1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
|
///===--- Actor.cpp - Standard actor implementation ------------------------===///
///
/// This source file is part of the Swift.org open source project
///
/// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
/// Licensed under Apache License v2.0 with Runtime Library Exception
///
/// See https:///swift.org/LICENSE.txt for license information
/// See https:///swift.org/CONTRIBUTORS.txt for the list of Swift project authors
///
///===----------------------------------------------------------------------===///
///
/// The default actor implementation for Swift actors, plus related
/// routines such as generic executor enqueuing and switching.
///
///===----------------------------------------------------------------------===///
#include "swift/Runtime/Concurrency.h"
#include <atomic>
#include <new>
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "swift/ABI/Actor.h"
#include "swift/ABI/Task.h"
#include "TaskPrivate.h"
#include "swift/Basic/HeaderFooterLayout.h"
#include "swift/Basic/PriorityQueue.h"
#include "swift/Concurrency/Actor.h"
#include "swift/Runtime/AccessibleFunction.h"
#include "swift/Runtime/Atomic.h"
#include "swift/Runtime/Bincompat.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/DispatchShims.h"
#include "swift/Runtime/EnvironmentVariables.h"
#include "swift/Threading/Mutex.h"
#include "swift/Threading/Once.h"
#include "swift/Threading/Thread.h"
#include "swift/Threading/ThreadLocalStorage.h"
#ifdef SWIFT_CONCURRENCY_BACK_DEPLOYMENT
// All platforms where we care about back deployment have a known
// configurations.
#define HAVE_PTHREAD_H 1
#define SWIFT_OBJC_INTEROP 1
#endif
#include "llvm/ADT/PointerIntPair.h"
#include "TaskPrivate.h"
#include "VoucherSupport.h"
#if SWIFT_CONCURRENCY_ENABLE_DISPATCH
#include <dispatch/dispatch.h>
#endif
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
#define SWIFT_CONCURRENCY_ACTORS_AS_LOCKS 1
#else
#define SWIFT_CONCURRENCY_ACTORS_AS_LOCKS 0
#endif
#if SWIFT_STDLIB_HAS_ASL
#include <asl.h>
#elif defined(__ANDROID__)
#include <android/log.h>
#endif
#if defined(__ELF__)
#include <unwind.h>
#endif
#if defined(__ELF__)
#include <sys/syscall.h>
#endif
#if defined(_WIN32)
#include <io.h>
#endif
#if SWIFT_OBJC_INTEROP
extern "C" void *objc_autoreleasePoolPush();
extern "C" void objc_autoreleasePoolPop(void *);
#endif
using namespace swift;
/// Should we yield the thread?
static bool shouldYieldThread() {
// return dispatch_swift_job_should_yield();
return false;
}
/*****************************************************************************/
/******************************* TASK TRACKING ******************************/
/*****************************************************************************/
namespace {
/// An extremely silly class which exists to make pointer
/// default-initialization constexpr.
template <class T> struct Pointer {
T *Value;
constexpr Pointer() : Value(nullptr) {}
constexpr Pointer(T *value) : Value(value) {}
operator T *() const { return Value; }
T *operator->() const { return Value; }
};
/// A class which encapsulates the information we track about
/// the current thread and active executor.
class ExecutorTrackingInfo {
/// A thread-local variable pointing to the active tracking
/// information about the current thread, if any.
///
/// TODO: this is obviously runtime-internal and therefore not
/// reasonable to make ABI. We might want to also provide a way
/// for generated code to efficiently query the identity of the
/// current executor, in order to do a cheap comparison to avoid
/// doing all the work to suspend the task when we're already on
/// the right executor. It would make sense for that to be a
/// separate thread-local variable (or whatever is most efficient
/// on the target platform).
static SWIFT_THREAD_LOCAL_TYPE(Pointer<ExecutorTrackingInfo>,
tls_key::concurrency_executor_tracking_info)
ActiveInfoInThread;
/// The active executor.
SerialExecutorRef ActiveExecutor = SerialExecutorRef::generic();
/// The current task executor, if present, otherwise `undefined`.
/// The task executor should be used to execute code when the active executor
/// is `generic`.
TaskExecutorRef TaskExecutor = TaskExecutorRef::undefined();
/// Whether this context allows switching. Some contexts do not;
/// for example, we do not allow switching from swift_job_run
/// unless the passed-in executor is generic.
bool AllowsSwitching = true;
VoucherManager voucherManager;
/// The tracking info that was active when this one was entered.
ExecutorTrackingInfo *SavedInfo;
public:
ExecutorTrackingInfo() = default;
ExecutorTrackingInfo(const ExecutorTrackingInfo &) = delete;
ExecutorTrackingInfo &operator=(const ExecutorTrackingInfo &) = delete;
/// Unconditionally initialize a fresh tracking state on the
/// current state, shadowing any previous tracking state.
/// leave() must be called before the object goes out of scope.
void enterAndShadow(SerialExecutorRef currentExecutor,
TaskExecutorRef taskExecutor) {
ActiveExecutor = currentExecutor;
TaskExecutor = taskExecutor;
SavedInfo = ActiveInfoInThread.get();
ActiveInfoInThread.set(this);
}
void swapToJob(Job *job) { voucherManager.swapToJob(job); }
void restoreVoucher(AsyncTask *task) { voucherManager.restoreVoucher(task); }
SerialExecutorRef getActiveExecutor() const { return ActiveExecutor; }
void setActiveExecutor(SerialExecutorRef newExecutor) {
ActiveExecutor = newExecutor;
}
TaskExecutorRef getTaskExecutor() const { return TaskExecutor; }
void setTaskExecutor(TaskExecutorRef newExecutor) {
TaskExecutor = newExecutor;
}
bool allowsSwitching() const {
return AllowsSwitching;
}
/// Disallow switching in this tracking context. This should only
/// be set on a new tracking info, before any jobs are run in it.
void disallowSwitching() {
AllowsSwitching = false;
}
static ExecutorTrackingInfo *current() {
return ActiveInfoInThread.get();
}
void leave() {
voucherManager.leave();
ActiveInfoInThread.set(SavedInfo);
}
};
class ActiveTask {
/// A thread-local variable pointing to the active tracking
/// information about the current thread, if any.
static SWIFT_THREAD_LOCAL_TYPE(Pointer<AsyncTask>,
tls_key::concurrency_task) Value;
public:
static void set(AsyncTask *task) { Value.set(task); }
static AsyncTask *get() { return Value.get(); }
static AsyncTask *swap(AsyncTask *newTask) {
return Value.swap(newTask);
}
};
/// Define the thread-locals.
SWIFT_THREAD_LOCAL_TYPE(Pointer<AsyncTask>, tls_key::concurrency_task)
ActiveTask::Value;
SWIFT_THREAD_LOCAL_TYPE(Pointer<ExecutorTrackingInfo>,
tls_key::concurrency_executor_tracking_info)
ExecutorTrackingInfo::ActiveInfoInThread;
} // end anonymous namespace
void swift::runJobInEstablishedExecutorContext(Job *job) {
_swift_tsan_acquire(job);
SWIFT_TASK_DEBUG_LOG("Run job in established context %p", job);
#if SWIFT_OBJC_INTEROP
auto pool = objc_autoreleasePoolPush();
#endif
if (auto task = dyn_cast<AsyncTask>(job)) {
// Update the active task in the current thread.
auto oldTask = ActiveTask::swap(task);
// Update the task status to say that it's running on the
// current thread. If the task suspends somewhere, it should
// update the task status appropriately; we don't need to update
// it afterwards.
task->flagAsRunning();
auto traceHandle = concurrency::trace::job_run_begin(job);
task->runInFullyEstablishedContext();
concurrency::trace::job_run_end(traceHandle);
assert(ActiveTask::get() == nullptr &&
"active task wasn't cleared before suspending?");
if (oldTask) ActiveTask::set(oldTask);
} else {
// There's no extra bookkeeping to do for simple jobs besides swapping in
// the voucher.
ExecutorTrackingInfo::current()->swapToJob(job);
job->runSimpleInFullyEstablishedContext();
}
#if SWIFT_OBJC_INTEROP
objc_autoreleasePoolPop(pool);
#endif
_swift_tsan_release(job);
}
void swift::adoptTaskVoucher(AsyncTask *task) {
ExecutorTrackingInfo::current()->swapToJob(task);
}
void swift::restoreTaskVoucher(AsyncTask *task) {
ExecutorTrackingInfo::current()->restoreVoucher(task);
}
SWIFT_CC(swift)
AsyncTask *swift::swift_task_getCurrent() {
return ActiveTask::get();
}
AsyncTask *swift::_swift_task_clearCurrent() {
return ActiveTask::swap(nullptr);
}
AsyncTask *swift::_swift_task_setCurrent(AsyncTask *new_task) {
return ActiveTask::swap(new_task);
}
SWIFT_CC(swift)
static SerialExecutorRef swift_task_getCurrentExecutorImpl() {
auto currentTracking = ExecutorTrackingInfo::current();
auto result = (currentTracking ? currentTracking->getActiveExecutor()
: SerialExecutorRef::generic());
SWIFT_TASK_DEBUG_LOG("getting current executor %p", result.getIdentity());
return result;
}
/// Determine whether we are currently executing on the main thread
/// independently of whether we know that we are on the main actor.
static bool isExecutingOnMainThread() {
#if SWIFT_STDLIB_SINGLE_THREADED_CONCURRENCY
return true;
#else
return Thread::onMainThread();
#endif
}
JobPriority swift::swift_task_getCurrentThreadPriority() {
#if SWIFT_STDLIB_SINGLE_THREADED_CONCURRENCY
return JobPriority::UserInitiated;
#elif SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
return JobPriority::Unspecified;
#elif defined(__APPLE__) && SWIFT_CONCURRENCY_ENABLE_DISPATCH
return static_cast<JobPriority>(qos_class_self());
#else
if (isExecutingOnMainThread())
return JobPriority::UserInitiated;
return JobPriority::Unspecified;
#endif
}
// Implemented in Swift to avoid some annoying hard-coding about
// SerialExecutor's protocol witness table. We could inline this
// with effort, though.
extern "C" SWIFT_CC(swift)
bool _task_serialExecutor_isSameExclusiveExecutionContext(
HeapObject *currentExecutor, HeapObject *executor,
const Metadata *selfType,
const SerialExecutorWitnessTable *wtable);
// We currently still support "legacy mode" in which isCurrentExecutor is NOT
// allowed to crash, because it is used to power "log warnings" data race
// detector. This mode is going away in Swift 6, but until then we allow this.
// This override exists primarily to be able to test both code-paths.
enum IsCurrentExecutorCheckMode: unsigned {
/// The default mode when an app was compiled against "new" enough SDK.
/// It allows crashing in isCurrentExecutor, and calls into `checkIsolated`.
Swift6_UseCheckIsolated_AllowCrash,
/// Legacy mode; Primarily to support old applications which used data race
/// detector with "warning" mode, which is no longer supported. When such app
/// is re-compiled against a new SDK, it will see crashes in what was
/// previously warnings; however, until until recompiled, warnings will be
/// used, and `checkIsolated` cannot be invoked.
Legacy_NoCheckIsolated_NonCrashing,
};
static IsCurrentExecutorCheckMode isCurrentExecutorMode =
Swift6_UseCheckIsolated_AllowCrash;
// Shimming call to Swift runtime because Swift Embedded does not have
// these symbols defined.
bool __swift_bincompat_useLegacyNonCrashingExecutorChecks() {
#if !SWIFT_CONCURRENCY_EMBEDDED
return swift::runtime::bincompat::
swift_bincompat_useLegacyNonCrashingExecutorChecks();
#else
return false;
#endif
}
// Shimming call to Swift runtime because Swift Embedded does not have
// these symbols defined.
const char *__swift_runtime_env_useLegacyNonCrashingExecutorChecks() {
// Potentially, override the platform detected mode, primarily used in tests.
#if SWIFT_STDLIB_HAS_ENVIRON && !SWIFT_CONCURRENCY_EMBEDDED
return swift::runtime::environment::
concurrencyIsCurrentExecutorLegacyModeOverride();
#else
return nullptr;
#endif
}
// Done this way because of the interaction with the initial value of
// 'unexpectedExecutorLogLevel'
bool swift_bincompat_useLegacyNonCrashingExecutorChecks() {
bool legacyMode = __swift_bincompat_useLegacyNonCrashingExecutorChecks();
// Potentially, override the platform detected mode, primarily used in tests.
if (const char *modeStr =
__swift_runtime_env_useLegacyNonCrashingExecutorChecks()) {
if (strcmp(modeStr, "nocrash") == 0 ||
strcmp(modeStr, "legacy") == 0) {
return true;
} else if (strcmp(modeStr, "crash") == 0 ||
strcmp(modeStr, "swift6") == 0) {
return false; // don't use the legacy mode
} // else, just use the platform detected mode
} // no override, use the default mode
return legacyMode;
}
// Check override of executor checking mode.
static void checkIsCurrentExecutorMode(void *context) {
bool useLegacyMode =
swift_bincompat_useLegacyNonCrashingExecutorChecks();
isCurrentExecutorMode = useLegacyMode ? Legacy_NoCheckIsolated_NonCrashing
: Swift6_UseCheckIsolated_AllowCrash;
}
// Implemented in Swift to avoid some annoying hard-coding about
// TaskExecutor's protocol witness table. We could inline this
// with effort, though.
extern "C" SWIFT_CC(swift) void _swift_task_enqueueOnTaskExecutor(
Job *job, HeapObject *executor, const Metadata *selfType,
const TaskExecutorWitnessTable *wtable);
// Implemented in Swift to avoid some annoying hard-coding about
// SerialExecutor's protocol witness table. We could inline this
// with effort, though.
extern "C" SWIFT_CC(swift) void _swift_task_enqueueOnExecutor(
Job *job, HeapObject *executor, const Metadata *executorType,
const SerialExecutorWitnessTable *wtable);
SWIFT_CC(swift)
static bool swift_task_isCurrentExecutorImpl(SerialExecutorRef expectedExecutor) {
auto current = ExecutorTrackingInfo::current();
// To support old applications on apple platforms which assumed this call
// does not crash, try to use a more compatible mode for those apps.
//
// We only allow returning `false` directly from this function when operating
// in 'Legacy_NoCheckIsolated_NonCrashing' mode. If allowing crashes, we
// instead must call into 'checkIsolated' or crash directly.
//
// Whenever we confirm an executor equality, we can return true, in any mode.
static swift::once_t checkModeToken;
swift::once(checkModeToken, checkIsCurrentExecutorMode, nullptr);
if (!current) {
// We have no current executor, i.e. we are running "outside" of Swift
// Concurrency. We could still be running on a thread/queue owned by
// the expected executor however, so we need to try a bit harder before
// we fail.
// Special handling the main executor by detecting the main thread.
if (expectedExecutor.isMainExecutor() && isExecutingOnMainThread()) {
return true;
}
// We cannot use 'complexEquality' as it requires two executor instances,
// and we do not have a 'current' executor here.
// Otherwise, as last resort, let the expected executor check using
// external means, as it may "know" this thread is managed by it etc.
if (isCurrentExecutorMode == Swift6_UseCheckIsolated_AllowCrash) {
swift_task_checkIsolated(expectedExecutor); // will crash if not same context
// checkIsolated did not crash, so we are on the right executor, after all!
return true;
}
assert(isCurrentExecutorMode == Legacy_NoCheckIsolated_NonCrashing);
return false;
}
SerialExecutorRef currentExecutor = current->getActiveExecutor();
// Fast-path: the executor is exactly the same memory address;
// We assume executors do not come-and-go appearing under the same address,
// and treat pointer equality of executors as good enough to assume the executor.
if (currentExecutor == expectedExecutor) {
return true;
}
// Fast-path, specialize the common case of comparing two main executors.
if (currentExecutor.isMainExecutor() && expectedExecutor.isMainExecutor()) {
return true;
}
// Only in legacy mode:
// We check if the current xor expected executor are the main executor.
// If so only one of them is, we know that WITHOUT 'checkIsolated' or invoking
// 'dispatch_assert_queue' we cannot be truly sure the expected/current truly
// are "on the same queue". There exists no non-crashing API to check this,
// so we PESSIMISTICALLY return false here.
//
// In Swift6 mode:
// We don't do this naive check, because we'll fall back to
// `expected.checkIsolated()` which, if it is the main executor, will invoke
// the crashing 'dispatch_assert_queue(main queue)' which will either crash
// or confirm we actually are on the main queue; or the custom expected
// executor has a chance to implement a similar queue check.
if (isCurrentExecutorMode == Legacy_NoCheckIsolated_NonCrashing) {
if ((expectedExecutor.isMainExecutor() && !currentExecutor.isMainExecutor()) ||
(!expectedExecutor.isMainExecutor() && currentExecutor.isMainExecutor())) {
return false;
}
}
// Complex equality means that if two executors of the same type have some
// special logic to check if they are "actually the same".
//
// If any of the executors does not have a witness table we can't complex
// equality compare with it.
//
// We may be able to prove we're on the same executor as expected by
// using 'checkIsolated' later on though.
if (expectedExecutor.isComplexEquality()) {
if (currentExecutor.getIdentity() &&
currentExecutor.hasSerialExecutorWitnessTable() &&
expectedExecutor.getIdentity() &&
expectedExecutor.hasSerialExecutorWitnessTable() &&
swift_compareWitnessTables(
reinterpret_cast<const WitnessTable *>(
currentExecutor.getSerialExecutorWitnessTable()),
reinterpret_cast<const WitnessTable *>(
expectedExecutor.getSerialExecutorWitnessTable()))) {
auto isSameExclusiveExecutionContextResult =
_task_serialExecutor_isSameExclusiveExecutionContext(
currentExecutor.getIdentity(), expectedExecutor.getIdentity(),
swift_getObjectType(currentExecutor.getIdentity()),
expectedExecutor.getSerialExecutorWitnessTable());
// if the 'isSameExclusiveExecutionContext' returned true we trust
// it and return; if it was false, we need to give checkIsolated another
// chance to check.
if (isSameExclusiveExecutionContextResult) {
return true;
} // else, we must give 'checkIsolated' a last chance to verify isolation
}
}
// This provides a last-resort check by giving the expected SerialExecutor the
// chance to perform a check using some external knowledge if perhaps we are,
// after all, on this executor, but the Swift concurrency runtime was just not
// aware.
//
// Unless handled in `swift_task_checkIsolated` directly, this should call
// through to the executor's `SerialExecutor.checkIsolated`.
//
// This call is expected to CRASH, unless it has some way of proving that
// we're actually indeed running on this executor.
//
// For example, when running outside of Swift concurrency tasks, but trying to
// `MainActor.assumeIsolated` while executing DIRECTLY on the main dispatch
// queue, this allows Dispatch to check for this using its own tracking
// mechanism, and thus allow the assumeIsolated to work correctly, even though
// the code executing is not even running inside a Task.
//
// Note that this only works because the closure in assumeIsolated is
// synchronous, and will not cause suspensions, as that would require the
// presence of a Task.
if (isCurrentExecutorMode == Swift6_UseCheckIsolated_AllowCrash) {
swift_task_checkIsolated(expectedExecutor); // will crash if not same context
// The checkIsolated call did not crash, so we are on the right executor.
return true;
}
// In the end, since 'checkIsolated' could not be used, so we must assume
// that the executors are not the same context.
assert(isCurrentExecutorMode == Legacy_NoCheckIsolated_NonCrashing);
return false;
}
/// Logging level for unexpected executors:
/// 0 - no logging -- will be IGNORED when Swift6 mode of isCurrentExecutor is used
/// 1 - warn on each instance -- will be IGNORED when Swift6 mode of isCurrentExecutor is used
/// 2 - fatal error
///
/// NOTE: The default behavior on Apple platforms depends on the SDK version
/// an application was linked to. Since Swift 6 the default is to crash,
/// and the logging behavior is no longer available.
static unsigned unexpectedExecutorLogLevel =
swift_bincompat_useLegacyNonCrashingExecutorChecks()
? 1 // legacy apps default to the logging mode, and cannot use `checkIsolated`
: 2; // new apps will only crash upon concurrency violations, and will call into `checkIsolated`
static void checkUnexpectedExecutorLogLevel(void *context) {
#if SWIFT_STDLIB_HAS_ENVIRON
const char *levelStr = getenv("SWIFT_UNEXPECTED_EXECUTOR_LOG_LEVEL");
if (!levelStr)
return;
long level = strtol(levelStr, nullptr, 0);
if (level >= 0 && level < 3) {
if (swift_bincompat_useLegacyNonCrashingExecutorChecks()) {
// legacy mode permits doing nothing or just logging, since the method
// used to perform the check itself is not going to crash:
unexpectedExecutorLogLevel = level;
} else {
// We are in swift6/crash mode of isCurrentExecutor which means that
// rather than returning false, that method will always CRASH when an
// executor mismatch is discovered.
//
// Thus, for clarity, we set this mode also to crashing, as runtime should
// not expect to be able to get any logging or ignoring done. In practice,
// the crash would happen before logging or "ignoring", but this should
// help avoid confusing situations like "I thought it should log" when
// debugging the runtime.
unexpectedExecutorLogLevel = 2;
}
}
#endif // SWIFT_STDLIB_HAS_ENVIRON
}
SWIFT_CC(swift)
void swift::swift_task_reportUnexpectedExecutor(
const unsigned char *file, uintptr_t fileLength, bool fileIsASCII,
uintptr_t line, SerialExecutorRef executor) {
// Make sure we have an appropriate log level.
static swift::once_t logLevelToken;
swift::once(logLevelToken, checkUnexpectedExecutorLogLevel, nullptr);
bool isFatalError = false;
switch (unexpectedExecutorLogLevel) {
case 0:
return;
case 1:
isFatalError = false;
break;
case 2:
isFatalError = true;
break;
}
const char *functionIsolation;
const char *whereExpected;
if (executor.isMainExecutor()) {
functionIsolation = "@MainActor function";
whereExpected = "the main thread";
} else {
functionIsolation = "actor-isolated function";
whereExpected = "the same actor";
}
char *message;
swift_asprintf(
&message,
"%s: data race detected: %s at %.*s:%d was not called on %s\n",
isFatalError ? "error" : "warning", functionIsolation,
(int)fileLength, file, (int)line, whereExpected);
if (_swift_shouldReportFatalErrorsToDebugger()) {
RuntimeErrorDetails details = {
.version = RuntimeErrorDetails::currentVersion,
.errorType = "actor-isolation-violation",
.currentStackDescription = "Actor-isolated function called from another thread",
.framesToSkip = 1,
};
_swift_reportToDebugger(
isFatalError ? RuntimeErrorFlagFatal : RuntimeErrorFlagNone, message,
&details);
}
#if defined(_WIN32)
#define STDERR_FILENO 2
_write(STDERR_FILENO, message, strlen(message));
#else
fputs(message, stderr);
fflush(stderr);
#endif
#if SWIFT_STDLIB_HAS_ASL
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
asl_log(nullptr, nullptr, ASL_LEVEL_ERR, "%s", message);
#pragma clang diagnostic pop
#elif defined(__ANDROID__)
__android_log_print(ANDROID_LOG_FATAL, "SwiftRuntime", "%s", message);
#endif
free(message);
if (isFatalError)
abort();
}
/*****************************************************************************/
/*********************** DEFAULT ACTOR IMPLEMENTATION ************************/
/*****************************************************************************/
namespace {
class DefaultActorImpl;
#if !SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
/// A job to process a default actor that's allocated separately from
/// the actor.
class ProcessOutOfLineJob : public Job {
DefaultActorImpl *Actor;
public:
ProcessOutOfLineJob(DefaultActorImpl *actor, JobPriority priority)
: Job({JobKind::DefaultActorSeparate, priority}, &process),
Actor(actor) {}
SWIFT_CC(swiftasync)
static void process(Job *job);
static bool classof(const Job *job) {
return job->Flags.getKind() == JobKind::DefaultActorSeparate;
}
};
/// Similar to the ActiveTaskStatus, this denotes the ActiveActorState for
/// tracking the atomic state of the actor
///
/// The runtime needs to track the following state about the actor within the
/// same atomic:
///
/// * The current status of the actor - scheduled, running, idle, etc
/// * The current maximum priority of the jobs enqueued in the actor
/// * The identity of the thread currently holding the actor lock
/// * Pointer to list of jobs enqueued in actor
///
/// It is important for all of this information to be in the same atomic so that
/// when the actor's state changes, the information is visible to all threads
/// that may be modifying the actor, allowing the algorithm to eventually
/// converge.
///
/// In order to provide priority escalation support with actors, deeper
/// integration is required with the OS in order to have the intended side
/// effects. On Darwin, Swift Concurrency Tasks runs on dispatch's queues. As
/// such, we need to use an encoding of thread identity vended by libdispatch
/// called dispatch_lock_t, and a futex-style dispatch API in order to escalate
/// the priority of a thread. Henceforth, the dispatch_lock_t tracked in the
/// ActiveActorStatus will be called the DrainLock.
///
/// When a thread starts running on an actor, it's identity is recorded in the
/// ActiveActorStatus. This way, if a higher priority job is enqueued behind the
/// thread executing the actor, we can escalate the thread holding the actor
/// lock, thereby resolving the priority inversion. When a thread hops off of
/// the actor, any priority boosts it may have gotten as a result of contention
/// on the actor, is removed as well.
///
/// In order to keep the entire ActiveActorStatus size to 2 words, the thread
/// identity is only tracked on platforms which can support 128 bit atomic
/// operations. The ActiveActorStatus's layout has thus been changed to have the
/// following layout depending on the system configuration supported:
///
/// 32 bit systems with SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION=1
///
/// Flags Drain Lock Unused Job*
/// |----------------------|----------------------|----------------------|-------------------|
/// 32 bits 32 bits 32 bits 32 bits
///
/// 64 bit systems with SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION=1
///
/// Flags Drain Lock Job*
/// |----------------------|-------------------|----------------------|
/// 32 bits 32 bits 64 bits
///
/// 32 bit systems with SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION=0
///
/// Flags Job*
/// |----------------------|----------------------|
/// 32 bits 32 bits
//
/// 64 bit systems with SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION=0
///
/// Flags Unused Job*
/// |----------------------|----------------------|---------------------|
/// 32 bits 32 bits 64 bits
///
/// Size requirements:
/// On 64 bit systems or if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION=1,
/// the field is 16 bytes long.
///
/// Otherwise, it is 8 bytes long.
///
/// Alignment requirements:
/// On 64 bit systems or if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION=1,
/// this 16-byte field needs to be 16 byte aligned to be able to do aligned
/// atomic stores field.
///
/// On all other systems, it needs to be 8 byte aligned for the atomic
/// stores.
///
/// As a result of varying alignment needs, we've marked the class as
/// needing 2-word alignment but on arm64_32 with
/// SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION=1, 16 byte alignment is
/// achieved through careful arrangement of the storage for this in the
/// DefaultActorImpl. The additional alignment requirements are
/// enforced by static asserts below.
class alignas(sizeof(void *) * 2) ActiveActorStatus {
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION && SWIFT_POINTER_IS_4_BYTES
uint32_t Flags;
dispatch_lock_t DrainLock;
LLVM_ATTRIBUTE_UNUSED uint32_t Unused = {};
#elif SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION && SWIFT_POINTER_IS_8_BYTES
uint32_t Flags;
dispatch_lock_t DrainLock;
#elif !SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION && SWIFT_POINTER_IS_4_BYTES
uint32_t Flags;
#else /* !SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION && SWIFT_POINTER_IS_8_BYTES */
uint32_t Flags;
LLVM_ATTRIBUTE_UNUSED uint32_t Unused = {};
#endif
Job *FirstJob;
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
ActiveActorStatus(uint32_t flags, dispatch_lock_t drainLockValue, Job *job)
: Flags(flags), DrainLock(drainLockValue), FirstJob(job) {}
#else
ActiveActorStatus(uint32_t flags, Job *job) : Flags(flags), FirstJob(job) {}
#endif
uint32_t getActorState() const {
return Flags & concurrency::ActorFlagConstants::ActorStateMask;
}
uint32_t setActorState(uint32_t state) const {
return (Flags & ~concurrency::ActorFlagConstants::ActorStateMask) | state;
}
public:
bool operator==(ActiveActorStatus other) const {
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
return (Flags == other.Flags) && (DrainLock == other.DrainLock) && (FirstJob == other.FirstJob);
#else
return (Flags == other.Flags) && (FirstJob == other.FirstJob);
#endif
}
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
constexpr ActiveActorStatus()
: Flags(), DrainLock(DLOCK_OWNER_NULL), FirstJob(nullptr) {}
#else
constexpr ActiveActorStatus() : Flags(), FirstJob(nullptr) {}
#endif
bool isIdle() const {
bool isIdle = (getActorState() == concurrency::ActorFlagConstants::Idle);
if (isIdle) {
assert(!FirstJob);
}
return isIdle;
}
ActiveActorStatus withIdle() const {
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
return ActiveActorStatus(
setActorState(concurrency::ActorFlagConstants::Idle), DLOCK_OWNER_NULL,
FirstJob);
#else
return ActiveActorStatus(
setActorState(concurrency::ActorFlagConstants::Idle), FirstJob);
#endif
}
bool isAnyRunning() const {
uint32_t state = getActorState();
return (state == concurrency::ActorFlagConstants::Running) ||
(state ==
concurrency::ActorFlagConstants::Zombie_ReadyForDeallocation);
}
bool isRunning() const {
return getActorState() == concurrency::ActorFlagConstants::Running;
}
ActiveActorStatus withRunning() const {
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
return ActiveActorStatus(
setActorState(concurrency::ActorFlagConstants::Running),
dispatch_lock_value_for_self(), FirstJob);
#else
return ActiveActorStatus(
setActorState(concurrency::ActorFlagConstants::Running), FirstJob);
#endif
}
bool isScheduled() const {
return getActorState() == concurrency::ActorFlagConstants::Scheduled;
}
ActiveActorStatus withScheduled() const {
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
return ActiveActorStatus(
setActorState(concurrency::ActorFlagConstants::Scheduled),
DLOCK_OWNER_NULL, FirstJob);
#else
return ActiveActorStatus(
setActorState(concurrency::ActorFlagConstants::Scheduled), FirstJob);
#endif
}
bool isZombie_ReadyForDeallocation() const {
return getActorState() ==
concurrency::ActorFlagConstants::Zombie_ReadyForDeallocation;
}
ActiveActorStatus withZombie_ReadyForDeallocation() const {
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
assert(dispatch_lock_owner(DrainLock) != DLOCK_OWNER_NULL);
return ActiveActorStatus(
setActorState(
concurrency::ActorFlagConstants::Zombie_ReadyForDeallocation),
DrainLock, FirstJob);
#else
return ActiveActorStatus(
setActorState(
concurrency::ActorFlagConstants::Zombie_ReadyForDeallocation),
FirstJob);
#endif
}
JobPriority getMaxPriority() const {
return (
JobPriority)((Flags & concurrency::ActorFlagConstants::PriorityMask) >>
concurrency::ActorFlagConstants::PriorityShift);
}
ActiveActorStatus withNewPriority(JobPriority priority) const {
uint32_t flags =
Flags & ~concurrency::ActorFlagConstants::PriorityAndOverrideMask;
flags |=
(uint32_t(priority) << concurrency::ActorFlagConstants::PriorityShift);
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
return ActiveActorStatus(flags, DrainLock, FirstJob);
#else
return ActiveActorStatus(flags, FirstJob);
#endif
}
ActiveActorStatus resetPriority() const {
return withNewPriority(JobPriority::Unspecified);
}
bool isMaxPriorityEscalated() const {
return Flags & concurrency::ActorFlagConstants::IsPriorityEscalated;
}
ActiveActorStatus withEscalatedPriority(JobPriority priority) const {
JobPriority currentPriority =
JobPriority((Flags & concurrency::ActorFlagConstants::PriorityMask) >>
concurrency::ActorFlagConstants::PriorityShift);
(void)currentPriority;
assert(priority > currentPriority);
uint32_t flags =
(Flags & ~concurrency::ActorFlagConstants::PriorityMask) |
(uint32_t(priority) << concurrency::ActorFlagConstants::PriorityShift);
flags |= concurrency::ActorFlagConstants::IsPriorityEscalated;
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
return ActiveActorStatus(flags, DrainLock, FirstJob);
#else
return ActiveActorStatus(flags, FirstJob);
#endif
}
ActiveActorStatus withoutEscalatedPriority() const {
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
return ActiveActorStatus(
Flags & ~concurrency::ActorFlagConstants::IsPriorityEscalated,
DrainLock, FirstJob);
#else
return ActiveActorStatus(
Flags & ~concurrency::ActorFlagConstants::IsPriorityEscalated,
FirstJob);
#endif
}
Job *getFirstUnprioritisedJob() const { return FirstJob; }
ActiveActorStatus withFirstUnprioritisedJob(Job *firstJob) const {
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
return ActiveActorStatus(Flags, DrainLock, firstJob);
#else
return ActiveActorStatus(Flags, firstJob);
#endif
}
uint32_t getOpaqueFlags() const {
return Flags;
}
uint32_t currentDrainer() const {
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
return dispatch_lock_owner(DrainLock);
#else
return 0;
#endif
}
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
static size_t drainLockOffset() {
return offsetof(ActiveActorStatus, DrainLock);
}
#endif
void traceStateChanged(HeapObject *actor, bool distributedActorIsRemote) {
// Convert our state to a consistent raw value. These values currently match
// the enum values, but this explicit conversion provides room for change.
uint8_t traceState = 255;
switch (getActorState()) {
case concurrency::ActorFlagConstants::Idle:
traceState = 0;
break;
case concurrency::ActorFlagConstants::Scheduled:
traceState = 1;
break;
case concurrency::ActorFlagConstants::Running:
traceState = 2;
break;
case concurrency::ActorFlagConstants::Zombie_ReadyForDeallocation:
traceState = 3;
break;
}
concurrency::trace::actor_state_changed(
actor, getFirstUnprioritisedJob(), traceState, distributedActorIsRemote,
isMaxPriorityEscalated(), static_cast<uint8_t>(getMaxPriority()));
}
};
#if !SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
/// Given that a job is enqueued normally on a default actor, get/set
/// the next job in the actor's queue.
static Job *getNextJob(Job *job) {
return *reinterpret_cast<Job **>(job->SchedulerPrivate);
}
static void setNextJob(Job *job, Job *next) {
*reinterpret_cast<Job **>(job->SchedulerPrivate) = next;
}
struct JobQueueTraits {
static Job *getNext(Job *job) { return getNextJob(job); }
static void setNext(Job *job, Job *next) { setNextJob(job, next); }
enum { prioritiesCount = PriorityBucketCount };
static int getPriorityIndex(Job *job) {
return getPriorityBucketIndex(job->getPriority());
}
};
#endif
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION && SWIFT_POINTER_IS_4_BYTES
#define ACTIVE_ACTOR_STATUS_SIZE (4 * (sizeof(uintptr_t)))
#else
#define ACTIVE_ACTOR_STATUS_SIZE (2 * (sizeof(uintptr_t)))
#endif
static_assert(sizeof(ActiveActorStatus) == ACTIVE_ACTOR_STATUS_SIZE,
"ActiveActorStatus is of incorrect size");
#endif /* !SWIFT_CONCURRENCY_ACTORS_AS_LOCKS */
class DefaultActorImplHeader : public HeapObject {
protected:
// TODO (rokhinip): Make this a flagset
bool isDistributedRemoteActor;
#if SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
// If actors are locks, we don't need to maintain any extra bookkeeping in the
// ActiveActorStatus since all threads which are contending will block
// synchronously, no job queue is needed and the lock will handle all priority
// escalation logic
Mutex drainLock;
#else
// Note: There is some padding that is added here by the compiler in order to
// enforce alignment. This is space that is available for us to use in
// the future
alignas(sizeof(ActiveActorStatus)) char StatusStorage[sizeof(ActiveActorStatus)];
#endif
};
// All the fields accessed under the actor's lock should be moved
// to the end of the default-actor reservation to minimize false sharing.
// The memory following the DefaultActorImpl object are the stored properties of
// the actor, which are all accessed only by the current processing thread.
class DefaultActorImplFooter {
protected:
#if !SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
using PriorityQueue = swift::PriorityQueue<Job *, JobQueueTraits>;
// When enqueued, jobs are atomically added to a linked list with the head
// stored inside ActiveActorStatus. This list contains jobs in the LIFO order
// regardless of their priorities.
//
// When the processing thread sees new incoming jobs in
// ActiveActorStatus, it reverses them and inserts them into
// prioritizedJobs in the appropriate priority bucket.
//
PriorityQueue prioritizedJobs;
#endif
};
// We can't use sizeof(DefaultActor) since the alignment requirement on the
// default actor means that we have some padding added when calculating
// sizeof(DefaultActor). However that padding isn't available for us to use
// in DefaultActorImpl.
enum {
DefaultActorSize = sizeof(void *) * NumWords_DefaultActor + sizeof(HeapObject)
};
/// The default actor implementation.
///
/// Ownership of the actor is subtle. Jobs are assumed to keep the actor
/// alive as long as they're executing on it; this allows us to avoid
/// retaining and releasing whenever threads are scheduled to run a job.
/// While jobs are enqueued on the actor, there is a conceptual shared
/// ownership of the currently-enqueued jobs which is passed around
/// between threads and processing jobs and managed using extra retains
/// and releases of the actor. The basic invariant is as follows:
///
/// - Let R be 1 if there are jobs enqueued on the actor or if a job
/// is currently running on the actor; otherwise let R be 0.
/// - Let N be the number of active processing jobs for the actor. N may be > 1
/// because we may have stealers for actors if we have to escalate the max
/// priority of the actor
/// - N >= R
/// - There are N - R extra retains of the actor.
///
/// We can think of this as there being one "owning" processing job
/// and K "extra" jobs. If there is a processing job that is actively
/// running the actor, it is always the owning job; otherwise, any of
/// the N jobs may win the race to become the owning job.
///
/// We then have the following ownership rules:
///
/// (1) When we enqueue the first job on an actor, then R becomes 1, and
/// we must create a processing job so that N >= R. We do not need to
/// retain the actor.
/// (2) When we create an extra job to process an actor (e.g. because of
/// priority overrides), N increases but R remains the same. We must
/// retain the actor - ie stealer for actor has a reference on the actor
/// (3) When we start running an actor, our job definitively becomes the
/// owning job, but neither N nor R changes. We do not need to retain
/// the actor.
/// (4) When we go to start running an actor and for whatever reason we
/// don't actually do so, we are eliminating an extra processing job,
/// and so N decreases but R remains the same. We must release the
/// actor.
/// (5) When we are running an actor and give it up, and there are no
/// remaining jobs on it, then R becomes 0 and N decreases by 1.
/// We do not need to release the actor.
/// (6) When we are running an actor and give it up, and there are jobs
/// remaining on it, then R remains 1 but N is decreasing by 1.
/// We must either release the actor or create a new processing job
/// for it to maintain the balance.
///
/// The current behaviour of actors is such that we only have a single
/// processing job for an actor at a given time. Stealers jobs support does not
/// exist yet. As a result, the subset of rules that currently apply
/// are (1), (3), (5), (6).
class DefaultActorImpl
: public HeaderFooterLayout<DefaultActorImplHeader, DefaultActorImplFooter,
DefaultActorSize> {
public:
/// Properly construct an actor, except for the heap header.
void initialize(bool isDistributedRemote = false) {
this->isDistributedRemoteActor = isDistributedRemote;
#if SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
new (&this->drainLock) Mutex();
#else
_status().store(ActiveActorStatus(), std::memory_order_relaxed);
new (&this->prioritizedJobs) PriorityQueue();
#endif
SWIFT_TASK_DEBUG_LOG("Creating default actor %p", this);
concurrency::trace::actor_create(this);
}
/// Properly destruct an actor, except for the heap header.
void destroy();
/// Properly respond to the last release of a default actor. Note
/// that the actor will have been completely torn down by the time
/// we reach this point.
void deallocate();
/// Try to lock the actor, if it is already running or scheduled, fail
bool tryLock(bool asDrainer);
/// Unlock an actor
bool unlock(bool forceUnlock);
#if !SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
/// Enqueue a job onto the actor.
void enqueue(Job *job, JobPriority priority);
/// Enqueue a stealer for the given task since it has been escalated to the
/// new priority
void enqueueStealer(Job *job, JobPriority priority);
/// Dequeues one job from `prioritisedJobs`.
/// The calling thread must be holding the actor lock while calling this
Job *drainOne();
/// Atomically claims incoming jobs from ActiveActorStatus, and calls `handleUnprioritizedJobs()`.
/// Called with actor lock held on current thread.
void processIncomingQueue();
#endif
/// Check if the actor is actually a distributed *remote* actor.
///
/// Note that a distributed *local* actor instance is the same as any other
/// ordinary default (local) actor, and no special handling is needed for them.
bool isDistributedRemote();
#if !SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
swift::atomic<ActiveActorStatus> &_status() {
return reinterpret_cast<swift::atomic<ActiveActorStatus> &>(this->StatusStorage);
}
const swift::atomic<ActiveActorStatus> &_status() const {
return reinterpret_cast<const swift::atomic<ActiveActorStatus> &>(this->StatusStorage);
}
// Only for static assert use below, not for actual use otherwise
static constexpr size_t offsetOfActiveActorStatus() {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winvalid-offsetof"
return offsetof(DefaultActorImpl, StatusStorage);
#pragma clang diagnostic pop
}
#endif /* !SWIFT_CONCURRENCY_ACTORS_AS_LOCKS */
private:
#if !SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
dispatch_lock_t *drainLockAddr();
#endif
/// Schedule a processing job.
/// It can be done when actor transitions from Idle to Scheduled or
/// when actor gets a priority override and we schedule a stealer.
///
/// When the task executor is `undefined` ths task will be scheduled on the
/// default global executor.
void scheduleActorProcessJob(JobPriority priority, TaskExecutorRef taskExecutor);
/// Processes claimed incoming jobs into `prioritizedJobs`.
/// Incoming jobs are of mixed priorities and in LIFO order.
/// Called with actor lock held on current thread.
void handleUnprioritizedJobs(Job *head);
#endif /* !SWIFT_CONCURRENCY_ACTORS_AS_LOCKS */
void deallocateUnconditional();
};
class NonDefaultDistributedActorImpl : public HeapObject {
// TODO (rokhinip): Make this a flagset
bool isDistributedRemoteActor;
public:
/// Properly construct an actor, except for the heap header.
void initialize(bool isDistributedRemote = false) {
this->isDistributedRemoteActor = isDistributedRemote;
SWIFT_TASK_DEBUG_LOG("Creating non-default distributed actor %p", this);
concurrency::trace::actor_create(this);
}
/// Properly destruct an actor, except for the heap header.
void destroy() {
// empty
}
/// Properly respond to the last release of a default actor. Note
/// that the actor will have been completely torn down by the time
/// we reach this point.
void deallocate() {
// empty
}
/// Check if the actor is actually a distributed *remote* actor.
///
/// Note that a distributed *local* actor instance is the same as any other
/// ordinary default (local) actor, and no special handling is needed for them.
bool isDistributedRemote() {
return isDistributedRemoteActor;
}
};
} /// end anonymous namespace
static_assert(size_without_trailing_padding<DefaultActorImpl>::value <=
DefaultActorSize &&
alignof(DefaultActorImpl) <= alignof(DefaultActor),
"DefaultActorImpl doesn't fit in DefaultActor");
#if !SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
static_assert(DefaultActorImpl::offsetOfActiveActorStatus() % ACTIVE_ACTOR_STATUS_SIZE == 0,
"ActiveActorStatus is aligned to the right size");
#endif
static_assert(sizeof(DefaultActor) == sizeof(NonDefaultDistributedActor),
"NonDefaultDistributedActor size should be the same as DefaultActor");
static_assert(sizeof(NonDefaultDistributedActorImpl) <= ((sizeof(void *) * NumWords_NonDefaultDistributedActor) + sizeof(HeapObject)) &&
alignof(NonDefaultDistributedActorImpl) <= alignof(NonDefaultDistributedActor),
"NonDefaultDistributedActorImpl doesn't fit in NonDefaultDistributedActor");
static DefaultActorImpl *asImpl(DefaultActor *actor) {
return reinterpret_cast<DefaultActorImpl*>(actor);
}
static DefaultActor *asAbstract(DefaultActorImpl *actor) {
return reinterpret_cast<DefaultActor*>(actor);
}
static NonDefaultDistributedActorImpl *asImpl(NonDefaultDistributedActor *actor) {
return reinterpret_cast<NonDefaultDistributedActorImpl*>(actor);
}
/*****************************************************************************/
/******************** NEW DEFAULT ACTOR IMPLEMENTATION ***********************/
/*****************************************************************************/
TaskExecutorRef TaskExecutorRef::fromTaskExecutorPreference(Job *job) {
if (auto task = dyn_cast<AsyncTask>(job)) {
return task->getPreferredTaskExecutor();
}
return TaskExecutorRef::undefined();
}
#if !SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
static void traceJobQueue(DefaultActorImpl *actor, Job *first) {
concurrency::trace::actor_note_job_queue(
actor, first, [](Job *job) { return getNextJob(job); });
}
static SWIFT_ATTRIBUTE_ALWAYS_INLINE void traceActorStateTransition(DefaultActorImpl *actor,
ActiveActorStatus oldState, ActiveActorStatus newState, bool distributedActorIsRemote) {
SWIFT_TASK_DEBUG_LOG("Actor %p transitioned from %#x to %#x (%s)", actor,
oldState.getOpaqueFlags(), newState.getOpaqueFlags(),
__FUNCTION__);
newState.traceStateChanged(actor, distributedActorIsRemote);
}
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
dispatch_lock_t *DefaultActorImpl::drainLockAddr() {
ActiveActorStatus *actorStatus = (ActiveActorStatus *) &this->StatusStorage;
return (dispatch_lock_t *) (((char *) actorStatus) + ActiveActorStatus::drainLockOffset());
}
#endif /* SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION */
void DefaultActorImpl::scheduleActorProcessJob(
JobPriority priority, TaskExecutorRef taskExecutor) {
Job *job = new ProcessOutOfLineJob(this, priority);
SWIFT_TASK_DEBUG_LOG(
"Scheduling processing job %p for actor %p at priority %#zx, with taskExecutor %p", job, this,
priority, taskExecutor.getIdentity());
if (taskExecutor.isDefined()) {
#if SWIFT_CONCURRENCY_EMBEDDED
swift_unreachable("task executors not supported in embedded Swift");
#else
auto taskExecutorIdentity = taskExecutor.getIdentity();
auto taskExecutorType = swift_getObjectType(taskExecutorIdentity);
auto taskExecutorWtable = taskExecutor.getTaskExecutorWitnessTable();
return _swift_task_enqueueOnTaskExecutor(
job, taskExecutorIdentity, taskExecutorType, taskExecutorWtable);
#endif
}
swift_task_enqueueGlobal(job);
}
void DefaultActorImpl::enqueue(Job *job, JobPriority priority) {
// We can do relaxed loads here, we are just using the current head in the
// atomic state and linking that into the new job we are inserting, we don't
// need acquires
SWIFT_TASK_DEBUG_LOG("Enqueueing job %p onto actor %p at priority %#zx", job,
this, priority);
concurrency::trace::actor_enqueue(this, job);
bool distributedActorIsRemote = swift_distributed_actor_is_remote(this);
auto oldState = _status().load(std::memory_order_relaxed);
SwiftDefensiveRetainRAII thisRetainHelper{this};
while (true) {
auto newState = oldState;
// Link this into the queue in the atomic state
Job *currentHead = oldState.getFirstUnprioritisedJob();
setNextJob(job, currentHead);
newState = newState.withFirstUnprioritisedJob(job);
if (oldState.isIdle()) {
// Schedule the actor
newState = newState.withScheduled();
newState = newState.withNewPriority(priority);
} else {
if (priority > oldState.getMaxPriority()) {
newState = newState.withEscalatedPriority(priority);
}
}
// Fetch the task executor from the job for later use. This can be somewhat
// expensive, so only do it if we're likely to need it. The conditions here
// match the conditions of the if statements below which use `taskExecutor`.
TaskExecutorRef taskExecutor;
bool needsScheduling = !oldState.isScheduled() && newState.isScheduled();
bool needsStealer =
oldState.getMaxPriority() != newState.getMaxPriority() &&
newState.isRunning();
if (needsScheduling || needsStealer)
taskExecutor = TaskExecutorRef::fromTaskExecutorPreference(job);
// In some cases (we aren't scheduling the actor and priorities don't
// match) then we need to access `this` after the enqueue. But the enqueue
// can cause the job to run and release `this`, so we need to retain `this`
// in those cases. The conditional here matches the conditions where we can
// get to the code below that uses `this`.
bool willSchedule = !oldState.isScheduled() && newState.isScheduled();
bool priorityMismatch = oldState.getMaxPriority() != newState.getMaxPriority();
if (!willSchedule && priorityMismatch)
thisRetainHelper.defensiveRetain();
// This needs to be a store release so that we also publish the contents of
// the new Job we are adding to the atomic job queue. Pairs with consume
// in drainOne.
if (_status().compare_exchange_weak(oldState, newState,
/* success */ std::memory_order_release,
/* failure */ std::memory_order_relaxed)) {
// NOTE: `job` is off limits after this point, as another thread might run
// and destroy it now that it's enqueued. `this` is only accessible if
// `retainedThis` is true.
job = nullptr; // Ensure we can't use it accidentally.
// NOTE: only the pointer value of `this` is used here, so this one
// doesn't need a retain.
traceActorStateTransition(this, oldState, newState, distributedActorIsRemote);
if (!oldState.isScheduled() && newState.isScheduled()) {
// We took responsibility to schedule the actor for the first time. See
// also ownership rule (1)
return scheduleActorProcessJob(newState.getMaxPriority(), taskExecutor);
}
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
if (oldState.getMaxPriority() != newState.getMaxPriority()) {
// We still need `this`, assert that we did a defensive retain.
assert(thisRetainHelper.isRetained());
if (newState.isRunning()) {
// Actor is running on a thread, escalate the thread running it
SWIFT_TASK_DEBUG_LOG("[Override] Escalating actor %p which is running on %#x to %#x priority", this, newState.currentDrainer(), priority);
dispatch_lock_t *lockAddr = this->drainLockAddr();
swift_dispatch_lock_override_start_with_debounce(lockAddr, newState.currentDrainer(),
(qos_class_t) priority);
} else {
// We are scheduling a stealer for an actor due to priority override.
// This extra processing job has a reference on the actor. See
// ownership rule (2). That means that we need to retain `this`, which
// we'll take from the retain helper.
thisRetainHelper.takeRetain();
SWIFT_TASK_DEBUG_LOG(
"[Override] Scheduling a stealer for actor %p at %#x priority",
this, newState.getMaxPriority());
scheduleActorProcessJob(newState.getMaxPriority(), taskExecutor);
}
}
#endif
return;
}
}
}
// The input job is already escalated to the new priority and has already been
// enqueued into the actor. Push a stealer job for it on the actor.
//
// The caller of this function is escalating the input task and holding its
// TaskStatusRecordLock and escalating this executor via the
// TaskDependencyStatusRecord.
void DefaultActorImpl::enqueueStealer(Job *job, JobPriority priority) {
SWIFT_TASK_DEBUG_LOG("[Override] Escalating an actor %p due to job that is enqueued being escalated", this);
bool distributedActorIsRemote = swift_distributed_actor_is_remote(this);
auto oldState = _status().load(std::memory_order_relaxed);
while (true) {
// Until we figure out how to safely enqueue a stealer and rendevouz with
// the original job so that we don't double-invoke the job, we shall simply
// escalate the actor's max priority to match the new one.
//
// Ideally, we'd also re-sort the job queue so that the escalated job gets
// to the front of the queue but since the actor's max QoS is a saturating
// function, this still handles the priority inversion correctly but with
// priority overhang instead.
if (oldState.isIdle()) {
// We are observing a race. Possible scenarios:
//
// 1. Escalator is racing with the drain of the actor/task. The task has
// just been popped off the actor and is about to run. The thread running
// the task will readjust its own priority once it runs since it should
// see the escalation in the ActiveTaskStatus and we don't need to
// escalate the actor as it will be spurious.
//
// 2. Escalator is racing with the enqueue of the task. The task marks
// the place it will enqueue in the dependency record before it enqueues
// itself. Escalator raced in between these two operations and escalated the
// task. Pushing a stealer job for the task onto the actor should fix it.
return;
}
auto newState = oldState;
if (priority > oldState.getMaxPriority()) {
newState = newState.withEscalatedPriority(priority);
}
if (oldState == newState)
return;
// Fetch the task executor from the job for later use. This can be somewhat
// expensive, so only do it if we're likely to need it. The conditions here
// match the conditions of the if statements below which use `taskExecutor`.
TaskExecutorRef taskExecutor;
if (!newState.isRunning() && newState.isScheduled())
taskExecutor = TaskExecutorRef::fromTaskExecutorPreference(job);
if (_status().compare_exchange_weak(oldState, newState,
/* success */ std::memory_order_relaxed,
/* failure */ std::memory_order_relaxed)) {
// NOTE: `job` is off limits after this point, as another thread might run
// and destroy it now that it's enqueued.
traceActorStateTransition(this, oldState, newState, distributedActorIsRemote);
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
if (newState.isRunning()) {
// Actor is running on a thread, escalate the thread running it
SWIFT_TASK_DEBUG_LOG("[Override] Escalating actor %p which is running on %#x to %#x priority", this, newState.currentDrainer(), priority);
dispatch_lock_t *lockAddr = this->drainLockAddr();
swift_dispatch_lock_override_start_with_debounce(lockAddr, newState.currentDrainer(),
(qos_class_t) priority);
} else if (newState.isScheduled()) {
// We are scheduling a stealer for an actor due to priority override.
// This extra processing job has a reference on the actor. See
// ownership rule (2).
SWIFT_TASK_DEBUG_LOG(
"[Override] Scheduling a stealer for actor %p at %#x priority",
this, newState.getMaxPriority());
swift_retain(this);
scheduleActorProcessJob(newState.getMaxPriority(), taskExecutor);
}
#endif
}
}
}
void DefaultActorImpl::processIncomingQueue() {
// Pairs with the store release in DefaultActorImpl::enqueue
bool distributedActorIsRemote = swift_distributed_actor_is_remote(this);
auto oldState = _status().load(SWIFT_MEMORY_ORDER_CONSUME);
_swift_tsan_consume(this);
// We must ensure that any jobs not seen by collectJobs() don't have any
// dangling references to the jobs that have been collected. For that we must
// atomically set head pointer to NULL. If it fails because more jobs have
// been added in the meantime, we have to re-read the head pointer.
while (true) {
// If there aren't any new jobs in the incoming queue, we can return
// immediately without updating the status.
if (!oldState.getFirstUnprioritisedJob()) {
return;
}
assert(oldState.isAnyRunning());
auto newState = oldState;
newState = newState.withFirstUnprioritisedJob(nullptr);
if (_status().compare_exchange_weak(
oldState, newState,
/* success */ std::memory_order_relaxed,
/* failure */ std::memory_order_relaxed)) {
SWIFT_TASK_DEBUG_LOG("Collected some jobs from actor %p", this);
traceActorStateTransition(this, oldState, newState,
distributedActorIsRemote);
break;
}
}
handleUnprioritizedJobs(oldState.getFirstUnprioritisedJob());
}
// Called with actor lock held on current thread
void DefaultActorImpl::handleUnprioritizedJobs(Job *head) {
// Reverse jobs from LIFO to FIFO order
Job *reversed = nullptr;
while (head) {
auto next = getNextJob(head);
setNextJob(head, reversed);
reversed = head;
head = next;
}
prioritizedJobs.enqueueContentsOf(reversed);
}
// Called with actor lock held on current thread
Job *DefaultActorImpl::drainOne() {
SWIFT_TASK_DEBUG_LOG("Draining one job from default actor %p", this);
traceJobQueue(this, prioritizedJobs.peek());
auto firstJob = prioritizedJobs.dequeue();
if (!firstJob) {
SWIFT_TASK_DEBUG_LOG("No jobs to drain on actor %p", this);
} else {
SWIFT_TASK_DEBUG_LOG("Drained first job %p from actor %p", firstJob, this);
concurrency::trace::actor_dequeue(this, firstJob);
}
return firstJob;
}
// Called from processing jobs which are created to drain an actor. We need to
// reason about this function together with swift_task_switch because threads
// can switch from "following actors" to "following tasks" and vice versa.
//
// The way this function works is as following:
//
// 1. We grab the actor lock for the actor we were scheduled to drain.
// 2. Drain the first task out of the actor and run it. Henceforth, the thread
// starts executing the task and following it around. It is no longer a
// processing job for the actor. Note that it will hold the actor lock until it
// needs to hop off the actor but conceptually, it is now a task executor as well.
// 3. When the thread needs to hop off the actor, it is done deep in the
// callstack of this function with an indirection through user code:
// defaultActorDrain -> runJobInEstablishedExecutorContext -> user
// code -> a call to swift_task_switch to hop out of actor
// 4. This call to swift_task_switch() will attempt to hop off the existing
// actor and jump to the new one. There are 2 possible outcomes at that point:
// (a) We were able to hop to the new actor and so thread continues executing
// task. We then schedule a job for the old actor to continue if it has
// pending work
// (b) We were not able to take the fast path to the new actor, the task gets
// enqueued onto the new actor it is going to, and the thread now follows the
// actor we were trying to hop off. At this point, note that we don't give up
// the actor lock in `swift_task_switchImpl` so we will come back to
// defaultActorDrain with the actor lock still held.
//
// At the point of return from the job execution, we may not be holding the lock
// of the same actor that we had started off with, so we need to reevaluate what
// the current actor is
static void defaultActorDrain(DefaultActorImpl *actor) {
SWIFT_TASK_DEBUG_LOG("Draining default actor %p", actor);
DefaultActorImpl *currentActor = actor;
bool actorLockAcquired = actor->tryLock(true);
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
if (!actorLockAcquired) {
// tryLock may fail when we compete with other stealers for the actor.
goto done;
}
#endif
(void)actorLockAcquired;
assert(actorLockAcquired);
// Setup a TSD for tracking current execution info
ExecutorTrackingInfo trackingInfo;
trackingInfo.enterAndShadow(
SerialExecutorRef::forDefaultActor(asAbstract(currentActor)),
/*taskExecutor, will be replaced per each job. */
TaskExecutorRef::undefined());
while (true) {
Job *job = currentActor->drainOne();
if (job == NULL) {
// No work left to do, try unlocking the actor. This may fail if there is
// work concurrently enqueued in which case, we'd try again in the loop
if (currentActor->unlock(false)) {
break;
}
} else {
if (AsyncTask *task = dyn_cast<AsyncTask>(job)) {
auto taskExecutor = task->getPreferredTaskExecutor();
trackingInfo.setTaskExecutor(taskExecutor);
}
// This thread is now going to follow the task on this actor. It may hop off
// the actor
runJobInEstablishedExecutorContext(job);
// We could have come back from the job on a generic executor and not as
// part of a default actor. If so, there is no more work left for us to do
// here.
auto currentExecutor = trackingInfo.getActiveExecutor();
if (!currentExecutor.isDefaultActor()) {
currentActor = nullptr;
break;
}
currentActor = asImpl(currentExecutor.getDefaultActor());
}
if (shouldYieldThread()) {
currentActor->unlock(true);
break;
}
currentActor->processIncomingQueue();
}
// Leave the tracking info.
trackingInfo.leave();
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
done:
#endif
// Balances with the retain taken in ProcessOutOfLineJob::process
swift_release(actor);
}
SWIFT_CC(swiftasync)
void ProcessOutOfLineJob::process(Job *job) {
auto self = cast<ProcessOutOfLineJob>(job);
DefaultActorImpl *actor = self->Actor;
delete self;
// Balances with the swift_release in defaultActorDrain()
swift_retain(actor);
return defaultActorDrain(actor); // 'return' forces tail call
}
#endif /* !SWIFT_CONCURRENCY_ACTORS_AS_LOCKS */
void DefaultActorImpl::destroy() {
#if SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
// TODO (rokhinip): Do something to assert that the lock is unowned
#else
auto oldState = _status().load(std::memory_order_acquire);
// Tasks on an actor are supposed to keep the actor alive until they start
// running and we can only get here if ref count of the object = 0 which means
// there should be no more tasks enqueued on the actor.
assert(!oldState.getFirstUnprioritisedJob() && "actor has queued jobs at destruction");
if (oldState.isIdle()) {
assert(prioritizedJobs.empty() && "actor has queued jobs at destruction");
return;
}
assert(oldState.isRunning() && "actor scheduled but not running at destruction");
// In running state we cannot safely access prioritizedJobs to assert that it is empty.
#endif
}
void DefaultActorImpl::deallocate() {
#if !SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
// If we're running, mark ourselves as ready for deallocation but don't
// deallocate yet. When we stop running the actor - at unlock() time - we'll
// do the actual deallocation.
//
// If we're idle, just deallocate immediately
auto oldState = _status().load(std::memory_order_relaxed);
while (oldState.isRunning()) {
auto newState = oldState.withZombie_ReadyForDeallocation();
if (_status().compare_exchange_weak(oldState, newState,
std::memory_order_relaxed,
std::memory_order_relaxed))
return;
}
assert(oldState.isIdle());
#endif
deallocateUnconditional();
}
void DefaultActorImpl::deallocateUnconditional() {
concurrency::trace::actor_deallocate(this);
auto metadata = cast<ClassMetadata>(this->metadata);
swift_deallocClassInstance(this, metadata->getInstanceSize(),
metadata->getInstanceAlignMask());
}
bool DefaultActorImpl::tryLock(bool asDrainer) {
#if SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
this->drainLock.lock();
return true;
#else /* SWIFT_CONCURRENCY_ACTORS_AS_LOCKS */
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
SWIFT_TASK_DEBUG_LOG("Thread %#x attempting to jump onto %p, as drainer = %d", dispatch_lock_value_for_self(), this, asDrainer);
dispatch_thread_override_info_s threadOverrideInfo;
threadOverrideInfo = swift_dispatch_thread_get_current_override_qos_floor();
qos_class_t overrideFloor = threadOverrideInfo.override_qos_floor;
retry:;
#else
SWIFT_TASK_DEBUG_LOG("Thread attempting to jump onto %p, as drainer = %d", this, asDrainer);
#endif
bool distributedActorIsRemote = swift_distributed_actor_is_remote(this);
auto oldState = _status().load(std::memory_order_relaxed);
while (true) {
bool assertNoJobs = false;
if (asDrainer) {
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
if (!oldState.isScheduled()) {
// Some other actor stealer won the race and started running the actor
// and potentially be done with it if state is observed as idle here.
// This extra processing jobs releases its reference. See ownership rule
// (4).
swift_release(this);
return false;
}
#endif
// We are still in the race with other stealers to take over the actor.
assert(oldState.isScheduled());
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
// We only want to self override a thread if we are taking the actor lock
// as a drainer because there might have been higher priority work
// enqueued that might have escalated the max priority of the actor to be
// higher than the original thread request.
qos_class_t maxActorPriority = (qos_class_t) oldState.getMaxPriority();
if (threadOverrideInfo.can_override && (maxActorPriority > overrideFloor)) {
SWIFT_TASK_DEBUG_LOG("[Override] Self-override thread with oq_floor %#x to match max actor %p's priority %#x", overrideFloor, this, maxActorPriority);
(void) swift_dispatch_thread_override_self(maxActorPriority);
overrideFloor = maxActorPriority;
goto retry;
}
#endif /* SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION */
} else {
// We're trying to take the lock in an uncontended manner
if (oldState.isRunning() || oldState.isScheduled()) {
SWIFT_TASK_DEBUG_LOG("Failed to jump to %p in fast path", this);
return false;
}
assert(oldState.getMaxPriority() == JobPriority::Unspecified);
assert(!oldState.getFirstUnprioritisedJob());
// We cannot assert here that prioritizedJobs is empty,
// because lock is not held yet. Raise a flag to assert after getting the lock.
assertNoJobs = true;
}
// Taking the drain lock clears the max priority escalated bit because we've
// already represented the current max priority of the actor on the thread.
auto newState = oldState.withRunning();
newState = newState.withoutEscalatedPriority();
// Claim incoming jobs when obtaining lock as a drainer, to save one
// round of atomic load and compare-exchange.
// This is not useful when obtaining lock for assuming thread during actor
// switching, because arbitrary use code can run between locking and
// draining the next job. So we still need to call processIncomingQueue() to
// check for higher priority jobs that could have been scheduled in the
// meantime. And processing is more efficient when done in larger batches.
if (asDrainer) {
newState = newState.withFirstUnprioritisedJob(nullptr);
}
// This needs an acquire since we are taking a lock
if (_status().compare_exchange_weak(oldState, newState,
std::memory_order_acquire,
std::memory_order_relaxed)) {
_swift_tsan_acquire(this);
if (assertNoJobs) {
assert(prioritizedJobs.empty());
}
traceActorStateTransition(this, oldState, newState, distributedActorIsRemote);
if (asDrainer) {
handleUnprioritizedJobs(oldState.getFirstUnprioritisedJob());
}
return true;
}
}
#endif /* SWIFT_CONCURRENCY_ACTORS_AS_LOCKS */
}
/* This can be called in 2 ways:
* * force_unlock = true: Thread is following task and therefore wants to
* give up the current actor since task is switching away.
* * force_unlock = false: Thread is not necessarily following the task, it
* may want to follow actor if there is more work on it.
*
* Returns true if we managed to unlock the actor, false if we didn't. If the
* actor has more jobs remaining on it during unlock, this method will
* schedule the actor
*/
bool DefaultActorImpl::unlock(bool forceUnlock)
{
#if SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
this->drainLock.unlock();
return true;
#else
bool distributedActorIsRemote = swift_distributed_actor_is_remote(this);
auto oldState = _status().load(std::memory_order_relaxed);
SWIFT_TASK_DEBUG_LOG("Try unlock-ing actor %p with forceUnlock = %d", this, forceUnlock);
_swift_tsan_release(this);
while (true) {
assert(oldState.isAnyRunning());
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
assert(dispatch_lock_is_locked_by_self(*(this->drainLockAddr())));
#endif
if (oldState.isZombie_ReadyForDeallocation()) {
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
// Reset any override on this thread as a result of this thread running
// the actor
if (oldState.isMaxPriorityEscalated()) {
swift_dispatch_lock_override_end((qos_class_t)oldState.getMaxPriority());
}
#endif
deallocateUnconditional();
SWIFT_TASK_DEBUG_LOG("Unlock-ing actor %p succeeded with full deallocation", this);
return true;
}
auto newState = oldState;
// Lock is still held at this point, so it is safe to access prioritizedJobs
if (!prioritizedJobs.empty() || oldState.getFirstUnprioritisedJob()) {
// There is work left to do, don't unlock the actor
if (!forceUnlock) {
SWIFT_TASK_DEBUG_LOG("Unlock-ing actor %p failed", this);
return false;
}
// We need to schedule the actor - remove any escalation bits since we'll
// schedule the actor at the max priority currently on it
// N decreases by 1 as this processing job is going away; but R is
// still 1. We schedule a new processing job to maintain N >= R.
// It is possible that there are stealers scheduled for the actor already;
// but, we still schedule one anyway. This is because it is possible that
// those stealers got scheduled when we were running the actor and gone
// away. (See tryLock function.)
newState = newState.withScheduled();
newState = newState.withoutEscalatedPriority();
} else {
// There is no work left to do - actor goes idle
// R becomes 0 and N decreases by 1.
// But, we may still have stealers scheduled so N could be > 0. This is
// fine since N >= R. Every such stealer, once scheduled, will observe
// actor as idle, will release its ref and return. (See tryLock function.)
newState = newState.withIdle();
newState = newState.resetPriority();
}
// This needs to be a release since we are unlocking a lock
if (_status().compare_exchange_weak(oldState, newState,
/* success */ std::memory_order_release,
/* failure */ std::memory_order_relaxed)) {
_swift_tsan_release(this);
traceActorStateTransition(this, oldState, newState, distributedActorIsRemote);
if (newState.isScheduled()) {
// See ownership rule (6) in DefaultActorImpl
// FIXME: should we specify some task executor here, since otherwise we'll schedule on the global pool
scheduleActorProcessJob(newState.getMaxPriority(), TaskExecutorRef::undefined());
} else {
// See ownership rule (5) in DefaultActorImpl
SWIFT_TASK_DEBUG_LOG("Actor %p is idle now", this);
}
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
// Reset any asynchronous escalations we may have gotten on this thread
// after taking the drain lock.
//
// Only do this after we have reenqueued the actor so that we don't lose
// any "mojo" prior to the enqueue.
if (oldState.isMaxPriorityEscalated()) {
swift_dispatch_lock_override_end((qos_class_t) oldState.getMaxPriority());
}
#endif
return true;
}
}
#endif
}
SWIFT_CC(swift)
static void swift_job_runImpl(Job *job, SerialExecutorRef executor) {
ExecutorTrackingInfo trackingInfo;
// swift_job_run is a primary entrypoint for executors telling us to
// run jobs. Actor executors won't expect us to switch off them
// during this operation. But do allow switching if the executor
// is generic.
if (!executor.isGeneric()) trackingInfo.disallowSwitching();
auto taskExecutor = executor.isGeneric()
? TaskExecutorRef::fromTaskExecutorPreference(job)
: TaskExecutorRef::undefined();
trackingInfo.enterAndShadow(executor, taskExecutor);
SWIFT_TASK_DEBUG_LOG("job %p", job);
runJobInEstablishedExecutorContext(job);
trackingInfo.leave();
// Give up the current executor if this is a switching context
// (which, remember, only happens if we started out on a generic
// executor) and we've switched to a default actor.
auto currentExecutor = trackingInfo.getActiveExecutor();
if (trackingInfo.allowsSwitching() && currentExecutor.isDefaultActor()) {
asImpl(currentExecutor.getDefaultActor())->unlock(true);
}
}
SWIFT_CC(swift)
static void swift_job_run_on_serial_and_task_executorImpl(Job *job,
SerialExecutorRef serialExecutor,
TaskExecutorRef taskExecutor) {
ExecutorTrackingInfo trackingInfo;
SWIFT_TASK_DEBUG_LOG("Run job %p on serial executor %p task executor %p", job,
serialExecutor.getIdentity(), taskExecutor.getIdentity());
// TODO: we don't allow switching
trackingInfo.disallowSwitching();
trackingInfo.enterAndShadow(serialExecutor, taskExecutor);
SWIFT_TASK_DEBUG_LOG("job %p", job);
runJobInEstablishedExecutorContext(job);
trackingInfo.leave();
// Give up the current executor if this is a switching context
// (which, remember, only happens if we started out on a generic
// executor) and we've switched to a default actor.
auto currentExecutor = trackingInfo.getActiveExecutor();
if (trackingInfo.allowsSwitching() && currentExecutor.isDefaultActor()) {
asImpl(currentExecutor.getDefaultActor())->unlock(true);
}
}
SWIFT_CC(swift)
static void swift_job_run_on_task_executorImpl(Job *job,
TaskExecutorRef taskExecutor) {
swift_job_run_on_serial_and_task_executor(
job, SerialExecutorRef::generic(), taskExecutor);
}
void swift::swift_defaultActor_initialize(DefaultActor *_actor) {
asImpl(_actor)->initialize();
}
void swift::swift_defaultActor_destroy(DefaultActor *_actor) {
asImpl(_actor)->destroy();
}
void swift::swift_defaultActor_enqueue(Job *job, DefaultActor *_actor) {
#if SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
assert(false && "Should not enqueue onto default actor in actor as locks model");
#else
asImpl(_actor)->enqueue(job, job->getPriority());
#endif
}
void swift::swift_defaultActor_deallocate(DefaultActor *_actor) {
asImpl(_actor)->deallocate();
}
static bool isDefaultActorClass(const ClassMetadata *metadata) {
assert(metadata->isTypeMetadata());
while (true) {
// Trust the class descriptor if it says it's a default actor.
if (!metadata->isArtificialSubclass() &&
metadata->getDescription()->isDefaultActor()) {
return true;
}
// Go to the superclass.
metadata = metadata->Superclass;
// If we run out of Swift classes, it's not a default actor.
if (!metadata || !metadata->isTypeMetadata()) {
return false;
}
}
}
void swift::swift_defaultActor_deallocateResilient(HeapObject *actor) {
auto metadata = cast<ClassMetadata>(actor->metadata);
if (isDefaultActorClass(metadata))
return swift_defaultActor_deallocate(static_cast<DefaultActor*>(actor));
swift_deallocObject(actor, metadata->getInstanceSize(),
metadata->getInstanceAlignMask());
}
/// FIXME: only exists for the quick-and-dirty MainActor implementation.
namespace swift {
Metadata* MainActorMetadata = nullptr;
}
/*****************************************************************************/
/****************************** ACTOR SWITCHING ******************************/
/*****************************************************************************/
/// Can the current executor give up its thread?
static bool canGiveUpThreadForSwitch(ExecutorTrackingInfo *trackingInfo,
SerialExecutorRef currentExecutor) {
assert(trackingInfo || currentExecutor.isGeneric());
// Some contexts don't allow switching at all.
if (trackingInfo && !trackingInfo->allowsSwitching())
return false;
// We can certainly "give up" a generic executor to try to run
// a task for an actor.
if (currentExecutor.isGeneric())
return true;
// If the current executor is a default actor, we know how to make
// it give up its thread.
if (currentExecutor.isDefaultActor())
return true;
return false;
}
/// Tell the current executor to give up its thread, given that it
/// returned true from canGiveUpThreadForSwitch().
///
/// Note that we don't update DefaultActorProcessingFrame here; we'll
/// do that in runOnAssumedThread.
static void giveUpThreadForSwitch(SerialExecutorRef currentExecutor) {
if (currentExecutor.isGeneric()) {
SWIFT_TASK_DEBUG_LOG("Giving up current generic executor %p",
currentExecutor.getIdentity());
return;
}
asImpl(currentExecutor.getDefaultActor())->unlock(true);
}
/// Try to assume control of the current thread for the given executor
/// in order to run the given job.
///
/// This doesn't actually run the job yet.
///
/// Note that we don't update DefaultActorProcessingFrame here; we'll
/// do that in runOnAssumedThread.
static bool tryAssumeThreadForSwitch(SerialExecutorRef newExecutor,
TaskExecutorRef newTaskExecutor) {
// If the new executor is generic, we don't need to do anything.
if (newExecutor.isGeneric() && newTaskExecutor.isUndefined()) {
return true;
}
// If the new executor is a default actor, ask it to assume the thread.
if (newExecutor.isDefaultActor()) {
return asImpl(newExecutor.getDefaultActor())->tryLock(false);
}
return false;
}
static bool mustSwitchToRun(SerialExecutorRef currentSerialExecutor,
SerialExecutorRef newSerialExecutor,
TaskExecutorRef currentTaskExecutor,
TaskExecutorRef newTaskExecutor) {
if (currentSerialExecutor.getIdentity() != newSerialExecutor.getIdentity()) {
return true; // must switch, new isolation context
}
// else, we may have to switch if the preferred task executor is different
auto differentTaskExecutor =
currentTaskExecutor.getIdentity() != newTaskExecutor.getIdentity();
if (differentTaskExecutor) {
return true;
}
return false;
}
/// Given that we've assumed control of an executor on this thread,
/// continue to run the given task on it.
SWIFT_CC(swiftasync)
static void runOnAssumedThread(AsyncTask *task, SerialExecutorRef executor,
ExecutorTrackingInfo *oldTracking) {
// Note that this doesn't change the active task and so doesn't
// need to either update ActiveTask or flagAsRunning/flagAsSuspended.
// If there's already tracking info set up, just change the executor
// there and tail-call the task. We don't want these frames to
// potentially accumulate linearly.
if (oldTracking) {
oldTracking->setActiveExecutor(executor);
oldTracking->setTaskExecutor(task->getPreferredTaskExecutor());
return task->runInFullyEstablishedContext(); // 'return' forces tail call
}
// Otherwise, set up tracking info.
ExecutorTrackingInfo trackingInfo;
trackingInfo.enterAndShadow(executor, task->getPreferredTaskExecutor());
// Run the new task.
task->runInFullyEstablishedContext();
// Leave the tracking frame, and give up the current actor if
// we have one.
//
// In principle, we could execute more tasks from the actor here, but
// that's probably not a reasonable thing to do in an assumed context
// rather than a dedicated actor-processing job.
executor = trackingInfo.getActiveExecutor();
trackingInfo.leave();
SWIFT_TASK_DEBUG_LOG("leaving assumed thread, current executor is %p",
executor.getIdentity());
if (executor.isDefaultActor())
asImpl(executor.getDefaultActor())->unlock(true);
}
// TODO (rokhinip): Workaround rdar://88700717. To be removed with
// rdar://88711954
SWIFT_CC(swiftasync)
static void swift_task_switchImpl(SWIFT_ASYNC_CONTEXT AsyncContext *resumeContext,
TaskContinuationFunction *resumeFunction,
SerialExecutorRef newExecutor) SWIFT_OPTNONE {
auto task = swift_task_getCurrent();
assert(task && "no current task!");
auto trackingInfo = ExecutorTrackingInfo::current();
auto currentExecutor =
(trackingInfo ? trackingInfo->getActiveExecutor()
: SerialExecutorRef::generic());
auto currentTaskExecutor = (trackingInfo ? trackingInfo->getTaskExecutor()
: TaskExecutorRef::undefined());
auto newTaskExecutor = task->getPreferredTaskExecutor();
SWIFT_TASK_DEBUG_LOG("Task %p trying to switch executors: executor %p%s to "
"new serial executor: %p%s; task executor: from %p%s to %p%s",
task,
currentExecutor.getIdentity(),
currentExecutor.getIdentityDebugName(),
newExecutor.getIdentity(),
newExecutor.getIdentityDebugName(),
currentTaskExecutor.getIdentity(),
currentTaskExecutor.isDefined() ? "" : " (undefined)",
newTaskExecutor.getIdentity(),
newTaskExecutor.isDefined() ? "" : " (undefined)");
// If the current executor is compatible with running the new executor,
// we can just immediately continue running with the resume function
// we were passed in.
if (!mustSwitchToRun(currentExecutor, newExecutor, currentTaskExecutor,
newTaskExecutor)) {
return resumeFunction(resumeContext); // 'return' forces tail call
}
// Park the task for simplicity instead of trying to thread the
// initial resumption information into everything below.
task->ResumeContext = resumeContext;
task->ResumeTask = resumeFunction;
// If the current executor can give up its thread, and the new executor
// can take over a thread, try to do so; but don't do this if we've
// been asked to yield the thread.
if (currentTaskExecutor.isUndefined() &&
canGiveUpThreadForSwitch(trackingInfo, currentExecutor) &&
!shouldYieldThread() &&
tryAssumeThreadForSwitch(newExecutor, newTaskExecutor)) {
SWIFT_TASK_DEBUG_LOG(
"switch succeeded, task %p assumed thread for executor %p", task,
newExecutor.getIdentity());
giveUpThreadForSwitch(currentExecutor);
// 'return' forces tail call
return runOnAssumedThread(task, newExecutor, trackingInfo);
}
// Otherwise, just asynchronously enqueue the task on the given
// executor.
SWIFT_TASK_DEBUG_LOG(
"switch failed, task %p enqueued on executor %p (task executor: %p)",
task, newExecutor.getIdentity(), currentTaskExecutor.getIdentity());
task->flagAsAndEnqueueOnExecutor(newExecutor);
_swift_task_clearCurrent();
}
/*****************************************************************************/
/************************* GENERIC ACTOR INTERFACES **************************/
/*****************************************************************************/
extern "C" SWIFT_CC(swift) void _swift_task_makeAnyTaskExecutor(
HeapObject *executor, const Metadata *selfType,
const TaskExecutorWitnessTable *wtable);
SWIFT_CC(swift)
static void swift_task_enqueueImpl(Job *job, SerialExecutorRef serialExecutorRef) {
#ifndef NDEBUG
{
auto _taskExecutorRef = TaskExecutorRef::undefined();
if (auto task = dyn_cast<AsyncTask>(job)) {
_taskExecutorRef = task->getPreferredTaskExecutor();
}
SWIFT_TASK_DEBUG_LOG(
"enqueue job %p on serial serialExecutor %p, taskExecutor = %p", job,
serialExecutorRef.getIdentity(), _taskExecutorRef.getIdentity());
}
#endif
assert(job && "no job provided");
_swift_tsan_release(job);
if (serialExecutorRef.isGeneric()) {
if (auto task = dyn_cast<AsyncTask>(job)) {
auto taskExecutorRef = task->getPreferredTaskExecutor();
if (taskExecutorRef.isDefined()) {
#if SWIFT_CONCURRENCY_EMBEDDED
swift_unreachable("task executors not supported in embedded Swift");
#else
auto taskExecutorIdentity = taskExecutorRef.getIdentity();
auto taskExecutorType = swift_getObjectType(taskExecutorIdentity);
auto taskExecutorWtable = taskExecutorRef.getTaskExecutorWitnessTable();
return _swift_task_enqueueOnTaskExecutor(
job,
taskExecutorIdentity, taskExecutorType, taskExecutorWtable);
#endif // SWIFT_CONCURRENCY_EMBEDDED
} // else, fall-through to the default global enqueue
}
return swift_task_enqueueGlobal(job);
}
if (serialExecutorRef.isDefaultActor()) {
return swift_defaultActor_enqueue(job, serialExecutorRef.getDefaultActor());
}
#if SWIFT_CONCURRENCY_EMBEDDED
swift_unreachable("custom executors not supported in embedded Swift");
#else
// For main actor or actors with custom executors
auto serialExecutorIdentity = serialExecutorRef.getIdentity();
auto serialExecutorType = swift_getObjectType(serialExecutorIdentity);
auto serialExecutorWtable = serialExecutorRef.getSerialExecutorWitnessTable();
_swift_task_enqueueOnExecutor(job, serialExecutorIdentity, serialExecutorType,
serialExecutorWtable);
#endif // SWIFT_CONCURRENCY_EMBEDDED
}
static void
swift_actor_escalate(DefaultActorImpl *actor, AsyncTask *task, JobPriority newPriority) {
#if !SWIFT_CONCURRENCY_ACTORS_AS_LOCKS
return actor->enqueueStealer(task, newPriority);
#endif
}
SWIFT_CC(swift)
void swift::swift_executor_escalate(SerialExecutorRef executor, AsyncTask *task,
JobPriority newPriority) {
if (executor.isGeneric()) {
// TODO (rokhinip): We'd push a stealer job for the task on the executor.
return;
}
if (executor.isDefaultActor()) {
return swift_actor_escalate(asImpl(executor.getDefaultActor()), task, newPriority);
}
// TODO (rokhinip): This is either the main actor or an actor with a custom
// executor. We need to let the executor know that the job has been escalated.
// For now, do nothing
return;
}
#define OVERRIDE_ACTOR COMPATIBILITY_OVERRIDE
#include COMPATIBILITY_OVERRIDE_INCLUDE_PATH
/*****************************************************************************/
/***************************** DISTRIBUTED ACTOR *****************************/
/*****************************************************************************/
void swift::swift_nonDefaultDistributedActor_initialize(NonDefaultDistributedActor *_actor) {
asImpl(_actor)->initialize();
}
OpaqueValue*
swift::swift_distributedActor_remote_initialize(const Metadata *actorType) {
const ClassMetadata *metadata = actorType->getClassObject();
// TODO(distributed): make this allocation smaller
// ==== Allocate the memory for the remote instance
HeapObject *alloc = swift_allocObject(metadata,
metadata->getInstanceSize(),
metadata->getInstanceAlignMask());
// TODO: remove this memset eventually, today we only do this to not have
// to modify the destructor logic, as releasing zeroes is no-op
memset(alloc + 1, 0, metadata->getInstanceSize() - sizeof(HeapObject));
// TODO(distributed): a remote one does not have to have the "real"
// default actor body, e.g. we don't need an executor at all; so
// we can allocate more efficiently and only share the flags/status field
// between the both memory representations
// If it is a default actor, we reuse the same layout as DefaultActorImpl,
// and store flags in the allocation directly as we initialize it.
if (isDefaultActorClass(metadata)) {
auto actor = asImpl(reinterpret_cast<DefaultActor *>(alloc));
actor->initialize(/*remote*/true);
assert(swift_distributed_actor_is_remote(alloc));
return reinterpret_cast<OpaqueValue*>(actor);
} else {
auto actor = asImpl(reinterpret_cast<NonDefaultDistributedActor *>(alloc));
actor->initialize(/*remote*/true);
assert(swift_distributed_actor_is_remote(alloc));
return reinterpret_cast<OpaqueValue*>(actor);
}
}
bool swift::swift_distributed_actor_is_remote(HeapObject *_actor) {
const ClassMetadata *metadata = cast<ClassMetadata>(_actor->metadata);
if (isDefaultActorClass(metadata)) {
return asImpl(reinterpret_cast<DefaultActor *>(_actor))->isDistributedRemote();
} else {
return asImpl(reinterpret_cast<NonDefaultDistributedActor *>(_actor))->isDistributedRemote();
}
}
bool DefaultActorImpl::isDistributedRemote() {
return this->isDistributedRemoteActor;
}
|