1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
|
//===--- TypeChecker.cpp - Type Checking ----------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the swift::performTypeChecking entry point for
// semantic analysis.
//
//===----------------------------------------------------------------------===//
#include "swift/Subsystems.h"
#include "TypeChecker.h"
#include "TypeCheckConcurrency.h"
#include "TypeCheckDecl.h"
#include "TypeCheckObjC.h"
#include "TypeCheckType.h"
#include "CodeSynthesis.h"
#include "MiscDiagnostics.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/Attr.h"
#include "swift/AST/DiagnosticSuppression.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Identifier.h"
#include "swift/AST/ImportCache.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/ModuleLoader.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Statistic.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Parse/Lexer.h"
#include "swift/Sema/IDETypeChecking.h"
#include "swift/Sema/SILTypeResolutionContext.h"
#include "swift/Strings.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/Twine.h"
#include <algorithm>
using namespace swift;
ProtocolDecl *TypeChecker::getProtocol(ASTContext &Context, SourceLoc loc,
KnownProtocolKind kind) {
auto protocol = Context.getProtocol(kind);
if (!protocol && loc.isValid()) {
Context.Diags.diagnose(loc, diag::missing_protocol,
Context.getIdentifier(getProtocolName(kind)));
}
if (protocol && protocol->isInvalid()) {
return nullptr;
}
return protocol;
}
ProtocolDecl *TypeChecker::getLiteralProtocol(ASTContext &Context, Expr *expr) {
if (isa<ArrayExpr>(expr))
return TypeChecker::getProtocol(
Context, expr->getLoc(), KnownProtocolKind::ExpressibleByArrayLiteral);
if (isa<DictionaryExpr>(expr))
return TypeChecker::getProtocol(
Context, expr->getLoc(),
KnownProtocolKind::ExpressibleByDictionaryLiteral);
if (!isa<LiteralExpr>(expr))
return nullptr;
if (isa<NilLiteralExpr>(expr))
return TypeChecker::getProtocol(Context, expr->getLoc(),
KnownProtocolKind::ExpressibleByNilLiteral);
if (isa<IntegerLiteralExpr>(expr))
return TypeChecker::getProtocol(
Context, expr->getLoc(),
KnownProtocolKind::ExpressibleByIntegerLiteral);
if (isa<FloatLiteralExpr>(expr))
return TypeChecker::getProtocol(
Context, expr->getLoc(), KnownProtocolKind::ExpressibleByFloatLiteral);
if (isa<BooleanLiteralExpr>(expr))
return TypeChecker::getProtocol(
Context, expr->getLoc(),
KnownProtocolKind::ExpressibleByBooleanLiteral);
if (const auto *SLE = dyn_cast<StringLiteralExpr>(expr)) {
if (SLE->isSingleUnicodeScalar())
return TypeChecker::getProtocol(
Context, expr->getLoc(),
KnownProtocolKind::ExpressibleByUnicodeScalarLiteral);
if (SLE->isSingleExtendedGraphemeCluster())
return getProtocol(
Context, expr->getLoc(),
KnownProtocolKind::ExpressibleByExtendedGraphemeClusterLiteral);
return TypeChecker::getProtocol(
Context, expr->getLoc(), KnownProtocolKind::ExpressibleByStringLiteral);
}
if (isa<InterpolatedStringLiteralExpr>(expr))
return TypeChecker::getProtocol(
Context, expr->getLoc(),
KnownProtocolKind::ExpressibleByStringInterpolation);
if (auto E = dyn_cast<MagicIdentifierLiteralExpr>(expr)) {
switch (E->getKind()) {
#define MAGIC_STRING_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
case MagicIdentifierLiteralExpr::NAME: \
return TypeChecker::getProtocol( \
Context, expr->getLoc(), \
KnownProtocolKind::ExpressibleByStringLiteral);
#define MAGIC_INT_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
case MagicIdentifierLiteralExpr::NAME: \
return TypeChecker::getProtocol( \
Context, expr->getLoc(), \
KnownProtocolKind::ExpressibleByIntegerLiteral);
#define MAGIC_POINTER_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
case MagicIdentifierLiteralExpr::NAME: \
return nullptr;
#include "swift/AST/MagicIdentifierKinds.def"
}
}
if (auto E = dyn_cast<ObjectLiteralExpr>(expr)) {
switch (E->getLiteralKind()) {
#define POUND_OBJECT_LITERAL(Name, Desc, Protocol) \
case ObjectLiteralExpr::Name: \
return TypeChecker::getProtocol(Context, expr->getLoc(), \
KnownProtocolKind::Protocol);
#include "swift/AST/TokenKinds.def"
}
}
return nullptr;
}
DeclName TypeChecker::getObjectLiteralConstructorName(ASTContext &Context,
ObjectLiteralExpr *expr) {
switch (expr->getLiteralKind()) {
case ObjectLiteralExpr::colorLiteral: {
return DeclName(Context, DeclBaseName::createConstructor(),
{ Context.getIdentifier("_colorLiteralRed"),
Context.getIdentifier("green"),
Context.getIdentifier("blue"),
Context.getIdentifier("alpha") });
}
case ObjectLiteralExpr::imageLiteral: {
return DeclName(Context, DeclBaseName::createConstructor(),
{ Context.getIdentifier("imageLiteralResourceName") });
}
case ObjectLiteralExpr::fileLiteral: {
return DeclName(Context, DeclBaseName::createConstructor(),
{ Context.getIdentifier("fileReferenceLiteralResourceName") });
}
}
llvm_unreachable("unknown literal constructor");
}
ModuleDecl *TypeChecker::getStdlibModule(const DeclContext *dc) {
if (auto *stdlib = dc->getASTContext().getStdlibModule()) {
return stdlib;
}
return dc->getParentModule();
}
void swift::bindExtensions(ModuleDecl &mod) {
// Utility function to try and resolve the extended type without diagnosing.
// If we succeed, we go ahead and bind the extension. Otherwise, return false.
auto tryBindExtension = [&](ExtensionDecl *ext) -> bool {
assert(!ext->canNeverBeBound() &&
"Only extensions that can ever be bound get here.");
if (auto nominal = ext->computeExtendedNominal()) {
nominal->addExtension(ext);
return true;
}
return false;
};
// Phase 1 - try to bind each extension, adding those whose type cannot be
// resolved to a worklist.
SmallVector<ExtensionDecl *, 8> worklist;
for (auto file : mod.getFiles()) {
auto *SF = dyn_cast<SourceFile>(file);
if (!SF)
continue;
auto visitTopLevelDecl = [&](Decl *D) {
if (auto ED = dyn_cast<ExtensionDecl>(D))
if (!tryBindExtension(ED))
worklist.push_back(ED);;
};
for (auto item : SF->getTopLevelItems()) {
if (auto D = item.dyn_cast<Decl *>())
visitTopLevelDecl(D);
}
for (auto *D : SF->getHoistedDecls())
visitTopLevelDecl(D);
}
// Phase 2 - repeatedly go through the worklist and attempt to bind each
// extension there, removing it from the worklist if we succeed.
bool changed;
do {
changed = false;
auto last = std::remove_if(worklist.begin(), worklist.end(),
tryBindExtension);
if (last != worklist.end()) {
worklist.erase(last, worklist.end());
changed = true;
}
} while(changed);
// Any remaining extensions are invalid. They will be diagnosed later by
// typeCheckDecl().
}
void swift::performTypeChecking(SourceFile &SF) {
if (SF.getASTContext().TypeCheckerOpts.EnableLazyTypecheck) {
// Skip eager type checking. Instead, let later stages of compilation drive
// type checking as needed through request evaluation.
return;
}
return (void)evaluateOrDefault(SF.getASTContext().evaluator,
TypeCheckSourceFileRequest{&SF}, {});
}
evaluator::SideEffect
TypeCheckSourceFileRequest::evaluate(Evaluator &eval, SourceFile *SF) const {
assert(SF && "Source file cannot be null!");
assert(SF->ASTStage != SourceFile::TypeChecked &&
"Should not be re-typechecking this file!");
// Eagerly build the top-level scopes tree before type checking
// because type-checking expressions mutates the AST and that throws off the
// scope-based lookups. Only the top-level scopes because extensions have not
// been bound yet.
auto &Ctx = SF->getASTContext();
SF->getScope()
.buildEnoughOfTreeForTopLevelExpressionsButDontRequestGenericsOrExtendedNominals();
BufferIndirectlyCausingDiagnosticRAII cpr(*SF);
// Could build scope maps here because the AST is stable now.
{
FrontendStatsTracer tracer(Ctx.Stats,
"Type checking and Semantic analysis");
if (!Ctx.LangOpts.DisableAvailabilityChecking) {
// Build the type refinement hierarchy for the primary
// file before type checking.
TypeChecker::buildTypeRefinementContextHierarchy(*SF);
}
// Type check the top-level elements of the source file.
for (auto D : SF->getTopLevelDecls()) {
if (auto *TLCD = dyn_cast<TopLevelCodeDecl>(D)) {
TypeChecker::typeCheckTopLevelCodeDecl(TLCD);
} else {
TypeChecker::typeCheckDecl(D);
}
}
// Type-check macro-generated or implicitly-synthesized decls.
if (auto *synthesizedSF = SF->getSynthesizedFile()) {
for (auto *decl : synthesizedSF->getTopLevelDecls()) {
assert(isa<ExtensionDecl>(decl) || isa<ProtocolDecl>(decl));
// Limit typechecking of synthesized _implicit_ extensions to
// conformance checking. This is done because a conditional
// conformance to Copyable is synthesized as an extension, based on
// the markings of ~Copyable in a value type. This call to
// checkConformancesInContext will the actual check to verify that
// the conditional extension is correct, as it may be an invalid
// conformance.
if (auto *extension = dyn_cast<ExtensionDecl>(decl)) {
if (extension->isImplicit()) {
TypeChecker::checkConformancesInContext(extension);
continue;
}
}
// For other kinds of decls, do normal typechecking.
TypeChecker::typeCheckDecl(decl);
}
}
SF->typeCheckDelayedFunctions();
}
// If region based isolation is enabled, we diagnose unnecessary
// preconcurrency imports in the SIL pipeline in the
// DiagnoseUnnecessaryPreconcurrencyImports pass.
if (!Ctx.LangOpts.hasFeature(Feature::RegionBasedIsolation))
diagnoseUnnecessaryPreconcurrencyImports(*SF);
diagnoseUnnecessaryPublicImports(*SF);
// Check to see if there are any inconsistent imports.
// Whole-module @_implementationOnly imports.
evaluateOrDefault(
Ctx.evaluator,
CheckInconsistentImplementationOnlyImportsRequest{SF->getParentModule()},
{});
// Whole-module @_spiOnly imports.
evaluateOrDefault(
Ctx.evaluator,
CheckInconsistentSPIOnlyImportsRequest{SF},
{});
// Whole-module ambiguous bare imports defaulting to public, when other
// imports are marked 'internal'.
if (!Ctx.LangOpts.hasFeature(Feature::InternalImportsByDefault)) {
evaluateOrDefault(
Ctx.evaluator,
CheckInconsistentAccessLevelOnImport{SF},
{});
}
// Per-file inconsistent access-levels on imports of the same module.
evaluateOrDefault(
Ctx.evaluator,
CheckInconsistentAccessLevelOnImportSameFileRequest{SF},
{});
// Whole-module inconsistent @_weakLinked.
evaluateOrDefault(
Ctx.evaluator,
CheckInconsistentWeakLinkedImportsRequest{SF->getParentModule()}, {});
// Perform various AST transforms we've been asked to perform.
if (!Ctx.hadError() && Ctx.LangOpts.DebuggerTestingTransform)
performDebuggerTestingTransform(*SF);
if (!Ctx.hadError() && Ctx.LangOpts.PCMacro)
performPCMacro(*SF);
// Playground transform knows to look out for PCMacro's changes and not
// to playground log them.
if (!Ctx.hadError() && Ctx.LangOpts.PlaygroundTransform)
performPlaygroundTransform(*SF, Ctx.LangOpts.PlaygroundOptions);
return std::make_tuple<>();
}
void swift::performWholeModuleTypeChecking(SourceFile &SF) {
auto &Ctx = SF.getASTContext();
FrontendStatsTracer tracer(Ctx.Stats,
"perform-whole-module-type-checking");
switch (SF.Kind) {
case SourceFileKind::DefaultArgument:
case SourceFileKind::Library:
case SourceFileKind::Main:
case SourceFileKind::MacroExpansion:
diagnoseObjCMethodConflicts(SF);
diagnoseObjCUnsatisfiedOptReqConflicts(SF);
diagnoseUnintendedObjCMethodOverrides(SF);
diagnoseAttrsAddedByAccessNote(SF);
return;
case SourceFileKind::SIL:
case SourceFileKind::Interface:
// SIL modules and .swiftinterface files don't benefit from whole-module
// ObjC checking - skip it.
return;
}
}
void swift::loadDerivativeConfigurations(SourceFile &SF) {
if (!isDifferentiableProgrammingEnabled(SF))
return;
auto &Ctx = SF.getASTContext();
FrontendStatsTracer tracer(Ctx.Stats,
"load-derivative-configurations");
class DerivativeFinder : public ASTWalker {
public:
DerivativeFinder() {}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkAction walkToDeclPre(Decl *D) override {
if (auto *afd = dyn_cast<AbstractFunctionDecl>(D)) {
for (auto *derAttr : afd->getAttrs().getAttributes<DerivativeAttr>()) {
// Resolve derivative function configurations from `@derivative`
// attributes by type-checking them.
(void)derAttr->getOriginalFunction(D->getASTContext());
}
}
return Action::Continue();
}
};
switch (SF.Kind) {
case SourceFileKind::DefaultArgument:
case SourceFileKind::Library:
case SourceFileKind::MacroExpansion:
case SourceFileKind::Main: {
DerivativeFinder finder;
SF.walkContext(finder);
return;
}
case SourceFileKind::SIL:
case SourceFileKind::Interface:
return;
}
}
bool swift::isAdditiveArithmeticConformanceDerivationEnabled(SourceFile &SF) {
auto &ctx = SF.getASTContext();
// Return true if `AdditiveArithmetic` derived conformances are explicitly
// enabled.
if (ctx.LangOpts.hasFeature(Feature::AdditiveArithmeticDerivedConformances))
return true;
// Otherwise, return true iff differentiable programming is enabled.
// Differentiable programming depends on `AdditiveArithmetic` derived
// conformances.
return isDifferentiableProgrammingEnabled(SF);
}
Type swift::performTypeResolution(TypeRepr *TyR, ASTContext &Ctx,
GenericSignature GenericSig,
SILTypeResolutionContext *SILContext,
DeclContext *DC, bool ProduceDiagnostics) {
TypeResolutionOptions options = std::nullopt;
if (SILContext) {
options |= TypeResolutionFlags::SILMode;
if (SILContext->IsSILType)
options |= TypeResolutionFlags::SILType;
}
std::optional<DiagnosticSuppression> suppression;
if (!ProduceDiagnostics)
suppression.emplace(Ctx.Diags);
return TypeResolution::forInterface(
DC, GenericSig, options,
[](auto unboundTy) {
// FIXME: Don't let unbound generic types escape type resolution.
// For now, just return the unbound generic type.
return unboundTy;
},
// FIXME: Don't let placeholder types escape type resolution.
// For now, just return the placeholder type.
PlaceholderType::get,
/*packElementOpener*/ nullptr)
.resolveType(TyR, SILContext);
}
namespace {
class BindGenericParamsWalker : public ASTWalker {
DeclContext *dc;
GenericParamList *params;
public:
BindGenericParamsWalker(DeclContext *dc,
GenericParamList *params)
: dc(dc), params(params) {}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkAction walkToTypeReprPre(TypeRepr *T) override {
// Only unqualified identifiers can reference generic parameters.
auto *unqualIdentTR = dyn_cast<UnqualifiedIdentTypeRepr>(T);
if (unqualIdentTR && !unqualIdentTR->hasGenericArgList()) {
auto name = unqualIdentTR->getNameRef().getBaseIdentifier();
if (auto *paramDecl = params->lookUpGenericParam(name)) {
unqualIdentTR->setValue(paramDecl, dc);
}
}
return Action::Continue();
}
};
}
/// Expose TypeChecker's handling of GenericParamList to SIL parsing.
GenericSignature
swift::handleSILGenericParams(GenericParamList *genericParams,
DeclContext *DC, bool allowInverses) {
if (genericParams == nullptr)
return nullptr;
SmallVector<GenericParamList *, 2> nestedList;
for (auto *innerParams = genericParams;
innerParams != nullptr;
innerParams = innerParams->getOuterParameters()) {
nestedList.push_back(innerParams);
}
std::reverse(nestedList.begin(), nestedList.end());
BindGenericParamsWalker walker(DC, genericParams);
for (unsigned i = 0, e = nestedList.size(); i < e; ++i) {
auto genericParams = nestedList[i];
genericParams->setDepth(i);
genericParams->walk(walker);
}
auto request = InferredGenericSignatureRequest{
/*parentSig=*/nullptr,
nestedList.back(), WhereClauseOwner(),
{}, {}, genericParams->getLAngleLoc(),
/*isExtension=*/false,
allowInverses};
return evaluateOrDefault(DC->getASTContext().evaluator, request,
GenericSignatureWithError()).getPointer();
}
void swift::typeCheckPatternBinding(PatternBindingDecl *PBD,
unsigned bindingIndex) {
assert(!PBD->isInitializerChecked(bindingIndex) &&
PBD->getInit(bindingIndex));
auto &Ctx = PBD->getASTContext();
DiagnosticSuppression suppression(Ctx.Diags);
TypeChecker::typeCheckPatternBinding(PBD, bindingIndex,
/*patternType=*/Type());
}
bool swift::typeCheckASTNodeAtLoc(TypeCheckASTNodeAtLocContext TypeCheckCtx,
SourceLoc TargetLoc) {
auto &Ctx = TypeCheckCtx.getDeclContext()->getASTContext();
DiagnosticSuppression suppression(Ctx.Diags);
return !evaluateOrDefault(
Ctx.evaluator, TypeCheckASTNodeAtLocRequest{TypeCheckCtx, TargetLoc},
true);
}
bool swift::typeCheckForCodeCompletion(
constraints::SyntacticElementTarget &target, bool needsPrecheck,
llvm::function_ref<void(const constraints::Solution &)> callback) {
return TypeChecker::typeCheckForCodeCompletion(target, needsPrecheck,
callback);
}
Expr *swift::resolveDeclRefExpr(UnresolvedDeclRefExpr *UDRE, DeclContext *Context,
bool replaceInvalidRefsWithErrors) {
return TypeChecker::resolveDeclRefExpr(UDRE, Context, replaceInvalidRefsWithErrors);
}
void TypeChecker::checkForForbiddenPrefix(ASTContext &C, DeclBaseName Name) {
if (C.TypeCheckerOpts.DebugForbidTypecheckPrefixes.empty())
return;
// Don't touch special names or empty names.
if (Name.isSpecial() || Name.empty())
return;
StringRef Str = Name.getIdentifier().str();
for (auto forbiddenPrefix : C.TypeCheckerOpts.DebugForbidTypecheckPrefixes) {
if (Str.starts_with(forbiddenPrefix)) {
llvm::report_fatal_error(Twine("forbidden typecheck occurred: ") + Str);
}
}
}
DeclTypeCheckingSemantics
TypeChecker::getDeclTypeCheckingSemantics(ValueDecl *decl) {
// Check for a @_semantics attribute.
if (auto semantics = decl->getAttrs().getAttribute<SemanticsAttr>()) {
if (semantics->Value.equals("typechecker.type(of:)"))
return DeclTypeCheckingSemantics::TypeOf;
if (semantics->Value.equals("typechecker.withoutActuallyEscaping(_:do:)"))
return DeclTypeCheckingSemantics::WithoutActuallyEscaping;
if (semantics->Value.equals("typechecker._openExistential(_:do:)"))
return DeclTypeCheckingSemantics::OpenExistential;
}
return DeclTypeCheckingSemantics::Normal;
}
bool TypeChecker::isDifferentiable(Type type, bool tangentVectorEqualsSelf,
DeclContext *dc,
std::optional<TypeResolutionStage> stage) {
if (stage)
type = dc->mapTypeIntoContext(type);
auto tanSpace = type->getAutoDiffTangentSpace(
LookUpConformanceInModule(dc->getParentModule()));
if (!tanSpace)
return false;
// If no `Self == Self.TangentVector` requirement, return true.
if (!tangentVectorEqualsSelf)
return true;
// Otherwise, return true if `Self == Self.TangentVector`.
return type->getCanonicalType() == tanSpace->getCanonicalType();
}
bool TypeChecker::diagnoseInvalidFunctionType(
FunctionType *fnTy, SourceLoc loc, std::optional<FunctionTypeRepr *> repr,
DeclContext *dc, std::optional<TypeResolutionStage> stage) {
// Some of the below checks trigger cycles if we don't have a generic
// signature yet; we'll run the checks again in
// TypeResolutionStage::Interface.
if (stage == TypeResolutionStage::Structural)
return false;
// If the type has a placeholder, don't try to diagnose anything now since
// we'll produce a better diagnostic when (if) the expression successfully
// typechecks.
if (fnTy->hasPlaceholder())
return false;
// If the type is a block or C function pointer, it must be representable in
// ObjC.
auto representation = fnTy->getRepresentation();
auto extInfo = fnTy->getExtInfo();
auto &ctx = dc->getASTContext();
bool hadAnyError = false;
switch (representation) {
case AnyFunctionType::Representation::Block:
case AnyFunctionType::Representation::CFunctionPointer:
if (!fnTy->isRepresentableIn(ForeignLanguage::ObjectiveC, dc)) {
StringRef strName =
(representation == AnyFunctionType::Representation::Block)
? "block"
: "c";
auto extInfo2 =
extInfo.withRepresentation(AnyFunctionType::Representation::Swift);
auto simpleFnTy = FunctionType::get(fnTy->getParams(), fnTy->getResult(),
extInfo2);
ctx.Diags.diagnose(loc, diag::objc_convention_invalid,
simpleFnTy, strName);
hadAnyError = true;
}
break;
case AnyFunctionType::Representation::Thin:
case AnyFunctionType::Representation::Swift:
break;
}
// `@differentiable` function types must return a differentiable type and have
// differentiable (or `@noDerivative`) parameters.
if (extInfo.isDifferentiable()) {
auto result = fnTy->getResult();
auto params = fnTy->getParams();
auto diffKind = extInfo.getDifferentiabilityKind();
bool isLinear = diffKind == DifferentiabilityKind::Linear;
// Check the params.
// Emit `@noDerivative` fixit only if there is at least one valid
// differentiability parameter. Otherwise, adding `@noDerivative` produces
// an ill-formed function type.
auto hasValidDifferentiabilityParam =
llvm::find_if(params, [&](AnyFunctionType::Param param) {
if (param.isNoDerivative())
return false;
return TypeChecker::isDifferentiable(param.getPlainType(),
/*tangentVectorEqualsSelf*/ isLinear,
dc, stage);
}) != params.end();
bool alreadyDiagnosedOneParam = false;
for (unsigned i = 0, end = fnTy->getNumParams(); i != end; ++i) {
auto param = params[i];
if (param.isNoDerivative())
continue;
auto paramType = param.getPlainType();
if (TypeChecker::isDifferentiable(paramType, isLinear, dc, stage))
continue;
auto diagLoc =
repr ? (*repr)->getArgsTypeRepr()->getElement(i).Type->getLoc() : loc;
auto paramTypeString = paramType->getString();
auto diagnostic = ctx.Diags.diagnose(
diagLoc, diag::differentiable_function_type_invalid_parameter,
paramTypeString, isLinear, hasValidDifferentiabilityParam);
alreadyDiagnosedOneParam = true;
hadAnyError = true;
if (hasValidDifferentiabilityParam)
diagnostic.fixItInsert(diagLoc, "@noDerivative ");
}
// Reject the case where all parameters have '@noDerivative'.
if (!alreadyDiagnosedOneParam && !hasValidDifferentiabilityParam) {
auto diagLoc = repr ? (*repr)->getArgsTypeRepr()->getLoc() : loc;
auto diag = ctx.Diags.diagnose(
diagLoc,
diag::differentiable_function_type_no_differentiability_parameters,
isLinear);
hadAnyError = true;
if (repr) {
diag.highlight((*repr)->getSourceRange());
}
}
// Check the result
bool differentiable = isDifferentiable(result,
/*tangentVectorEqualsSelf*/ isLinear,
dc, stage);
if (!differentiable) {
auto diagLoc = repr ? (*repr)->getResultTypeRepr()->getLoc() : loc;
auto resultStr = fnTy->getResult()->getString();
auto diag = ctx.Diags.diagnose(
diagLoc, diag::differentiable_function_type_invalid_result, resultStr,
isLinear);
hadAnyError = true;
if (repr) {
diag.highlight((*repr)->getResultTypeRepr()->getSourceRange());
}
}
// If the result type is void, we need to have at least one differentiable
// inout argument
if (result->isVoid() &&
llvm::find_if(params,
[&](AnyFunctionType::Param param) {
if (param.isNoDerivative())
return false;
return param.isInOut() &&
TypeChecker::isDifferentiable(param.getPlainType(),
/*tangentVectorEqualsSelf*/ isLinear,
dc, stage);
}) == params.end()) {
auto diagLoc = repr ? (*repr)->getResultTypeRepr()->getLoc() : loc;
auto resultStr = fnTy->getResult()->getString();
auto diag = ctx.Diags.diagnose(
diagLoc, diag::differentiable_function_type_void_result);
hadAnyError = true;
if (repr)
diag.highlight((*repr)->getResultTypeRepr()->getSourceRange());
}
}
return hadAnyError;
}
|