1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
//===--- Clock.cpp - Time and clock resolution ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Runtime/Concurrency.h"
#include "swift/Runtime/Once.h"
#include <time.h>
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <Windows.h>
#include <realtimeapiset.h>
#endif
#include "Error.h"
using namespace swift;
SWIFT_EXPORT_FROM(swift_Concurrency)
SWIFT_CC(swift)
void swift_get_time(
long long *seconds,
long long *nanoseconds,
swift_clock_id clock_id) {
switch (clock_id) {
case swift_clock_id_continuous: {
struct timespec continuous;
#if defined(__linux__)
clock_gettime(CLOCK_BOOTTIME, &continuous);
#elif defined(__APPLE__)
clock_gettime(CLOCK_MONOTONIC_RAW, &continuous);
#elif (defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__wasi__))
clock_gettime(CLOCK_MONOTONIC, &continuous);
#elif defined(_WIN32)
LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq);
LARGE_INTEGER count;
QueryPerformanceCounter(&count);
// Divide count (number of ticks) by frequency (number of ticks per
// second) to get the counter in seconds. We also need to multiply the
// count by 1,000,000,000 to get nanosecond resolution. By multiplying
// first, we maintain high precision. The resulting value is the tick
// count in nanoseconds. Use 128-bit math to avoid overflowing.
auto quadPart = static_cast<unsigned _BitInt(128)>(count.QuadPart);
auto ns = (quadPart * 1'000'000'000) / freq.QuadPart;
continuous.tv_sec = ns / 1'000'000'000;
continuous.tv_nsec = ns % 1'000'000'000;
#else
#error Missing platform continuous time definition
#endif
*seconds = continuous.tv_sec;
*nanoseconds = continuous.tv_nsec;
return;
}
case swift_clock_id_suspending: {
struct timespec suspending;
#if defined(__linux__)
clock_gettime(CLOCK_MONOTONIC, &suspending);
#elif defined(__APPLE__)
clock_gettime(CLOCK_UPTIME_RAW, &suspending);
#elif defined(__wasi__)
clock_gettime(CLOCK_MONOTONIC, &suspending);
#elif (defined(__OpenBSD__) || defined(__FreeBSD__))
clock_gettime(CLOCK_UPTIME, &suspending);
#elif defined(_WIN32)
// QueryUnbiasedInterruptTimePrecise() was added in Windows 10 and is, as
// the name suggests, more precise than QueryUnbiasedInterruptTime().
// Unfortunately, the symbol is not listed in any .lib file in the SDK and
// must be looked up dynamically at runtime even if our minimum deployment
// target is Windows 10.
typedef decltype(QueryUnbiasedInterruptTimePrecise) *QueryUITP_FP;
static QueryUITP_FP queryUITP = nullptr;
static swift::once_t onceToken;
swift::once(onceToken, [] {
if (HMODULE hKernelBase = GetModuleHandleW(L"KernelBase.dll")) {
queryUITP = reinterpret_cast<QueryUITP_FP>(
GetProcAddress(hKernelBase, "QueryUnbiasedInterruptTimePrecise")
);
}
});
// Call whichever API is available. Both output a value measured in 100ns
// units. We must divide the output by 10,000,000 to get a value in
// seconds and multiply the remainder by 100 to get nanoseconds.
ULONGLONG unbiasedTime;
if (queryUITP) {
(* queryUITP)(&unbiasedTime);
} else {
// Fall back to the older, less precise API.
(void)QueryUnbiasedInterruptTime(&unbiasedTime);
}
suspending.tv_sec = unbiasedTime / 10'000'000;
suspending.tv_nsec = (unbiasedTime % 10'000'000) * 100;
#else
#error Missing platform suspending time definition
#endif
*seconds = suspending.tv_sec;
*nanoseconds = suspending.tv_nsec;
return;
}
}
swift_Concurrency_fatalError(0, "Fatal error: invalid clock ID %d\n",
clock_id);
}
SWIFT_EXPORT_FROM(swift_Concurrency)
SWIFT_CC(swift)
void swift_get_clock_res(
long long *seconds,
long long *nanoseconds,
swift_clock_id clock_id) {
switch (clock_id) {
case swift_clock_id_continuous: {
struct timespec continuous;
#if defined(__linux__)
clock_getres(CLOCK_BOOTTIME, &continuous);
#elif defined(__APPLE__)
clock_getres(CLOCK_MONOTONIC_RAW, &continuous);
#elif (defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__wasi__))
clock_getres(CLOCK_MONOTONIC, &continuous);
#elif defined(_WIN32)
LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq);
continuous.tv_sec = 0;
continuous.tv_nsec = 1'000'000'000 / freq.QuadPart;
#else
#error Missing platform continuous time definition
#endif
*seconds = continuous.tv_sec;
*nanoseconds = continuous.tv_nsec;
return;
}
case swift_clock_id_suspending: {
struct timespec suspending;
#if defined(__linux__)
clock_getres(CLOCK_MONOTONIC_RAW, &suspending);
#elif defined(__APPLE__)
clock_getres(CLOCK_UPTIME_RAW, &suspending);
#elif defined(__wasi__)
clock_getres(CLOCK_MONOTONIC, &suspending);
#elif (defined(__OpenBSD__) || defined(__FreeBSD__))
clock_getres(CLOCK_UPTIME, &suspending);
#elif defined(_WIN32)
suspending.tv_sec = 0;
suspending.tv_nsec = 100;
#else
#error Missing platform suspending time definition
#endif
*seconds = suspending.tv_sec;
*nanoseconds = suspending.tv_nsec;
return;
}
}
swift_Concurrency_fatalError(0, "Fatal error: invalid clock ID %d\n",
clock_id);
}
|