1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
|
//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains some templates that are useful if you are working with the
// STL at all.
//
// No library is required when using these functions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STLEXTRAS_H
#define LLVM_ADT_STLEXTRAS_H
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <memory>
#include <optional>
#include <tuple>
#include <type_traits>
#include <utility>
#ifdef EXPENSIVE_CHECKS
#include <random> // for std::mt19937
#endif
inline namespace __swift { inline namespace __runtime {
namespace llvm {
template <typename...>
struct conjunction // NOLINT(readability-identifier-naming)
: std::true_type {};
template <typename B1> struct conjunction<B1> : B1 {};
template <typename B1, typename... Bn>
struct conjunction<B1, Bn...>
: std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
template <typename...>
struct disjunction // NOLINT(readability-identifier-naming)
: std::false_type {};
template <typename B1> struct disjunction<B1> : B1 {};
template <typename B1, typename... Bn>
struct disjunction<B1, Bn...>
: std::conditional<bool(B1::value), B1, disjunction<Bn...>>::type {};
template <typename T>
struct remove_cvref // NOLINT(readability-identifier-naming)
{
using type = std::remove_cv_t<std::remove_reference_t<T>>;
};
template <typename T>
using remove_cvref_t // NOLINT(readability-identifier-naming)
= typename llvm::remove_cvref<T>::type;
// Only used by compiler if both template types are the same. Useful when
// using SFINAE to test for the existence of member functions.
template <typename T, T> struct SameType;
namespace detail {
template <typename RangeT>
using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
template <typename RangeT>
using ValueOfRange = typename std::remove_reference<decltype(
*std::begin(std::declval<RangeT &>()))>::type;
} // end namespace detail
//===----------------------------------------------------------------------===//
// Extra additions to <type_traits>
//===----------------------------------------------------------------------===//
template <typename T> struct make_const_ptr {
using type =
typename std::add_pointer<typename std::add_const<T>::type>::type;
};
template <typename T> struct make_const_ref {
using type = typename std::add_lvalue_reference<
typename std::add_const<T>::type>::type;
};
namespace detail {
template <typename...> using void_t = void;
template <class, template <class...> class Op, class... Args> struct detector {
using value_t = std::false_type;
};
template <template <class...> class Op, class... Args>
struct detector<void_t<Op<Args...>>, Op, Args...> {
using value_t = std::true_type;
};
} // end namespace detail
/// Detects if a given trait holds for some set of arguments 'Args'.
/// For example, the given trait could be used to detect if a given type
/// has a copy assignment operator:
/// template<class T>
/// using has_copy_assign_t = decltype(std::declval<T&>()
/// = std::declval<const T&>());
/// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
template <template <class...> class Op, class... Args>
using is_detected = typename detail::detector<void, Op, Args...>::value_t;
namespace detail {
template <typename Callable, typename... Args>
using is_invocable =
decltype(std::declval<Callable &>()(std::declval<Args>()...));
} // namespace detail
/// Check if a Callable type can be invoked with the given set of arg types.
template <typename Callable, typename... Args>
using is_invocable = is_detected<detail::is_invocable, Callable, Args...>;
/// This class provides various trait information about a callable object.
/// * To access the number of arguments: Traits::num_args
/// * To access the type of an argument: Traits::arg_t<Index>
/// * To access the type of the result: Traits::result_t
template <typename T, bool isClass = std::is_class<T>::value>
struct function_traits : public function_traits<decltype(&T::operator())> {};
/// Overload for class function types.
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
/// The number of arguments to this function.
enum { num_args = sizeof...(Args) };
/// The result type of this function.
using result_t = ReturnType;
/// The type of an argument to this function.
template <size_t Index>
using arg_t = typename std::tuple_element<Index, std::tuple<Args...>>::type;
};
/// Overload for class function types.
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits<ReturnType (ClassType::*)(Args...), false>
: function_traits<ReturnType (ClassType::*)(Args...) const> {};
/// Overload for non-class function types.
template <typename ReturnType, typename... Args>
struct function_traits<ReturnType (*)(Args...), false> {
/// The number of arguments to this function.
enum { num_args = sizeof...(Args) };
/// The result type of this function.
using result_t = ReturnType;
/// The type of an argument to this function.
template <size_t i>
using arg_t = typename std::tuple_element<i, std::tuple<Args...>>::type;
};
/// Overload for non-class function type references.
template <typename ReturnType, typename... Args>
struct function_traits<ReturnType (&)(Args...), false>
: public function_traits<ReturnType (*)(Args...)> {};
//===----------------------------------------------------------------------===//
// Extra additions to <functional>
//===----------------------------------------------------------------------===//
template <class Ty> struct identity {
using argument_type = Ty;
Ty &operator()(Ty &self) const {
return self;
}
const Ty &operator()(const Ty &self) const {
return self;
}
};
/// An efficient, type-erasing, non-owning reference to a callable. This is
/// intended for use as the type of a function parameter that is not used
/// after the function in question returns.
///
/// This class does not own the callable, so it is not in general safe to store
/// a function_ref.
template<typename Fn> class function_ref;
template<typename Ret, typename ...Params>
class function_ref<Ret(Params...)> {
Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
intptr_t callable;
template<typename Callable>
static Ret callback_fn(intptr_t callable, Params ...params) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Params>(params)...);
}
public:
function_ref() = default;
function_ref(std::nullptr_t) {}
template <typename Callable>
function_ref(
Callable &&callable,
// This is not the copy-constructor.
std::enable_if_t<!std::is_same<remove_cvref_t<Callable>,
function_ref>::value> * = nullptr,
// Functor must be callable and return a suitable type.
std::enable_if_t<std::is_void<Ret>::value ||
std::is_convertible<decltype(std::declval<Callable>()(
std::declval<Params>()...)),
Ret>::value> * = nullptr)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<intptr_t>(&callable)) {}
Ret operator()(Params ...params) const {
return callback(callable, std::forward<Params>(params)...);
}
explicit operator bool() const { return callback; }
};
//===----------------------------------------------------------------------===//
// Extra additions to <iterator>
//===----------------------------------------------------------------------===//
namespace adl_detail {
using std::begin;
template <typename ContainerTy>
decltype(auto) adl_begin(ContainerTy &&container) {
return begin(std::forward<ContainerTy>(container));
}
using std::end;
template <typename ContainerTy>
decltype(auto) adl_end(ContainerTy &&container) {
return end(std::forward<ContainerTy>(container));
}
using std::swap;
template <typename T>
void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
std::declval<T>()))) {
swap(std::forward<T>(lhs), std::forward<T>(rhs));
}
} // end namespace adl_detail
template <typename ContainerTy>
decltype(auto) adl_begin(ContainerTy &&container) {
return adl_detail::adl_begin(std::forward<ContainerTy>(container));
}
template <typename ContainerTy>
decltype(auto) adl_end(ContainerTy &&container) {
return adl_detail::adl_end(std::forward<ContainerTy>(container));
}
template <typename T>
void adl_swap(T &&lhs, T &&rhs) noexcept(
noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
}
/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
template <typename T>
constexpr bool empty(const T &RangeOrContainer) {
return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
}
/// Returns true if the given container only contains a single element.
template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
auto B = std::begin(C), E = std::end(C);
return B != E && std::next(B) == E;
}
/// Return a range covering \p RangeOrContainer with the first N elements
/// excluded.
template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
return make_range(std::next(adl_begin(RangeOrContainer), N),
adl_end(RangeOrContainer));
}
// mapped_iterator - This is a simple iterator adapter that causes a function to
// be applied whenever operator* is invoked on the iterator.
template <typename ItTy, typename FuncTy,
typename FuncReturnTy =
decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
class mapped_iterator
: public iterator_adaptor_base<
mapped_iterator<ItTy, FuncTy>, ItTy,
typename std::iterator_traits<ItTy>::iterator_category,
typename std::remove_reference<FuncReturnTy>::type> {
public:
mapped_iterator(ItTy U, FuncTy F)
: mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
ItTy getCurrent() { return this->I; }
FuncReturnTy operator*() const { return F(*this->I); }
private:
FuncTy F;
};
// map_iterator - Provide a convenient way to create mapped_iterators, just like
// make_pair is useful for creating pairs...
template <class ItTy, class FuncTy>
inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
}
template <class ContainerTy, class FuncTy>
auto map_range(ContainerTy &&C, FuncTy F) {
return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
}
/// Helper to determine if type T has a member called rbegin().
template <typename Ty> class has_rbegin_impl {
using yes = char[1];
using no = char[2];
template <typename Inner>
static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
template <typename>
static no& test(...);
public:
static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
};
/// Metafunction to determine if T& or T has a member called rbegin().
template <typename Ty>
struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
};
// Returns an iterator_range over the given container which iterates in reverse.
// Note that the container must have rbegin()/rend() methods for this to work.
template <typename ContainerTy>
auto reverse(ContainerTy &&C,
std::enable_if_t<has_rbegin<ContainerTy>::value> * = nullptr) {
return make_range(C.rbegin(), C.rend());
}
// Returns a std::reverse_iterator wrapped around the given iterator.
template <typename IteratorTy>
std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
return std::reverse_iterator<IteratorTy>(It);
}
// Returns an iterator_range over the given container which iterates in reverse.
// Note that the container must have begin()/end() methods which return
// bidirectional iterators for this to work.
template <typename ContainerTy>
auto reverse(ContainerTy &&C,
std::enable_if_t<!has_rbegin<ContainerTy>::value> * = nullptr) {
return make_range(llvm::make_reverse_iterator(std::end(C)),
llvm::make_reverse_iterator(std::begin(C)));
}
/// An iterator adaptor that filters the elements of given inner iterators.
///
/// The predicate parameter should be a callable object that accepts the wrapped
/// iterator's reference type and returns a bool. When incrementing or
/// decrementing the iterator, it will call the predicate on each element and
/// skip any where it returns false.
///
/// \code
/// int A[] = { 1, 2, 3, 4 };
/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
/// // R contains { 1, 3 }.
/// \endcode
///
/// Note: filter_iterator_base implements support for forward iteration.
/// filter_iterator_impl exists to provide support for bidirectional iteration,
/// conditional on whether the wrapped iterator supports it.
template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
class filter_iterator_base
: public iterator_adaptor_base<
filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
WrappedIteratorT,
typename std::common_type<
IterTag, typename std::iterator_traits<
WrappedIteratorT>::iterator_category>::type> {
using BaseT = iterator_adaptor_base<
filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
WrappedIteratorT,
typename std::common_type<
IterTag, typename std::iterator_traits<
WrappedIteratorT>::iterator_category>::type>;
protected:
WrappedIteratorT End;
PredicateT Pred;
void findNextValid() {
while (this->I != End && !Pred(*this->I))
BaseT::operator++();
}
// Construct the iterator. The begin iterator needs to know where the end
// is, so that it can properly stop when it gets there. The end iterator only
// needs the predicate to support bidirectional iteration.
filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
PredicateT Pred)
: BaseT(Begin), End(End), Pred(Pred) {
findNextValid();
}
public:
using BaseT::operator++;
filter_iterator_base &operator++() {
BaseT::operator++();
findNextValid();
return *this;
}
};
/// Specialization of filter_iterator_base for forward iteration only.
template <typename WrappedIteratorT, typename PredicateT,
typename IterTag = std::forward_iterator_tag>
class filter_iterator_impl
: public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
public:
filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
PredicateT Pred)
: BaseT(Begin, End, Pred) {}
};
/// Specialization of filter_iterator_base for bidirectional iteration.
template <typename WrappedIteratorT, typename PredicateT>
class filter_iterator_impl<WrappedIteratorT, PredicateT,
std::bidirectional_iterator_tag>
: public filter_iterator_base<WrappedIteratorT, PredicateT,
std::bidirectional_iterator_tag> {
using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
std::bidirectional_iterator_tag>;
void findPrevValid() {
while (!this->Pred(*this->I))
BaseT::operator--();
}
public:
using BaseT::operator--;
filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
PredicateT Pred)
: BaseT(Begin, End, Pred) {}
filter_iterator_impl &operator--() {
BaseT::operator--();
findPrevValid();
return *this;
}
};
namespace detail {
template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
using type = std::forward_iterator_tag;
};
template <> struct fwd_or_bidi_tag_impl<true> {
using type = std::bidirectional_iterator_tag;
};
/// Helper which sets its type member to forward_iterator_tag if the category
/// of \p IterT does not derive from bidirectional_iterator_tag, and to
/// bidirectional_iterator_tag otherwise.
template <typename IterT> struct fwd_or_bidi_tag {
using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
std::bidirectional_iterator_tag,
typename std::iterator_traits<IterT>::iterator_category>::value>::type;
};
} // namespace detail
/// Defines filter_iterator to a suitable specialization of
/// filter_iterator_impl, based on the underlying iterator's category.
template <typename WrappedIteratorT, typename PredicateT>
using filter_iterator = filter_iterator_impl<
WrappedIteratorT, PredicateT,
typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
/// Convenience function that takes a range of elements and a predicate,
/// and return a new filter_iterator range.
///
/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
/// lifetime of that temporary is not kept by the returned range object, and the
/// temporary is going to be dropped on the floor after the make_iterator_range
/// full expression that contains this function call.
template <typename RangeT, typename PredicateT>
iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
make_filter_range(RangeT &&Range, PredicateT Pred) {
using FilterIteratorT =
filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
return make_range(
FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
std::end(std::forward<RangeT>(Range)), Pred),
FilterIteratorT(std::end(std::forward<RangeT>(Range)),
std::end(std::forward<RangeT>(Range)), Pred));
}
/// A pseudo-iterator adaptor that is designed to implement "early increment"
/// style loops.
///
/// This is *not a normal iterator* and should almost never be used directly. It
/// is intended primarily to be used with range based for loops and some range
/// algorithms.
///
/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
/// somewhere between them. The constraints of these iterators are:
///
/// - On construction or after being incremented, it is comparable and
/// dereferencable. It is *not* incrementable.
/// - After being dereferenced, it is neither comparable nor dereferencable, it
/// is only incrementable.
///
/// This means you can only dereference the iterator once, and you can only
/// increment it once between dereferences.
template <typename WrappedIteratorT>
class early_inc_iterator_impl
: public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
WrappedIteratorT, std::input_iterator_tag> {
using BaseT =
iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
WrappedIteratorT, std::input_iterator_tag>;
using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
public:
early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
using BaseT::operator*;
decltype(*std::declval<WrappedIteratorT>()) operator*() {
return *(this->I)++;
}
using BaseT::operator++;
early_inc_iterator_impl &operator++() {
return *this;
}
friend bool operator==(const early_inc_iterator_impl &LHS,
const early_inc_iterator_impl &RHS) {
return (const BaseT &)LHS == (const BaseT &)RHS;
}
};
/// Make a range that does early increment to allow mutation of the underlying
/// range without disrupting iteration.
///
/// The underlying iterator will be incremented immediately after it is
/// dereferenced, allowing deletion of the current node or insertion of nodes to
/// not disrupt iteration provided they do not invalidate the *next* iterator --
/// the current iterator can be invalidated.
///
/// This requires a very exact pattern of use that is only really suitable to
/// range based for loops and other range algorithms that explicitly guarantee
/// to dereference exactly once each element, and to increment exactly once each
/// element.
template <typename RangeT>
iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
make_early_inc_range(RangeT &&Range) {
using EarlyIncIteratorT =
early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
}
// forward declarations required by zip_shortest/zip_first/zip_longest
template <typename R, typename UnaryPredicate>
bool all_of(R &&range, UnaryPredicate P);
template <typename R, typename UnaryPredicate>
bool any_of(R &&range, UnaryPredicate P);
namespace detail {
using std::declval;
// We have to alias this since inlining the actual type at the usage site
// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
template<typename... Iters> struct ZipTupleType {
using type = std::tuple<decltype(*declval<Iters>())...>;
};
template <typename ZipType, typename... Iters>
using zip_traits = iterator_facade_base<
ZipType, typename std::common_type<std::bidirectional_iterator_tag,
typename std::iterator_traits<
Iters>::iterator_category...>::type,
// ^ TODO: Implement random access methods.
typename ZipTupleType<Iters...>::type,
typename std::iterator_traits<typename std::tuple_element<
0, std::tuple<Iters...>>::type>::difference_type,
// ^ FIXME: This follows boost::make_zip_iterator's assumption that all
// inner iterators have the same difference_type. It would fail if, for
// instance, the second field's difference_type were non-numeric while the
// first is.
typename ZipTupleType<Iters...>::type *,
typename ZipTupleType<Iters...>::type>;
template <typename ZipType, typename... Iters>
struct zip_common : public zip_traits<ZipType, Iters...> {
using Base = zip_traits<ZipType, Iters...>;
using value_type = typename Base::value_type;
std::tuple<Iters...> iterators;
protected:
template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
return value_type(*std::get<Ns>(iterators)...);
}
template <size_t... Ns>
decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
}
template <size_t... Ns>
decltype(iterators) tup_dec(std::index_sequence<Ns...>) const {
return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
}
public:
zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
const value_type operator*() const {
return deref(std::index_sequence_for<Iters...>{});
}
ZipType &operator++() {
iterators = tup_inc(std::index_sequence_for<Iters...>{});
return *reinterpret_cast<ZipType *>(this);
}
ZipType &operator--() {
static_assert(Base::IsBidirectional,
"All inner iterators must be at least bidirectional.");
iterators = tup_dec(std::index_sequence_for<Iters...>{});
return *reinterpret_cast<ZipType *>(this);
}
};
template <typename... Iters>
struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
using Base = zip_common<zip_first<Iters...>, Iters...>;
bool operator==(const zip_first<Iters...> &other) const {
return std::get<0>(this->iterators) == std::get<0>(other.iterators);
}
zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
};
template <typename... Iters>
class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
template <size_t... Ns>
bool test(const zip_shortest<Iters...> &other,
std::index_sequence<Ns...>) const {
return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
std::get<Ns>(other.iterators)...},
identity<bool>{});
}
public:
using Base = zip_common<zip_shortest<Iters...>, Iters...>;
zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
bool operator==(const zip_shortest<Iters...> &other) const {
return !test(other, std::index_sequence_for<Iters...>{});
}
};
template <template <typename...> class ItType, typename... Args> class zippy {
public:
using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
using iterator_category = typename iterator::iterator_category;
using value_type = typename iterator::value_type;
using difference_type = typename iterator::difference_type;
using pointer = typename iterator::pointer;
using reference = typename iterator::reference;
private:
std::tuple<Args...> ts;
template <size_t... Ns>
iterator begin_impl(std::index_sequence<Ns...>) const {
return iterator(std::begin(std::get<Ns>(ts))...);
}
template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
return iterator(std::end(std::get<Ns>(ts))...);
}
public:
zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
iterator begin() const {
return begin_impl(std::index_sequence_for<Args...>{});
}
iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
};
} // end namespace detail
/// zip iterator for two or more iterable types.
template <typename T, typename U, typename... Args>
detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
Args &&... args) {
return detail::zippy<detail::zip_shortest, T, U, Args...>(
std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}
/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
/// be the shortest.
template <typename T, typename U, typename... Args>
detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
Args &&... args) {
return detail::zippy<detail::zip_first, T, U, Args...>(
std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}
namespace detail {
template <typename Iter>
Iter next_or_end(const Iter &I, const Iter &End) {
if (I == End)
return End;
return std::next(I);
}
template <typename Iter>
auto deref_or_none(const Iter &I, const Iter &End) -> std::optional<
std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
if (I == End)
return std::nullopt;
return *I;
}
template <typename Iter> struct ZipLongestItemType {
using type =
std::optional<typename std::remove_const<typename std::remove_reference<
decltype(*std::declval<Iter>())>::type>::type>;
};
template <typename... Iters> struct ZipLongestTupleType {
using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
};
template <typename... Iters>
class zip_longest_iterator
: public iterator_facade_base<
zip_longest_iterator<Iters...>,
typename std::common_type<
std::forward_iterator_tag,
typename std::iterator_traits<Iters>::iterator_category...>::type,
typename ZipLongestTupleType<Iters...>::type,
typename std::iterator_traits<typename std::tuple_element<
0, std::tuple<Iters...>>::type>::difference_type,
typename ZipLongestTupleType<Iters...>::type *,
typename ZipLongestTupleType<Iters...>::type> {
public:
using value_type = typename ZipLongestTupleType<Iters...>::type;
private:
std::tuple<Iters...> iterators;
std::tuple<Iters...> end_iterators;
template <size_t... Ns>
bool test(const zip_longest_iterator<Iters...> &other,
std::index_sequence<Ns...>) const {
return llvm::any_of(
std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
std::get<Ns>(other.iterators)...},
identity<bool>{});
}
template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
return value_type(
deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
}
template <size_t... Ns>
decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
return std::tuple<Iters...>(
next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
}
public:
zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
: iterators(std::forward<Iters>(ts.first)...),
end_iterators(std::forward<Iters>(ts.second)...) {}
value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
value_type operator*() const {
return deref(std::index_sequence_for<Iters...>{});
}
zip_longest_iterator<Iters...> &operator++() {
iterators = tup_inc(std::index_sequence_for<Iters...>{});
return *this;
}
bool operator==(const zip_longest_iterator<Iters...> &other) const {
return !test(other, std::index_sequence_for<Iters...>{});
}
};
template <typename... Args> class zip_longest_range {
public:
using iterator =
zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
using iterator_category = typename iterator::iterator_category;
using value_type = typename iterator::value_type;
using difference_type = typename iterator::difference_type;
using pointer = typename iterator::pointer;
using reference = typename iterator::reference;
private:
std::tuple<Args...> ts;
template <size_t... Ns>
iterator begin_impl(std::index_sequence<Ns...>) const {
return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
adl_end(std::get<Ns>(ts)))...);
}
template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
adl_end(std::get<Ns>(ts)))...);
}
public:
zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
iterator begin() const {
return begin_impl(std::index_sequence_for<Args...>{});
}
iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
};
} // namespace detail
/// Iterate over two or more iterators at the same time. Iteration continues
/// until all iterators reach the end. The std::optional only contains a value
/// if the iterator has not reached the end.
template <typename T, typename U, typename... Args>
detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
Args &&... args) {
return detail::zip_longest_range<T, U, Args...>(
std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}
/// Iterator wrapper that concatenates sequences together.
///
/// This can concatenate different iterators, even with different types, into
/// a single iterator provided the value types of all the concatenated
/// iterators expose `reference` and `pointer` types that can be converted to
/// `ValueT &` and `ValueT *` respectively. It doesn't support more
/// interesting/customized pointer or reference types.
///
/// Currently this only supports forward or higher iterator categories as
/// inputs and always exposes a forward iterator interface.
template <typename ValueT, typename... IterTs>
class concat_iterator
: public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
std::forward_iterator_tag, ValueT> {
using BaseT = typename concat_iterator::iterator_facade_base;
/// We store both the current and end iterators for each concatenated
/// sequence in a tuple of pairs.
///
/// Note that something like iterator_range seems nice at first here, but the
/// range properties are of little benefit and end up getting in the way
/// because we need to do mutation on the current iterators.
std::tuple<IterTs...> Begins;
std::tuple<IterTs...> Ends;
/// Attempts to increment a specific iterator.
///
/// Returns true if it was able to increment the iterator. Returns false if
/// the iterator is already at the end iterator.
template <size_t Index> bool incrementHelper() {
auto &Begin = std::get<Index>(Begins);
auto &End = std::get<Index>(Ends);
if (Begin == End)
return false;
++Begin;
return true;
}
/// Increments the first non-end iterator.
///
/// It is an error to call this with all iterators at the end.
template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
// Build a sequence of functions to increment each iterator if possible.
bool (concat_iterator::*IncrementHelperFns[])() = {
&concat_iterator::incrementHelper<Ns>...};
// Loop over them, and stop as soon as we succeed at incrementing one.
for (auto &IncrementHelperFn : IncrementHelperFns)
if ((this->*IncrementHelperFn)())
return;
llvm_unreachable("Attempted to increment an end concat iterator!");
}
/// Returns null if the specified iterator is at the end. Otherwise,
/// dereferences the iterator and returns the address of the resulting
/// reference.
template <size_t Index> ValueT *getHelper() const {
auto &Begin = std::get<Index>(Begins);
auto &End = std::get<Index>(Ends);
if (Begin == End)
return nullptr;
return &*Begin;
}
/// Finds the first non-end iterator, dereferences, and returns the resulting
/// reference.
///
/// It is an error to call this with all iterators at the end.
template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
// Build a sequence of functions to get from iterator if possible.
ValueT *(concat_iterator::*GetHelperFns[])() const = {
&concat_iterator::getHelper<Ns>...};
// Loop over them, and return the first result we find.
for (auto &GetHelperFn : GetHelperFns)
if (ValueT *P = (this->*GetHelperFn)())
return *P;
llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
}
public:
/// Constructs an iterator from a sequence of ranges.
///
/// We need the full range to know how to switch between each of the
/// iterators.
template <typename... RangeTs>
explicit concat_iterator(RangeTs &&... Ranges)
: Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
using BaseT::operator++;
concat_iterator &operator++() {
increment(std::index_sequence_for<IterTs...>());
return *this;
}
ValueT &operator*() const {
return get(std::index_sequence_for<IterTs...>());
}
bool operator==(const concat_iterator &RHS) const {
return Begins == RHS.Begins && Ends == RHS.Ends;
}
};
namespace detail {
/// Helper to store a sequence of ranges being concatenated and access them.
///
/// This is designed to facilitate providing actual storage when temporaries
/// are passed into the constructor such that we can use it as part of range
/// based for loops.
template <typename ValueT, typename... RangeTs> class concat_range {
public:
using iterator =
concat_iterator<ValueT,
decltype(std::begin(std::declval<RangeTs &>()))...>;
private:
std::tuple<RangeTs...> Ranges;
template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
return iterator(std::get<Ns>(Ranges)...);
}
template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
return iterator(make_range(std::end(std::get<Ns>(Ranges)),
std::end(std::get<Ns>(Ranges)))...);
}
public:
concat_range(RangeTs &&... Ranges)
: Ranges(std::forward<RangeTs>(Ranges)...) {}
iterator begin() { return begin_impl(std::index_sequence_for<RangeTs...>{}); }
iterator end() { return end_impl(std::index_sequence_for<RangeTs...>{}); }
};
} // end namespace detail
/// Concatenated range across two or more ranges.
///
/// The desired value type must be explicitly specified.
template <typename ValueT, typename... RangeTs>
detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
static_assert(sizeof...(RangeTs) > 1,
"Need more than one range to concatenate!");
return detail::concat_range<ValueT, RangeTs...>(
std::forward<RangeTs>(Ranges)...);
}
/// A utility class used to implement an iterator that contains some base object
/// and an index. The iterator moves the index but keeps the base constant.
template <typename DerivedT, typename BaseT, typename T,
typename PointerT = T *, typename ReferenceT = T &>
class indexed_accessor_iterator
: public llvm::iterator_facade_base<DerivedT,
std::random_access_iterator_tag, T,
std::ptrdiff_t, PointerT, ReferenceT> {
public:
ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
assert(base == rhs.base && "incompatible iterators");
return index - rhs.index;
}
bool operator==(const indexed_accessor_iterator &rhs) const {
return base == rhs.base && index == rhs.index;
}
bool operator<(const indexed_accessor_iterator &rhs) const {
assert(base == rhs.base && "incompatible iterators");
return index < rhs.index;
}
DerivedT &operator+=(ptrdiff_t offset) {
this->index += offset;
return static_cast<DerivedT &>(*this);
}
DerivedT &operator-=(ptrdiff_t offset) {
this->index -= offset;
return static_cast<DerivedT &>(*this);
}
/// Returns the current index of the iterator.
ptrdiff_t getIndex() const { return index; }
/// Returns the current base of the iterator.
const BaseT &getBase() const { return base; }
protected:
indexed_accessor_iterator(BaseT base, ptrdiff_t index)
: base(base), index(index) {}
BaseT base;
ptrdiff_t index;
};
namespace detail {
/// The class represents the base of a range of indexed_accessor_iterators. It
/// provides support for many different range functionalities, e.g.
/// drop_front/slice/etc.. Derived range classes must implement the following
/// static methods:
/// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
/// - Dereference an iterator pointing to the base object at the given
/// index.
/// * BaseT offset_base(const BaseT &base, ptrdiff_t index)
/// - Return a new base that is offset from the provide base by 'index'
/// elements.
template <typename DerivedT, typename BaseT, typename T,
typename PointerT = T *, typename ReferenceT = T &>
class indexed_accessor_range_base {
public:
using RangeBaseT =
indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, ReferenceT>;
/// An iterator element of this range.
class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
PointerT, ReferenceT> {
public:
// Index into this iterator, invoking a static method on the derived type.
ReferenceT operator*() const {
return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
}
private:
iterator(BaseT owner, ptrdiff_t curIndex)
: indexed_accessor_iterator<iterator, BaseT, T, PointerT, ReferenceT>(
owner, curIndex) {}
/// Allow access to the constructor.
friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
ReferenceT>;
};
indexed_accessor_range_base(iterator begin, iterator end)
: base(offset_base(begin.getBase(), begin.getIndex())),
count(end.getIndex() - begin.getIndex()) {}
indexed_accessor_range_base(const iterator_range<iterator> &range)
: indexed_accessor_range_base(range.begin(), range.end()) {}
indexed_accessor_range_base(BaseT base, ptrdiff_t count)
: base(base), count(count) {}
iterator begin() const { return iterator(base, 0); }
iterator end() const { return iterator(base, count); }
ReferenceT operator[](size_t Index) const {
assert(Index < size() && "invalid index for value range");
return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
}
ReferenceT front() const {
assert(!empty() && "expected non-empty range");
return (*this)[0];
}
ReferenceT back() const {
assert(!empty() && "expected non-empty range");
return (*this)[size() - 1];
}
/// Compare this range with another.
template <typename OtherT> bool operator==(const OtherT &other) const {
return size() ==
static_cast<size_t>(std::distance(other.begin(), other.end())) &&
std::equal(begin(), end(), other.begin());
}
template <typename OtherT> bool operator!=(const OtherT &other) const {
return !(*this == other);
}
/// Return the size of this range.
size_t size() const { return count; }
/// Return if the range is empty.
bool empty() const { return size() == 0; }
/// Drop the first N elements, and keep M elements.
DerivedT slice(size_t n, size_t m) const {
assert(n + m <= size() && "invalid size specifiers");
return DerivedT(offset_base(base, n), m);
}
/// Drop the first n elements.
DerivedT drop_front(size_t n = 1) const {
assert(size() >= n && "Dropping more elements than exist");
return slice(n, size() - n);
}
/// Drop the last n elements.
DerivedT drop_back(size_t n = 1) const {
assert(size() >= n && "Dropping more elements than exist");
return DerivedT(base, size() - n);
}
/// Take the first n elements.
DerivedT take_front(size_t n = 1) const {
return n < size() ? drop_back(size() - n)
: static_cast<const DerivedT &>(*this);
}
/// Take the last n elements.
DerivedT take_back(size_t n = 1) const {
return n < size() ? drop_front(size() - n)
: static_cast<const DerivedT &>(*this);
}
/// Allow conversion to any type accepting an iterator_range.
template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
RangeT, iterator_range<iterator>>::value>>
operator RangeT() const {
return RangeT(iterator_range<iterator>(*this));
}
/// Returns the base of this range.
const BaseT &getBase() const { return base; }
private:
/// Offset the given base by the given amount.
static BaseT offset_base(const BaseT &base, size_t n) {
return n == 0 ? base : DerivedT::offset_base(base, n);
}
protected:
indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
indexed_accessor_range_base &
operator=(const indexed_accessor_range_base &) = default;
/// The base that owns the provided range of values.
BaseT base;
/// The size from the owning range.
ptrdiff_t count;
};
} // end namespace detail
/// This class provides an implementation of a range of
/// indexed_accessor_iterators where the base is not indexable. Ranges with
/// bases that are offsetable should derive from indexed_accessor_range_base
/// instead. Derived range classes are expected to implement the following
/// static method:
/// * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
/// - Dereference an iterator pointing to a parent base at the given index.
template <typename DerivedT, typename BaseT, typename T,
typename PointerT = T *, typename ReferenceT = T &>
class indexed_accessor_range
: public detail::indexed_accessor_range_base<
DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
public:
indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
: detail::indexed_accessor_range_base<
DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
std::make_pair(base, startIndex), count) {}
using detail::indexed_accessor_range_base<
DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
ReferenceT>::indexed_accessor_range_base;
/// Returns the current base of the range.
const BaseT &getBase() const { return this->base.first; }
/// Returns the current start index of the range.
ptrdiff_t getStartIndex() const { return this->base.second; }
/// See `detail::indexed_accessor_range_base` for details.
static std::pair<BaseT, ptrdiff_t>
offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
// We encode the internal base as a pair of the derived base and a start
// index into the derived base.
return std::make_pair(base.first, base.second + index);
}
/// See `detail::indexed_accessor_range_base` for details.
static ReferenceT
dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
ptrdiff_t index) {
return DerivedT::dereference(base.first, base.second + index);
}
};
/// Given a container of pairs, return a range over the first elements.
template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
return llvm::map_range(
std::forward<ContainerTy>(c),
[](decltype((*std::begin(c))) elt) -> decltype((elt.first)) {
return elt.first;
});
}
/// Given a container of pairs, return a range over the second elements.
template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
return llvm::map_range(
std::forward<ContainerTy>(c),
[](decltype((*std::begin(c))) elt) -> decltype((elt.second)) {
return elt.second;
});
}
//===----------------------------------------------------------------------===//
// Extra additions to <utility>
//===----------------------------------------------------------------------===//
/// Function object to check whether the first component of a std::pair
/// compares less than the first component of another std::pair.
struct less_first {
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
return lhs.first < rhs.first;
}
};
/// Function object to check whether the second component of a std::pair
/// compares less than the second component of another std::pair.
struct less_second {
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
return lhs.second < rhs.second;
}
};
/// \brief Function object to apply a binary function to the first component of
/// a std::pair.
template<typename FuncTy>
struct on_first {
FuncTy func;
template <typename T>
decltype(auto) operator()(const T &lhs, const T &rhs) const {
return func(lhs.first, rhs.first);
}
};
/// Utility type to build an inheritance chain that makes it easy to rank
/// overload candidates.
template <int N> struct rank : rank<N - 1> {};
template <> struct rank<0> {};
/// traits class for checking whether type T is one of any of the given
/// types in the variadic list.
template <typename T, typename... Ts>
using is_one_of = disjunction<std::is_same<T, Ts>...>;
/// traits class for checking whether type T is a base class for all
/// the given types in the variadic list.
template <typename T, typename... Ts>
using are_base_of = conjunction<std::is_base_of<T, Ts>...>;
namespace detail {
template <typename... Ts> struct Visitor;
template <typename HeadT, typename... TailTs>
struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
: remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
using remove_cvref_t<HeadT>::operator();
using Visitor<TailTs...>::operator();
};
template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
explicit constexpr Visitor(HeadT &&Head)
: remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
using remove_cvref_t<HeadT>::operator();
};
} // namespace detail
/// Returns an opaquely-typed Callable object whose operator() overload set is
/// the sum of the operator() overload sets of each CallableT in CallableTs.
///
/// The type of the returned object derives from each CallableT in CallableTs.
/// The returned object is constructed by invoking the appropriate copy or move
/// constructor of each CallableT, as selected by overload resolution on the
/// corresponding argument to makeVisitor.
///
/// Example:
///
/// \code
/// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
/// [](int i) { return "int"; },
/// [](std::string s) { return "str"; });
/// auto a = visitor(42); // `a` is now "int".
/// auto b = visitor("foo"); // `b` is now "str".
/// auto c = visitor(3.14f); // `c` is now "unhandled type".
/// \endcode
///
/// Example of making a visitor with a lambda which captures a move-only type:
///
/// \code
/// std::unique_ptr<FooHandler> FH = /* ... */;
/// auto visitor = makeVisitor(
/// [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
/// [](int i) { return i; },
/// [](std::string s) { return atoi(s); });
/// \endcode
template <typename... CallableTs>
constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
}
//===----------------------------------------------------------------------===//
// Extra additions for arrays
//===----------------------------------------------------------------------===//
// We have a copy here so that LLVM behaves the same when using different
// standard libraries.
template <class Iterator, class RNG>
void shuffle(Iterator first, Iterator last, RNG &&g) {
// It would be better to use a std::uniform_int_distribution,
// but that would be stdlib dependent.
typedef
typename std::iterator_traits<Iterator>::difference_type difference_type;
for (auto size = last - first; size > 1; ++first, (void)--size) {
difference_type offset = g() % size;
// Avoid self-assignment due to incorrect assertions in libstdc++
// containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
if (offset != difference_type(0))
std::iter_swap(first, first + offset);
}
}
/// Find the length of an array.
template <class T, std::size_t N>
constexpr inline size_t array_lengthof(T (&)[N]) {
return N;
}
/// Adapt std::less<T> for array_pod_sort.
template<typename T>
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
if (std::less<T>()(*reinterpret_cast<const T*>(P1),
*reinterpret_cast<const T*>(P2)))
return -1;
if (std::less<T>()(*reinterpret_cast<const T*>(P2),
*reinterpret_cast<const T*>(P1)))
return 1;
return 0;
}
/// get_array_pod_sort_comparator - This is an internal helper function used to
/// get type deduction of T right.
template<typename T>
inline int (*get_array_pod_sort_comparator(const T &))
(const void*, const void*) {
return array_pod_sort_comparator<T>;
}
#ifdef EXPENSIVE_CHECKS
namespace detail {
inline unsigned presortShuffleEntropy() {
static unsigned Result(std::random_device{}());
return Result;
}
template <class IteratorTy>
inline void presortShuffle(IteratorTy Start, IteratorTy End) {
std::mt19937 Generator(presortShuffleEntropy());
llvm::shuffle(Start, End, Generator);
}
} // end namespace detail
#endif
/// array_pod_sort - This sorts an array with the specified start and end
/// extent. This is just like std::sort, except that it calls qsort instead of
/// using an inlined template. qsort is slightly slower than std::sort, but
/// most sorts are not performance critical in LLVM and std::sort has to be
/// template instantiated for each type, leading to significant measured code
/// bloat. This function should generally be used instead of std::sort where
/// possible.
///
/// This function assumes that you have simple POD-like types that can be
/// compared with std::less and can be moved with memcpy. If this isn't true,
/// you should use std::sort.
///
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
/// default to std::less.
template<class IteratorTy>
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
// Don't inefficiently call qsort with one element or trigger undefined
// behavior with an empty sequence.
auto NElts = End - Start;
if (NElts <= 1) return;
#ifdef EXPENSIVE_CHECKS
detail::presortShuffle<IteratorTy>(Start, End);
#endif
qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
}
template <class IteratorTy>
inline void array_pod_sort(
IteratorTy Start, IteratorTy End,
int (*Compare)(
const typename std::iterator_traits<IteratorTy>::value_type *,
const typename std::iterator_traits<IteratorTy>::value_type *)) {
// Don't inefficiently call qsort with one element or trigger undefined
// behavior with an empty sequence.
auto NElts = End - Start;
if (NElts <= 1) return;
#ifdef EXPENSIVE_CHECKS
detail::presortShuffle<IteratorTy>(Start, End);
#endif
qsort(&*Start, NElts, sizeof(*Start),
reinterpret_cast<int (*)(const void *, const void *)>(Compare));
}
namespace detail {
template <typename T>
// We can use qsort if the iterator type is a pointer and the underlying value
// is trivially copyable.
using sort_trivially_copyable = conjunction<
std::is_pointer<T>,
std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
} // namespace detail
// Provide wrappers to std::sort which shuffle the elements before sorting
// to help uncover non-deterministic behavior (PR35135).
template <typename IteratorTy,
std::enable_if_t<!detail::sort_trivially_copyable<IteratorTy>::value,
int> = 0>
inline void sort(IteratorTy Start, IteratorTy End) {
#ifdef EXPENSIVE_CHECKS
detail::presortShuffle<IteratorTy>(Start, End);
#endif
std::sort(Start, End);
}
// Forward trivially copyable types to array_pod_sort. This avoids a large
// amount of code bloat for a minor performance hit.
template <typename IteratorTy,
std::enable_if_t<detail::sort_trivially_copyable<IteratorTy>::value,
int> = 0>
inline void sort(IteratorTy Start, IteratorTy End) {
array_pod_sort(Start, End);
}
template <typename Container> inline void sort(Container &&C) {
llvm::sort(adl_begin(C), adl_end(C));
}
template <typename IteratorTy, typename Compare>
inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
#ifdef EXPENSIVE_CHECKS
detail::presortShuffle<IteratorTy>(Start, End);
#endif
std::sort(Start, End, Comp);
}
template <typename Container, typename Compare>
inline void sort(Container &&C, Compare Comp) {
llvm::sort(adl_begin(C), adl_end(C), Comp);
}
//===----------------------------------------------------------------------===//
// Extra additions to <algorithm>
//===----------------------------------------------------------------------===//
/// Get the size of a range. This is a wrapper function around std::distance
/// which is only enabled when the operation is O(1).
template <typename R>
auto size(R &&Range,
std::enable_if_t<
std::is_base_of<std::random_access_iterator_tag,
typename std::iterator_traits<decltype(
Range.begin())>::iterator_category>::value,
void> * = nullptr) {
return std::distance(Range.begin(), Range.end());
}
/// Provide wrappers to std::for_each which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryFunction>
UnaryFunction for_each(R &&Range, UnaryFunction F) {
return std::for_each(adl_begin(Range), adl_end(Range), F);
}
/// Provide wrappers to std::all_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool all_of(R &&Range, UnaryPredicate P) {
return std::all_of(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::any_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool any_of(R &&Range, UnaryPredicate P) {
return std::any_of(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::none_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool none_of(R &&Range, UnaryPredicate P) {
return std::none_of(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::find which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename T> auto find(R &&Range, const T &Val) {
return std::find(adl_begin(Range), adl_end(Range), Val);
}
/// Provide wrappers to std::find_if which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto find_if(R &&Range, UnaryPredicate P) {
return std::find_if(adl_begin(Range), adl_end(Range), P);
}
template <typename R, typename UnaryPredicate>
auto find_if_not(R &&Range, UnaryPredicate P) {
return std::find_if_not(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::remove_if which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto remove_if(R &&Range, UnaryPredicate P) {
return std::remove_if(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::copy_if which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename OutputIt, typename UnaryPredicate>
OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
}
template <typename R, typename OutputIt>
OutputIt copy(R &&Range, OutputIt Out) {
return std::copy(adl_begin(Range), adl_end(Range), Out);
}
/// Provide wrappers to std::move which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename OutputIt>
OutputIt move(R &&Range, OutputIt Out) {
return std::move(adl_begin(Range), adl_end(Range), Out);
}
/// Wrapper function around std::find to detect if an element exists
/// in a container.
template <typename R, typename E>
bool is_contained(R &&Range, const E &Element) {
return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
}
/// Wrapper function around std::is_sorted to check if elements in a range \p R
/// are sorted with respect to a comparator \p C.
template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
return std::is_sorted(adl_begin(Range), adl_end(Range), C);
}
/// Wrapper function around std::is_sorted to check if elements in a range \p R
/// are sorted in non-descending order.
template <typename R> bool is_sorted(R &&Range) {
return std::is_sorted(adl_begin(Range), adl_end(Range));
}
/// Wrapper function around std::count to count the number of times an element
/// \p Element occurs in the given range \p Range.
template <typename R, typename E> auto count(R &&Range, const E &Element) {
return std::count(adl_begin(Range), adl_end(Range), Element);
}
/// Wrapper function around std::count_if to count the number of times an
/// element satisfying a given predicate occurs in a range.
template <typename R, typename UnaryPredicate>
auto count_if(R &&Range, UnaryPredicate P) {
return std::count_if(adl_begin(Range), adl_end(Range), P);
}
/// Wrapper function around std::transform to apply a function to a range and
/// store the result elsewhere.
template <typename R, typename OutputIt, typename UnaryFunction>
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
}
/// Provide wrappers to std::partition which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto partition(R &&Range, UnaryPredicate P) {
return std::partition(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::lower_bound which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
return std::lower_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value));
}
template <typename R, typename T, typename Compare>
auto lower_bound(R &&Range, T &&Value, Compare C) {
return std::lower_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value), C);
}
/// Provide wrappers to std::upper_bound which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
return std::upper_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value));
}
template <typename R, typename T, typename Compare>
auto upper_bound(R &&Range, T &&Value, Compare C) {
return std::upper_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value), C);
}
template <typename R>
void stable_sort(R &&Range) {
std::stable_sort(adl_begin(Range), adl_end(Range));
}
template <typename R, typename Compare>
void stable_sort(R &&Range, Compare C) {
std::stable_sort(adl_begin(Range), adl_end(Range), C);
}
/// Binary search for the first iterator in a range where a predicate is false.
/// Requires that C is always true below some limit, and always false above it.
template <typename R, typename Predicate,
typename Val = decltype(*adl_begin(std::declval<R>()))>
auto partition_point(R &&Range, Predicate P) {
return std::partition_point(adl_begin(Range), adl_end(Range), P);
}
template<typename Range, typename Predicate>
auto unique(Range &&R, Predicate P) {
return std::unique(adl_begin(R), adl_end(R), P);
}
/// Wrapper function around std::equal to detect if all elements
/// in a container are same.
template <typename R>
bool is_splat(R &&Range) {
size_t range_size = size(Range);
return range_size != 0 && (range_size == 1 ||
std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
}
/// Provide a container algorithm similar to C++ Library Fundamentals v2's
/// `erase_if` which is equivalent to:
///
/// C.erase(remove_if(C, pred), C.end());
///
/// This version works for any container with an erase method call accepting
/// two iterators.
template <typename Container, typename UnaryPredicate>
void erase_if(Container &C, UnaryPredicate P) {
C.erase(remove_if(C, P), C.end());
}
/// Wrapper function to remove a value from a container:
///
/// C.erase(remove(C.begin(), C.end(), V), C.end());
template <typename Container, typename ValueType>
void erase_value(Container &C, ValueType V) {
C.erase(std::remove(C.begin(), C.end(), V), C.end());
}
/// Wrapper function to append a range to a container.
///
/// C.insert(C.end(), R.begin(), R.end());
template <typename Container, typename Range>
inline void append_range(Container &C, Range &&R) {
C.insert(C.end(), R.begin(), R.end());
}
/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
/// the range [ValIt, ValEnd) (which is not from the same container).
template<typename Container, typename RandomAccessIterator>
void replace(Container &Cont, typename Container::iterator ContIt,
typename Container::iterator ContEnd, RandomAccessIterator ValIt,
RandomAccessIterator ValEnd) {
while (true) {
if (ValIt == ValEnd) {
Cont.erase(ContIt, ContEnd);
return;
} else if (ContIt == ContEnd) {
Cont.insert(ContIt, ValIt, ValEnd);
return;
}
*ContIt++ = *ValIt++;
}
}
/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
/// the range R.
template<typename Container, typename Range = std::initializer_list<
typename Container::value_type>>
void replace(Container &Cont, typename Container::iterator ContIt,
typename Container::iterator ContEnd, Range R) {
replace(Cont, ContIt, ContEnd, R.begin(), R.end());
}
/// An STL-style algorithm similar to std::for_each that applies a second
/// functor between every pair of elements.
///
/// This provides the control flow logic to, for example, print a
/// comma-separated list:
/// \code
/// interleave(names.begin(), names.end(),
/// [&](StringRef name) { os << name; },
/// [&] { os << ", "; });
/// \endcode
template <typename ForwardIterator, typename UnaryFunctor,
typename NullaryFunctor,
typename = typename std::enable_if<
!std::is_constructible<StringRef, UnaryFunctor>::value &&
!std::is_constructible<StringRef, NullaryFunctor>::value>::type>
inline void interleave(ForwardIterator begin, ForwardIterator end,
UnaryFunctor each_fn, NullaryFunctor between_fn) {
if (begin == end)
return;
each_fn(*begin);
++begin;
for (; begin != end; ++begin) {
between_fn();
each_fn(*begin);
}
}
template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
typename = typename std::enable_if<
!std::is_constructible<StringRef, UnaryFunctor>::value &&
!std::is_constructible<StringRef, NullaryFunctor>::value>::type>
inline void interleave(const Container &c, UnaryFunctor each_fn,
NullaryFunctor between_fn) {
interleave(c.begin(), c.end(), each_fn, between_fn);
}
/// Overload of interleave for the common case of string separator.
template <typename Container, typename UnaryFunctor, typename StreamT,
typename T = detail::ValueOfRange<Container>>
inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
const StringRef &separator) {
interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
}
template <typename Container, typename StreamT,
typename T = detail::ValueOfRange<Container>>
inline void interleave(const Container &c, StreamT &os,
const StringRef &separator) {
interleave(
c, os, [&](const T &a) { os << a; }, separator);
}
template <typename Container, typename UnaryFunctor, typename StreamT,
typename T = detail::ValueOfRange<Container>>
inline void interleaveComma(const Container &c, StreamT &os,
UnaryFunctor each_fn) {
interleave(c, os, each_fn, ", ");
}
template <typename Container, typename StreamT,
typename T = detail::ValueOfRange<Container>>
inline void interleaveComma(const Container &c, StreamT &os) {
interleaveComma(c, os, [&](const T &a) { os << a; });
}
//===----------------------------------------------------------------------===//
// Extra additions to <memory>
//===----------------------------------------------------------------------===//
struct FreeDeleter {
void operator()(void* v) {
::free(v);
}
};
template<typename First, typename Second>
struct pair_hash {
size_t operator()(const std::pair<First, Second> &P) const {
return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
}
};
/// Binary functor that adapts to any other binary functor after dereferencing
/// operands.
template <typename T> struct deref {
T func;
// Could be further improved to cope with non-derivable functors and
// non-binary functors (should be a variadic template member function
// operator()).
template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
assert(lhs);
assert(rhs);
return func(*lhs, *rhs);
}
};
namespace detail {
template <typename R> class enumerator_iter;
template <typename R> struct result_pair {
using value_reference =
typename std::iterator_traits<IterOfRange<R>>::reference;
friend class enumerator_iter<R>;
result_pair() = default;
result_pair(std::size_t Index, IterOfRange<R> Iter)
: Index(Index), Iter(Iter) {}
result_pair(const result_pair<R> &Other)
: Index(Other.Index), Iter(Other.Iter) {}
result_pair &operator=(const result_pair &Other) {
Index = Other.Index;
Iter = Other.Iter;
return *this;
}
std::size_t index() const { return Index; }
const value_reference value() const { return *Iter; }
value_reference value() { return *Iter; }
private:
std::size_t Index = std::numeric_limits<std::size_t>::max();
IterOfRange<R> Iter;
};
template <typename R>
class enumerator_iter
: public iterator_facade_base<
enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
typename std::iterator_traits<IterOfRange<R>>::difference_type,
typename std::iterator_traits<IterOfRange<R>>::pointer,
typename std::iterator_traits<IterOfRange<R>>::reference> {
using result_type = result_pair<R>;
public:
explicit enumerator_iter(IterOfRange<R> EndIter)
: Result(std::numeric_limits<size_t>::max(), EndIter) {}
enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
: Result(Index, Iter) {}
result_type &operator*() { return Result; }
const result_type &operator*() const { return Result; }
enumerator_iter &operator++() {
assert(Result.Index != std::numeric_limits<size_t>::max());
++Result.Iter;
++Result.Index;
return *this;
}
bool operator==(const enumerator_iter &RHS) const {
// Don't compare indices here, only iterators. It's possible for an end
// iterator to have different indices depending on whether it was created
// by calling std::end() versus incrementing a valid iterator.
return Result.Iter == RHS.Result.Iter;
}
enumerator_iter(const enumerator_iter &Other) : Result(Other.Result) {}
enumerator_iter &operator=(const enumerator_iter &Other) {
Result = Other.Result;
return *this;
}
private:
result_type Result;
};
template <typename R> class enumerator {
public:
explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
enumerator_iter<R> begin() {
return enumerator_iter<R>(0, std::begin(TheRange));
}
enumerator_iter<R> end() {
return enumerator_iter<R>(std::end(TheRange));
}
private:
R TheRange;
};
} // end namespace detail
/// Given an input range, returns a new range whose values are pair (A,B)
/// such that A is the 0-based index of the item in the sequence, and B is
/// the value from the original sequence. Example:
///
/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
/// for (auto X : enumerate(Items)) {
/// printf("Item %d - %c\n", X.index(), X.value());
/// }
///
/// Output:
/// Item 0 - A
/// Item 1 - B
/// Item 2 - C
/// Item 3 - D
///
template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
return detail::enumerator<R>(std::forward<R>(TheRange));
}
namespace detail {
template <typename F, typename Tuple, std::size_t... I>
decltype(auto) apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>) {
return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
}
} // end namespace detail
/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
/// return the result.
template <typename F, typename Tuple>
decltype(auto) apply_tuple(F &&f, Tuple &&t) {
using Indices = std::make_index_sequence<
std::tuple_size<typename std::decay<Tuple>::type>::value>;
return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
Indices{});
}
/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
/// time. Not meant for use with random-access iterators.
/// Can optionally take a predicate to filter lazily some items.
template <typename IterTy,
typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
bool hasNItems(
IterTy &&Begin, IterTy &&End, unsigned N,
Pred &&ShouldBeCounted =
[](const decltype(*std::declval<IterTy>()) &) { return true; },
std::enable_if_t<
!std::is_base_of<std::random_access_iterator_tag,
typename std::iterator_traits<std::remove_reference_t<
decltype(Begin)>>::iterator_category>::value,
void> * = nullptr) {
for (; N; ++Begin) {
if (Begin == End)
return false; // Too few.
N -= ShouldBeCounted(*Begin);
}
for (; Begin != End; ++Begin)
if (ShouldBeCounted(*Begin))
return false; // Too many.
return true;
}
/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
/// time. Not meant for use with random-access iterators.
/// Can optionally take a predicate to lazily filter some items.
template <typename IterTy,
typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
bool hasNItemsOrMore(
IterTy &&Begin, IterTy &&End, unsigned N,
Pred &&ShouldBeCounted =
[](const decltype(*std::declval<IterTy>()) &) { return true; },
std::enable_if_t<
!std::is_base_of<std::random_access_iterator_tag,
typename std::iterator_traits<std::remove_reference_t<
decltype(Begin)>>::iterator_category>::value,
void> * = nullptr) {
for (; N; ++Begin) {
if (Begin == End)
return false; // Too few.
N -= ShouldBeCounted(*Begin);
}
return true;
}
/// Returns true if the sequence [Begin, End) has N or less items. Can
/// optionally take a predicate to lazily filter some items.
template <typename IterTy,
typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
bool hasNItemsOrLess(
IterTy &&Begin, IterTy &&End, unsigned N,
Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
return true;
}) {
assert(N != std::numeric_limits<unsigned>::max());
return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
}
/// Returns true if the given container has exactly N items
template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
return hasNItems(std::begin(C), std::end(C), N);
}
/// Returns true if the given container has N or more items
template <typename ContainerTy>
bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
return hasNItemsOrMore(std::begin(C), std::end(C), N);
}
/// Returns true if the given container has N or less items
template <typename ContainerTy>
bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
return hasNItemsOrLess(std::begin(C), std::end(C), N);
}
/// Returns a raw pointer that represents the same address as the argument.
///
/// This implementation can be removed once we move to C++20 where it's defined
/// as std::to_address().
///
/// The std::pointer_traits<>::to_address(p) variations of these overloads has
/// not been implemented.
template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
template <class T> constexpr T *to_address(T *P) { return P; }
} // end namespace llvm
}} // namespace swift::runtime
#endif // LLVM_ADT_STLEXTRAS_H
|