1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
|
//===--- TypeCheckSwitchStmt.cpp - Switch Exhaustiveness and Type Checks --===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file contains an algorithm for checking the exhaustiveness of switches.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/Pattern.h"
#include "swift/Basic/Debug.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/APIntMap.h"
#include <llvm/ADT/APFloat.h>
#include <forward_list>
#include <iterator>
#include <numeric>
#include <utility>
using namespace swift;
#define DEBUG_TYPE "TypeCheckSwitchStmt"
namespace {
struct DenseMapAPFloatKeyInfo {
static inline APFloat getEmptyKey() { return APFloat(APFloat::Bogus(), 1); }
static inline APFloat getTombstoneKey() { return APFloat(APFloat::Bogus(), 2); }
static unsigned getHashValue(const APFloat &Key) {
return static_cast<unsigned>(hash_value(Key));
}
static bool isEqual(const APFloat &LHS, const APFloat &RHS) {
return LHS.bitwiseIsEqual(RHS);
}
};
}
namespace {
/// The SpaceEngine encapsulates
///
/// 1. An algorithm for computing the exhaustiveness of a switch statement
/// using an algebra of spaces based on Fengyun Liu's
/// "A Generic Algorithm for Checking Exhaustivity of Pattern Matching".
/// 2. An algorithm for computing warnings for pattern matching based on
/// Luc Maranget's "Warnings for pattern matching".
///
/// The main algorithm centers around the computation of the difference and
/// the containment of the "Spaces" given in each case, which reduces the
/// definition of exhaustiveness to checking if the difference of the space
/// 'S' of the user's written patterns and the space 'T' of the pattern
/// condition is empty.
struct SpaceEngine {
enum class SpaceKind : uint8_t {
Empty,
Type,
Constructor,
Disjunct,
BooleanConstant,
UnknownCase,
};
// The order of cases is used for disjunctions: a disjunction's
// DowngradeToWarning condition is the std::min of its spaces'.
enum class DowngradeToWarning {
No,
ForUnknownCase,
LAST = ForUnknownCase
};
enum UnknownCase_t {
UnknownCase
};
/// A data structure for conveniently pattern-matching on the kinds of
/// two spaces.
struct PairSwitch {
public:
constexpr PairSwitch(SpaceKind pair1, SpaceKind pair2)
: Data(static_cast<uint8_t>(pair1) | (static_cast<uint8_t>(pair2) << 8))
{}
constexpr bool operator==(const PairSwitch other) const {
return Data == other.Data;
}
constexpr operator int() const {
return Data;
}
private:
uint16_t Data;
PairSwitch (const PairSwitch&) = delete;
PairSwitch& operator= (const PairSwitch&) = delete;
};
#define PAIRCASE(XS, YS) case PairSwitch(XS, YS)
class Space final : public RelationalOperationsBase<Space> {
private:
SpaceKind Kind;
llvm::PointerIntPair<Type, 1, bool> TypeAndVal;
// In type space, we reuse HEAD to help us print meaningful name, e.g.,
// tuple element name in fixits.
DeclName Head;
std::forward_list<Space> Spaces;
size_t computeSize(const DeclContext *DC,
SmallPtrSetImpl<TypeBase *> &cache) const {
switch (getKind()) {
case SpaceKind::Empty:
return 0;
case SpaceKind::BooleanConstant:
return 1;
case SpaceKind::UnknownCase:
return isAllowedButNotRequired() ? 0 : 1;
case SpaceKind::Type: {
if (!canDecompose(getType())) {
return 1;
}
cache.insert(getType().getPointer());
SmallVector<Space, 4> spaces;
decomposeDisjuncts(DC, getType(), {}, spaces);
size_t acc = 0;
for (auto &sp : spaces) {
// Decomposed pattern spaces grow with the sum of the subspaces.
acc += sp.computeSize(DC, cache);
}
cache.erase(getType().getPointer());
return acc;
}
case SpaceKind::Constructor: {
size_t acc = 1;
for (auto &sp : getSpaces()) {
// Break self-recursive references among enum arguments.
if (sp.getKind() == SpaceKind::Type
&& cache.count(sp.getType().getPointer())) {
continue;
}
// Constructor spaces grow with the product of their arguments.
acc *= sp.computeSize(DC, cache);
}
return acc;
}
case SpaceKind::Disjunct: {
size_t acc = 0;
for (auto &sp : getSpaces()) {
// Disjoint grow with the sum of the subspaces.
acc += sp.computeSize(DC, cache);
}
return acc;
}
}
llvm_unreachable("unhandled kind");
}
explicit Space(Type T, DeclName NameForPrinting)
: Kind(SpaceKind::Type), TypeAndVal(T), Head(NameForPrinting),
Spaces({}) {}
explicit Space(UnknownCase_t, bool allowedButNotRequired)
: Kind(SpaceKind::UnknownCase),
TypeAndVal(Type(), allowedButNotRequired), Head(Identifier()),
Spaces({}) {}
explicit Space(Type T, DeclName H, ArrayRef<Space> SP)
: Kind(SpaceKind::Constructor), TypeAndVal(T), Head(H),
Spaces(SP.begin(), SP.end()) {}
explicit Space(Type T, DeclName H, std::forward_list<Space> SP)
: Kind(SpaceKind::Constructor), TypeAndVal(T), Head(H), Spaces(SP) {}
explicit Space(ArrayRef<Space> SP)
: Kind(SpaceKind::Disjunct), TypeAndVal(Type()),
Head(Identifier()), Spaces(SP.begin(), SP.end()) {}
explicit Space(bool C)
: Kind(SpaceKind::BooleanConstant), TypeAndVal(Type(), C),
Head(Identifier()), Spaces({}) {}
public:
explicit Space()
: Kind(SpaceKind::Empty), TypeAndVal(Type()), Head(Identifier()),
Spaces({}) {}
static Space forType(Type T, DeclName NameForPrinting) {
if (T->isStructurallyUninhabited())
return Space();
return Space(T, NameForPrinting);
}
static Space forUnknown(bool allowedButNotRequired) {
return Space(UnknownCase, allowedButNotRequired);
}
static Space forConstructor(Type T, DeclName H, ArrayRef<Space> SP) {
if (llvm::any_of(SP, std::mem_fn(&Space::isEmpty))) {
// A constructor with an unconstructable parameter can never actually
// be used.
return Space();
}
return Space(T, H, SP);
}
static Space forBool(bool C) {
return Space(C);
}
static Space forDisjunct(ArrayRef<Space> SP) {
SmallVector<Space, 4> spaces(SP.begin(), SP.end());
spaces.erase(
std::remove_if(spaces.begin(), spaces.end(),
[](const Space &space) { return space.isEmpty(); }),
spaces.end());
if (spaces.empty())
return Space();
if (spaces.size() == 1)
return spaces.front();
return Space(spaces);
}
bool operator==(const Space &other) const {
return Kind == other.Kind && TypeAndVal == other.TypeAndVal &&
Head == other.Head && Spaces == other.Spaces;
}
SpaceKind getKind() const { return Kind; }
SWIFT_DEBUG_DUMP;
size_t getSize(const DeclContext *DC) const {
SmallPtrSet<TypeBase *, 4> cache;
return computeSize(DC, cache);
}
bool isEmpty() const { return getKind() == SpaceKind::Empty; }
bool isAllowedButNotRequired() const {
assert(getKind() == SpaceKind::UnknownCase
&& "Wrong kind of space tried to access not-required flag");
return TypeAndVal.getInt();
}
Type getType() const {
assert((getKind() == SpaceKind::Type
|| getKind() == SpaceKind::Constructor)
&& "Wrong kind of space tried to access space type");
return TypeAndVal.getPointer();
}
DeclName getHead() const {
assert(getKind() == SpaceKind::Constructor
&& "Wrong kind of space tried to access head");
return Head;
}
Identifier getPrintingName() const {
assert(getKind() == SpaceKind::Type
&& "Wrong kind of space tried to access printing name");
return Head.getBaseIdentifier();
}
const std::forward_list<Space> &getSpaces() const {
assert((getKind() == SpaceKind::Constructor
|| getKind() == SpaceKind::Disjunct)
&& "Wrong kind of space tried to access subspace list");
return Spaces;
}
bool getBoolValue() const {
assert(getKind() == SpaceKind::BooleanConstant
&& "Wrong kind of space tried to access bool value");
return TypeAndVal.getInt();
}
// An optimization that computes if the difference of this space and
// another space is empty.
bool isSubspace(const Space &other, const DeclContext *DC) const {
if (this->isEmpty()) {
return true;
}
if (other.isEmpty()) {
return false;
}
switch (PairSwitch(getKind(), other.getKind())) {
PAIRCASE (SpaceKind::Disjunct, SpaceKind::Type):
PAIRCASE (SpaceKind::Disjunct, SpaceKind::Constructor):
PAIRCASE (SpaceKind::Disjunct, SpaceKind::Disjunct):
PAIRCASE (SpaceKind::Disjunct, SpaceKind::BooleanConstant):
PAIRCASE (SpaceKind::Disjunct, SpaceKind::UnknownCase): {
// (S1 | ... | Sn) <= S iff (S1 <= S) && ... && (Sn <= S)
for (auto &space : this->getSpaces()) {
if (!space.isSubspace(other, DC)) {
return false;
}
}
return true;
}
PAIRCASE (SpaceKind::Type, SpaceKind::Type): {
// Optimization: Are the types equal? If so, the space is covered.
if (this->getType()->isEqual(other.getType())) {
return true;
}
// (_ : Ty1) <= (_ : Ty2) iff D(Ty1) == D(Ty2)
if (canDecompose(this->getType())) {
Space or1Space = decompose(DC, this->getType(), {});
if (or1Space.isSubspace(other, DC)) {
return true;
}
}
if (canDecompose(other.getType())) {
Space or2Space = decompose(DC, other.getType(), {});
return this->isSubspace(or2Space, DC);
}
return false;
}
PAIRCASE (SpaceKind::Type, SpaceKind::Disjunct): {
// (_ : Ty1) <= (S1 | ... | Sn) iff (S1 <= S) || ... || (Sn <= S)
for (auto &dis : other.getSpaces()) {
if (this->isSubspace(dis, DC)) {
return true;
}
}
// (_ : Ty1) <= (S1 | ... | Sn) iff D(Ty1) <= (S1 | ... | Sn)
if (!canDecompose(this->getType())) {
return false;
}
Space or1Space = decompose(DC, this->getType(), {});
return or1Space.isSubspace(other, DC);
}
PAIRCASE (SpaceKind::Type, SpaceKind::Constructor): {
// (_ : Ty1) <= H(p1 | ... | pn) iff D(Ty1) <= H(p1 | ... | pn)
if (canDecompose(this->getType())) {
Space or1Space = decompose(DC, this->getType(), {});
return or1Space.isSubspace(other, DC);
}
// An undecomposable type is always larger than its constructor space.
return false;
}
PAIRCASE (SpaceKind::Type, SpaceKind::UnknownCase):
return false;
PAIRCASE (SpaceKind::Constructor, SpaceKind::Type):
// Typechecking guaranteed this constructor is a subspace of the type.
return true;
PAIRCASE (SpaceKind::UnknownCase, SpaceKind::Type):
return true;
PAIRCASE (SpaceKind::BooleanConstant, SpaceKind::Type):
return other.getType()->isBool();
PAIRCASE (SpaceKind::Constructor, SpaceKind::Constructor): {
// Optimization: If the constructor heads don't match, subspace is
// impossible.
if (this->Head != other.Head) {
return false;
}
// Special Case: Short-circuit comparisons with payload-less
// constructors.
if (other.getSpaces().empty()) {
return true;
}
// H(a1, ..., an) <= H(b1, ..., bn) iff a1 <= b1 && ... && an <= bn
auto i = this->getSpaces().begin();
auto j = other.getSpaces().begin();
for (; i != this->getSpaces().end() && j != other.getSpaces().end();
++i, ++j) {
if (!(*i).isSubspace(*j, DC)) {
return false;
}
}
return true;
}
PAIRCASE (SpaceKind::Constructor, SpaceKind::UnknownCase):
for (auto ¶m : this->getSpaces()) {
if (param.isSubspace(other, DC)) {
return true;
}
}
return false;
PAIRCASE (SpaceKind::Constructor, SpaceKind::Disjunct):
PAIRCASE (SpaceKind::BooleanConstant, SpaceKind::Disjunct):
PAIRCASE (SpaceKind::UnknownCase, SpaceKind::Disjunct): {
// S <= (S1 | ... | Sn) <= S iff (S <= S1) || ... || (S <= Sn)
for (auto ¶m : other.getSpaces()) {
if (this->isSubspace(param, DC)) {
return true;
}
}
return false;
}
PAIRCASE (SpaceKind::BooleanConstant, SpaceKind::BooleanConstant):
return this->getBoolValue() == other.getBoolValue();
PAIRCASE (SpaceKind::BooleanConstant, SpaceKind::Constructor):
PAIRCASE (SpaceKind::BooleanConstant, SpaceKind::UnknownCase):
return false;
PAIRCASE (SpaceKind::Empty, SpaceKind::BooleanConstant):
PAIRCASE (SpaceKind::Constructor, SpaceKind::BooleanConstant):
PAIRCASE (SpaceKind::Type, SpaceKind::BooleanConstant):
PAIRCASE (SpaceKind::UnknownCase, SpaceKind::BooleanConstant):
return false;
PAIRCASE (SpaceKind::UnknownCase, SpaceKind::Constructor):
return false;
PAIRCASE (SpaceKind::UnknownCase, SpaceKind::UnknownCase):
if (other.isAllowedButNotRequired())
return this->isAllowedButNotRequired();
return true;
default:
llvm_unreachable("Uncovered pair found while computing subspaces?");
}
}
// Returns the result of subtracting the other space from this space. The
// result is empty if the other space completely covers this space, or
// non-empty if there were any uncovered cases. The difference of spaces
// is the smallest uncovered set of cases. The result is absent if the
// computation had to be abandoned.
//
// \p minusCount is an optional pointer counting the number of
// remaining calls to minus before the computation times out.
// Returns None if the computation "timed out".
std::optional<Space> minus(const Space &other, const DeclContext *DC,
unsigned *minusCount) const {
if (minusCount && (*minusCount)-- == 0)
return std::nullopt;
if (this->isEmpty()) {
return Space();
}
if (other.isEmpty()) {
return *this;
}
switch (PairSwitch(this->getKind(), other.getKind())) {
PAIRCASE (SpaceKind::Type, SpaceKind::Type): {
if (this->getType()->isEqual(other.getType())) {
return Space();
}
return *this;
}
PAIRCASE (SpaceKind::Type, SpaceKind::Constructor): {
if (canDecompose(this->getType())) {
auto decomposition = decompose(DC, this->getType(), {});
return decomposition.minus(other, DC, minusCount);
} else {
return *this;
}
}
PAIRCASE (SpaceKind::Type, SpaceKind::UnknownCase):
// Note: This is not technically correct for decomposable types, but
// you'd only get "typeSpace - unknownCaseSpace" if you haven't tried
// to match any of the decompositions of the space yet. In that case,
// we'd rather not expand the type, because it might be infinitely
// decomposable.
return *this;
PAIRCASE (SpaceKind::Type, SpaceKind::Disjunct): {
// Optimize for the common case of a type minus a disjunct of
// constructor subspaces. This form of subtraction is guaranteed to
// happen very early on, and we can eliminate a huge part of the
// pattern space by only decomposing the parts of the type space that
// aren't actually covered by the disjunction.
if (canDecompose(this->getType())) {
llvm::StringSet<> otherConstructors;
for (auto s : other.getSpaces()) {
// Filter for constructor spaces with no payloads.
if (s.getKind() != SpaceKind::Constructor) {
continue;
}
if (!s.getSpaces().empty()) {
continue;
}
otherConstructors.insert(s.Head.getBaseIdentifier().str());
}
auto decomposition = decompose(DC, this->getType(),
otherConstructors);
return decomposition.minus(other, DC, minusCount);
} else {
// If the type isn't decomposable then there's no way we can
// subtract from it. Report the total space as uncovered.
return *this;
}
}
PAIRCASE (SpaceKind::Empty, SpaceKind::Disjunct):
PAIRCASE (SpaceKind::Constructor, SpaceKind::Disjunct):
PAIRCASE (SpaceKind::Disjunct, SpaceKind::Disjunct):
PAIRCASE (SpaceKind::BooleanConstant, SpaceKind::Disjunct):
PAIRCASE (SpaceKind::UnknownCase, SpaceKind::Disjunct): {
Space tot = *this;
for (auto s : other.getSpaces()) {
if (auto diff = tot.minus(s, DC, minusCount))
tot = *diff;
else
return std::nullopt;
}
return tot;
}
PAIRCASE (SpaceKind::Disjunct, SpaceKind::Empty):
PAIRCASE (SpaceKind::Disjunct, SpaceKind::Type):
PAIRCASE (SpaceKind::Disjunct, SpaceKind::Constructor):
PAIRCASE (SpaceKind::Disjunct, SpaceKind::BooleanConstant):
PAIRCASE (SpaceKind::Disjunct, SpaceKind::UnknownCase): {
SmallVector<Space, 4> smallSpaces;
for (auto s : this->getSpaces()) {
auto diff = s.minus(other, DC, minusCount);
if (!diff)
return std::nullopt;
if (diff->getKind() == SpaceKind::Disjunct) {
smallSpaces.append(diff->getSpaces().begin(),
diff->getSpaces().end());
} else {
smallSpaces.push_back(*diff);
}
}
// Remove any of the later spaces that are contained entirely in an
// earlier one. Since we're not sorting by size, this isn't
// guaranteed to give us a minimal set, but it'll still reduce the
// general (A, B, C) - ((.a1, .b1, .c1) | (.a1, .b1, .c2)) problem.
// This is a quadratic operation but it saves us a LOT of work
// overall.
SmallVector<Space, 4> usefulSmallSpaces;
for (const Space &space : smallSpaces) {
bool alreadyHandled = llvm::any_of(usefulSmallSpaces,
[&](const Space &previousSpace) {
return space.isSubspace(previousSpace, DC);
});
if (alreadyHandled)
continue;
usefulSmallSpaces.push_back(space);
}
return Space::forDisjunct(usefulSmallSpaces);
}
PAIRCASE (SpaceKind::Constructor, SpaceKind::Type):
return Space();
PAIRCASE (SpaceKind::Constructor, SpaceKind::UnknownCase): {
SmallVector<Space, 4> newSubSpaces;
for (auto subSpace : this->getSpaces()) {
auto nextSpace = subSpace.minus(other, DC, minusCount);
if (!nextSpace)
return std::nullopt;
if (nextSpace.value().isEmpty())
return Space();
newSubSpaces.push_back(nextSpace.value());
}
return Space::forConstructor(this->getType(), this->getHead(),
newSubSpaces);
}
PAIRCASE (SpaceKind::Constructor, SpaceKind::Constructor): {
// Optimization: If the heads of the constructors don't match then
// the two are disjoint and their difference is the first space.
if (this->Head.getBaseIdentifier() !=
other.Head.getBaseIdentifier()) {
return *this;
}
// Special Case: Short circuit patterns without payloads. Their
// difference is empty.
if (other.getSpaces().empty()) {
return Space();
}
SmallVector<Space, 4> constrSpaces;
bool foundBad = false;
auto i = this->getSpaces().begin();
auto j = other.getSpaces().begin();
for (auto idx = 0;
i != this->getSpaces().end() && j != other.getSpaces().end();
++i, ++j, ++idx) {
auto &s1 = *i;
auto &s2 = *j;
// If one constructor parameter doesn't cover the other then we've
// got to report the uncovered cases in a user-friendly way.
if (!s1.isSubspace(s2, DC)) {
foundBad = true;
}
// Copy the params and replace the parameter at each index with the
// difference of the two spaces. This unpacks one constructor head
// into each parameter.
SmallVector<Space, 4> copyParams(this->getSpaces().begin(),
this->getSpaces().end());
auto reducedSpaceOrNone = s1.minus(s2, DC, minusCount);
if (!reducedSpaceOrNone)
return std::nullopt;
auto reducedSpace = *reducedSpaceOrNone;
// If one of the constructor parameters is empty it means
// the whole constructor space is empty as well, so we can
// safely skip it.
if (reducedSpace.isEmpty())
continue;
// If reduced produced the same space as original one, we
// should return it directly instead of trying to create
// a disjunction of its sub-spaces because nothing got reduced.
// This is especially helpful when dealing with `unknown` case
// in parameter positions.
if (s1 == reducedSpace)
return *this;
copyParams[idx] = reducedSpace;
Space CS = Space::forConstructor(this->getType(), this->getHead(),
copyParams);
constrSpaces.push_back(CS);
}
if (foundBad) {
return Space::forDisjunct(constrSpaces);
}
return Space();
}
PAIRCASE (SpaceKind::BooleanConstant, SpaceKind::BooleanConstant): {
// The difference of boolean constants depends on their values.
if (this->getBoolValue() == other.getBoolValue()) {
return Space();
} else {
return *this;
}
}
PAIRCASE (SpaceKind::BooleanConstant, SpaceKind::Type): {
if (other.getType()->isBool()) {
return (getKind() == SpaceKind::BooleanConstant) ? Space() : *this;
}
if (canDecompose(other.getType())) {
auto decomposition = decompose(DC, other.getType(), {});
return this->minus(decomposition, DC, minusCount);
}
return *this;
}
PAIRCASE (SpaceKind::BooleanConstant, SpaceKind::Empty):
PAIRCASE (SpaceKind::BooleanConstant, SpaceKind::Constructor):
PAIRCASE (SpaceKind::BooleanConstant, SpaceKind::UnknownCase):
return *this;
PAIRCASE (SpaceKind::Type, SpaceKind::BooleanConstant): {
if (canDecompose(this->getType())) {
auto orSpace = decompose(DC, this->getType(), {});
return orSpace.minus(other, DC, minusCount);
} else {
return *this;
}
}
PAIRCASE (SpaceKind::UnknownCase, SpaceKind::Type):
return Space();
PAIRCASE (SpaceKind::UnknownCase, SpaceKind::Constructor):
return *this;
PAIRCASE (SpaceKind::UnknownCase, SpaceKind::UnknownCase):
if (other.isAllowedButNotRequired() &&
!this->isAllowedButNotRequired()) {
return *this;
}
return Space();
PAIRCASE (SpaceKind::Empty, SpaceKind::BooleanConstant):
PAIRCASE (SpaceKind::Constructor, SpaceKind::BooleanConstant):
PAIRCASE (SpaceKind::UnknownCase, SpaceKind::BooleanConstant):
return *this;
default:
llvm_unreachable("Uncovered pair found while computing difference?");
}
}
void show(llvm::raw_ostream &buffer, bool forDisplay = true) const {
switch (getKind()) {
case SpaceKind::Empty:
if (forDisplay) {
buffer << "_";
} else {
buffer << "[EMPTY]";
}
break;
case SpaceKind::Disjunct: {
if (forDisplay) {
llvm_unreachable("Attempted to display disjunct to user!");
} else {
buffer << "DISJOIN(";
llvm::interleave(Spaces, [&](const Space &sp) {
sp.show(buffer, forDisplay);
}, [&buffer]() { buffer << " |\n"; });
buffer << ")";
}
}
break;
case SpaceKind::BooleanConstant:
buffer << (getBoolValue() ? "true" : "false");
break;
case SpaceKind::Constructor: {
if (!Head.getBaseIdentifier().empty()) {
buffer << ".";
buffer << Head.getBaseIdentifier().str();
}
if (Spaces.empty()) {
return;
}
auto args = Head.getArgumentNames().begin();
auto argEnd = Head.getArgumentNames().end();
// FIXME: Clean up code for performance
buffer << "(";
llvm::SmallVector<std::pair<Identifier, Space>, 4> labelSpaces;
for (auto param : Spaces) {
if (args != argEnd) {
labelSpaces.push_back(
std::pair<Identifier, Space>(*args, param));
++args;
} else
labelSpaces.push_back(
std::pair<Identifier, Space>(Identifier(), param));
}
interleave(
labelSpaces,
[&](const std::pair<Identifier, Space> ¶m) {
if (!param.first.empty()) {
buffer << param.first;
buffer << ": ";
}
param.second.show(buffer, forDisplay);
},
[&buffer]() { buffer << ", "; });
buffer << ")";
}
break;
case SpaceKind::Type: {
Identifier Name = getPrintingName();
if (Name.empty())
buffer << "_";
else
buffer << tok::kw_let << " " << Name.str();
if (!forDisplay) {
buffer << ": ";
getType()->print(buffer);
}
}
break;
case SpaceKind::UnknownCase:
if (forDisplay) {
// We special-case this to use "@unknown default" at the top level.
buffer << "_";
} else {
buffer << "UNKNOWN";
if (isAllowedButNotRequired())
buffer << "(not_required)";
}
break;
}
}
/// Use this if you're doing getAs<TupleType> on a Type (and it succeeds)
/// to compute the spaces for it. Handy for disambiguating fields
/// that are tuples from associated values.
///
/// .e((a: X, b: X)) -> ((a: X, b: X))
/// vs .f(a: X, b: X) -> (a: X, b: X)
static void getTupleTypeSpaces(Type &outerType,
TupleType *tty,
SmallVectorImpl<Space> &spaces) {
ArrayRef<TupleTypeElt> ttyElts = tty->getElements();
if (isa<ParenType>(outerType.getPointer())) {
// We had an actual tuple!
SmallVector<Space, 4> innerSpaces;
for (auto &elt: ttyElts)
innerSpaces.push_back(Space::forType(elt.getType(), elt.getName()));
spaces.push_back(
Space::forConstructor(tty, Identifier(), innerSpaces));
} else {
// We're looking at the fields of a constructor here.
for (auto &elt: ttyElts)
spaces.push_back(Space::forType(elt.getType(), elt.getName()));
}
};
// Decompose a type into its component spaces, ignoring any enum
// cases that have no payloads and are also in the `voidList`. Membership
// there means the space is guaranteed by the subtraction procedure to be
// covered, so there's no reason to include it. Note that this *only*
// works for constructor spaces with no payloads as these cannot be
// overloaded and there is no further recursive structure to subtract
// into.
static void decomposeDisjuncts(const DeclContext *DC, Type tp,
const llvm::StringSet<> &voidList,
SmallVectorImpl<Space> &arr) {
assert(canDecompose(tp) && "Non-decomposable type?");
if (tp->isBool()) {
arr.push_back(Space::forBool(true));
arr.push_back(Space::forBool(false));
} else if (auto *E = tp->getEnumOrBoundGenericEnum()) {
// Look into each case of the enum and decompose it in turn.
auto children = E->getAllElements();
llvm::transform(
children, std::back_inserter(arr), [&](EnumElementDecl *eed) {
// Don't force people to match unavailable cases since they
// should not be instantiated at run time.
if (AvailableAttr::isUnavailable(eed)) {
return Space();
}
// If we're guaranteed a match from a subtraction, don't include
// the space at all. See the `Type - Disjunct` case of
// subtraction for when this optimization applies.
if (!eed->hasAssociatedValues() &&
voidList.contains(eed->getBaseIdentifier().str())) {
return Space();
}
// .e(a: X, b: X) -> (a: X, b: X)
// .f((a: X, b: X)) -> ((a: X, b: X)
SmallVector<Space, 4> constElemSpaces;
if (auto payloadTy = eed->getArgumentInterfaceType()) {
auto eedTy = tp->getCanonicalType()->getTypeOfMember(
E->getModuleContext(), eed, payloadTy);
if (auto *TTy = eedTy->getAs<TupleType>()) {
Space::getTupleTypeSpaces(eedTy, TTy, constElemSpaces);
} else if (auto *TTy =
dyn_cast<ParenType>(eedTy.getPointer())) {
constElemSpaces.push_back(
Space::forType(TTy->getUnderlyingType(), Identifier()));
}
}
return Space::forConstructor(tp, eed->getName(),
constElemSpaces);
});
if (!E->isFormallyExhaustive(DC)) {
arr.push_back(Space::forUnknown(/*allowedButNotRequired*/false));
} else if (!E->getAttrs().hasAttribute<FrozenAttr>()) {
arr.push_back(Space::forUnknown(/*allowedButNotRequired*/true));
}
} else if (auto *TTy = tp->castTo<TupleType>()) {
// Decompose each of the elements into its component type space.
SmallVector<Space, 4> constElemSpaces;
llvm::transform(TTy->getElements(),
std::back_inserter(constElemSpaces),
[&](TupleTypeElt elt) {
return Space::forType(elt.getType(), elt.getName());
});
// Create an empty constructor head for the tuple space.
arr.push_back(Space::forConstructor(tp, Identifier(),
constElemSpaces));
} else {
llvm_unreachable("Can't decompose type?");
}
}
static Space decompose(const DeclContext *DC,
Type type,
const llvm::StringSet<> &voidList) {
SmallVector<Space, 4> spaces;
decomposeDisjuncts(DC, type, voidList, spaces);
return Space::forDisjunct(spaces);
}
static bool canDecompose(Type tp) {
return tp->is<TupleType>() || tp->isBool() ||
tp->getEnumOrBoundGenericEnum();
}
// Search the space for a reason to downgrade exhaustiveness errors to
// a warning e.g. 'unknown case' statements.
DowngradeToWarning checkDowngradeToWarning() const {
switch (getKind()) {
case SpaceKind::Type:
case SpaceKind::BooleanConstant:
case SpaceKind::Empty:
return DowngradeToWarning::No;
case SpaceKind::UnknownCase:
return DowngradeToWarning::ForUnknownCase;
case SpaceKind::Constructor: {
auto result = DowngradeToWarning::No;
// Traverse the constructor and its subspaces.
for (const Space &space : getSpaces())
result = std::max(result, space.checkDowngradeToWarning());
return result;
}
case SpaceKind::Disjunct: {
if (getSpaces().empty())
return DowngradeToWarning::No;
// Traverse the disjunct's subspaces.
auto result = DowngradeToWarning::LAST;
for (const Space &space : getSpaces())
result = std::min(result, space.checkDowngradeToWarning());
return result;
}
}
llvm_unreachable("unhandled kind");
}
};
ASTContext &Context;
const SwitchStmt *Switch;
const DeclContext *DC;
APIntMap<Expr *> IntLiteralCache;
llvm::DenseMap<APFloat, Expr *, ::DenseMapAPFloatKeyInfo> FloatLiteralCache;
llvm::DenseMap<StringRef, Expr *> StringLiteralCache;
SpaceEngine(ASTContext &C, const SwitchStmt *SS, const DeclContext *DC)
: Context(C), Switch(SS), DC(DC) {}
bool checkRedundantLiteral(const Pattern *Pat, Expr *&PrevPattern) {
if (Pat->getKind() != PatternKind::Expr) {
return false;
}
auto *ExprPat = cast<ExprPattern>(Pat);
auto *MatchExpr = ExprPat->getSubExpr();
if (!MatchExpr || !isa<LiteralExpr>(MatchExpr)) {
return false;
}
auto *EL = cast<LiteralExpr>(MatchExpr);
switch (EL->getKind()) {
case ExprKind::StringLiteral: {
auto *SLE = cast<StringLiteralExpr>(EL);
auto cacheVal =
StringLiteralCache.insert({SLE->getValue(), SLE});
PrevPattern = (cacheVal.first != StringLiteralCache.end())
? cacheVal.first->getSecond()
: nullptr;
return !cacheVal.second;
}
case ExprKind::IntegerLiteral: {
auto *ILE = cast<IntegerLiteralExpr>(EL);
auto cacheVal = IntLiteralCache.insert({ILE->getRawValue(), ILE});
PrevPattern = (cacheVal.first != IntLiteralCache.end())
? cacheVal.first->getSecond()
: nullptr;
return !cacheVal.second;
}
case ExprKind::FloatLiteral: {
// FIXME: Pessimistically using IEEEquad here is bad and we should
// actually figure out the bitwidth. But it's too early in Sema.
auto *FLE = cast<FloatLiteralExpr>(EL);
auto cacheVal =
FloatLiteralCache.insert(
{FLE->getValue(FLE->getDigitsText(),
APFloat::IEEEquad(), FLE->isNegative()), FLE});
PrevPattern = (cacheVal.first != FloatLiteralCache.end())
? cacheVal.first->getSecond()
: nullptr;
return !cacheVal.second;
}
default:
return false;
}
}
void checkExhaustiveness(bool limitedChecking) {
// If the type of the scrutinee is uninhabited, we're already dead.
// Allow any well-typed patterns through.
auto subjectType = Switch->getSubjectExpr()->getType();
if (subjectType && subjectType->isStructurallyUninhabited()) {
return;
}
// If the switch body fails to typecheck, end analysis here.
if (limitedChecking) {
// Reject switch statements with empty blocks.
if (Switch->getCases().empty())
diagnoseMissingCases(RequiresDefault::EmptySwitchBody, Space());
return;
}
const CaseStmt *unknownCase = nullptr;
SmallVector<Space, 4> spaces;
auto &DE = Context.Diags;
for (auto *caseBlock : Switch->getCases()) {
if (caseBlock->hasUnknownAttr()) {
assert(unknownCase == nullptr && "multiple unknown cases");
unknownCase = caseBlock;
continue;
}
for (auto &caseItem : caseBlock->getCaseLabelItems()) {
// 'where'-clauses on cases mean the case does not contribute to
// the exhaustiveness of the pattern.
if (caseItem.getGuardExpr())
continue;
// Space is trivially covered with a default clause.
if (caseItem.isDefault())
return;
Space projection = projectPattern(caseItem.getPattern());
bool isRedundant = !projection.isEmpty() &&
llvm::any_of(spaces, [&](const Space &handled) {
return projection.isSubspace(handled, DC);
});
if (isRedundant) {
DE.diagnose(caseItem.getStartLoc(),
diag::redundant_particular_case)
.highlight(caseItem.getSourceRange());
continue;
}
Expr *cachedExpr = nullptr;
if (checkRedundantLiteral(caseItem.getPattern(), cachedExpr)) {
assert(cachedExpr && "Cache found hit but no expr?");
DE.diagnose(caseItem.getStartLoc(),
diag::redundant_particular_literal_case)
.highlight(caseItem.getSourceRange());
DE.diagnose(cachedExpr->getLoc(),
diag::redundant_particular_literal_case_here)
.highlight(cachedExpr->getSourceRange());
continue;
}
if (!projection.isEmpty())
spaces.push_back(projection);
}
}
Space totalSpace = Space::forType(subjectType, Identifier());
Space coveredSpace = Space::forDisjunct(spaces);
unsigned minusCount
= Context.TypeCheckerOpts.SwitchCheckingInvocationThreshold;
auto diff = totalSpace.minus(coveredSpace, DC, &minusCount);
if (!diff) {
diagnoseMissingCases(RequiresDefault::SpaceTooLarge, Space(),
unknownCase);
return;
}
auto uncovered = diff.value();
// Account for unknown cases. If the developer wrote `unknown`, they're
// all handled; otherwise, we ignore the ones that were added for enums
// that are implicitly frozen.
//
// Note that we do not diagnose an unknown case as redundant, even if the
// uncovered space is empty because we trust that if the developer went to
// the trouble of writing @unknown that it was for a good reason, like
// addressing diagnostics in another build configuration where there are
// potentially unknown cases.
uncovered = *uncovered.minus(Space::forUnknown(unknownCase == nullptr),
DC, /*&minusCount*/ nullptr);
if (uncovered.isEmpty())
return;
// If the entire space is left uncovered we have two choices: We can
// decompose the type space and offer them as fixits, or simply offer
// to insert a `default` clause.
if (uncovered.getKind() == SpaceKind::Type) {
if (Space::canDecompose(uncovered.getType())) {
SmallVector<Space, 4> spaces;
Space::decomposeDisjuncts(DC, uncovered.getType(), {}, spaces);
diagnoseMissingCases(RequiresDefault::No, Space::forDisjunct(spaces),
unknownCase);
} else {
diagnoseMissingCases(Switch->getCases().empty()
? RequiresDefault::EmptySwitchBody
: RequiresDefault::UncoveredSwitch,
uncovered, unknownCase);
}
return;
}
diagnoseMissingCases(RequiresDefault::No, uncovered, unknownCase);
}
enum class RequiresDefault {
No,
EmptySwitchBody,
UncoveredSwitch,
SpaceTooLarge,
};
void diagnoseMissingCases(RequiresDefault defaultReason, Space uncovered,
const CaseStmt *unknownCase = nullptr) {
if (!Switch->getLBraceLoc().isValid()) {
// There is no '{' in the switch statement, which we already diagnosed
// in the parser. So there's no real body to speak of and it doesn't
// make sense to emit diagnostics about missing cases.
return;
}
auto &DE = Context.Diags;
SourceLoc startLoc = Switch->getStartLoc();
SourceLoc insertLoc;
if (unknownCase)
insertLoc = unknownCase->getStartLoc();
else
insertLoc = Switch->getEndLoc();
StringRef placeholder = getCodePlaceholder();
llvm::SmallString<128> buffer;
llvm::raw_svector_ostream OS(buffer);
bool InEditor = Context.LangOpts.DiagnosticsEditorMode;
// Decide whether we want an error or a warning.
std::optional<decltype(diag::non_exhaustive_switch)> mainDiagType =
diag::non_exhaustive_switch;
bool downgrade = false;
if (unknownCase) {
switch (defaultReason) {
case RequiresDefault::EmptySwitchBody:
llvm_unreachable("there's an @unknown case; the body can't be empty");
case RequiresDefault::No:
downgrade = !uncovered.isEmpty();
break;
case RequiresDefault::UncoveredSwitch:
case RequiresDefault::SpaceTooLarge: {
auto diagnostic = defaultReason == RequiresDefault::UncoveredSwitch
? diag::non_exhaustive_switch
: diag::possibly_non_exhaustive_switch;
DE.diagnose(startLoc, diagnostic);
DE.diagnose(unknownCase->getLoc(),
diag::non_exhaustive_switch_drop_unknown)
.fixItRemoveChars(unknownCase->getStartLoc(),
unknownCase->getLoc());
return;
}
}
}
switch (uncovered.checkDowngradeToWarning()) {
case DowngradeToWarning::No:
break;
case DowngradeToWarning::ForUnknownCase: {
if (Context.LangOpts.DebuggerSupport ||
Context.LangOpts.Playground ||
!Context.LangOpts.hasFeature(Feature::NonfrozenEnumExhaustivity)) {
// Don't require covering unknown cases in the debugger or in
// playgrounds.
return;
}
assert(defaultReason == RequiresDefault::No);
Type subjectType = Switch->getSubjectExpr()->getType();
bool shouldIncludeFutureVersionComment = false;
if (auto *theEnum = subjectType->getEnumOrBoundGenericEnum()) {
shouldIncludeFutureVersionComment =
theEnum->getParentModule()->isSystemModule();
}
DE.diagnose(startLoc, diag::non_exhaustive_switch_unknown_only,
subjectType, shouldIncludeFutureVersionComment)
.warnUntilSwiftVersion(6);
mainDiagType = std::nullopt;
}
break;
}
switch (defaultReason) {
case RequiresDefault::No:
break;
case RequiresDefault::EmptySwitchBody: {
OS << tok::kw_default << ":\n" << placeholder << "\n";
DE.diagnose(startLoc, diag::empty_switch_stmt)
.fixItInsert(insertLoc, buffer.str());
}
return;
case RequiresDefault::UncoveredSwitch: {
OS << tok::kw_default << ":\n" << placeholder << "\n";
DE.diagnose(startLoc, mainDiagType.value())
.warnUntilSwiftVersionIf(downgrade, 6);
DE.diagnose(startLoc, diag::missing_several_cases, /*default*/true)
.fixItInsert(insertLoc, buffer.str());
}
return;
case RequiresDefault::SpaceTooLarge: {
OS << tok::kw_default << ":\n" << "<#fatalError()#>" << "\n";
DE.diagnose(startLoc, diag::possibly_non_exhaustive_switch);
DE.diagnose(startLoc, diag::missing_several_cases, /*default*/true)
.fixItInsert(insertLoc, buffer.str());
}
return;
}
// If there's nothing else to diagnose, bail.
if (uncovered.isEmpty()) return;
// Check if we still have to emit the main diagnostic.
if (mainDiagType.has_value()) {
DE.diagnose(startLoc, mainDiagType.value())
.warnUntilSwiftVersionIf(downgrade, 6);
}
// Add notes to explain what's missing.
auto processUncoveredSpaces =
[&](llvm::function_ref<void(const Space &space,
bool onlyOneUncoveredSpace)> process) {
// Flatten away all disjunctions.
SmallVector<Space, 4> flats;
flatten(uncovered, flats);
// Then figure out which of the remaining spaces are interesting.
// To do this, we sort by size, largest spaces first...
SmallVector<const Space *, 4> flatsSortedBySize;
flatsSortedBySize.reserve(flats.size());
for (const Space &space : flats)
flatsSortedBySize.push_back(&space);
std::stable_sort(flatsSortedBySize.begin(), flatsSortedBySize.end(),
[&](const Space *left, const Space *right) {
return left->getSize(DC) > right->getSize(DC);
});
// ...and then remove any of the later spaces that are contained
// entirely in an earlier one.
SmallPtrSet<const Space *, 4> flatsToEmit;
for (const Space *space : flatsSortedBySize) {
bool alreadyHandled =
llvm::any_of(flatsToEmit, [&](const Space *previousSpace) {
return space->isSubspace(*previousSpace, DC);
});
if (alreadyHandled)
continue;
flatsToEmit.insert(space);
}
// Finally we can iterate over the flat spaces in their original order,
// but only emit the interesting ones.
for (const Space &flat : flats) {
if (!flatsToEmit.count(&flat))
continue;
if (flat.getKind() == SpaceKind::UnknownCase) {
assert(&flat == &flats.back() && "unknown case must be last");
if (unknownCase) {
// This can occur if the /only/ case in the switch is 'unknown'.
// In that case we won't do any analysis on the input space, but
// will later decompose the space into cases.
continue;
}
if (!Context.LangOpts.hasFeature(Feature::NonfrozenEnumExhaustivity))
continue;
// This can occur if the switch is empty and the subject type is an
// enum. If decomposing the enum type yields an unknown space that
// is not required, don't suggest adding it in the fix-it.
if (flat.isAllowedButNotRequired())
continue;
}
process(flat, flats.size() == 1);
}
};
// If editing is enabled, emit a formatted error of the form:
//
// switch must be exhaustive, do you want to add missing cases?
// case (.none, .some(_)):
// <#code#>
// case (.some(_), .none):
// <#code#>
//
// else:
//
// switch must be exhaustive, consider adding missing cases:
//
// missing case '(.none, .some(_))'
// missing case '(.some(_), .none)'
if (InEditor) {
buffer.clear();
bool alreadyEmittedSomething = false;
processUncoveredSpaces([&](const Space &space,
bool onlyOneUncoveredSpace) {
if (space.getKind() == SpaceKind::UnknownCase) {
OS << "@unknown " << tok::kw_default;
if (onlyOneUncoveredSpace) {
OS << ":\n<#fatalError()#>\n";
DE.diagnose(startLoc, diag::missing_unknown_case)
.fixItInsert(insertLoc, buffer.str());
alreadyEmittedSomething = true;
return;
}
} else {
OS << tok::kw_case << " ";
space.show(OS);
}
OS << ":\n" << placeholder << "\n";
});
if (!alreadyEmittedSomething) {
DE.diagnose(startLoc, diag::missing_several_cases, false)
.fixItInsert(insertLoc, buffer.str());
}
} else {
processUncoveredSpaces([&](const Space &space,
bool onlyOneUncoveredSpace) {
if (space.getKind() == SpaceKind::UnknownCase) {
auto note = DE.diagnose(startLoc, diag::missing_unknown_case);
if (onlyOneUncoveredSpace)
note.fixItInsert(insertLoc, "@unknown default:\n<#fatalError#>()\n");
return;
}
buffer.clear();
space.show(OS);
DE.diagnose(startLoc, diag::missing_particular_case, buffer.str());
});
}
}
private:
// Recursively unpacks a space of disjunctions or constructor parameters
// into its component parts such that the resulting array of flattened
// spaces contains no further disjunctions. The resulting flattened array
// will never be empty.
static void flatten(const Space space, SmallVectorImpl<Space> &flats) {
switch (space.getKind()) {
case SpaceKind::Constructor: {
// Optimization: If this space is just a constructor head, it is already
// flat.
if (space.getSpaces().empty()) {
flats.push_back(space);
return;
}
// To recursively recover a pattern matrix from a bunch of disjuncts:
// 1) Unpack the arguments to the constructor under scrutiny.
// 2) Traverse each argument in turn.
// 3) Flatten the argument space into a column vector.
// 4) Extend the existing pattern matrix by a factor of the size of
// the column vector and copy each previous component.
// 5) Extend the expanded matrix with multiples of the column vector's
// components until filled.
// 6) Wrap each matrix row in the constructor under scrutiny.
size_t multiplier = 1;
SmallVector<SmallVector<Space, 4>, 2> matrix;
for (auto &subspace : space.getSpaces()) {
SmallVector<Space, 4> columnVect;
flatten(subspace, columnVect);
size_t startSize = matrix.size();
if (!matrix.empty() && columnVect.size() > 1) {
size_t oldCount = matrix.size();
matrix.reserve(oldCount * columnVect.size());
// Indexing starts at 1, we already have 'startSize'-many elements
// in the matrix; multiplies by 1 are no-ops.
for (size_t i = 1; i < columnVect.size(); ++i) {
std::copy_n(matrix.begin(), oldCount, std::back_inserter(matrix));
}
}
if (matrix.empty()) {
// Get the empty matrix setup with its starting row vectors.
for (auto &vspace : columnVect) {
matrix.push_back({});
matrix.back().push_back(vspace);
}
} else {
// Given a matrix of 'n' rows and '(m-1)*k' columns, to make a
// matrix of size 'n' by 'm*k' we need to copy each element of the
// column vector into a row 'm' times - as many times as there were
// elements of the original matrix before multiplication.
size_t stride = multiplier;
if (startSize == 1) {
// Special case: If the column vector is bigger than the matrix
// before multiplication, we need to index it linearly
stride = 1;
} else if (columnVect.size() == 1) {
// Special case: If the column vector has size 1 then we needn't
// stride at all.
stride = matrix.size();
}
for (size_t rowIdx = 0, colIdx = 0; rowIdx < matrix.size(); ++rowIdx) {
if (rowIdx != 0 && (rowIdx % stride) == 0) {
++colIdx;
}
matrix[rowIdx].push_back(columnVect[colIdx]);
}
}
// Pattern matrices grow quasi-factorially in the size of the
// input space.
multiplier *= columnVect.size();
}
// Wrap the matrix rows into this constructor.
for (auto &row : matrix) {
flats.push_back(Space::forConstructor(space.getType(),
space.getHead(),
row));
}
}
break;
case SpaceKind::Disjunct: {
for (auto &subspace : space.getSpaces()) {
SmallVector<Space, 4> buf;
flatten(subspace, buf);
flats.append(buf.begin(), buf.end());
}
}
break;
default:
flats.push_back(space);
break;
}
}
/// Recursively project a pattern into a Space.
static Space projectPattern(const Pattern *item) {
switch (item->getKind()) {
case PatternKind::Any:
return Space::forType(item->getType(), Identifier());
case PatternKind::Named:
return Space::forType(item->getType(),
cast<NamedPattern>(item)->getBoundName());
case PatternKind::Bool:
return Space::forBool(cast<BoolPattern>(item)->getValue());
case PatternKind::Is: {
auto *IP = cast<IsPattern>(item);
switch (IP->getCastKind()) {
case CheckedCastKind::Coercion:
case CheckedCastKind::BridgingCoercion: {
if (auto *subPattern = IP->getSubPattern()) {
// Project the cast target's subpattern.
Space castSubSpace = projectPattern(subPattern);
// If we received a type space from a named pattern or a wildcard
// we have to re-project with the cast's target type to maintain
// consistency with the scrutinee's type.
if (castSubSpace.getKind() == SpaceKind::Type) {
return Space::forType(IP->getType(),
castSubSpace.getPrintingName());
}
return castSubSpace;
}
// With no subpattern coercions are irrefutable. Project with the
// original type instead of the cast's target type to maintain
// consistency with the scrutinee's type.
return Space::forType(IP->getType(), Identifier());
}
case CheckedCastKind::Unresolved:
case CheckedCastKind::ValueCast:
case CheckedCastKind::ArrayDowncast:
case CheckedCastKind::DictionaryDowncast:
case CheckedCastKind::SetDowncast:
return Space();
}
}
case PatternKind::Typed:
llvm_unreachable("cannot appear in case patterns");
case PatternKind::Expr:
return Space();
case PatternKind::Binding: {
auto *VP = cast<BindingPattern>(item);
return projectPattern(VP->getSubPattern());
}
case PatternKind::Paren: {
auto *PP = cast<ParenPattern>(item);
return projectPattern(PP->getSubPattern());
}
case PatternKind::OptionalSome: {
auto *OSP = cast<OptionalSomePattern>(item);
const Identifier name = OSP->getElementDecl()->getBaseIdentifier();
auto subSpace = projectPattern(OSP->getSubPattern());
// To match patterns like (_, _, ...)?, we must rewrite the underlying
// tuple pattern to .some(_, _, ...) first.
if (subSpace.getKind() == SpaceKind::Constructor &&
subSpace.getHead().getBaseIdentifier().empty()) {
return Space::forConstructor(item->getType(), name,
{subSpace});
}
return Space::forConstructor(item->getType(), name, subSpace);
}
case PatternKind::EnumElement: {
auto *VP = cast<EnumElementPattern>(item);
auto *SP = VP->getSubPattern();
if (!SP) {
// If there's no sub-pattern then there's no further recursive
// structure here. Yield the constructor space.
// FIXME: Compound names.
return Space::forConstructor(
item->getType(), VP->getName().getBaseIdentifier(), std::nullopt);
}
SmallVector<Space, 4> conArgSpace;
switch (SP->getKind()) {
case PatternKind::Tuple: {
auto *TP = dyn_cast<TuplePattern>(SP);
llvm::transform(TP->getElements(), std::back_inserter(conArgSpace),
[&](TuplePatternElt pate) {
return projectPattern(pate.getPattern());
});
// FIXME: Compound names.
return Space::forConstructor(item->getType(),
VP->getName().getBaseIdentifier(),
conArgSpace);
}
case PatternKind::Paren: {
// If we've got an extra level of parens, we need to flatten that into
// the enum payload.
auto *PP = dyn_cast<ParenPattern>(SP);
auto *SP = PP->getSemanticsProvidingPattern();
// Special Case: A constructor pattern may have all of its payload
// matched by a single var pattern. Project it like the tuple it
// really is.
//
// FIXME: SE-0155 makes this case unreachable.
if (SP->getKind() == PatternKind::Named
|| SP->getKind() == PatternKind::Any) {
Type outerType = SP->getType();
if (auto *TTy = outerType->getAs<TupleType>())
Space::getTupleTypeSpaces(outerType, TTy, conArgSpace);
else
conArgSpace.push_back(projectPattern(SP));
} else if (SP->getKind() == PatternKind::Tuple) {
Space argTupleSpace = projectPattern(SP);
// Tuples are modeled as if they are enums with a single, nameless
// case, which means argTupleSpace will either be a Constructor or
// Empty space. If it's empty (i.e. it contributes nothing to the
// overall exhaustiveness), the entire enum case space is empty.
if (argTupleSpace.isEmpty())
return Space();
assert(argTupleSpace.getKind() == SpaceKind::Constructor);
conArgSpace.push_back(argTupleSpace);
} else {
conArgSpace.push_back(projectPattern(SP));
}
// FIXME: Compound names.
return Space::forConstructor(item->getType(),
VP->getName().getBaseIdentifier(),
conArgSpace);
}
default:
return projectPattern(SP);
}
}
case PatternKind::Tuple: {
auto *TP = cast<TuplePattern>(item);
SmallVector<Space, 4> conArgSpace;
llvm::transform(TP->getElements(), std::back_inserter(conArgSpace),
[&](TuplePatternElt pate) {
return projectPattern(pate.getPattern());
});
return Space::forConstructor(item->getType(), Identifier(),
conArgSpace);
}
}
llvm_unreachable("unhandled kind");
}
};
} // end anonymous namespace
void TypeChecker::checkSwitchExhaustiveness(const SwitchStmt *stmt,
const DeclContext *DC,
bool limited) {
SpaceEngine(DC->getASTContext(), stmt, DC).checkExhaustiveness(limited);
}
void SpaceEngine::Space::dump() const {
this->show(llvm::errs(), /*normalize*/ false);
llvm::errs() << '\n';
}
|