to_protocols);
return;
}
diags.diagnose(ComplainLoc, diag::protocol_does_not_conform_static,
T, Proto->getDeclaredInterfaceType());
return;
}
// Special case: diagnose conversion to ExpressibleByNilLiteral, since we
// know this is something involving 'nil'.
if (Proto->isSpecificProtocol(KnownProtocolKind::ExpressibleByNilLiteral)) {
diags.diagnose(ComplainLoc, diag::cannot_use_nil_with_this_type, T);
return;
}
// Special case: a distributed actor conformance often can fail because of
// a missing ActorSystem (or DefaultDistributedActorSystem) typealias.
// In this case, the "normal" errors are an avalanche of errors related to
// missing things in the actor that don't help users diagnose the root problem.
// Instead, we want to suggest adding the typealias.
if (Proto->isSpecificProtocol(KnownProtocolKind::DistributedActor)) {
auto nominal = T->getNominalOrBoundGenericNominal();
if (!nominal)
return;
if (isa<ClassDecl>(nominal) &&
!nominal->isDistributedActor()) {
if (nominal->isActor()) {
diags.diagnose(ComplainLoc,
diag::actor_cannot_inherit_distributed_actor_protocol,
nominal->getName());
} // else, already diagnosed elsewhere
return;
}
if (nominal->isDistributedActor()) {
// If it is missing the ActorSystem type, suggest adding it:
auto systemTy = getDistributedActorSystemType(/*actor=*/nominal);
if (!systemTy || systemTy->hasError()) {
diags.diagnose(ComplainLoc,
diag::distributed_actor_conformance_missing_system_type,
nominal->getName());
diags.diagnose(nominal->getStartLoc(),
diag::note_distributed_actor_system_can_be_defined_using_defaultdistributedactorsystem);
}
}
// For a non-class nominal type, we already diagnose the failure in
// ensureRequirementsAreSatisfied() when the 'Self: AnyObject' requirement
// fails.
if (!isa<ClassDecl>(nominal))
return;
}
// Special case: for enums with a raw type, explain that the failing
// conformance to RawRepresentable was inferred.
if (auto enumDecl = T->getEnumOrBoundGenericEnum()) {
if (Proto->isSpecificProtocol(KnownProtocolKind::RawRepresentable) &&
enumDecl->hasRawType() &&
!enumDecl->getRawType()->is<ErrorType>()) {
auto rawType = enumDecl->getRawType();
diags.diagnose(enumDecl->getInherited().getStartLoc(),
diag::enum_raw_type_nonconforming_and_nonsynthable, T,
rawType);
// If the reason is that the raw type does not conform to
// Equatable, say so.
//
// Map it into context since we want to check conditional requirements.
rawType = enumDecl->mapTypeIntoContext(rawType);
if (!TypeChecker::conformsToKnownProtocol(
rawType, KnownProtocolKind::Equatable, DC->getParentModule())) {
SourceLoc loc = enumDecl->getInherited().getStartLoc();
diags.diagnose(loc, diag::enum_raw_type_not_equatable, rawType);
return;
}
return;
}
}
// One cannot meaningfully declare conformance to the NSObject protocol
// in Swift. Suggest inheritance from NSObject instead.
if (isNSObjectProtocol(Proto)) {
if (T->getClassOrBoundGenericClass()) {
auto diag =
diags.diagnose(ComplainLoc, diag::type_cannot_conform_to_nsobject,
T);
// Try to suggest inheriting from NSObject instead.
auto classDecl = dyn_cast<ClassDecl>(DC);
if (!classDecl)
return;
auto inheritedTypes = classDecl->getInherited();
for (auto i : inheritedTypes.getIndices()) {
Type inheritedTy = inheritedTypes.getResolvedType(i);
// If it's a class, we cannot suggest a different class to inherit
// from.
if (inheritedTy->getClassOrBoundGenericClass())
return;
// Is it the NSObject protocol?
if (auto protoTy = inheritedTy->getAs<ProtocolType>()) {
if (isNSObjectProtocol(protoTy->getDecl())) {
diag.fixItReplace(inheritedTypes.getEntry(i).getSourceRange(),
"NSObject");
return;
}
}
}
return;
}
}
diags.diagnose(ComplainLoc, diag::type_does_not_conform,
T, Proto->getDeclaredInterfaceType());
}
ProtocolConformanceRef
TypeChecker::containsProtocol(Type T, ProtocolDecl *Proto, ModuleDecl *M,
bool allowMissing) {
// Existential types don't need to conform, i.e., they only need to
// contain the protocol.
if (T->isExistentialType()) {
// Handle the special case of the Error protocol, which self-conforms
// *and* has a witness table.
auto constraint = T;
if (auto existential = T->getAs<ExistentialType>())
constraint = existential->getConstraintType();
if (constraint->isEqual(Proto->getDeclaredInterfaceType()) &&
Proto->requiresSelfConformanceWitnessTable()) {
auto &ctx = M->getASTContext();
return ProtocolConformanceRef(ctx.getSelfConformance(Proto));
}
auto layout = T->getExistentialLayout();
// First, if we have a superclass constraint, the class may conform
// concretely.
//
// Note that `allowMissing` is not propagated here because it
// would result in a missing conformance if type is `& Sendable`
// protocol composition. It's handled for type as a whole below.
if (auto superclass = layout.getSuperclass()) {
auto result = M->lookupConformance(superclass, Proto,
/*allowMissing=*/false);
if (result) {
return result;
}
}
// Next, check if the existential contains the protocol in question.
for (auto *PD : layout.getProtocols()) {
// If we found the protocol we're looking for, return an abstract
// conformance to it.
if (PD == Proto)
return ProtocolConformanceRef(Proto);
// Now check refined protocols.
if (PD->inheritsFrom(Proto))
return ProtocolConformanceRef(Proto);
}
return allowMissing ? ProtocolConformanceRef::forMissingOrInvalid(T, Proto)
: ProtocolConformanceRef::forInvalid();
}
// For non-existential types, this is equivalent to checking conformance.
return M->lookupConformance(T, Proto, allowMissing);
}
bool TypeChecker::conformsToKnownProtocol(
Type type, KnownProtocolKind protocol, ModuleDecl *module,
bool allowMissing) {
if (auto *proto = module->getASTContext().getProtocol(protocol))
return (bool) module->checkConformance(type, proto, allowMissing);
return false;
}
bool
TypeChecker::couldDynamicallyConformToProtocol(Type type, ProtocolDecl *Proto,
ModuleDecl *M) {
// An existential may have a concrete underlying type with protocol conformances
// we cannot know statically.
if (type->isExistentialType())
return true;
// The underlying concrete type may have a `Hashable` conformance that is
// not possible to know statically.
if (type->isAnyHashable()) {
return true;
}
// A generic archetype may have protocol conformances we cannot know
// statically.
if (type->is<ArchetypeType>())
return true;
// A non-final class might have a subclass that conforms to the protocol.
if (auto *classDecl = type->getClassOrBoundGenericClass()) {
if (!classDecl->isSemanticallyFinal())
return true;
}
// For standard library collection types such as Array, Set or Dictionary
// which have custom casting machinery implemented for situations like:
//
// func encodable(_ value: Encodable) {
// _ = value as! [String : Encodable]
// }
// we are skipping checking conditional requirements using lookupConformance,
// as an intermediate collection cast can dynamically change if the conditions
// are met or not.
if (type->isKnownStdlibCollectionType())
return !M->lookupConformance(type, Proto, /*allowMissing=*/true)
.isInvalid();
return !M->checkConformance(type, Proto).isInvalid();
}
/// Determine the score when trying to match two identifiers together.
static unsigned scoreIdentifiers(Identifier lhs, Identifier rhs,
unsigned limit) {
// Simple case: we have the same identifier.
if (lhs == rhs) return 0;
// One of the identifiers is empty. Use the length of the non-empty
// identifier.
if (lhs.empty() != rhs.empty())
return lhs.empty() ? rhs.str().size() : lhs.str().size();
// Compute the edit distance between the two names.
return lhs.str().edit_distance(rhs.str(), true, limit);
}
/// Combine the given base name and first argument label into a single
/// name.
static StringRef
combineBaseNameAndFirstArgument(Identifier baseName,
Identifier firstArgName,
SmallVectorImpl<char> &scratch) {
// Handle cases where one or the other name is empty.
if (baseName.empty()) {
if (firstArgName.empty()) return "";
return firstArgName.str();
}
if (firstArgName.empty())
return baseName.str();
// Append the first argument name to the base name.
scratch.clear();
scratch.append(baseName.str().begin(), baseName.str().end());
camel_case::appendSentenceCase(scratch, firstArgName.str());
return StringRef(scratch.data(), scratch.size());
}
/// Compute the scope between two potentially-matching names, which is
/// effectively the sum of the edit distances between the corresponding
/// argument labels.
static std::optional<unsigned> scorePotentiallyMatchingNames(DeclName lhs,
DeclName rhs,
bool isFunc,
unsigned limit) {
// If there are a different number of argument labels, we're done.
if (lhs.getArgumentNames().size() != rhs.getArgumentNames().size())
return std::nullopt;
// Score the base name match. If there is a first argument for a
// function, include its text along with the base name's text.
unsigned score;
if (!lhs.isSpecial() && !rhs.isSpecial()) {
if (lhs.getArgumentNames().empty() || !isFunc) {
score = scoreIdentifiers(lhs.getBaseIdentifier(), rhs.getBaseIdentifier(),
limit);
} else {
llvm::SmallString<16> lhsScratch;
StringRef lhsFirstName =
combineBaseNameAndFirstArgument(lhs.getBaseIdentifier(),
lhs.getArgumentNames()[0],
lhsScratch);
llvm::SmallString<16> rhsScratch;
StringRef rhsFirstName =
combineBaseNameAndFirstArgument(rhs.getBaseIdentifier(),
rhs.getArgumentNames()[0],
rhsScratch);
score = lhsFirstName.edit_distance(rhsFirstName.str(), true, limit);
}
} else {
if (lhs.getBaseName().getKind() == rhs.getBaseName().getKind()) {
score = 0;
} else {
return std::nullopt;
}
}
if (score > limit)
return std::nullopt;
// Compute the edit distance between matching argument names.
for (unsigned i = isFunc ? 1 : 0; i < lhs.getArgumentNames().size(); ++i) {
score += scoreIdentifiers(lhs.getArgumentNames()[i],
rhs.getArgumentNames()[i],
limit - score);
if (score > limit)
return std::nullopt;
}
return score;
}
/// Determine the score between two potentially-matching declarations.
static std::optional<unsigned>
scorePotentiallyMatching(ValueDecl *req, ValueDecl *witness, unsigned limit) {
/// Apply omit-needless-words to the given declaration, if possible.
auto omitNeedlessWordsIfPossible =
[](ValueDecl *VD) -> std::optional<DeclName> {
if (auto func = dyn_cast<AbstractFunctionDecl>(VD))
return TypeChecker::omitNeedlessWords(func);
if (auto var = dyn_cast<VarDecl>(VD)) {
if (auto newName = TypeChecker::omitNeedlessWords(var))
return DeclName(*newName);
return std::nullopt;
}
return std::nullopt;
};
DeclName reqName = req->getName();
DeclName witnessName = witness->getName();
// For @objc protocols, apply the omit-needless-words heuristics to
// both names.
if (cast<ProtocolDecl>(req->getDeclContext())->isObjC()) {
if (auto adjustedReqName = omitNeedlessWordsIfPossible(req))
reqName = *adjustedReqName;
if (auto adjustedWitnessName = omitNeedlessWordsIfPossible(witness))
witnessName = *adjustedWitnessName;
}
return scorePotentiallyMatchingNames(reqName, witnessName, isa<FuncDecl>(req),
limit);
}
namespace {
/// Describes actions one could take to suppress a warning about a
/// nearly-matching witness for an optional requirement.
enum class PotentialWitnessWarningSuppression {
MoveToExtension,
MoveToAnotherExtension
};
} // end anonymous namespace
/// Determine we can suppress the warning about a potential witness nearly
/// matching an optional requirement by moving the declaration.
std::optional<PotentialWitnessWarningSuppression>
canSuppressPotentialWitnessWarningWithMovement(ValueDecl *requirement,
ValueDecl *witness) {
// If the witness is within an extension, it can be moved to another
// extension.
if (isa<ExtensionDecl>(witness->getDeclContext()))
return PotentialWitnessWarningSuppression::MoveToAnotherExtension;
// A stored property cannot be moved to an extension.
if (auto var = dyn_cast<VarDecl>(witness)) {
if (var->hasStorage())
return std::nullopt;
}
// If the witness is within a struct or enum, it can be freely moved to
// another extension.
if (isa<StructDecl>(witness->getDeclContext()) ||
isa<EnumDecl>(witness->getDeclContext()))
return PotentialWitnessWarningSuppression::MoveToExtension;
// From here on, we only handle members of classes.
auto classDecl = dyn_cast<ClassDecl>(witness->getDeclContext());
if (!classDecl)
return std::nullopt;
// If the witness is a designated or required initializer, we can't move it
// to an extension.
if (auto ctor = dyn_cast<ConstructorDecl>(witness)) {
if (ctor->isDesignatedInit() || ctor->isRequired())
return std::nullopt;
}
// We can move this entity to an extension.
return PotentialWitnessWarningSuppression::MoveToExtension;
}
/// Determine we can suppress the warning about a potential witness nearly
/// matching an optional requirement by adding @nonobjc.
static bool
canSuppressPotentialWitnessWarningWithNonObjC(ValueDecl *requirement,
ValueDecl *witness) {
// The requirement must be @objc.
if (!requirement->isObjC()) return false;
// The witness must not have @nonobjc.
if (witness->getAttrs().hasAttribute<NonObjCAttr>()) return false;
// The witness must be @objc.
if (!witness->isObjC()) return false;
// ... but not explicitly.
if (auto attr = witness->getAttrs().getAttribute<ObjCAttr>()) {
if (!attr->isImplicit() || attr->getAddedByAccessNote()) return false;
}
// And not because it has to be for overriding.
if (auto overridden = witness->getOverriddenDecl())
if (overridden->isObjC()) return false;
// @nonobjc can be used to silence this warning.
return true;
}
/// Get the length of the given full name, counting up the base name and all
/// argument labels.
static unsigned getNameLength(DeclName name) {
unsigned length = 0;
if (!name.getBaseName().empty() && !name.getBaseName().isSpecial())
length += name.getBaseIdentifier().str().size();
for (auto arg : name.getArgumentNames()) {
if (!arg.empty())
length += arg.str().size();
}
return length;
}
/// Determine whether a particular declaration is generic.
static bool isGeneric(ValueDecl *decl) {
if (auto func = dyn_cast<AbstractFunctionDecl>(decl))
return func->isGeneric();
if (auto subscript = dyn_cast<SubscriptDecl>(decl))
return subscript->isGeneric();
return false;
}
/// Determine whether this is an unlabeled initializer or subscript.
static bool isUnlabeledInitializerOrSubscript(ValueDecl *value) {
ParameterList *paramList = nullptr;
if (isa<ConstructorDecl>(value) || isa<SubscriptDecl>(value)) {
paramList = getParameterList(value);
} else {
return false;
}
for (auto param : *paramList) {
if (!param->getArgumentName().empty()) return false;
}
return true;
}
/// Determine whether this declaration is an initializer
/// Determine whether we should warn about the given witness being a close
/// match for the given optional requirement.
static bool shouldWarnAboutPotentialWitness(
MultiConformanceChecker &groupChecker,
ValueDecl *req,
ValueDecl *witness,
AccessLevel access,
unsigned score) {
// If the witness is covered, don't warn about it.
if (groupChecker.isCoveredMember(witness))
return false;
// If the kinds of the requirement and witness are different, there's
// nothing to warn about.
if (req->getKind() != witness->getKind())
return false;
// If the warning couldn't be suppressed, don't warn.
if (!canSuppressPotentialWitnessWarningWithMovement(req, witness) &&
!canSuppressPotentialWitnessWarningWithNonObjC(req, witness))
return false;
// If the potential witness for an @objc requirement is already
// marked @nonobjc, don't warn.
if (req->isObjC() && witness->getAttrs().hasAttribute<NonObjCAttr>())
return false;
// If the witness is generic and requirement is not, or vice-versa,
// don't warn.
if (isGeneric(req) != isGeneric(witness))
return false;
// Don't warn if the potential witness has been explicitly given less
// visibility than the conformance.
if (witness->getFormalAccess() < access) {
if (auto attr = witness->getAttrs().getAttribute<AccessControlAttr>())
if (!attr->isImplicit()) return false;
}
// Don't warn if the requirement or witness is an initializer or subscript
// with no argument labels.
if (isUnlabeledInitializerOrSubscript(req) ||
isUnlabeledInitializerOrSubscript(witness))
return false;
// For non-@objc requirements, only warn if the witness comes from an
// extension.
if (!req->isObjC() && !isa<ExtensionDecl>(witness->getDeclContext()))
return false;
// If the score is relatively high, don't warn: this is probably
// unrelated. Allow about one typo for every four properly-typed
// characters, which prevents completely-wacky suggestions in many
// cases.
const unsigned reqNameLen = getNameLength(req->getName());
const unsigned witnessNameLen = getNameLength(witness->getName());
if (score > (std::min(reqNameLen, witnessNameLen)) / 4)
return false;
return true;
}
/// Diagnose a potential witness.
static void diagnosePotentialWitness(NormalProtocolConformance *conformance,
ValueDecl *req, ValueDecl *witness,
AccessLevel access) {
auto proto = cast<ProtocolDecl>(req->getDeclContext());
// Primary warning.
witness->diagnose(diag::req_near_match, witness,
req->getAttrs().hasAttribute<OptionalAttr>(),
req->getName(), proto->getName());
// Describe why the witness didn't satisfy the requirement.
WitnessChecker::RequirementEnvironmentCache oneUseCache;
auto dc = conformance->getDeclContext();
auto match = matchWitness(oneUseCache, conformance->getProtocol(),
conformance, dc, req, witness);
if (match.isWellFormed() &&
req->isObjC() && !witness->isObjC()) {
// Special case: note to add @objc.
auto diag =
witness->diagnose(diag::optional_req_nonobjc_near_match_add_objc);
if (!witness->canInferObjCFromRequirement(req))
fixDeclarationObjCName(diag, witness,
witness->getObjCRuntimeName(),
req->getObjCRuntimeName());
} else {
diagnoseMatch(conformance->getDeclContext()->getParentModule(),
conformance, req, match);
}
// If moving the declaration can help, suggest that.
if (auto move
= canSuppressPotentialWitnessWarningWithMovement(req, witness)) {
witness->diagnose(diag::req_near_match_move, witness->getName(),
static_cast<unsigned>(*move));
}
// If adding 'private', 'fileprivate', or 'internal' can help, suggest that.
if (access > AccessLevel::FilePrivate &&
!witness->getAttrs().hasAttribute<AccessControlAttr>()) {
witness
->diagnose(diag::req_near_match_access, witness->getName(), access)
.fixItInsert(witness->getAttributeInsertionLoc(true), "private ");
}
// If adding @nonobjc can help, suggest that.
if (canSuppressPotentialWitnessWarningWithNonObjC(req, witness)) {
witness->diagnose(diag::req_near_match_nonobjc, false)
.fixItInsert(witness->getAttributeInsertionLoc(false), "@nonobjc ");
}
req->diagnose(diag::kind_declname_declared_here,
DescriptiveDeclKind::Requirement, req->getName());
}
/// Whether the given protocol is "NSCoding".
static bool isNSCoding(ProtocolDecl *protocol) {
ASTContext &ctx = protocol->getASTContext();
return protocol->getModuleContext()->getName() == ctx.Id_Foundation &&
protocol->getName().str().equals("NSCoding");
}
/// Whether the given class has an explicit '@objc' name.
static bool hasExplicitObjCName(ClassDecl *classDecl) {
// FIXME: Turn this function into a request instead of computing this
// as part of the @objc request.
(void) classDecl->isObjC();
if (classDecl->getAttrs().hasAttribute<ObjCRuntimeNameAttr>())
return true;
auto objcAttr = classDecl->getAttrs().getAttribute<ObjCAttr>();
if (!objcAttr)
return false;
return objcAttr->hasName() && !objcAttr->isNameImplicit();
}
/// Check if the name of a class might be unstable, and if so, emit a
/// diag::nscoding_unstable_mangled_name diagnostic.
static void diagnoseUnstableName(ProtocolConformance *conformance,
ClassDecl *classDecl) {
// Note: these 'kind' values are synchronized with
// diag::nscoding_unstable_mangled_name.
enum class UnstableNameKind : unsigned {
Private = 0,
FilePrivate,
Nested,
Local,
};
std::optional<UnstableNameKind> kind;
if (!classDecl->getDeclContext()->isModuleScopeContext()) {
if (classDecl->getDeclContext()->isTypeContext())
kind = UnstableNameKind::Nested;
else
kind = UnstableNameKind::Local;
} else {
switch (classDecl->getFormalAccess()) {
case AccessLevel::FilePrivate:
kind = UnstableNameKind::FilePrivate;
break;
case AccessLevel::Private:
kind = UnstableNameKind::Private;
break;
case AccessLevel::Internal:
case AccessLevel::Open:
case AccessLevel::Public:
case AccessLevel::Package:
break;
}
}
auto &C = classDecl->getASTContext();
if (kind && C.LangOpts.EnableNSKeyedArchiverDiagnostics &&
isa<NormalProtocolConformance>(conformance) &&
!hasExplicitObjCName(classDecl)) {
C.Diags.diagnose(cast<NormalProtocolConformance>(conformance)->getLoc(),
diag::nscoding_unstable_mangled_name,
static_cast<unsigned>(kind.value()),
classDecl->getDeclaredInterfaceType());
auto insertionLoc =
classDecl->getAttributeInsertionLoc(/*forModifier=*/false);
// Note: this is intentionally using the Swift 3 mangling,
// to provide compatibility with archives created in the Swift 3
// time frame.
Mangle::ASTMangler mangler;
std::string mangledName = mangler.mangleObjCRuntimeName(classDecl);
assert(Lexer::isIdentifier(mangledName) &&
"mangled name is not an identifier; can't use @objc");
classDecl->diagnose(diag::unstable_mangled_name_add_objc)
.fixItInsert(insertionLoc, "@objc(" + mangledName + ")");
classDecl->diagnose(diag::unstable_mangled_name_add_objc_new)
.fixItInsert(insertionLoc,
"@objc(<#prefixed Objective-C class name#>)");
}
}
/// Infer the attribute tostatic-initialize the Objective-C metadata for the
/// given class, if needed.
static void inferStaticInitializeObjCMetadata(ClassDecl *classDecl) {
// If we already have the attribute, there's nothing to do.
if (classDecl->getAttrs().hasAttribute<StaticInitializeObjCMetadataAttr>())
return;
// If the class does not have a custom @objc name and the deployment target
// supports the objc_getClass() hook, the workaround is unnecessary.
ASTContext &ctx = classDecl->getASTContext();
auto deploymentAvailability =
AvailabilityContext::forDeploymentTarget(ctx);
if (deploymentAvailability.isContainedIn(
ctx.getObjCGetClassHookAvailability()) &&
!hasExplicitObjCName(classDecl))
return;
// If we know that the Objective-C metadata will be statically registered,
// there's nothing to do.
if (!classDecl->checkAncestry(AncestryFlags::Generic)) {
return;
}
// If this class isn't always available on the deployment target, don't
// mark it as statically initialized.
// FIXME: This is a workaround. The proper solution is for IRGen to
// only statically initialize the Objective-C metadata when running on
// a new-enough OS.
if (auto sourceFile = classDecl->getParentSourceFile()) {
AvailabilityContext safeRangeUnderApprox{
AvailabilityInference::availableRange(classDecl, ctx)};
AvailabilityContext runningOSOverApprox =
AvailabilityContext::forDeploymentTarget(ctx);
if (!runningOSOverApprox.isContainedIn(safeRangeUnderApprox))
return;
}
// Infer @_staticInitializeObjCMetadata.
classDecl->getAttrs().add(
new (ctx) StaticInitializeObjCMetadataAttr(/*implicit=*/true));
}
static void
diagnoseMissingAppendInterpolationMethod(NominalTypeDecl *typeDecl) {
struct InvalidMethod {
enum class Reason : unsigned {
ReturnType,
AccessControl,
Static,
};
FuncDecl *method;
Reason reason;
InvalidMethod(FuncDecl *method, Reason reason)
: method(method), reason(reason) {}
static bool hasValidMethod(NominalTypeDecl *typeDecl,
SmallVectorImpl<InvalidMethod> &invalid) {
NLOptions subOptions = NL_QualifiedDefault;
subOptions |= NL_ProtocolMembers;
DeclNameRef baseName(typeDecl->getASTContext().Id_appendInterpolation);
SmallVector<ValueDecl *, 4> lookupResults;
typeDecl->lookupQualified(typeDecl, baseName, typeDecl->getLoc(),
subOptions, lookupResults);
for (auto decl : lookupResults) {
auto method = dyn_cast<FuncDecl>(decl);
if (!method) continue;
if (isa<ProtocolDecl>(method->getDeclContext()))
continue;
if (method->isStatic()) {
invalid.emplace_back(method, Reason::Static);
continue;
}
if (!method->getResultInterfaceType()->isVoid() &&
!method->getAttrs().hasAttribute<DiscardableResultAttr>()) {
invalid.emplace_back(method, Reason::ReturnType);
continue;
}
if (method->getFormalAccess() < typeDecl->getFormalAccess()) {
invalid.emplace_back(method, Reason::AccessControl);
continue;
}
return true;
}
return false;
}
};
SmallVector<InvalidMethod, 4> invalidMethods;
if (InvalidMethod::hasValidMethod(typeDecl, invalidMethods))
return;
typeDecl->diagnose(diag::missing_append_interpolation);
auto &C = typeDecl->getASTContext();
for (auto invalidMethod : invalidMethods) {
switch (invalidMethod.reason) {
case InvalidMethod::Reason::Static:
C.Diags
.diagnose(invalidMethod.method->getStaticLoc(),
diag::append_interpolation_static)
.fixItRemove(invalidMethod.method->getStaticLoc());
break;
case InvalidMethod::Reason::ReturnType:
if (auto *const repr = invalidMethod.method->getResultTypeRepr()) {
C.Diags
.diagnose(repr->getLoc(),
diag::append_interpolation_void_or_discardable)
.fixItInsert(invalidMethod.method->getStartLoc(),
"@discardableResult ");
}
break;
case InvalidMethod::Reason::AccessControl:
C.Diags.diagnose(invalidMethod.method,
diag::append_interpolation_access_control,
invalidMethod.method->getFormalAccess(),
typeDecl->getName(), typeDecl->getFormalAccess());
}
}
}
/// Determine whether this conformance is implied by another conformance
/// to a protocol that predated concurrency.
static bool isImpliedByConformancePredatingConcurrency(
NormalProtocolConformance *conformance) {
if (conformance->getSourceKind() != ConformanceEntryKind::Implied)
return false;
auto implied = conformance->getImplyingConformance();
if (!implied)
return false;
auto impliedProto = implied->getProtocol();
if (impliedProto->preconcurrency() ||
impliedProto->isSpecificProtocol(KnownProtocolKind::Error) ||
impliedProto->isSpecificProtocol(KnownProtocolKind::CodingKey))
return true;
// Recurse to look further.
return isImpliedByConformancePredatingConcurrency(implied);
}
void TypeChecker::checkConformancesInContext(IterableDeclContext *idc) {
auto *const dc = idc->getAsGenericContext();
auto *sf = dc->getParentSourceFile();
assert(sf != nullptr &&
"checkConformancesInContext() should not be called on imported "
"or deserialized DeclContexts");
// Catch invalid extensions.
const auto *const nominal = dc->getSelfNominalTypeDecl();
if (!nominal)
return;
// Determine the access level of this conformance.
const auto defaultAccess = nominal->getFormalAccess();
// Check each of the conformances associated with this context.
auto conformances = idc->getLocalConformances();
// The conformance checker bundle that checks all conformances in the context.
auto &Context = dc->getASTContext();
MultiConformanceChecker groupChecker(Context);
ProtocolConformance *SendableConformance = nullptr;
bool hasDeprecatedUnsafeSendable = false;
bool sendableConformancePreconcurrency = false;
bool anyInvalid = false;
for (auto conformance : conformances) {
// Check and record normal conformances.
if (auto normal = dyn_cast<NormalProtocolConformance>(conformance)) {
groupChecker.addConformance(normal);
}
// Diagnose @NSCoding on file/fileprivate/nested/generic classes, which
// have unstable archival names.
if (auto classDecl = dc->getSelfClassDecl()) {
if (Context.LangOpts.EnableObjCInterop &&
isNSCoding(conformance->getProtocol()) &&
!classDecl->isGenericContext() &&
!classDecl->hasClangNode()) {
diagnoseUnstableName(conformance, classDecl);
// Infer @_staticInitializeObjCMetadata if needed.
inferStaticInitializeObjCMetadata(classDecl);
}
}
auto proto = conformance->getProtocol();
if (auto kp = proto->getKnownProtocolKind()) {
switch (*kp) {
case KnownProtocolKind::StringInterpolationProtocol: {
if (auto typeDecl = dc->getSelfNominalTypeDecl()) {
diagnoseMissingAppendInterpolationMethod(typeDecl);
}
break;
}
case KnownProtocolKind::Sendable: {
SendableConformance = conformance;
if (auto normal = conformance->getRootNormalConformance()) {
if (isImpliedByConformancePredatingConcurrency(normal))
sendableConformancePreconcurrency = true;
}
break;
}
case KnownProtocolKind::DistributedActor: {
if (auto classDecl = dyn_cast<ClassDecl>(nominal)) {
if (!classDecl->isDistributedActor()) {
if (classDecl->isActor()) {
dc->getSelfNominalTypeDecl()
->diagnose(diag::actor_cannot_inherit_distributed_actor_protocol,
dc->getSelfNominalTypeDecl()->getName())
.fixItInsert(classDecl->getStartLoc(), "distributed ");
} else {
dc->getSelfNominalTypeDecl()
->diagnose(diag::distributed_actor_protocol_illegal_inheritance,
dc->getSelfNominalTypeDecl()->getName())
.fixItReplace(nominal->getStartLoc(), "distributed actor");
}
}
}
break;
}
case KnownProtocolKind::DistributedActorSystem: {
checkDistributedActorSystem(nominal);
break;
}
case KnownProtocolKind::Actor: {
if (auto classDecl = dyn_cast<ClassDecl>(nominal)) {
if (!classDecl->isExplicitActor()) {
dc->getSelfNominalTypeDecl()
->diagnose(diag::actor_protocol_illegal_inheritance,
dc->getSelfNominalTypeDecl()->getName(),
proto->getName())
.fixItReplace(nominal->getStartLoc(), "actor");
}
}
break;
}
case KnownProtocolKind::UnsafeSendable: {
hasDeprecatedUnsafeSendable = true;
break;
}
case KnownProtocolKind::Executor: {
tryDiagnoseExecutorConformance(Context, nominal, proto);
break;
}
case KnownProtocolKind::Copyable: {
checkCopyableConformance(dc, ProtocolConformanceRef(conformance));
break;
}
case KnownProtocolKind::Escapable: {
checkEscapableConformance(dc, ProtocolConformanceRef(conformance));
break;
}
case KnownProtocolKind::BitwiseCopyable: {
checkBitwiseCopyableConformance(
conformance, /*isImplicit=*/conformance->getSourceKind() ==
ConformanceEntryKind::Synthesized);
break;
}
default:
break;
}
}
}
// Check constraints of Sendable.
if (!hasDeprecatedUnsafeSendable && SendableConformance) {
SendableCheck check = SendableCheck::Explicit;
if (sendableConformancePreconcurrency)
check = SendableCheck::ImpliedByStandardProtocol;
else if (SendableConformance->getSourceKind() ==
ConformanceEntryKind::Synthesized)
check = SendableCheck::Implicit;
checkSendableConformance(SendableConformance, check);
}
// Check all conformances.
groupChecker.checkAllConformances();
// Check actor isolation.
for (auto *member : idc->getMembers()) {
if (auto *valueDecl = dyn_cast<ValueDecl>(member)) {
(void)getActorIsolation(valueDecl);
}
}
if (Context.TypeCheckerOpts.DebugGenericSignatures &&
!conformances.empty()) {
// Now that they're filled out, print out information about the conformances
// here, when requested.
llvm::errs() << "\n";
dc->printContext(llvm::errs());
for (auto conformance : conformances) {
conformance->dump(llvm::errs());
llvm::errs() << "\n";
}
}
// Catalog all of members of this declaration context that satisfy
// requirements of conformances in this context.
SmallVector<ValueDecl *, 16>
unsatisfiedReqs(groupChecker.getUnsatisfiedRequirements().begin(),
groupChecker.getUnsatisfiedRequirements().end());
// Diagnose any conflicts attributed to this declaration context.
for (const auto &diag : idc->takeConformanceDiagnostics()) {
// Figure out the declaration of the existing conformance.
Decl *existingDecl = dyn_cast<NominalTypeDecl>(diag.ExistingDC);
if (!existingDecl)
existingDecl = cast<ExtensionDecl>(diag.ExistingDC);
// Complain about the redundant conformance.
auto currentSig = dc->getGenericSignatureOfContext();
auto existingSig = diag.ExistingDC->getGenericSignatureOfContext();
auto differentlyConditional = currentSig && existingSig &&
currentSig.getCanonicalSignature() !=
existingSig.getCanonicalSignature();
// If we've redundantly stated a conformance for which the original
// conformance came from the module of the type or the module of the
// protocol, just warn; we'll pick up the original conformance.
auto existingModule = diag.ExistingDC->getParentModule();
auto extendedNominal = diag.ExistingDC->getSelfNominalTypeDecl();
if (existingModule != dc->getParentModule() &&
(existingModule->getName() ==
extendedNominal->getParentModule()->getName() ||
existingModule == diag.Protocol->getParentModule() ||
existingModule->getName().is("CoreGraphics"))) {
// Warn about the conformance.
auto diagID = differentlyConditional
? diag::redundant_conformance_adhoc_conditional
: diag::redundant_conformance_adhoc;
Context.Diags.diagnose(diag.Loc, diagID, dc->getDeclaredInterfaceType(),
diag.Protocol->getName(),
existingModule->getName() ==
extendedNominal->getParentModule()->getName(),
existingModule->getName());
// Complain about any declarations in this extension whose names match
// a requirement in that protocol.
SmallPtrSet<DeclName, 4> diagnosedNames;
for (auto decl : idc->getMembers()) {
if (decl->isImplicit())
continue;
auto value = dyn_cast<ValueDecl>(decl);
if (!value) continue;
if (!diagnosedNames.insert(value->getName()).second)
continue;
bool valueIsType = isa<TypeDecl>(value);
for (auto requirement
: diag.Protocol->lookupDirect(value->getName())) {
if (requirement->getDeclContext() != diag.Protocol)
continue;
auto requirementIsType = isa<TypeDecl>(requirement);
if (valueIsType != requirementIsType)
continue;
value->diagnose(diag::redundant_conformance_witness_ignored,
value, diag.Protocol->getName());
break;
}
}
} else {
auto diagID = differentlyConditional
? diag::redundant_conformance_conditional
: diag::redundant_conformance;
Context.Diags.diagnose(diag.Loc, diagID, dc->getDeclaredInterfaceType(),
diag.Protocol->getName());
}
// Special case: explain that 'RawRepresentable' conformance
// is implied for enums which already declare a raw type.
if (auto enumDecl = dyn_cast<EnumDecl>(existingDecl)) {
if (diag.Protocol->isSpecificProtocol(
KnownProtocolKind::RawRepresentable) &&
DerivedConformance::derivesProtocolConformance(dc, enumDecl,
diag.Protocol) &&
enumDecl->hasRawType() &&
enumDecl->getInherited().getStartLoc().isValid()) {
auto inheritedLoc = enumDecl->getInherited().getStartLoc();
Context.Diags.diagnose(
inheritedLoc, diag::enum_declares_rawrep_with_raw_type,
dc->getDeclaredInterfaceType(), enumDecl->getRawType());
continue;
}
}
existingDecl->diagnose(diag::declared_protocol_conformance_here,
dc->getDeclaredInterfaceType(),
static_cast<unsigned>(diag.ExistingKind),
diag.Protocol->getName(),
diag.ExistingExplicitProtocol->getName());
}
// If there were any unsatisfied requirements, check whether there
// are any near-matches we should diagnose.
if (!unsatisfiedReqs.empty() && !anyInvalid) {
if (sf->Kind != SourceFileKind::Interface) {
// Find all of the members that aren't used to satisfy
// requirements, and check whether they are close to an
// unsatisfied or defaulted requirement.
for (auto member : idc->getMembers()) {
// Filter out anything that couldn't satisfy one of the
// requirements or was used to satisfy a different requirement.
auto value = dyn_cast<ValueDecl>(member);
if (!value) continue;
if (isa<TypeDecl>(value)) continue;
if (!value->getName()) continue;
// If this declaration overrides another declaration, the signature is
// fixed; don't complain about near misses.
if (value->getOverriddenDecl()) continue;
// If this member is a witness to any @objc requirement, ignore it.
if (!findWitnessedObjCRequirements(value, /*anySingleRequirement=*/true)
.empty())
continue;
// Find the unsatisfied requirements with the nearest-matching
// names.
SmallVector<ValueDecl *, 4> bestOptionalReqs;
unsigned bestScore = UINT_MAX;
for (auto req : unsatisfiedReqs) {
// Skip unavailable requirements.
if (req->getAttrs().isUnavailable(Context)) continue;
// Score this particular optional requirement.
auto score = scorePotentiallyMatching(req, value, bestScore);
if (!score) continue;
// If the score is better than the best we've seen, update the best
// and clear out the list.
if (*score < bestScore) {
bestOptionalReqs.clear();
bestScore = *score;
}
// If this score matches the (possible new) best score, record it.
if (*score == bestScore)
bestOptionalReqs.push_back(req);
}
// If we found some requirements with nearly-matching names, diagnose
// the first one.
if (bestScore < UINT_MAX) {
bestOptionalReqs.erase(
std::remove_if(
bestOptionalReqs.begin(),
bestOptionalReqs.end(),
[&](ValueDecl *req) {
return !shouldWarnAboutPotentialWitness(groupChecker, req,
value, defaultAccess,
bestScore);
}),
bestOptionalReqs.end());
}
// If we have something to complain about, do so.
if (!bestOptionalReqs.empty()) {
auto req = bestOptionalReqs[0];
bool diagnosed = false;
for (auto conformance : conformances) {
if (conformance->getProtocol() == req->getDeclContext()) {
diagnosePotentialWitness(conformance->getRootNormalConformance(),
req, value, defaultAccess);
diagnosed = true;
break;
}
}
assert(diagnosed && "Failed to find conformance to diagnose?");
(void)diagnosed;
// Remove this requirement from the list. We don't want to
// complain about it twice.
unsatisfiedReqs.erase(std::find(unsatisfiedReqs.begin(),
unsatisfiedReqs.end(),
req));
}
}
}
// For any unsatisfied optional @objc requirements that remain
// unsatisfied, note them in the AST for @objc selector collision
// checking.
for (auto req : unsatisfiedReqs) {
// Skip non-@objc requirements.
if (!req->isObjC()) continue;
// Skip unavailable requirements.
if (req->getAttrs().isUnavailable(Context)) continue;
// Record this requirement.
if (auto funcReq = dyn_cast<AbstractFunctionDecl>(req)) {
sf->ObjCUnsatisfiedOptReqs.emplace_back(dc, funcReq);
} else {
auto storageReq = cast<AbstractStorageDecl>(req);
if (auto getter = storageReq->getParsedAccessor(AccessorKind::Get))
sf->ObjCUnsatisfiedOptReqs.emplace_back(dc, getter);
if (auto setter = storageReq->getParsedAccessor(AccessorKind::Set))
sf->ObjCUnsatisfiedOptReqs.emplace_back(dc, setter);
}
}
}
}
llvm::TinyPtrVector<ValueDecl *>
swift::findWitnessedObjCRequirements(const ValueDecl *witness,
bool anySingleRequirement) {
llvm::TinyPtrVector<ValueDecl *> result;
// Types don't infer @objc this way.
if (isa<TypeDecl>(witness)) return result;
auto dc = witness->getDeclContext();
auto nominal = dc->getSelfNominalTypeDecl();
if (!nominal) return result;
if (isa<ProtocolDecl>(nominal)) return result;
DeclName name = witness->getName();
std::optional<AccessorKind> accessorKind;
if (auto *accessor = dyn_cast<AccessorDecl>(witness)) {
accessorKind = accessor->getAccessorKind();
switch (*accessorKind) {
case AccessorKind::Address:
case AccessorKind::MutableAddress:
case AccessorKind::Read:
case AccessorKind::Modify:
case AccessorKind::Init:
// These accessors are never exposed to Objective-C.
return result;
case AccessorKind::DidSet:
case AccessorKind::WillSet:
// These accessors are folded into the setter.
return result;
case AccessorKind::Get:
case AccessorKind::DistributedGet:
case AccessorKind::Set:
// These are found relative to the main decl.
name = accessor->getStorage()->getName();
break;
}
}
WitnessChecker::RequirementEnvironmentCache reqEnvCache;
ASTContext &ctx = nominal->getASTContext();
for (auto proto : nominal->getAllProtocols()) {
// We only care about Objective-C protocols.
if (!proto->isObjC()) continue;
std::optional<ProtocolConformance *> conformance;
for (auto req : proto->lookupDirect(name)) {
// Skip anything in a protocol extension.
if (req->getDeclContext() != proto) continue;
// Skip types.
if (isa<TypeDecl>(req)) continue;
// Skip unavailable requirements.
if (req->getAttrs().isUnavailable(ctx)) continue;
// Dig out the conformance.
if (!conformance.has_value()) {
SmallVector<ProtocolConformance *, 2> conformances;
nominal->lookupConformance(proto, conformances);
if (conformances.size() == 1)
conformance = conformances.front();
else
conformance = nullptr;
}
if (!*conformance) continue;
const Decl *found = (*conformance)->getWitnessDecl(req);
if (!found) {
// If we have an optional requirement in an inherited conformance,
// check whether the potential witness matches the requirement.
// FIXME: for now, don't even try this with generics involved. We
// should be tracking how subclasses implement optional requirements,
// in which case the getWitness() check above would suffice.
if (!req->getAttrs().hasAttribute<OptionalAttr>() ||
!isa<InheritedProtocolConformance>(*conformance)) {
continue;
}
auto normal = (*conformance)->getRootNormalConformance();
auto dc = (*conformance)->getDeclContext();
if (dc->getGenericSignatureOfContext() ||
normal->getDeclContext()->getGenericSignatureOfContext()) {
continue;
}
const ValueDecl *witnessToMatch = witness;
if (accessorKind)
witnessToMatch = cast<AccessorDecl>(witness)->getStorage();
if (matchWitness(reqEnvCache, proto, normal,
witnessToMatch->getDeclContext(), req,
const_cast<ValueDecl *>(witnessToMatch))
.isWellFormed()) {
if (accessorKind) {
auto *storageReq = dyn_cast<AbstractStorageDecl>(req);
if (!storageReq)
continue;
req = storageReq->getOpaqueAccessor(*accessorKind);
if (!req)
continue;
}
result.push_back(req);
if (anySingleRequirement) return result;
continue;
}
continue;
}
// Dig out the appropriate accessor, if necessary.
if (accessorKind) {
auto *storageReq = dyn_cast<AbstractStorageDecl>(req);
auto *storageFound = dyn_cast_or_null<AbstractStorageDecl>(found);
if (!storageReq || !storageFound)
continue;
req = storageReq->getOpaqueAccessor(*accessorKind);
if (!req)
continue;
found = storageFound->getOpaqueAccessor(*accessorKind);
}
// Determine whether the witness for this conformance is in fact
// our witness.
if (found == witness) {
result.push_back(req);
if (anySingleRequirement) return result;
continue;
}
}
}
// Sort the results.
if (result.size() > 2) {
std::stable_sort(result.begin(), result.end(),
[&](ValueDecl *lhs, ValueDecl *rhs) {
ProtocolDecl *lhsProto
= cast<ProtocolDecl>(lhs->getDeclContext());
ProtocolDecl *rhsProto
= cast<ProtocolDecl>(rhs->getDeclContext());
return TypeDecl::compare(lhsProto, rhsProto) < 0;
});
}
return result;
}
Witness
ValueWitnessRequest::evaluate(Evaluator &eval,
NormalProtocolConformance *conformance,
ValueDecl *requirement) const {
auto &ctx = requirement->getASTContext();
ConformanceChecker checker(ctx, conformance);
checker.resolveSingleWitness(requirement);
// FIXME: ConformanceChecker and the other associated WitnessCheckers have
// an extremely convoluted caching scheme that doesn't fit nicely into the
// evaluator's model. All of this should be refactored away.
const auto known = conformance->Mapping.find(requirement);
if (known == conformance->Mapping.end()) {
assert((!conformance->isComplete() || conformance->isInvalid()) &&
"Resolver did not resolve requirement");
return Witness();
}
return known->second;
}
namespace {
class DefaultWitnessChecker : public WitnessChecker {
public:
DefaultWitnessChecker(ProtocolDecl *proto)
: WitnessChecker(proto->getASTContext(), proto,
proto->getDeclaredInterfaceType(), proto) {}
ResolveWitnessResult resolveWitnessViaLookup(ValueDecl *requirement);
void recordWitness(ValueDecl *requirement, const RequirementMatch &match);
};
} // end anonymous namespace
ResolveWitnessResult
DefaultWitnessChecker::resolveWitnessViaLookup(ValueDecl *requirement) {
assert(!isa<AssociatedTypeDecl>(requirement) && "Must be a value witness");
// Find the best default witness for the requirement.
SmallVector<RequirementMatch, 4> matches;
unsigned numViable = 0;
unsigned bestIdx = 0;
bool doNotDiagnoseMatches = false;
if (findBestWitness(
requirement, nullptr, nullptr,
/* out parameters: */
matches, numViable, bestIdx, doNotDiagnoseMatches)) {
auto &best = matches[bestIdx];
// Perform the same checks as conformance witness matching, but silently
// ignore the candidate instead of diagnosing anything.
auto check = checkWitness(requirement, best);
if (check.Kind != CheckKind::Success)
return ResolveWitnessResult::ExplicitFailed;
// Record the match.
recordWitness(requirement, best);
return ResolveWitnessResult::Success;
}
// We have either no matches or an ambiguous match.
return ResolveWitnessResult::Missing;
}
void DefaultWitnessChecker::recordWitness(
ValueDecl *requirement,
const RequirementMatch &match) {
Proto->setDefaultWitness(requirement, match.getWitness(getASTContext()));
}
void TypeChecker::inferDefaultWitnesses(ProtocolDecl *proto) {
DefaultWitnessChecker checker(proto);
// Find the default for the given associated type.
auto findAssociatedTypeDefault = [proto](AssociatedTypeDecl *assocType)
-> std::pair<Type, AssociatedTypeDecl *> {
auto defaultedAssocType = findDefaultedAssociatedType(proto, proto, assocType);
if (!defaultedAssocType)
return {Type(), nullptr};
Type defaultType = defaultedAssocType->getDefaultDefinitionType();
if (!defaultType)
return {Type(), nullptr};
return {defaultType, defaultedAssocType};
};
for (auto *requirement : proto->getProtocolRequirements()) {
if (requirement->isInvalid())
continue;
if (auto assocType = dyn_cast<AssociatedTypeDecl>(requirement)) {
if (assocType->getOverriddenDecls().empty()) {
if (Type defaultType = findAssociatedTypeDefault(assocType).first)
proto->setDefaultTypeWitness(assocType, defaultType);
}
continue;
}
assert(!isa<TypeDecl>(requirement));
ResolveWitnessResult result = checker.resolveWitnessViaLookup(requirement);
if (result == ResolveWitnessResult::Missing &&
requirement->isSPI() &&
!proto->isSPI()) {
// SPI requirements need a default value, unless the protocol is SPI too.
requirement->diagnose(diag::spi_attribute_on_protocol_requirement,
requirement);
}
}
// Find defaults for any associated conformances rooted on defaulted
// associated types.
for (const auto &req : proto->getRequirementSignature().getRequirements()) {
if (req.getKind() != RequirementKind::Conformance)
continue;
if (req.getFirstType()->isEqual(proto->getSelfInterfaceType()))
continue;
// Find the innermost dependent member type (e.g., Self.AssocType), so
// we can look at the associated type.
auto depMemTy = req.getFirstType()->getAs<DependentMemberType>();
if (!depMemTy)
continue;
while (auto innerDepMemTy =
depMemTy->getBase()->getAs<DependentMemberType>())
depMemTy = innerDepMemTy;
if (!depMemTy->getBase()->isEqual(proto->getSelfInterfaceType()))
continue;
auto assocType = depMemTy->getAssocType();
if (!assocType)
continue;
auto *module = proto->getParentModule();
// Find the associated type nearest our own protocol, which might have
// a default not available in the associated type referenced by the
// (canonicalized) requirement.
if (assocType->getProtocol() != proto) {
SmallVector<ValueDecl *, 2> found;
module->lookupQualified(
proto, DeclNameRef(assocType->getName()),
proto->getLoc(),
NL_QualifiedDefault|NL_ProtocolMembers|NL_OnlyTypes,
found);
if (found.size() == 1 && isa<AssociatedTypeDecl>(found[0]))
assocType = cast<AssociatedTypeDecl>(found[0]);
}
// Dig out the default associated type definition.
AssociatedTypeDecl *defaultedAssocDecl = nullptr;
Type defaultAssocType;
std::tie(defaultAssocType, defaultedAssocDecl) =
findAssociatedTypeDefault(assocType);
if (!defaultAssocType)
continue;
Type defaultAssocTypeInContext =
proto->mapTypeIntoContext(defaultAssocType);
auto requirementProto = req.getProtocolDecl();
auto conformance = module->checkConformance(defaultAssocTypeInContext,
requirementProto);
if (conformance.isInvalid()) {
// Diagnose the lack of a conformance. This is potentially an ABI
// incompatibility.
proto->diagnose(diag::assoc_type_default_conformance_failed,
defaultAssocType, assocType,
req.getFirstType(), req.getSecondType());
defaultedAssocDecl
->diagnose(diag::assoc_type_default_here, assocType, defaultAssocType)
.highlight(defaultedAssocDecl->getDefaultDefinitionTypeRepr()
->getSourceRange());
continue;
}
// Record the default associated conformance.
proto->setDefaultAssociatedConformanceWitness(
req.getFirstType()->getCanonicalType(), requirementProto, conformance);
}
}
|