File: TypeChecker.h

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1537 lines) | stat: -rw-r--r-- 63,883 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
//===--- TypeChecker.h - Type Checking Class --------------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
//  This file defines the TypeChecking class.
//
//===----------------------------------------------------------------------===//

#ifndef TYPECHECKING_H
#define TYPECHECKING_H

#include "swift/AST/ASTContext.h"
#include "swift/AST/AccessScope.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/AST/Availability.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/GenericParamList.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/KnownProtocols.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/TypeRefinementContext.h"
#include "swift/Basic/OptionSet.h"
#include "swift/Config.h"
#include "swift/Parse/Lexer.h"
#include "swift/Sema/CompletionContextFinder.h"
#include "swift/Sema/ConstraintSystem.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include <functional>

namespace swift {

class Decl;
class DeclAttribute;
class DiagnosticEngine;
class ExportContext;
class NominalTypeDecl;
class NormalProtocolConformance;
class RootProtocolConformance;
class TypeResolutionOptions;
class TypoCorrectionResults;
class ExprPattern;
enum class TypeResolutionStage : uint8_t;
enum class ExportabilityReason : unsigned;

namespace constraints {
  enum class ConstraintKind : char;
  class ConstraintSystem;
  class Solution;
  class SyntacticElementTarget;
  class SolutionResult;
}

/// Special-case type checking semantics for certain declarations.
enum class DeclTypeCheckingSemantics {
  /// A normal declaration.
  Normal,
  
  /// The type(of:) declaration, which performs a "dynamic type" operation,
  /// with different behavior for existential and non-existential arguments.
  TypeOf,
  
  /// The withoutActuallyEscaping(_:do:) declaration, which makes a nonescaping
  /// closure temporarily escapable.
  WithoutActuallyEscaping,

  /// The _openExistential(_:do:) declaration, which extracts the value inside
  /// an existential and passes it as a value of its own dynamic type.
  OpenExistential,
};

/// An individual result of a name lookup for a type.
struct LookupTypeResultEntry {
  TypeDecl *Member;
  Type MemberType;
  /// The associated type that the Member/MemberType were inferred for, but only
  /// if inference happened when creating this entry.
  AssociatedTypeDecl *InferredAssociatedType;
};

/// The result of name lookup for types.
class LookupTypeResult {
  /// The set of results found.
  SmallVector<LookupTypeResultEntry, 4> Results;

public:
  using iterator = SmallVectorImpl<LookupTypeResultEntry>::iterator;
  iterator begin() { return Results.begin(); }
  iterator end() { return Results.end(); }
  unsigned size() const { return Results.size(); }

  LookupTypeResultEntry operator[](unsigned index) const {
    return Results[index];
  }

  LookupTypeResultEntry front() const { return Results.front(); }
  LookupTypeResultEntry back() const { return Results.back(); }

  /// Add a result to the set of results.
  void addResult(LookupTypeResultEntry result) { Results.push_back(result); }

  /// Determine whether this result set is ambiguous.
  bool isAmbiguous() const {
    return Results.size() > 1;
  }

  /// Determine whether the result set is nonempty.
  explicit operator bool() const {
    return !Results.empty();
  }
};

/// Flags that can be used to control type checking.
enum class TypeCheckExprFlags {
  /// Whether we know that the result of the expression is discarded.  This
  /// disables constraints forcing an lvalue result to be loadable.
  IsDiscarded = 0x01,

  /// If set, this expression isn't embedded in a larger expression or
  /// statement. This should only be used for syntactic restrictions, and should
  /// not affect type checking itself.
  IsExprStmt = 0x02,

  /// Don't type check expressions for correct availability.
  DisableExprAvailabilityChecking = 0x04,

  /// Don't expand macros.
  DisableMacroExpansions = 0x08,

  /// If set, typeCheckExpression will avoid invalidating the AST if
  /// type-checking fails. Do not add new uses of this.
  AvoidInvalidatingAST = 0x10,
};

using TypeCheckExprOptions = OptionSet<TypeCheckExprFlags>;

inline TypeCheckExprOptions operator|(TypeCheckExprFlags flag1,
                                      TypeCheckExprFlags flag2) {
  return TypeCheckExprOptions(flag1) | flag2;
}

/// Flags that can be used to control name lookup.
enum class NameLookupFlags {
  /// Whether to ignore access control for this lookup, allowing inaccessible
  /// results to be returned.
  IgnoreAccessControl = 1 << 0,
  /// Whether to include results from outside the innermost scope that has a
  /// result.
  IncludeOuterResults = 1 << 1,
  // Whether to include results that are marked @inlinable or @usableFromInline.
  IncludeUsableFromInline = 1 << 2,
  /// This lookup should exclude any names introduced by macro expansions.
  ExcludeMacroExpansions = 1 << 3,
};

/// A set of options that control name lookup.
using NameLookupOptions = OptionSet<NameLookupFlags>;

inline NameLookupOptions operator|(NameLookupFlags flag1,
                                   NameLookupFlags flag2) {
  return NameLookupOptions(flag1) | flag2;
}

/// Default options for member name lookup.
const NameLookupOptions defaultMemberLookupOptions;

/// Default options for member type lookup.
const NameLookupOptions defaultMemberTypeLookupOptions;

/// Default options for unqualified name lookup.
const NameLookupOptions defaultUnqualifiedLookupOptions;

/// Describes the result of comparing two entities, of which one may be better
/// or worse than the other, or they are unordered.
enum class Comparison {
  /// Neither entity is better than the other.
  Unordered,
  /// The first entity is better than the second.
  Better,
  /// The first entity is worse than the second.
  Worse
};

/// A conditional conformance that implied some other requirements. That is, \c
/// ConformingType conforming to \c Protocol may have required additional
/// requirements to be satisfied.
///
/// This is designed to be used in a stack of such requirements, which can be
/// formatted with \c diagnoseConformanceStack.
struct ParentConditionalConformance {
  Type ConformingType;
  ProtocolDecl *Protocol;

  /// Format the stack \c conformances as a series of notes that trace a path of
  /// conditional conformances that lead to some other failing requirement (that
  /// is not in \c conformances).
  ///
  /// The end of \c conformances is the active end of the stack, i.e. \c
  /// conformances[0] is a conditional conformance that requires \c
  /// conformances[1], etc.
  static void
  diagnoseConformanceStack(DiagnosticEngine &diags, SourceLoc location,
                           ArrayRef<ParentConditionalConformance> conformances);
};

class CheckGenericArgumentsResult {
public:
  struct RequirementFailureInfo {
    /// The failed requirement.
    Requirement Req;

    /// The failed requirement with substitutions applied.
    Requirement SubstReq;

    /// The chain of conditional conformances that leads to the failed
    /// requirement \c Req. Accordingly, \c Req is a conditional requirement of
    /// the last conformance in the chain (if any).
    SmallVector<ParentConditionalConformance, 2> ReqPath;
  };

private:
  CheckRequirementsResult Kind;
  std::optional<RequirementFailureInfo> ReqFailureInfo;

  CheckGenericArgumentsResult(
      CheckRequirementsResult Kind,
      std::optional<RequirementFailureInfo> ReqFailureInfo)
      : Kind(Kind), ReqFailureInfo(ReqFailureInfo) {}

public:
  static CheckGenericArgumentsResult createSuccess() {
    return CheckGenericArgumentsResult(CheckRequirementsResult::Success,
                                       std::nullopt);
  }

  static CheckGenericArgumentsResult createSubstitutionFailure() {
    return CheckGenericArgumentsResult(
        CheckRequirementsResult::SubstitutionFailure, std::nullopt);
  }

  static CheckGenericArgumentsResult createRequirementFailure(
      Requirement Req, Requirement SubstReq,
      SmallVector<ParentConditionalConformance, 2> ReqPath) {
    return CheckGenericArgumentsResult(
        CheckRequirementsResult::RequirementFailure,
        RequirementFailureInfo{Req, SubstReq, ReqPath});
  }

  const RequirementFailureInfo &getRequirementFailureInfo() const {
    assert(Kind == CheckRequirementsResult::RequirementFailure);

    return ReqFailureInfo.value();
  }

  CheckRequirementsResult getKind() const { return Kind; }
};

/// Describes the kind of checked cast operation being performed.
enum class CheckedCastContextKind {
  /// None: we're just establishing how to perform the checked cast. This
  /// is useful when we don't care to produce any diagnostics.
  None,
  /// A forced cast, with "as!".
  ForcedCast,
  /// A conditional cast, with "as?".
  ConditionalCast,
  /// An "is" expression.
  IsExpr,
  /// An "is" pattern.
  IsPattern,
  /// An enum-element pattern.
  EnumElementPattern,
  /// Coerce to checked cast. Used when we verify if it is possible to
  /// suggest to convert a coercion to a checked cast.
  Coercion,
};

namespace TypeChecker {
// DANGER: callers must verify that elementType satisfies the requirements of
// the Wrapped generic parameter, as this function will not do so!
Type getOptionalType(SourceLoc loc, Type elementType);

/// Bind an UnresolvedDeclRefExpr by performing name lookup and
/// returning the resultant expression.  Context is the DeclContext used
/// for the lookup.
///
/// \param replaceInvalidRefsWithErrors Indicates whether it's allowed
/// to replace any discovered invalid member references with `ErrorExpr`.
Expr *resolveDeclRefExpr(UnresolvedDeclRefExpr *UDRE, DeclContext *Context,
                         bool replaceInvalidRefsWithErrors);

/// Check for invalid existential types in the given declaration.
void checkExistentialTypes(Decl *decl);

/// Check for invalid existential types in the given statement.
void checkExistentialTypes(ASTContext &ctx, Stmt *stmt, DeclContext *DC);

/// Check for invalid existential types in the underlying type of
/// the given type alias.
void checkExistentialTypes(ASTContext &ctx, TypeAliasDecl *typeAlias);

/// Check for invalid existential types in the given generic requirement
/// list.
void checkExistentialTypes(ASTContext &ctx,
                           TrailingWhereClause *whereClause);

/// Check for invalid existential types in the given generic requirement
/// list.
void checkExistentialTypes(ASTContext &ctx,
                           GenericParamList *genericParams);

/// Substitute the given base type into the type of the given nested type,
/// producing the effective type that the nested type will have.
///
/// \param module The module in which the substitution will be performed.
/// \param member The member whose type projection is being computed.
/// \param baseTy The base type that will be substituted for the 'Self' of the
/// member.
/// \param useArchetypes Whether to use context archetypes for outer generic
/// parameters if the class is nested inside a generic function.
Type substMemberTypeWithBase(ModuleDecl *module, TypeDecl *member, Type baseTy,
                             bool useArchetypes = true);

/// Determine whether this is a "pass-through" typealias, which has the
/// same type parameters as the nominal type it references and specializes
/// the underlying nominal type with exactly those type parameters.
/// For example, the following typealias \c GX is a pass-through typealias:
///
/// \code
/// struct X<T, U> { }
/// typealias GX<A, B> = X<A, B>
/// \endcode
///
/// whereas \c GX2 and \c GX3 are not pass-through because \c GX2 has
/// different type parameters and \c GX3 doesn't pass its type parameters
/// directly through.
///
/// \code
/// typealias GX2<A> = X<A, A>
/// typealias GX3<A, B> = X<B, A>
/// \endcode
bool isPassThroughTypealias(TypeAliasDecl *typealias, NominalTypeDecl *nominal);

/// Determine whether one type is a subtype of another.
///
/// \param t1 The potential subtype.
/// \param t2 The potential supertype.
/// \param dc The context of the check.
///
/// \returns true if \c t1 is a subtype of \c t2.
bool isSubtypeOf(Type t1, Type t2, DeclContext *dc);

/// Determine whether one type is implicitly convertible to another.
///
/// \param t1 The potential source type of the conversion.
///
/// \param t2 The potential destination type of the conversion.
///
/// \param dc The context of the conversion.
///
/// \param unwrappedIUO If non-null, will be set to indicate whether the
/// conversion force-unwrapped an implicitly-unwrapped optional.
///
/// \returns true if \c t1 can be implicitly converted to \c t2.
bool isConvertibleTo(Type t1, Type t2, DeclContext *dc,
                     bool *unwrappedIUO = nullptr);

/// Determine whether one type is explicitly convertible to another,
/// i.e. using an 'as' expression.
///
/// \param t1 The potential source type of the conversion.
///
/// \param t2 The potential destination type of the conversion.
///
/// \param dc The context of the conversion.
///
/// \returns true if \c t1 can be explicitly converted to \c t2.
bool isExplicitlyConvertibleTo(Type t1, Type t2, DeclContext *dc);

/// Determine whether one type is bridged to another type.
///
/// \param t1 The potential source type of the conversion.
///
/// \param t2 The potential destination type of the conversion.
///
/// \param dc The context of the conversion.
///
/// \param unwrappedIUO If non-null, will be set to indicate whether the
/// conversion force-unwrapped an implicitly-unwrapped optional.
///
/// \returns true if \c t1 can be explicitly converted to \c t2.
bool isObjCBridgedTo(Type t1, Type t2, DeclContext *dc,
                     bool *unwrappedIUO = nullptr);

/// Return true if performing a checked cast from one type to another
/// with the "as!" operator could possibly succeed.
///
/// \param t1 The potential source type of the cast.
///
/// \param t2 The potential destination type of the cast.
///
/// \param dc The context of the cast.
///
/// \returns true if a checked cast from \c t1 to \c t2 may succeed, and
/// false if it will certainly fail, e.g. because the types are unrelated.
bool checkedCastMaySucceed(Type t1, Type t2, DeclContext *dc);

/// Determine whether a constraint of the given kind can be satisfied
/// by the two types.
///
/// \param t1 The first type of the constraint.
///
/// \param t2 The second type of the constraint.
///
/// \param openArchetypes If true, archetypes are replaced with type
/// variables, and the result can be interpreted as whether or not the
/// two types can possibly equal at runtime.
///
/// \param dc The context of the conversion.
///
/// \param unwrappedIUO   If non-null, will be set to \c true if the coercion
/// or bridge operation force-unwraps an implicitly-unwrapped optional.
///
/// \returns true if \c t1 and \c t2 satisfy the constraint.
bool typesSatisfyConstraint(Type t1, Type t2, bool openArchetypes,
                            constraints::ConstraintKind kind, DeclContext *dc,
                            bool *unwrappedIUO = nullptr);

/// If the inputs to an apply expression use a consistent "sugar" type
/// (that is, a typealias or shorthand syntax) equivalent to the result type
/// of the function, set the result type of the expression to that sugar type.
Expr *substituteInputSugarTypeForResult(ApplyExpr *E);

/// Type check a \c StmtConditionElement.
/// Sets \p isFalsable to \c true if the condition might evaluate to \c false,
/// otherwise leaves \p isFalsable untouched.
/// \returns \c true if there was an error type checking, \c false otherwise.
bool typeCheckStmtConditionElement(StmtConditionElement &elt, bool &isFalsable,
                                   DeclContext *dc);

/// Returns the unique decl ref identified by the expr according to the
/// requirements of the \c #_hasSymbol() condition type.
ConcreteDeclRef getReferencedDeclForHasSymbolCondition(Expr *E);

void typeCheckASTNode(ASTNode &node, DeclContext *DC,
                      bool LeaveBodyUnchecked = false);

/// Try to apply the result builder transform of the given builder type
/// to the body of the function.
///
/// \returns \c None if the builder transformation cannot be applied at all,
/// e.g., because of a \c return statement. Otherwise, returns either the
/// fully type-checked body of the function (on success) or a \c nullptr
/// value if an error occurred while type checking the transformed body.
std::optional<BraceStmt *> applyResultBuilderBodyTransform(FuncDecl *func,
                                                           Type builderType);

/// Find the return statements within the body of the given function.
std::vector<ReturnStmt *> findReturnStatements(AnyFunctionRef fn);

bool typeCheckClosureBody(ClosureExpr *closure);

bool typeCheckTapBody(TapExpr *expr, DeclContext *DC);

Type typeCheckParameterDefault(Expr *&defaultValue, DeclContext *DC,
                               Type paramType, bool isAutoClosure,
                               bool atCallerSide);

void typeCheckTopLevelCodeDecl(TopLevelCodeDecl *TLCD);

void typeCheckDecl(Decl *D);

void addImplicitDynamicAttribute(Decl *D);
void checkDeclAttributes(Decl *D);
void checkClosureAttributes(ClosureExpr *closure);
void checkParameterList(ParameterList *params, DeclContext *owner);

void diagnoseDuplicateBoundVars(Pattern *pattern);

void diagnoseDuplicateCaptureVars(CaptureListExpr *expr);

Type checkReferenceOwnershipAttr(VarDecl *D, Type interfaceType,
                                 ReferenceOwnershipAttr *attr);

/// Infer default value witnesses for all requirements in the given protocol.
void inferDefaultWitnesses(ProtocolDecl *proto);

/// For a generic requirement in a protocol, make sure that the requirement
/// set didn't add any requirements to Self or its associated types.
void checkProtocolSelfRequirements(ValueDecl *decl);

/// All generic parameters of a generic function must be referenced in the
/// declaration's type, otherwise we have no way to infer them.
void checkReferencedGenericParams(GenericContext *dc);

/// Ensure we don't re-declare any generic parameters in the current scope,
/// or shadow a generic parameter from an outer scope.
void checkShadowedGenericParams(GenericContext *dc);

/// Diagnose a requirement failure.
///
/// \param errorLoc The location at which an error shall be emitted.
/// \param noteLoc The location at which any notes shall be emitted.
/// \param targetTy The type whose generic arguments caused the requirement
/// failure.
/// \param genericParams The generic parameters that were substituted.
/// \param substitutions The substitutions that caused the requirement failure.
void diagnoseRequirementFailure(
    const CheckGenericArgumentsResult::RequirementFailureInfo &reqFailureInfo,
    SourceLoc errorLoc, SourceLoc noteLoc, Type targetTy,
    ArrayRef<GenericTypeParamType *> genericParams,
    TypeSubstitutionFn substitutions, ModuleDecl *module);

/// Check the given generic parameter substitutions against the given
/// requirements and report on any requirement failures in detail for
/// diagnostic needs.
CheckGenericArgumentsResult
checkGenericArgumentsForDiagnostics(ModuleDecl *module,
                                    ArrayRef<Requirement> requirements,
                                    TypeSubstitutionFn substitutions);

/// Checks whether the generic requirements imposed on the nested type
/// declaration \p decl (if present) are in agreement with the substitutions
/// that are needed to spell it as a member of the given parent type
/// \p parentTy.
///
/// For example, given
/// \code
/// struct S<X> {}
/// extension S where X == Bool {
///   struct Inner {}
/// }
/// \endcode
/// \c Inner cannot be referenced on \c S<Int>, because its contextual
/// requirement \c X \c == \c Bool is not satisfied by the substitution
/// \c [X \c = \c Int].
///
/// Similarly, \c typealias \c Y below is a viable type witness in the
/// conformance of \c S to \c P, because its contextual requirement
/// \c Self.X \c == \c Bool is satisfied by the substitution
/// \c [Self \c = \c S].
/// \code
/// protocol P {
///   associatedtype X
///   associatedtype Y
/// }
/// extension P where X == Bool {
///   typealias Y = Bool
/// }
///
/// struct S: P {
///   typealias X = Bool
/// }
/// \endcode
///
/// \param module The module to use for conformance lookup.
/// \param contextSig The generic signature that should be used to map
/// \p parentTy into context. We pass a generic signature to secure on-demand
/// computation of the associated generic environment.
///
/// \returns \c true on success.
bool checkContextualRequirements(GenericTypeDecl *decl, Type parentTy,
                                 SourceLoc loc, ModuleDecl *module,
                                 GenericSignature contextSig);

/// Add any implicitly-defined constructors required for the given
/// struct, class or actor.
void addImplicitConstructors(NominalTypeDecl *typeDecl);

/// Fold the given sequence expression into an (unchecked) expression
/// tree.
Expr *foldSequence(SequenceExpr *expr, DeclContext *dc);

/// Given an pre-folded expression, find LHS from the expression if a binary
/// operator \c name appended to the expression.
Expr *findLHS(DeclContext *DC, Expr *E, Identifier name);

/// Type check the given expression.
///
/// \param expr The expression to type-check, which will be modified in
/// place.
///
/// \param contextualInfo The type that the expression is being converted to,
/// or null if the expression is standalone. When convertType is specified, this indicates
/// what the conversion is doing.  This allows diagnostics generation to
/// produce more specific and helpful error messages when the conversion fails
/// to be possible.
///
/// \param options Options that control how type checking is performed.
///
/// \returns The type of the top-level expression, or Type() if an
///          error occurred.
Type typeCheckExpression(Expr *&expr, DeclContext *dc,
                         constraints::ContextualTypeInfo contextualInfo = {},
                         TypeCheckExprOptions options = TypeCheckExprOptions());

std::optional<constraints::SyntacticElementTarget>
typeCheckExpression(constraints::SyntacticElementTarget &target,
                    TypeCheckExprOptions options = TypeCheckExprOptions());

std::optional<constraints::SyntacticElementTarget>
typeCheckTarget(constraints::SyntacticElementTarget &target,
                TypeCheckExprOptions options = TypeCheckExprOptions());

/// Remove any solutions from the provided vector that require more fixes than
/// the best score or don't contain a type for the code completion token.
void filterSolutionsForCodeCompletion(
    SmallVectorImpl<constraints::Solution> &solutions,
    CompletionContextFinder &contextAnalyzer);

/// Type check the given expression and provide results back to code completion
/// via specified callback.
///
/// This method is designed to be used for code completion which means that
/// it doesn't mutate given expression, even if there is a single valid
/// solution, and constraint solver is allowed to produce partially correct
/// solutions. Such solutions can have any number of holes in them.
///
/// \returns `true` if target was applicable and it was possible to infer
/// types for code completion, `false` otherwise.
bool typeCheckForCodeCompletion(
    constraints::SyntacticElementTarget &target, bool needsPrecheck,
    llvm::function_ref<void(const constraints::Solution &)> callback);

/// Check the key-path expression.
///
/// Returns the type of the last component of the key-path.
std::optional<Type> checkObjCKeyPathExpr(DeclContext *dc, KeyPathExpr *expr,
                                         bool requireResultType = false);

/// Type check whether the given type declaration includes members of
/// unsupported recursive value types.
///
/// \param decl The declaration to be type-checked. This process will not
/// modify the declaration.
void checkDeclCircularity(NominalTypeDecl *decl);

/// Type check whether an extension matches its Objective-C interface, if it
/// has one.
///
/// \param D The declaration to check.
void checkObjCImplementation(Decl *D);

/// Type check whether the given switch statement exhaustively covers
/// its domain.
///
/// \param stmt The switch statement to be type-checked.  No modification of
/// the statement occurs.
/// \param DC The decl context containing \p stmt.
/// \param limitChecking The checking process relies on the switch statement
/// being well-formed.  If it is not, pass true to this flag to run a limited
/// form of analysis.
void checkSwitchExhaustiveness(const SwitchStmt *stmt, const DeclContext *DC,
                               bool limitChecking);

/// Type check the given expression as a condition, which converts
/// it to a logic value.
///
/// \param expr The expression to type-check, which will be modified in place
/// to return a logic value (builtin i1).
///
/// \returns true if an error occurred, false otherwise.
bool typeCheckCondition(Expr *&expr, DeclContext *dc);

/// Determine the semantics of a checked cast operation.
///
/// \param fromType       The source type of the cast.
/// \param toType         The destination type of the cast.
/// \param contextKind    The cast context in which this is being typechecked.
/// \param dc             The context of the cast.
///
/// \returns a CheckedCastKind indicating the semantics of the cast. If the
/// cast is invalid, Unresolved is returned. If the cast represents an implicit
/// conversion, Coercion is returned.
CheckedCastKind typeCheckCheckedCast(Type fromType, Type toType,
                                     CheckedCastContextKind contextKind,
                                     DeclContext *dc);

/// Find the Objective-C class that bridges between a value of the given
/// dynamic type and the given value type.
///
/// \param dc The declaration context from which we will look for
/// bridging.
///
/// \param dynamicType A dynamic type from which we are bridging. Class and
/// Objective-C protocol types can be used for bridging.
///
/// \param valueType The value type being queried, e.g., String.
///
/// \returns the Objective-C class type that represents the value
/// type as an Objective-C class, e.g., \c NSString represents \c
/// String, or a null type if there is no such type or if the
/// dynamic type isn't something we can start from.
Type getDynamicBridgedThroughObjCClass(DeclContext *dc, Type dynamicType,
                                       Type valueType);

/// Resolve ambiguous pattern/expr productions inside a pattern using
/// name lookup information. Must be done before type-checking the pattern.
Pattern *resolvePattern(Pattern *P, DeclContext *dc, bool isStmtCondition);

/// Type check the given pattern.
///
/// \returns the type of the pattern, which may be an error type if an
/// unrecoverable error occurred. If the options permit it, the type may
/// involve \c UnresolvedType (for patterns with no type information) and
/// unbound generic types.
Type typeCheckPattern(ContextualPattern pattern);

/// Attempt to simplify an ExprPattern into a BoolPattern or
/// OptionalSomePattern. Returns \c nullptr if the pattern could not be
/// simplified.
NullablePtr<Pattern> trySimplifyExprPattern(ExprPattern *EP, Type patternTy);

/// Coerce a pattern to the given type.
///
/// \param pattern The contextual pattern.
/// \param type the type to coerce the pattern to.
/// \param options Options that control the coercion.
/// \param tryRewritePattern A function that attempts to externally rewrite
/// the given pattern. This is used by the constraint system to take over
/// rewriting for ExprPatterns.
///
/// \returns the coerced pattern, or nullptr if the coercion failed.
Pattern *coercePatternToType(
    ContextualPattern pattern, Type type, TypeResolutionOptions options,
    llvm::function_ref<std::optional<Pattern *>(Pattern *, Type)>
        tryRewritePattern = [](Pattern *, Type) { return std::nullopt; });

bool typeCheckExprPattern(ExprPattern *EP, DeclContext *DC, Type type);

/// Coerce the specified parameter list of a ClosureExpr to the specified
/// contextual type.
void coerceParameterListToType(ParameterList *P, AnyFunctionType *FN);

/// Type-check an initialized variable pattern declaration.
bool typeCheckBinding(Pattern *&P, Expr *&Init, DeclContext *DC,
                      Type patternType,
                      PatternBindingDecl *PBD = nullptr,
                      unsigned patternNumber = 0,
                      TypeCheckExprOptions options = {});
bool typeCheckPatternBinding(PatternBindingDecl *PBD, unsigned patternNumber,
                             Type patternType = Type(),
                             TypeCheckExprOptions options = {});

/// Type-check a for-each loop's pattern binding, sequence, and where clause
/// together.
///
/// \returns true if a failure occurred.
bool typeCheckForEachPreamble(DeclContext *dc, ForEachStmt *stmt,
                              GenericEnvironment *packElementEnv);

/// Compute the set of captures for the given function or closure.
void computeCaptures(AnyFunctionRef AFR);

/// Check for invalid captures from stored property initializers.
void checkPatternBindingCaptures(IterableDeclContext *DC);

/// Change the context of closures in the given initializer
/// expression to the given context.
void contextualizeInitializer(Initializer *DC, Expr *init);
void contextualizeCallSideDefaultArgument(DeclContext *DC, Expr *init);
void contextualizeTopLevelCode(TopLevelCodeDecl *TLCD);

/// Retrieve the default type for the given protocol.
///
/// Some protocols, particularly those that correspond to literals, have
/// default types associated with them. This routine retrieves that default
/// type.
///
/// \returns the default type, or null if there is no default type for
/// this protocol.
Type getDefaultType(ProtocolDecl *protocol, DeclContext *dc);

/// Coerce the given expression to materializable type, if it
/// isn't already.
Expr *coerceToRValue(
    ASTContext &Context, Expr *expr,
    llvm::function_ref<Type(Expr *)> getType =
        [](Expr *expr) { return expr->getType(); },
    llvm::function_ref<void(Expr *, Type)> setType =
        [](Expr *expr, Type type) { expr->setType(type); });

/// Add implicit load expression to given AST, this is sometimes
/// more complicated than simplify wrapping given root in newly created
/// `LoadExpr`, because `ForceValueExpr` and `ParenExpr` supposed to appear
/// only at certain positions in AST.
Expr *addImplicitLoadExpr(
    ASTContext &Context, Expr *expr,
    std::function<Type(Expr *)> getType = [](Expr *E) { return E->getType(); },
    std::function<void(Expr *, Type)> setType =
        [](Expr *E, Type type) { E->setType(type); });

/// Determine whether the given type contains the given protocol.
///
/// \returns the conformance, if \c T conforms to the protocol \c Proto, or
/// an empty optional.
ProtocolConformanceRef containsProtocol(Type T, ProtocolDecl *Proto,
                                        ModuleDecl *M,
                                        bool allowMissing=false);

/// Check whether the type conforms to a given known protocol.
bool conformsToKnownProtocol(Type type, KnownProtocolKind protocol,
                             ModuleDecl *module, bool allowMissing = true);

/// This is similar to \c conformsToProtocol, but returns \c true for cases where
/// the type \p T could be dynamically cast to \p Proto protocol, such as a non-final
/// class where a subclass conforms to \p Proto.
///
/// \returns True if \p T conforms to the protocol \p Proto, false otherwise.
bool couldDynamicallyConformToProtocol(Type T, ProtocolDecl *Proto,
                                       ModuleDecl *M);

/// Check all of the conformances in the given context.
void checkConformancesInContext(IterableDeclContext *idc);

/// Check that the type of the given property conforms to NSCopying.
ProtocolConformanceRef checkConformanceToNSCopying(VarDecl *var);

/// \name Name lookup
///
/// Routines that perform name lookup.
///
/// @{

/// Perform unqualified name lookup at the given source location
/// within a particular declaration context.
///
/// \param dc The declaration context in which to perform name lookup.
/// \param name The name of the entity to look for.
/// \param loc The source location at which name lookup occurs.
/// \param options Options that control name lookup.
LookupResult lookupUnqualified(
    DeclContext *dc, DeclNameRef name, SourceLoc loc,
    NameLookupOptions options = defaultUnqualifiedLookupOptions);

/// Perform unqualified type lookup at the given source location
/// within a particular declaration context.
///
/// \param dc The declaration context in which to perform name lookup.
/// \param name The name of the entity to look for.
/// \param loc The source location at which name lookup occurs.
/// \param options Options that control name lookup.
LookupResult lookupUnqualifiedType(
    DeclContext *dc, DeclNameRef name, SourceLoc loc,
    NameLookupOptions options = defaultUnqualifiedLookupOptions);

/// Lookup a member in the given type.
///
/// \param dc The context that needs the member.
/// \param type The type in which we will look for a member.
/// \param name The name of the member to look for.
/// \param options Options that control name lookup.
///
/// \returns The result of name lookup.
LookupResult
lookupMember(DeclContext *dc, Type type, DeclNameRef name,
             SourceLoc loc = SourceLoc(),
             NameLookupOptions options = defaultMemberLookupOptions);

/// Look up a member type within the given type.
///
/// This routine looks for member types with the given name within the
/// given type.
///
/// \param dc The context that needs the member.
/// \param type The type in which we will look for a member type.
/// \param name The name of the member to look for.
/// \param options Options that control name lookup.
///
/// \returns The result of name lookup.
LookupTypeResult
lookupMemberType(DeclContext *dc, Type type, DeclNameRef name,
                 SourceLoc loc = SourceLoc(),
                 NameLookupOptions options = defaultMemberTypeLookupOptions);

/// Given an expression that's known to be an infix operator,
/// look up its precedence group.
PrecedenceGroupDecl *
lookupPrecedenceGroupForInfixOperator(DeclContext *dc, Expr *op, bool diagnose);

PrecedenceGroupLookupResult
lookupPrecedenceGroup(DeclContext *dc, Identifier name, SourceLoc nameLoc);

enum class UnsupportedMemberTypeAccessKind : uint8_t {
  None,
  TypeAliasOfUnboundGeneric,
  TypeAliasOfExistential,
  AssociatedTypeOfUnboundGeneric,
  AssociatedTypeOfExistential,
  NominalTypeOfUnboundGeneric
};

/// Check whether the given declaration can be written as a
/// member of the given base type.
UnsupportedMemberTypeAccessKind
isUnsupportedMemberTypeAccess(Type type, TypeDecl *typeDecl,
                              bool hasUnboundOpener,
                              bool isExtensionBinding = false);

/// @}

/// \name Overload resolution
///
/// Routines that perform overload resolution or provide diagnostics related
/// to overload resolution.
/// @{

/// Compare two declarations to determine whether one is more specialized
/// than the other.
///
/// A declaration is more specialized than another declaration if its type
/// is a subtype of the other declaration's type (ignoring the 'self'
/// parameter of function declarations) and if
Comparison compareDeclarations(DeclContext *dc, ValueDecl *decl1,
                               ValueDecl *decl2);

/// Checks whether the first decl is a refinement of the second
/// decl, meaning that the second decl can always be used in place
/// of the first one and the expression will still type check.
bool isDeclRefinementOf(ValueDecl *declA, ValueDecl *declB);

/// Build a type-checked reference to the given value.
Expr *buildCheckedRefExpr(VarDecl *D, DeclContext *UseDC, DeclNameLoc nameLoc,
                          bool Implicit);

/// Build a reference to a declaration, where name lookup returned
/// the given set of declarations.
Expr *buildRefExpr(ArrayRef<ValueDecl *> Decls, DeclContext *UseDC,
                   DeclNameLoc NameLoc, bool Implicit,
                   FunctionRefKind functionRefKind);
/// @}

/// Retrieve a specific, known protocol.
///
/// \param loc The location at which we need to look for the protocol.
/// \param kind The known protocol we're looking for.
///
/// \returns null if the protocol is not available. This represents a
/// problem with the Standard Library.
ProtocolDecl *getProtocol(ASTContext &ctx, SourceLoc loc,
                          KnownProtocolKind kind);

/// Retrieve the literal protocol for the given expression.
///
/// \returns the literal protocol, if known and available, or null if the
/// expression does not have an associated literal protocol.
ProtocolDecl *getLiteralProtocol(ASTContext &ctx, Expr *expr);

DeclName getObjectLiteralConstructorName(ASTContext &ctx,
                                         ObjectLiteralExpr *expr);

/// Get the module appropriate for looking up standard library types.
///
/// This is "Swift", if that module is imported, or the current module if
/// we're parsing the standard library.
ModuleDecl *getStdlibModule(const DeclContext *dc);

Expr *buildDefaultInitializer(Type type);

/// \name Resilience diagnostics

bool diagnoseInlinableDeclRefAccess(SourceLoc loc, const ValueDecl *D,
                                    const ExportContext &where);

/// Given that a declaration is used from a particular context which
/// exposes it in the interface of the current module, diagnose if it cannot
/// reasonably be shared.
bool diagnoseDeclRefExportability(SourceLoc loc,
                                  const ValueDecl *D,
                                  const ExportContext &where);

/// Given that a conformance is used from a particular context which
/// exposes it in the interface of the current module, diagnose if the
/// conformance is SPI or visible via an implementation-only import.
bool diagnoseConformanceExportability(SourceLoc loc,
                                      const RootProtocolConformance *rootConf,
                                      const ExtensionDecl *ext,
                                      const ExportContext &where,
                                      bool useConformanceAvailabilityErrorsOpt = false);

/// \name Availability checking
///
/// Routines that perform API availability checking and type checking of
/// potentially unavailable API elements
/// @{

/// Returns true if the availability of the witness
/// is sufficient to safely conform to the requirement in the context
/// the provided conformance. On return, requiredAvailability holds th
/// availability levels required for conformance.
bool
isAvailabilitySafeForConformance(ProtocolDecl *proto, ValueDecl *requirement,
                                 ValueDecl *witness, DeclContext *dc,
                                 AvailabilityContext &requiredAvailability);

/// Returns an over-approximation of the range of operating system versions
/// that could the passed-in location could be executing upon for
/// the target platform. If MostRefined != nullptr, set to the most-refined
/// TRC found while approximating.
AvailabilityContext overApproximateAvailabilityAtLocation(
    SourceLoc loc, const DeclContext *DC,
    const TypeRefinementContext **MostRefined = nullptr);

/// Walk the AST to build the hierarchy of TypeRefinementContexts
void buildTypeRefinementContextHierarchy(SourceFile &SF);

/// Build the hierarchy of TypeRefinementContexts for the entire
/// source file, if it has not already been built. Returns the root
/// TypeRefinementContext for the source file.
TypeRefinementContext *getOrBuildTypeRefinementContext(SourceFile *SF);

/// Returns a diagnostic indicating why the declaration cannot be annotated
/// with an @available() attribute indicating it is potentially unavailable
/// or None if this is allowed.
std::optional<Diag<>>
diagnosticIfDeclCannotBePotentiallyUnavailable(const Decl *D);

/// Returns a diagnostic indicating why the declaration cannot be annotated
/// with an @available() attribute indicating it is unavailable or None if this
/// is allowed.
std::optional<Diag<>> diagnosticIfDeclCannotBeUnavailable(const Decl *D);

/// Same as \c checkDeclarationAvailability but doesn't give a reason for
/// unavailability.
bool isDeclarationUnavailable(
    const Decl *D, const DeclContext *referenceDC,
    llvm::function_ref<AvailabilityContext()> getAvailabilityContext);

/// Checks whether a declaration should be considered unavailable when
/// referred to at the given location and, if so, returns the reason why the
/// declaration is unavailable. Returns None is the declaration is
/// definitely available.
std::optional<UnavailabilityReason>
checkDeclarationAvailability(const Decl *D, const ExportContext &Where);

/// Checks whether a conformance should be considered unavailable when
/// referred to at the given location and, if so, returns the reason why the
/// declaration is unavailable. Returns None is the declaration is
/// definitely available.
std::optional<UnavailabilityReason>
checkConformanceAvailability(const RootProtocolConformance *Conf,
                             const ExtensionDecl *Ext,
                             const ExportContext &Where);

/// Checks an "ignored" expression to see if it's okay for it to be ignored.
///
/// An ignored expression is one that is not nested within a larger
/// expression or statement.
void checkIgnoredExpr(Expr *E);

// Emits a diagnostic for a reference to a declaration that is potentially
// unavailable at the given source location. Returns true if an error diagnostic
// was emitted.
bool diagnosePotentialUnavailability(const ValueDecl *D,
                                     SourceRange ReferenceRange,
                                     const DeclContext *ReferenceDC,
                                     const UnavailabilityReason &Reason,
                                     bool WarnBeforeDeploymentTarget);

// Emits a diagnostic for a protocol conformance that is potentially
// unavailable at the given source location.
void diagnosePotentialUnavailability(const RootProtocolConformance *rootConf,
                                     const ExtensionDecl *ext,
                                     SourceLoc loc,
                                     const DeclContext *dc,
                                     const UnavailabilityReason &reason);

void
diagnosePotentialUnavailability(SourceRange ReferenceRange,
                                Diag<StringRef, llvm::VersionTuple> Diag,
                                const DeclContext *ReferenceDC,
                                const UnavailabilityReason &Reason);

/// Type check a 'distributed actor' declaration.
void checkDistributedActor(SourceFile *SF, NominalTypeDecl *decl);

/// Type check a single 'distributed func' declaration.
///
/// Returns `true` if there was an error.
bool checkDistributedFunc(FuncDecl *func);

bool checkAvailability(SourceRange ReferenceRange,
                       AvailabilityContext Availability,
                       Diag<StringRef, llvm::VersionTuple> Diag,
                       const DeclContext *ReferenceDC);

void checkConcurrencyAvailability(SourceRange ReferenceRange,
                                  const DeclContext *ReferenceDC);

/// Emits a diagnostic for a reference to a storage accessor that is
/// potentially unavailable.
void diagnosePotentialAccessorUnavailability(
    const AccessorDecl *Accessor, SourceRange ReferenceRange,
    const DeclContext *ReferenceDC, const UnavailabilityReason &Reason,
    bool ForInout);

/// Returns the availability attribute indicating deprecation if the
/// declaration is deprecated or null otherwise.
const AvailableAttr *getDeprecated(const Decl *D);

/// Emits a diagnostic for a reference to a declaration that is deprecated.
void diagnoseIfDeprecated(SourceRange SourceRange, const ExportContext &Where,
                          const ValueDecl *DeprecatedDecl, const Expr *Call);

/// Emits a diagnostic for a reference to a conformance that is deprecated.
bool diagnoseIfDeprecated(SourceLoc loc,
                          const RootProtocolConformance *rootConf,
                          const ExtensionDecl *ext,
                          const ExportContext &where);
/// @}

/// If `LangOptions::DebugForbidTypecheckPrefixes` is set and the given decl
/// name starts with any of those prefixes, an llvm fatal error is triggered.
/// This is for testing purposes.
void checkForForbiddenPrefix(ASTContext &C, DeclBaseName Name);

/// Check error handling in the given type-checked top-level code.
void checkTopLevelEffects(TopLevelCodeDecl *D);
void checkFunctionEffects(AbstractFunctionDecl *D);
void checkInitializerEffects(Initializer *I, Expr *E);
void checkCallerSideDefaultArgumentEffects(DeclContext *I, Expr *E);
void checkEnumElementEffects(EnumElementDecl *D, Expr *expr);
void checkPropertyWrapperEffects(PatternBindingDecl *binding, Expr *expr);

/// Whether the given expression can throw, and if so, the thrown type.
std::optional<Type> canThrow(ASTContext &ctx, Expr *expr);

/// Whether the given for..each statement can throw, and if so, the thrown
/// error type.
std::optional<Type> canThrow(ASTContext &ctx, ForEachStmt *forEach);

/// Determine the error type that is thrown out of the body of the given
/// do-catch statement.
///
/// The error type is used in the catch clauses and, for a nonexhausive
/// do-catch, is implicitly rethrown out of the do...catch block.
Type catchErrorType(DeclContext *dc, DoCatchStmt *stmt);

/// Given two error types, merge them into the "union" of both error types
/// that is a supertype of both error types.
///
/// The \c simplifyType function is applied to any types that involve type
/// variables, to substitute away the type variables when possible. It need
/// not substitute all type variables, though.
Type errorUnion(Type type1, Type type2,
                llvm::function_ref<Type(Type)> simplifyType);

/// Retrieve the "next" function that should be used for iteration in a
/// for..in loop.
FuncDecl *getForEachIteratorNextFunction(
    DeclContext *dc, SourceLoc loc, bool isAsync);

/// If an expression references 'self.init' or 'super.init' in an
/// initializer context, returns the implicit 'self' decl of the constructor.
/// Otherwise, return nil.
VarDecl *getSelfForInitDelegationInConstructor(DeclContext *DC,
                                               UnresolvedDotExpr *UDE);

/// Diagnose assigning variable to itself.
bool diagnoseSelfAssignment(const Expr *E);

/// Builds a string representing a "default" generic argument list for
/// \p typeDecl. In general, this means taking the bound of each generic
/// parameter. The \p getPreferredType callback can be used to provide a
/// different type from the bound.
///
/// It may not always be possible to find a single appropriate type for a
/// particular parameter (say, if it has two bounds). In this case, an
/// Xcode-style placeholder will be used instead.
///
/// Returns true if the arguments list could be constructed, false if for
/// some reason it could not.
bool getDefaultGenericArgumentsString(
    SmallVectorImpl<char> &buf, const GenericTypeDecl *typeDecl,
    llvm::function_ref<Type(const GenericTypeParamDecl *)> getPreferredType =
        [](const GenericTypeParamDecl *) { return Type(); });

/// Attempt to omit needless words from the name of the given declaration.
std::optional<DeclName> omitNeedlessWords(AbstractFunctionDecl *afd);

/// Attempt to omit needless words from the name of the given declaration.
std::optional<Identifier> omitNeedlessWords(VarDecl *var);

/// Calculate edit distance between declaration names.
unsigned getCallEditDistance(DeclNameRef writtenName, DeclName correctedName,
                             unsigned maxEditDistance);

enum : unsigned {
  /// Never consider a candidate that's this distance away or worse.
  UnreasonableCallEditDistance = 8,

  /// Don't consider candidates that score worse than the given distance
  /// from the best candidate.
  MaxCallEditDistanceFromBestCandidate = 1
};

/// Check for a typo correction.
void performTypoCorrection(DeclContext *DC, DeclRefKind refKind,
                           Type baseTypeOrNull,
                           NameLookupOptions lookupOptions,
                           TypoCorrectionResults &corrections,
                           GenericSignature genericSig = GenericSignature(),
                           unsigned maxResults = 4);

/// Check if the given decl has a @_semantics attribute that gives it
/// special case type-checking behavior.
DeclTypeCheckingSemantics getDeclTypeCheckingSemantics(ValueDecl *decl);

/// Infers the differentiability parameter indices for the given
/// original or derivative `AbstractFunctionDecl`.
///
/// The differentiability parameters are inferred to be:
/// - All parameters of the function that conform to `Differentiable`.
/// - If the function result type is a function type (i.e. the function has
///   a curried method type), then also all parameters of the function result
///   type that conform to `Differentiable`.
///
/// Used by `@differentiable` and `@derivative` attribute type-checking.
IndexSubset *
inferDifferentiabilityParameters(AbstractFunctionDecl *AFD,
                                 GenericEnvironment *derivativeGenEnv);

/// Require that the library intrinsics for working with Optional<T>
/// exist.
bool requireOptionalIntrinsics(ASTContext &ctx, SourceLoc loc);

/// Require that the library intrinsics for working with
/// UnsafeMutablePointer<T> exist.
bool requirePointerArgumentIntrinsics(ASTContext &ctx, SourceLoc loc);

/// Require that the library intrinsics for creating
/// array literals exist.
bool requireArrayLiteralIntrinsics(ASTContext &ctx, SourceLoc loc);

/// Gets the \c UnresolvedMemberExpr at the base of a chain of member accesses.
/// If \c expr is not part of a member chain or the base is something other than
/// an \c UnresolvedMemberExpr, \c nullptr is returned.
UnresolvedMemberExpr *getUnresolvedMemberChainBase(Expr *expr);

/// Checks whether a result builder type has a well-formed result builder
/// method with the given name. If provided and non-empty, the argument labels
/// are verified against any candidates.
ResultBuilderOpSupport
checkBuilderOpSupport(Type builderType, DeclContext *dc, Identifier fnName,
                      ArrayRef<Identifier> argLabels = {},
                      SmallVectorImpl<ValueDecl *> *allResults = nullptr);

/// Checks whether a result builder type has a well-formed result builder
/// method with the given name. If provided and non-empty, the argument labels
/// are verified against any candidates.
///
/// This will return \c true even if the builder method is unavailable. Use
/// \c checkBuilderOpSupport if availability should be checked.
bool typeSupportsBuilderOp(Type builderType, DeclContext *dc, Identifier fnName,
                           ArrayRef<Identifier> argLabels = {},
                           SmallVectorImpl<ValueDecl *> *allResults = nullptr);

/// Forces all changes specified by the module's access notes file to be
/// applied to this declaration. It is safe to call this function more than
/// once.
void applyAccessNote(ValueDecl *VD);

/// Returns true if the given type conforms to `Differentiable` in the
/// module of `dc`. If `tangentVectorEqualsSelf` is true, returns true iff
/// the given type additionally satisfies `Self == Self.TangentVector`.
bool isDifferentiable(Type type, bool tangentVectorEqualsSelf, DeclContext *dc,
                      std::optional<TypeResolutionStage> stage);

/// Emits diagnostics if the given function type's parameter/result types are
/// not compatible with the ext info. Returns whether an error was diagnosed.
bool diagnoseInvalidFunctionType(FunctionType *fnTy, SourceLoc loc,
                                 std::optional<FunctionTypeRepr *> repr,
                                 DeclContext *dc,
                                 std::optional<TypeResolutionStage> stage);

/// Walk the parallel structure of a type with user-provided placeholders and
/// an inferred type produced by the type checker. Where placeholders can be
/// found, suggest the corresponding inferred type.
///
/// For example,
///
/// \code
///  func foo(_ x: [_] = [0])
/// \endcode
///
/// Has a written type of `(ArraySlice (Placeholder))` and an inferred type of
/// `(ArraySlice Int)`, so we walk to `Placeholder` and `Int` in each type and
/// suggest replacing `_` with `Int`.
///
/// \param writtenType The interface type usually derived from a user-written
/// type repr. \param inferredType The type inferred by the type checker.
void notePlaceholderReplacementTypes(Type writtenType, Type inferredType);
} // namespace TypeChecker

/// Returns the protocol requirement kind of the given declaration.
/// Used in diagnostics.
///
/// Asserts that the given declaration is a protocol requirement.
diag::RequirementKind getProtocolRequirementKind(ValueDecl *Requirement);

/// Returns true if the given method is an valid implementation of a
/// @dynamicCallable attribute requirement. The method is given to be defined
/// as one of the following: `dynamicallyCall(withArguments:)` or
/// `dynamicallyCall(withKeywordArguments:)`.
bool isValidDynamicCallableMethod(FuncDecl *decl, ModuleDecl *module,
                                  bool hasKeywordArguments);

/// Returns true if the given subscript method is an valid implementation of
/// the `subscript(dynamicMember:)` requirement for @dynamicMemberLookup.
/// The method is given to be defined as `subscript(dynamicMember:)`.
bool isValidDynamicMemberLookupSubscript(SubscriptDecl *decl, ModuleDecl *module,
                                         bool ignoreLabel = false);

/// Returns true if the given subscript method is an valid implementation of
/// the `subscript(dynamicMember:)` requirement for @dynamicMemberLookup.
/// The method is given to be defined as `subscript(dynamicMember:)` which
/// takes a single non-variadic parameter that conforms to
/// `ExpressibleByStringLiteral` protocol.
bool isValidStringDynamicMemberLookup(SubscriptDecl *decl, ModuleDecl *module,
                                      bool ignoreLabel = false);

/// Returns true if the given subscript method is an valid implementation of
/// the `subscript(dynamicMember: {Writable}KeyPath<...>)` requirement for
/// @dynamicMemberLookup.
/// The method is given to be defined as `subscript(dynamicMember:)` which
/// takes a single non-variadic parameter of `{Writable}KeyPath<T, U>` type.
bool isValidKeyPathDynamicMemberLookup(SubscriptDecl *decl,
                                       bool ignoreLabel = false);

/// Compute the wrapped value type for the given property that has attached
/// property wrappers, when the backing storage is known to have the given type.
///
/// \param var A property that has attached property wrappers.
/// \param backingStorageType The type of the backing storage property.
/// \param limit How many levels of unwrapping to perform, where 0 means to return the
/// \c backingStorageType directly and the maximum is the number of attached property wrappers
/// (which will produce the original property type). If not specified, defaults to the maximum.
Type computeWrappedValueType(const VarDecl *var, Type backingStorageType,
                             std::optional<unsigned> limit = std::nullopt);

/// Compute the projected value type for the given property that has attached
/// property wrappers when the backing storage is known to have the given type.
Type computeProjectedValueType(const VarDecl *var, Type backingStorageType);

/// Build a call to the init(wrappedValue:) or init(projectedValue:)
/// initializer of the property wrapper, filling in the given \c value
/// as the wrapped or projected value argument.
///
/// Optionally pass a callback that will get invoked with the innermost init
/// apply expression.
Expr *buildPropertyWrapperInitCall(
    const VarDecl *var, Type backingStorageType, Expr *value,
    PropertyWrapperInitKind initKind,
    llvm::function_ref<void(ApplyExpr *)> callback = [](ApplyExpr *) {});

/// Check if this var is the \c wrappedValue property belonging to
/// a property wrapper type declaration.
bool isWrappedValueOfPropWrapper(VarDecl *var);

/// Whether an overriding declaration requires the 'override' keyword.
enum class OverrideRequiresKeyword {
  /// The keyword is never required.
  Never,
  /// The keyword is always required.
  Always,
  /// The keyword can be implicit; it is not required.
  Implicit,
};

/// Determine whether overriding the given declaration requires a keyword.
OverrideRequiresKeyword overrideRequiresKeyword(ValueDecl *overridden);

/// Compute the type of a member that will be used for comparison when
/// performing override checking.
Type getMemberTypeForComparison(const ValueDecl *member,
                                const ValueDecl *derivedDecl = nullptr);

/// Determine whether the given declaration is an override by comparing type
/// information.
bool isOverrideBasedOnType(const ValueDecl *decl, Type declTy,
                           const ValueDecl *parentDecl);

/// Determine whether the given declaration is an operator defined in a
/// protocol. If \p type is not null, check specifically whether \p decl
/// could fulfill a protocol requirement for it.
bool isMemberOperator(FuncDecl *decl, Type type);

/// Returns `true` iff `AdditiveArithmetic` derived conformances are enabled.
bool isAdditiveArithmeticConformanceDerivationEnabled(SourceFile &SF);

/// Diagnose any Objective-C method overrides that aren't reflected
/// as overrides in Swift.
bool diagnoseUnintendedObjCMethodOverrides(SourceFile &sf);

/// Diagnose all conflicts between members that have the same
/// Objective-C selector in the same class.
///
/// \param sf The source file for which we are diagnosing conflicts.
///
/// \returns true if there were any conflicts diagnosed.
bool diagnoseObjCMethodConflicts(SourceFile &sf);

/// Diagnose any unsatisfied @objc optional requirements of
/// protocols that conflict with methods.
bool diagnoseObjCUnsatisfiedOptReqConflicts(SourceFile &sf);

/// Retrieve information about the given Objective-C method for
/// diagnostic purposes, to be used with OBJC_DIAG_SELECT in
/// DiagnosticsSema.def.
std::pair<unsigned, DeclName> getObjCMethodDiagInfo(
                                AbstractFunctionDecl *method);

/// Find the target of a break or continue statement.
///
/// \returns the target, if one was found, or \c nullptr if no such target
/// exists.
LabeledStmt *findBreakOrContinueStmtTarget(ASTContext &ctx,
                                           SourceFile *sourceFile,
                                           SourceLoc loc, Identifier targetName,
                                           SourceLoc targetLoc, bool isContinue,
                                           DeclContext *dc);

/// Check the correctness of a 'fallthrough' statement.
///
/// \returns true if an error occurred.
bool checkFallthroughStmt(DeclContext *dc, FallthroughStmt *stmt);

/// Check for restrictions on the use of the @unknown attribute on a
/// case statement.
void checkUnknownAttrRestrictions(
    ASTContext &ctx, CaseStmt *caseBlock, bool &limitExhaustivityChecks);

/// Bind all of the pattern variables that occur within a case statement and
/// all of its case items to their "parent" pattern variables, forming chains
/// of variables with the same name.
///
/// Given a case such as:
/// \code
/// case .a(let x), .b(let x), .c(let x):
/// \endcode
///
/// Each case item contains a (different) pattern variable named.
/// "x". This function will set the "parent" variable of the
/// second and third "x" variables to the "x" variable immediately
/// to its left. A fourth "x" will be the body case variable,
/// whose parent will be set to the "x" within the final case
/// item.
///
/// Each of the "x" variables must eventually have the same type, and agree on
/// let vs. var. This function does not perform any of that validation, leaving
/// it to later stages.
void bindSwitchCasePatternVars(DeclContext *dc, CaseStmt *stmt);

/// If \p attr was added by an access note, wraps the error in
/// \c diag::wrap_invalid_attr_added_by_access_note and limits it as an access
/// note-related diagnostic should be.
InFlightDiagnostic softenIfAccessNote(const Decl *D, const DeclAttribute *attr,
                                      InFlightDiagnostic &diag);

/// Diagnose an error concerning an incorrect attribute (softening it if it's
/// caused by an access note) and emit a fix-it offering to remove it.
template<typename ...ArgTypes>
InFlightDiagnostic
diagnoseAttrWithRemovalFixIt(const Decl *D, const DeclAttribute *attr,
                             ArgTypes &&...Args) {
  assert(D);

  if (D->hasClangNode() && (!attr || !attr->getAddedByAccessNote())) {
    assert(false && "Clang importer propagated a bogus attribute");
    return InFlightDiagnostic();
  }

  auto &Diags = D->getASTContext().Diags;

  std::optional<InFlightDiagnostic> diag;
  if (!attr || !attr->getLocation().isValid())
    diag.emplace(Diags.diagnose(D, std::forward<ArgTypes>(Args)...));
  else
    diag.emplace(std::move(Diags.diagnose(attr->getLocation(),
                                          std::forward<ArgTypes>(Args)...)
                               .fixItRemove(attr->getRangeWithAt())));

  return softenIfAccessNote(D, attr, *diag);
}

/// Diagnose an error concerning an incorrect attribute (softening it if it's
/// caused by an access note), emit a fix-it offering to remove it, and mark the
/// attribute invalid so that it will be ignored by other parts of the compiler.
template<typename ...ArgTypes>
InFlightDiagnostic
diagnoseAndRemoveAttr(const Decl *D, const DeclAttribute *attr,
                      ArgTypes &&...Args) {
  if (attr)
    // FIXME: Due to problems with the design of DeclAttributes::getAttribute(),
    // many callers try to pass us const DeclAttributes. This is a hacky
    // workaround.
    const_cast<DeclAttribute *>(attr)->setInvalid();

  return diagnoseAttrWithRemovalFixIt(D, attr, std::forward<ArgTypes>(Args)...);
}

/// Look for closure discriminators within an AST.
class DiscriminatorFinder : public ASTWalker {
  unsigned FirstDiscriminator = AbstractClosureExpr::InvalidDiscriminator;
  unsigned NextDiscriminator = 0;

public:
  MacroWalking getMacroWalkingBehavior() const override {
    return MacroWalking::Expansion;
  }

  PostWalkResult<Expr *> walkToExprPost(Expr *E) override;

  // Get the next available closure discriminator.
  unsigned getNextDiscriminator();

  unsigned getFirstDiscriminator() const {
    return FirstDiscriminator;
  }
};

/// Report imports that are marked public but are not used in API.
void diagnoseUnnecessaryPublicImports(SourceFile &SF);

} // end namespace swift

#endif