File: Task.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1827 lines) | stat: -rw-r--r-- 68,899 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
//===--- Task.cpp - Task object and management ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Object management routines for asynchronous task objects.
//
//===----------------------------------------------------------------------===//

#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#endif

#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "Debug.h"
#include "Error.h"
#include "TaskGroupPrivate.h"
#include "TaskPrivate.h"
#include "Tracing.h"
#include "swift/ABI/Metadata.h"
#include "swift/ABI/Task.h"
#include "swift/ABI/TaskLocal.h"
#include "swift/ABI/TaskOptions.h"
#include "swift/Basic/Lazy.h"
#include "swift/Runtime/Concurrency.h"
#include "swift/Runtime/EnvironmentVariables.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Threading/Mutex.h"
#include <atomic>
#include <new>
#include <unordered_set>

#if SWIFT_CONCURRENCY_ENABLE_DISPATCH
#include <dispatch/dispatch.h>
#endif

#if !defined(_WIN32) && !defined(__wasi__) && __has_include(<dlfcn.h>)
#include <dlfcn.h>
#endif

#if defined(SWIFT_CONCURRENCY_BACK_DEPLOYMENT)
#include <Availability.h>
#include <TargetConditionals.h>
#if TARGET_OS_WATCH
// Bitcode compilation for the watch device precludes defining the following asm
// symbols, so we don't use them... but simulators are okay.
#if TARGET_OS_SIMULATOR
asm("\n .globl _swift_async_extendedFramePointerFlags" \
    "\n _swift_async_extendedFramePointerFlags = 0x0");
#endif
#else
asm("\n .globl _swift_async_extendedFramePointerFlags" \
    "\n _swift_async_extendedFramePointerFlags = 0x0");
#endif
#else
#ifdef __APPLE__
#if __POINTER_WIDTH__ == 64
asm("\n .globl _swift_async_extendedFramePointerFlags" \
    "\n _swift_async_extendedFramePointerFlags = 0x1000000000000000");
#elif __ARM64_ARCH_8_32__
asm("\n .globl _swift_async_extendedFramePointerFlags" \
    "\n _swift_async_extendedFramePointerFlags = 0x10000000");
#else
asm("\n .globl _swift_async_extendedFramePointerFlags" \
    "\n _swift_async_extendedFramePointerFlags = 0x0");
#endif
#endif // __APPLE__
#endif // !defined(SWIFT_CONCURRENCY_BACK_DEPLOYMENT)

using namespace swift;
using FutureFragment = AsyncTask::FutureFragment;
using TaskGroup = swift::TaskGroup;

Metadata swift::TaskAllocatorSlabMetadata;
const void *const swift::_swift_concurrency_debug_asyncTaskSlabMetadata =
    &TaskAllocatorSlabMetadata;

bool swift::_swift_concurrency_debug_supportsPriorityEscalation =
    SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION;

void FutureFragment::destroy() {
  auto queueHead = waitQueue.load(std::memory_order_acquire);
  switch (queueHead.getStatus()) {
  case Status::Executing:
    swift_unreachable("destroying a task that never completed");

  case Status::Success:
    resultType.vw_destroy(getStoragePtr());
    break;

  case Status::Error:
    #if SWIFT_CONCURRENCY_EMBEDDED
    swift_unreachable("untyped error used in embedded Swift");
    #else
    swift_errorRelease(getError());
    #endif
    break;
  }
}

FutureFragment::Status AsyncTask::waitFuture(AsyncTask *waitingTask,
                                             AsyncContext *waitingTaskContext,
                                             TaskContinuationFunction *resumeFn,
                                             AsyncContext *callerContext,
                                             OpaqueValue *result) {
  using Status = FutureFragment::Status;
  using WaitQueueItem = FutureFragment::WaitQueueItem;

  assert(isFuture());
  auto fragment = futureFragment();

  // NOTE: this acquire synchronizes with `completeFuture`.
  auto queueHead = fragment->waitQueue.load(std::memory_order_acquire);
  bool contextInitialized = false;
  while (true) {
    switch (queueHead.getStatus()) {
    case Status::Error:
    case Status::Success:
      SWIFT_TASK_DEBUG_LOG("task %p waiting on task %p, completed immediately",
                           waitingTask, this);
      _swift_tsan_acquire(static_cast<Job *>(this));
      if (contextInitialized) waitingTask->flagAsRunning();
      // The task is done; we don't need to wait.
      return queueHead.getStatus();

    case Status::Executing:
      SWIFT_TASK_DEBUG_LOG("task %p waiting on task %p, going to sleep",
                           waitingTask, this);
      _swift_tsan_release(static_cast<Job *>(waitingTask));
      concurrency::trace::task_wait(
          waitingTask, this, static_cast<uintptr_t>(queueHead.getStatus()));
      // Task is not complete. We'll need to add ourselves to the queue.
      break;
    }

    if (!contextInitialized) {
      contextInitialized = true;
      auto context =
          reinterpret_cast<TaskFutureWaitAsyncContext *>(waitingTaskContext);
      context->errorResult = nullptr;
      context->successResultPointer = result;
      context->ResumeParent = resumeFn;
      context->Parent = callerContext;
      waitingTask->flagAsSuspendedOnTask(this);
    }

#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
    // In the task to thread model, we will execute the task that we are waiting
    // on, on the current thread itself. As a result, do not bother adding the
    // waitingTask to any thread queue. Instead, we will clear the old task, run
    // the new one and then reattempt to continue running the old task

    auto oldTask = _swift_task_clearCurrent();
    assert(oldTask == waitingTask);

    SWIFT_TASK_DEBUG_LOG("[RunInline] Switching away from running %p to now running %p", oldTask, this);
    // Run the new task on the same thread now - this should run the new task to
    // completion. All swift tasks in task-to-thread model run on generic
    // executor
    swift_job_run(this, SerialExecutorRef::generic());

    SWIFT_TASK_DEBUG_LOG("[RunInline] Switching back from running %p to now running %p", this, oldTask);

    // We now are back in the context of the waiting task and need to reevaluate
    // our state
    _swift_task_setCurrent(oldTask);
    queueHead = fragment->waitQueue.load(std::memory_order_acquire);
    continue;
#else
    // Put the waiting task at the beginning of the wait queue.
    // NOTE: this acquire-release synchronizes with `completeFuture`.
    waitingTask->getNextWaitingTask() = queueHead.getTask();
    auto newQueueHead = WaitQueueItem::get(Status::Executing, waitingTask);
    if (fragment->waitQueue.compare_exchange_weak(
            queueHead, newQueueHead,
            /*success*/ std::memory_order_release,
            /*failure*/ std::memory_order_acquire)) {

      _swift_task_clearCurrent();
      return FutureFragment::Status::Executing;
    }
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
  }
}

// Implemented in Swift because we need to obtain the user-defined flags on the executor ref.
//
// We could inline this with effort, though.
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreturn-type-c-linkage"
extern "C" SWIFT_CC(swift)
TaskExecutorRef _task_taskExecutor_getTaskExecutorRef(
    HeapObject *executor, const Metadata *selfType,
    const TaskExecutorWitnessTable *wtable);
#pragma clang diagnostic pop

TaskExecutorRef
InitialTaskExecutorOwnedPreferenceTaskOptionRecord::getExecutorRefFromUnownedTaskExecutor() const {
  TaskExecutorRef executorRef = _task_taskExecutor_getTaskExecutorRef(
      Identity,
      /*selfType=*/swift_getObjectType(Identity),
      /*wtable=*/WitnessTable);
    return executorRef;
}


void NullaryContinuationJob::process(Job *_job) {
  auto *job = cast<NullaryContinuationJob>(_job);

  auto *continuation = job->Continuation;

  delete job;

  auto *context =
    static_cast<ContinuationAsyncContext*>(continuation->ResumeContext);

  context->setErrorResult(nullptr);
  swift_continuation_resume(continuation);
}

void AsyncTask::completeFuture(AsyncContext *context) {
  using Status = FutureFragment::Status;
  using WaitQueueItem = FutureFragment::WaitQueueItem;
  SWIFT_TASK_DEBUG_LOG("complete future = %p", this);
  assert(isFuture());
  auto fragment = futureFragment();

  // If an error was thrown, save it in the future fragment.
  auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
      reinterpret_cast<char *>(context) - sizeof(FutureAsyncContextPrefix));
  bool hadErrorResult = false;
  auto errorObject = asyncContextPrefix->errorResult;
  fragment->getError() = errorObject;
  if (errorObject) {
    hadErrorResult = true;
  }

  _swift_tsan_release(static_cast<Job *>(this));

  // Update the status to signal completion.
  auto newQueueHead = WaitQueueItem::get(
    hadErrorResult ? Status::Error : Status::Success,
    nullptr
  );

  // NOTE: this acquire-release synchronizes with `waitFuture`.
  auto queueHead = fragment->waitQueue.exchange(
      newQueueHead, std::memory_order_acq_rel);
  assert(queueHead.getStatus() == Status::Executing);

  // If this is task group child, notify the parent group about the completion.
  if (hasGroupChildFragment()) {
    // then we must offer into the parent group that we completed,
    // so it may `next()` poll completed child tasks in completion order.
    auto group = groupChildFragment()->getGroup();
    group->offer(this, context);
  }

  // Schedule every waiting task on the executor.
  auto waitingTask = queueHead.getTask();

  if (!waitingTask) {
    SWIFT_TASK_DEBUG_LOG("task %p had no waiting tasks", this);
  } else {
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
    assert(false && "Task should have no waiters in task-to-thread model");
#endif
  }

  while (waitingTask) {
    // Find the next waiting task before we invalidate it by resuming
    // the task.
    auto nextWaitingTask = waitingTask->getNextWaitingTask();

    SWIFT_TASK_DEBUG_LOG("waking task %p from future of task %p", waitingTask,
                         this);

    // Fill in the return context.
    auto waitingContext =
      static_cast<TaskFutureWaitAsyncContext *>(waitingTask->ResumeContext);
    if (hadErrorResult) {
      #if SWIFT_CONCURRENCY_EMBEDDED
      swift_unreachable("untyped error used in embedded Swift");
      #else
      waitingContext->fillWithError(fragment);
      #endif
    } else {
      waitingContext->fillWithSuccess(fragment);
    }

    _swift_tsan_acquire(static_cast<Job *>(waitingTask));

    concurrency::trace::task_resume(waitingTask);

    // Enqueue the waiter on the global executor.
    // TODO: allow waiters to fill in a suggested executor
    waitingTask->flagAsAndEnqueueOnExecutor(SerialExecutorRef::generic());

    // Move to the next task.
    waitingTask = nextWaitingTask;
  }
}

SWIFT_CC(swift)
static void destroyJob(SWIFT_CONTEXT HeapObject *obj) {
  assert(false && "A non-task job should never be destroyed as heap metadata.");
}

AsyncTask::~AsyncTask() {
  flagAsDestroyed();

  // For a future, destroy the result.
  if (isFuture()) {
    futureFragment()->destroy();
  }

  Private.destroy();

  concurrency::trace::task_destroy(this);
}

void AsyncTask::setTaskId() {
  static std::atomic<uint64_t> NextId(1);

  // We want the 32-bit Job::Id to be non-zero, so loop if we happen upon zero.
  uint64_t Fetched;
  do {
    Fetched = NextId.fetch_add(1, std::memory_order_relaxed);
    Id = Fetched & 0xffffffff;
  } while (Id == 0);

  _private().Id = (Fetched >> 32) & 0xffffffff;
}

uint64_t AsyncTask::getTaskId() {
  // Reconstitute a full 64-bit task ID from the 32-bit job ID and the upper
  // 32 bits held in _private().
  return (uint64_t)Id << _private().Id;
}

SWIFT_CC(swift)
static void destroyTask(SWIFT_CONTEXT HeapObject *obj) {
  auto task = static_cast<AsyncTask*>(obj);
  task->~AsyncTask();

  // The task execution itself should always hold a reference to it, so
  // if we get here, we know the task has finished running, which means
  // swift_task_complete should have been run, which will have torn down
  // the task-local allocator.  There's actually nothing else to clean up
  // here.

  SWIFT_TASK_DEBUG_LOG("Destroyed task %p", task);
  free(task);
}

static SerialExecutorRef executorForEnqueuedJob(Job *job) {
#if !SWIFT_CONCURRENCY_ENABLE_DISPATCH
  return SerialExecutorRef::generic();
#else
  void *jobQueue = job->SchedulerPrivate[Job::DispatchQueueIndex];
  if (jobQueue == DISPATCH_QUEUE_GLOBAL_EXECUTOR) {
    return SerialExecutorRef::generic();
  }

  if (auto identity = reinterpret_cast<HeapObject *>(jobQueue)) {
    return SerialExecutorRef::forOrdinary(
        identity, _swift_task_getDispatchQueueSerialExecutorWitnessTable());
  }

  return SerialExecutorRef::generic();
#endif
}

static void jobInvoke(void *obj, void *unused, uint32_t flags) {
  (void)unused;
  Job *job = reinterpret_cast<Job *>(obj);

  swift_job_run(job, executorForEnqueuedJob(job));
}

// Magic constant to identify Swift Job vtables to Dispatch.
static const unsigned long dispatchSwiftObjectType = 1;

FullMetadata<DispatchClassMetadata> swift::jobHeapMetadata = {
  {
    {
      /*type layout*/ nullptr,
    },
    {
      &destroyJob
    },
    {
      /*value witness table*/ nullptr
    }
  },
  {
    MetadataKind::Job,
    dispatchSwiftObjectType,
    jobInvoke
  }
};

/// Heap metadata for an asynchronous task.
static FullMetadata<DispatchClassMetadata> taskHeapMetadata = {
  {
    {
      /*type layout*/ nullptr
    },
    {
      &destroyTask
    },
    {
      /*value witness table*/ nullptr
    }
  },
  {
    MetadataKind::Task,
    dispatchSwiftObjectType,
    jobInvoke
  }
};

const void *const swift::_swift_concurrency_debug_jobMetadata =
    static_cast<Metadata *>(&jobHeapMetadata);
const void *const swift::_swift_concurrency_debug_asyncTaskMetadata =
    static_cast<Metadata *>(&taskHeapMetadata);

static void completeTaskImpl(AsyncTask *task,
                             AsyncContext *context,
                             SwiftError *error) {
  assert(task && "completing task, but there is no active task registered");

  // Store the error result.
  auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
      reinterpret_cast<char *>(context) - sizeof(AsyncContextPrefix));
  asyncContextPrefix->errorResult = error;

  task->Private.complete(task);

  SWIFT_TASK_DEBUG_LOG("task %p completed", task);

  // Complete the future.
  // Warning: This deallocates the task in case it's an async let task.
  // The task must not be accessed afterwards.
  if (task->isFuture()) {
    task->completeFuture(context);
  }

  // TODO: set something in the status?
  // if (task->hasChildFragment()) {
    // TODO: notify the parent somehow?
    // TODO: remove this task from the child-task chain?
  // }
}

/// The function that we put in the context of a simple task
/// to handle the final return.
SWIFT_CC(swiftasync)
static void completeTask(SWIFT_ASYNC_CONTEXT AsyncContext *context,
                         SWIFT_CONTEXT SwiftError *error) {
  // Set that there's no longer a running task in the current thread.
  auto task = _swift_task_clearCurrent();
  assert(task && "completing task, but there is no active task registered");

  completeTaskImpl(task, context, error);
}

/// The function that we put in the context of a simple task
/// to handle the final return.
SWIFT_CC(swiftasync)
static void completeTaskAndRelease(SWIFT_ASYNC_CONTEXT AsyncContext *context,
                                   SWIFT_CONTEXT SwiftError *error) {
  // Set that there's no longer a running task in the current thread.
  auto task = _swift_task_clearCurrent();
  assert(task && "completing task, but there is no active task registered");

  completeTaskImpl(task, context, error);

  // Release the task, balancing the retain that a running task has on itself.
  // If it was a group child task, it will remain until the group returns it.
  swift_release(task);
}

/// The function that we put in the context of a simple task
/// to handle the final return from a closure.
SWIFT_CC(swiftasync)
static void completeTaskWithClosure(SWIFT_ASYNC_CONTEXT AsyncContext *context,
                                    SWIFT_CONTEXT SwiftError *error) {
  // Release the closure context.
  auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
      reinterpret_cast<char *>(context) - sizeof(AsyncContextPrefix));

  swift_release((HeapObject *)asyncContextPrefix->closureContext);

  // Clean up the rest of the task.
  return completeTaskAndRelease(context, error);
}

/// The function that we put in the context of an inline task to handle the
/// final return.
///
/// Because inline tasks can't produce errors, this function doesn't have an
/// error parameter.
///
/// Because inline tasks' closures are noescaping, their closure contexts are
/// stack allocated; so this function doesn't release them.
SWIFT_CC(swiftasync)
static void completeInlineTask(SWIFT_ASYNC_CONTEXT AsyncContext *context) {
  // Set that there's no longer a running task in the current thread.
  auto task = _swift_task_clearCurrent();
  assert(task && "completing task, but there is no active task registered");

  completeTaskImpl(task, context, /*error=*/nullptr);
}

SWIFT_CC(swiftasync)
static void non_future_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
  auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
      reinterpret_cast<char *>(_context) - sizeof(AsyncContextPrefix));
  return asyncContextPrefix->asyncEntryPoint(
      _context, asyncContextPrefix->closureContext);
}

SWIFT_CC(swiftasync)
static void future_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
  auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
      reinterpret_cast<char *>(_context) - sizeof(FutureAsyncContextPrefix));
  return asyncContextPrefix->asyncEntryPoint(
      asyncContextPrefix->indirectResult, _context,
      asyncContextPrefix->closureContext);
}

SWIFT_CC(swiftasync)
static void task_wait_throwing_resume_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {

  auto context = static_cast<TaskFutureWaitAsyncContext *>(_context);
  auto resumeWithError =
      reinterpret_cast<AsyncVoidClosureEntryPoint *>(context->ResumeParent);
  return resumeWithError(context->Parent, context->errorResult);
}

SWIFT_CC(swiftasync)
static void
task_future_wait_resume_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
  return _context->ResumeParent(_context->Parent);
}

const void *const swift::_swift_concurrency_debug_non_future_adapter =
    reinterpret_cast<void *>(non_future_adapter);
const void *const swift::_swift_concurrency_debug_future_adapter =
    reinterpret_cast<void *>(future_adapter);
const void
    *const swift::_swift_concurrency_debug_task_wait_throwing_resume_adapter =
        reinterpret_cast<void *>(task_wait_throwing_resume_adapter);
const void
    *const swift::_swift_concurrency_debug_task_future_wait_resume_adapter =
        reinterpret_cast<void *>(task_future_wait_resume_adapter);

const void *AsyncTask::getResumeFunctionForLogging(bool isStarting) {
  const void *result = reinterpret_cast<const void *>(ResumeTask);

  if (ResumeTask == non_future_adapter) {
    auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
        reinterpret_cast<char *>(ResumeContext) - sizeof(AsyncContextPrefix));
    result =
        reinterpret_cast<const void *>(asyncContextPrefix->asyncEntryPoint);
  } else if (ResumeTask == future_adapter) {
    auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
        reinterpret_cast<char *>(ResumeContext) -
        sizeof(FutureAsyncContextPrefix));
    result =
        reinterpret_cast<const void *>(asyncContextPrefix->asyncEntryPoint);
  }

  // Future contexts may not be valid if the task was already running before.
  if (isStarting) {
    if (ResumeTask == task_wait_throwing_resume_adapter) {
      auto context = static_cast<TaskFutureWaitAsyncContext *>(ResumeContext);
      result = reinterpret_cast<const void *>(context->ResumeParent);
    } else if (ResumeTask == task_future_wait_resume_adapter) {
      result = reinterpret_cast<const void *>(ResumeContext->ResumeParent);
    }
  }

  return __ptrauth_swift_runtime_function_entry_strip(result);
}

JobPriority swift::swift_task_currentPriority(AsyncTask *task) {
  // This is racey but this is to be used in an API is inherently racey anyways.
  auto oldStatus = task->_private()._status().load(std::memory_order_relaxed);
  return oldStatus.getStoredPriority();
}

JobPriority swift::swift_task_basePriority(AsyncTask *task) {
  JobPriority pri = task->_private().BasePriority;
  SWIFT_TASK_DEBUG_LOG("Task %p has base priority = %zu", task, pri);
  return pri;
}

JobPriority swift::swift_concurrency_jobPriority(Job *job) {
  return job->getPriority();
}

static inline bool isUnspecified(JobPriority priority) {
  return priority == JobPriority::Unspecified;
}

static inline bool taskIsStructured(JobFlags jobFlags) {
  return jobFlags.task_isAsyncLetTask() || jobFlags.task_isGroupChildTask();
}

static inline bool taskIsUnstructured(TaskCreateFlags createFlags, JobFlags jobFlags) {
  return !taskIsStructured(jobFlags) && !createFlags.isInlineTask();
}

static inline bool taskIsDetached(TaskCreateFlags createFlags, JobFlags jobFlags) {
  return taskIsUnstructured(createFlags, jobFlags) && !createFlags.copyTaskLocals();
}

static std::pair<size_t, size_t> amountToAllocateForHeaderAndTask(
    const AsyncTask *parent, const TaskGroup *group,
    ResultTypeInfo futureResultType, size_t initialContextSize) {
  // Figure out the size of the header.
  size_t headerSize = sizeof(AsyncTask);
  if (parent) {
    headerSize += sizeof(AsyncTask::ChildFragment);
  }
  if (group) {
    headerSize += sizeof(AsyncTask::GroupChildFragment);
  }
  if (!futureResultType.isNull()) {
    headerSize += FutureFragment::fragmentSize(headerSize, futureResultType);
    // Add the future async context prefix.
    headerSize += sizeof(FutureAsyncContextPrefix);
  } else {
    // Add the async context prefix.
    headerSize += sizeof(AsyncContextPrefix);
  }

  headerSize = llvm::alignTo(headerSize, llvm::Align(alignof(AsyncContext)));
  // Allocate the initial context together with the job.
  // This means that we never get rid of this allocation.
  size_t amountToAllocate = headerSize + initialContextSize;

  assert(amountToAllocate % MaximumAlignment == 0);

  return {headerSize, amountToAllocate};
}

/// Implementation of task creation.
SWIFT_CC(swift)
static AsyncTaskAndContext
swift_task_create_commonImpl(size_t rawTaskCreateFlags,
                             TaskOptionRecord *options,
                             const Metadata *futureResultTypeMetadata,
                             TaskContinuationFunction *function,
                             void *closureContext, size_t initialContextSize) {
  TaskCreateFlags taskCreateFlags(rawTaskCreateFlags);
  JobFlags jobFlags(JobKind::Task, JobPriority::Unspecified);

  // Propagate task-creation flags to job flags as appropriate.
  jobFlags.task_setIsChildTask(taskCreateFlags.isChildTask());

  ResultTypeInfo futureResultType;
  #if !SWIFT_CONCURRENCY_EMBEDDED
  futureResultType.metadata = futureResultTypeMetadata;
  #endif

  // Collect the options we know about.
  SerialExecutorRef serialExecutor = SerialExecutorRef::generic();
  TaskExecutorRef taskExecutor = TaskExecutorRef::undefined();
  bool taskExecutorIsOwned = false;
  TaskGroup *group = nullptr;
  AsyncLet *asyncLet = nullptr;
  bool hasAsyncLetResultBuffer = false;
  RunInlineTaskOptionRecord *runInlineOption = nullptr;
  for (auto option = options; option; option = option->getParent()) {
    switch (option->getKind()) {
    case TaskOptionRecordKind::InitialSerialExecutor:
      serialExecutor = cast<InitialSerialExecutorTaskOptionRecord>(option)
                          ->getExecutorRef();
      break;

    case TaskOptionRecordKind::InitialTaskExecutorUnowned:
      taskExecutor = cast<InitialTaskExecutorRefPreferenceTaskOptionRecord>(option)
                         ->getExecutorRef();
      jobFlags.task_setHasInitialTaskExecutorPreference(true);
      taskExecutorIsOwned = false;
      break;

    case TaskOptionRecordKind::InitialTaskExecutorOwned:
      #if SWIFT_CONCURRENCY_EMBEDDED
      swift_unreachable("owned TaskExecutor cannot be used in embedded Swift");
      #else
      taskExecutor = cast<InitialTaskExecutorOwnedPreferenceTaskOptionRecord>(option)
                         ->getExecutorRefFromUnownedTaskExecutor();
      taskExecutorIsOwned = true;
      jobFlags.task_setHasInitialTaskExecutorPreference(true);
      #endif
      break;

    case TaskOptionRecordKind::TaskGroup:
      group = cast<TaskGroupTaskOptionRecord>(option)->getGroup();
      assert(group && "Missing group");
      jobFlags.task_setIsGroupChildTask(true);
      break;

    case TaskOptionRecordKind::AsyncLet:
      asyncLet = cast<AsyncLetTaskOptionRecord>(option)->getAsyncLet();
      assert(asyncLet && "Missing async let storage");
      jobFlags.task_setIsAsyncLetTask(true);
      jobFlags.task_setIsChildTask(true);
      break;

    case TaskOptionRecordKind::AsyncLetWithBuffer: {
      auto *aletRecord = cast<AsyncLetWithBufferTaskOptionRecord>(option);
      asyncLet = aletRecord->getAsyncLet();
      // TODO: Actually digest the result buffer into the async let task
      // context, so that we can emplace the eventual result there instead
      // of in a FutureFragment.
      hasAsyncLetResultBuffer = true;
      assert(asyncLet && "Missing async let storage");

      jobFlags.task_setIsAsyncLetTask(true);
      jobFlags.task_setIsChildTask(true);
      break;
    }
    case TaskOptionRecordKind::RunInline: {
      runInlineOption = cast<RunInlineTaskOptionRecord>(option);
      // TODO (rokhinip): We seem to be creating runInline tasks like detached
      // tasks but they need to maintain the voucher and priority of calling
      // thread and therefore need to behave a bit more like SC child tasks.
      break;
    }
    case TaskOptionRecordKind::ResultTypeInfo: {
#if SWIFT_CONCURRENCY_EMBEDDED
      auto *typeInfo = cast<ResultTypeInfoTaskOptionRecord>(option);
      futureResultType = {
          .size = typeInfo->size,
          .alignMask = typeInfo->alignMask,
          .initializeWithCopy = typeInfo->initializeWithCopy,
          .storeEnumTagSinglePayload = typeInfo->storeEnumTagSinglePayload,
          .destroy = typeInfo->destroy,
      };
      break;
#else
      swift_unreachable("ResultTypeInfo in non-embedded");
#endif
    }
    }
  }

  #if SWIFT_CONCURRENCY_EMBEDDED
  assert(!futureResultType.isNull());
  #endif

  if (!futureResultType.isNull()) {
    jobFlags.task_setIsFuture(true);
    assert(initialContextSize >= sizeof(FutureAsyncContext));
  }

  AsyncTask *currentTask = swift_task_getCurrent();
  AsyncTask *parent = jobFlags.task_isChildTask() ? currentTask : nullptr;

  if (group) {
    assert(parent && "a task created in a group must be a child task");
    // Add to the task group, if requested.
    if (taskCreateFlags.addPendingGroupTaskUnconditionally()) {
      assert(group && "Missing group");
      swift_taskGroup_addPending(group, /*unconditionally=*/true);
    }
  }

  // Start with user specified priority at creation time (if any)
  JobPriority basePriority = (taskCreateFlags.getRequestedPriority());

  if (taskCreateFlags.isInlineTask()) {
     SWIFT_TASK_DEBUG_LOG("Creating an inline task from %p", currentTask);

     // We'll take the current priority and set it as base and escalated
     // priority of the task. No UI->IN downgrade needed.
     basePriority = swift_task_getCurrentThreadPriority();

  } else if (taskIsDetached(taskCreateFlags, jobFlags)) {
     SWIFT_TASK_DEBUG_LOG("Creating a detached task from %p", currentTask);
     // Case 1: No priority specified
     //    Base priority = UN
     //    Escalated priority = UN
     // Case 2: Priority specified
     //    Base priority = user specified priority
     //    Escalated priority = UN
     //
     // Task will be created with max priority = max(base priority, UN) = base
     // priority. We shouldn't need to do any additional manipulations here since
     // basePriority should already be the right value

  } else if (taskIsUnstructured(taskCreateFlags, jobFlags)) {
     SWIFT_TASK_DEBUG_LOG("Creating an unstructured task from %p", currentTask);

    if (isUnspecified(basePriority)) {
      // Case 1: No priority specified
      //    Base priority = Base priority of parent with a UI -> IN downgrade
      //    Escalated priority = UN
      if (currentTask) {
        basePriority = currentTask->_private().BasePriority;
      } else {
        basePriority = swift_task_getCurrentThreadPriority();
      }
      basePriority = withUserInteractivePriorityDowngrade(basePriority);
    } else {
      // Case 2: User specified a priority
      //    Base priority = user specified priority
      //    Escalated priority = UN
    }

    // Task will be created with max priority = max(base priority, UN) = base
    // priority
  } else {
    // Is a structured concurrency child task. Must have a parent.
    assert((asyncLet || group) && parent);
    SWIFT_TASK_DEBUG_LOG("Creating an structured concurrency task from %p", currentTask);

    if (isUnspecified(basePriority)) {
      // Case 1: No priority specified
      //    Base priority = Base priority of parent with a UI -> IN downgrade
      //    Escalated priority = Escalated priority of parent with a UI -> IN
      //    downgrade
      JobPriority parentBasePri = parent->_private().BasePriority;
      basePriority = withUserInteractivePriorityDowngrade(parentBasePri);
    } else {
      // Case 2: User priority specified
      //    Base priority = User specified priority
      //    Escalated priority = Escalated priority of parent with a UI -> IN
      //    downgrade
    }

    // Task will be created with escalated priority = base priority. We will
    // update the escalated priority with the right rules in
    // updateNewChildWithParentAndGroupState when we link the child into
    // the parent task/task group since we'll have the right
    // synchronization then.
  }

  if (isUnspecified(basePriority)) {
     basePriority = JobPriority::Default;
  }

  SWIFT_TASK_DEBUG_LOG("Task's base priority = %#zx", basePriority);

  size_t headerSize, amountToAllocate;
  std::tie(headerSize, amountToAllocate) = amountToAllocateForHeaderAndTask(
      parent, group, futureResultType, initialContextSize);

  unsigned initialSlabSize = 512;

  void *allocation = nullptr;
  if (asyncLet) {
    assert(parent);

    // If there isn't enough room in the fixed async let allocation to
    // set up the initial context, then we'll have to allocate more space
    // from the parent.
    if (asyncLet->getSizeOfPreallocatedSpace() < amountToAllocate) {
      hasAsyncLetResultBuffer = false;
    }

    // DEPRECATED. This is separated from the above condition because we
    // also have to handle an older async let ABI that did not provide
    // space for the initial slab in the compiler-generated preallocation.
    if (!hasAsyncLetResultBuffer) {
      allocation = _swift_task_alloc_specific(parent,
                                          amountToAllocate + initialSlabSize);
    } else {
      allocation = asyncLet->getPreallocatedSpace();
      assert(asyncLet->getSizeOfPreallocatedSpace() >= amountToAllocate
             && "async let does not preallocate enough space for child task");
      initialSlabSize = asyncLet->getSizeOfPreallocatedSpace()
                          - amountToAllocate;
    }
  } else if (runInlineOption && runInlineOption->getAllocation()) {
    // NOTE: If the space required for the task and initial context was
    //       greater than SWIFT_TASK_RUN_INLINE_INITIAL_CONTEXT_BYTES,
    //       getAllocation will return nullptr and we'll fall back to malloc to
    //       allocate the buffer.
    //
    // This was already checked in swift_task_run_inline.
    size_t runInlineBufferBytes = runInlineOption->getAllocationBytes();
    assert(amountToAllocate <= runInlineBufferBytes);
    allocation = runInlineOption->getAllocation();
    initialSlabSize = runInlineBufferBytes - amountToAllocate;
  } else {
    allocation = malloc(amountToAllocate);
  }
  SWIFT_TASK_DEBUG_LOG("allocate task %p, parent = %p, slab %u", allocation,
                       parent, initialSlabSize);

  AsyncContext *initialContext =
    reinterpret_cast<AsyncContext*>(
      reinterpret_cast<char*>(allocation) + headerSize);

  //  We can't just use `function` because it uses the new async function entry
  //  ABI -- passing parameters, closure context, indirect result addresses
  //  directly -- but AsyncTask->ResumeTask expects the signature to be
  //  `void (*, *, swiftasync *)`.
  //  Instead we use an adapter. This adaptor should use the storage prefixed to
  //  the async context to get at the parameters.
  //  See e.g. FutureAsyncContextPrefix.

  if (futureResultType.isNull() || taskCreateFlags.isDiscardingTask()) {
    auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
        reinterpret_cast<char *>(allocation) + headerSize -
        sizeof(AsyncContextPrefix));
    asyncContextPrefix->asyncEntryPoint =
        reinterpret_cast<AsyncVoidClosureEntryPoint *>(function);
    asyncContextPrefix->closureContext = closureContext;
    function = non_future_adapter;
    assert(sizeof(AsyncContextPrefix) == 3 * sizeof(void *));
  } else {
    auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
        reinterpret_cast<char *>(allocation) + headerSize -
        sizeof(FutureAsyncContextPrefix));
    asyncContextPrefix->asyncEntryPoint =
        reinterpret_cast<AsyncGenericClosureEntryPoint *>(function);
    function = future_adapter;
    asyncContextPrefix->closureContext = closureContext;
    assert(sizeof(FutureAsyncContextPrefix) == 4 * sizeof(void *));
  }

  // Only attempt to inherit parent's executor preference if we didn't set one
  // explicitly, which we've recorded in the flag by noticing a task create
  // option higher up in this func.
  if (!jobFlags.task_hasInitialTaskExecutorPreference()) {
    // do we have a parent we can inherit the task executor from?
    if (parent) {
      auto parentTaskExecutor = parent->getPreferredTaskExecutor();
      if (parentTaskExecutor.isDefined()) {
        jobFlags.task_setHasInitialTaskExecutorPreference(true);
        taskExecutor = parentTaskExecutor;
      }
    }
  }

  // Initialize the task so that resuming it will run the given
  // function on the initial context.
  AsyncTask *task = nullptr;
  bool captureCurrentVoucher = !taskIsDetached(taskCreateFlags, jobFlags);
  if (asyncLet) {
    // Initialize the refcount bits to "immortal", so that
    // ARC operations don't have any effect on the task.
    task = new(allocation) AsyncTask(&taskHeapMetadata,
                             InlineRefCounts::Immortal, jobFlags,
                             function, initialContext,
                             captureCurrentVoucher);
  } else {
    task = new(allocation) AsyncTask(&taskHeapMetadata, jobFlags,
                                    function, initialContext,
                                    captureCurrentVoucher);
  }

  // Initialize the child fragment if applicable.
  if (parent) {
    auto childFragment = task->childFragment();
    ::new (childFragment) AsyncTask::ChildFragment(parent);
  }

  // Initialize the group child fragment if applicable.
  if (group) {
    auto groupChildFragment = task->groupChildFragment();
    ::new (groupChildFragment) AsyncTask::GroupChildFragment(group);
  }

  // Initialize the future fragment if applicable.
  if (!futureResultType.isNull()) {
    assert(task->isFuture());
    auto futureFragment = task->futureFragment();
    ::new (futureFragment) FutureFragment(futureResultType);

    // Set up the context for the future so there is no error, and a successful
    // result will be written into the future fragment's storage.
    auto futureAsyncContextPrefix =
        reinterpret_cast<FutureAsyncContextPrefix *>(
            reinterpret_cast<char *>(allocation) + headerSize -
            sizeof(FutureAsyncContextPrefix));
    futureAsyncContextPrefix->indirectResult = futureFragment->getStoragePtr();
  }

  SWIFT_TASK_DEBUG_LOG("creating task %p ID %" PRIu64
                       " with parent %p at base pri %zu",
                       task, task->getTaskId(), parent, basePriority);

  // Initialize the task-local allocator.
  initialContext->ResumeParent =
      runInlineOption ? &completeInlineTask
                      : reinterpret_cast<TaskContinuationFunction *>(
                            asyncLet         ? &completeTask
                            : closureContext ? &completeTaskWithClosure
                                             : &completeTaskAndRelease);
  if ((asyncLet || (runInlineOption && runInlineOption->getAllocation())) &&
      initialSlabSize > 0) {
    assert(parent || (runInlineOption && runInlineOption->getAllocation()));
    void *initialSlab = (char*)allocation + amountToAllocate;
    task->Private.initializeWithSlab(basePriority, initialSlab,
                                     initialSlabSize);
  } else {
    task->Private.initialize(basePriority);
  }

  // Perform additional linking between parent and child task.
  if (parent) {
    // If the parent was already cancelled, we carry this flag forward to the child.
    //
    // In a task group we would not have allowed the `add` to create a child anymore,
    // however better safe than sorry and `async let` are not expressed as task groups,
    // so they may have been spawned in any case still.
    if ((group && group->isCancelled()) || swift_task_isCancelled(parent))
      swift_task_cancel(task);

    // Initialize task locals storage
    bool taskLocalStorageInitialized = false;

    // Inside a task group, we may have to perform some defensive copying,
    // check if doing so is necessary, and initialize storage using partial
    // defensive copies if necessary.
    if (group) {
      assert(parent && "a task created in a group must be a child task");
      // We are a child task in a task group; and it may happen that we are calling
      // addTask specifically in such shape:
      //
      //     $local.withValue(theValue) { addTask {} }
      //
      // If this is the case, we MUST copy `theValue` (and any other such directly
      // wrapping the addTask value bindings), because those values will be popped
      // when withValue returns - breaking our structured concurrency guarantees
      // that we rely on for the "link directly to parent's task local Item".
      //
      // Values set outside the task group are not subject to this problem, as
      // their structural lifetime guarantee is upheld by the group scope
      // out-living any addTask created tasks.
      auto ParentLocal = parent->_private().Local;
      // If we were going to copy ALL values anyway, we don't need to
      // perform this defensive partial copying. In practice, we currently
      // do not have child tasks which force copying, but we could.
      assert(!taskCreateFlags.copyTaskLocals() &&
             "Currently we don't have child tasks which force copying task "
             "locals; unexpected attempt to combine the two!");

      if (auto taskLocalHeadLinkType = ParentLocal.peekHeadLinkType()) {
        if (taskLocalHeadLinkType ==
            swift::TaskLocal::NextLinkType::IsNextCreatedInTaskGroupBody) {
          ParentLocal.copyToOnlyOnlyFromCurrentGroup(task);
          taskLocalStorageInitialized = true;
        }
      }
    }

    if (!taskLocalStorageInitialized) {
      // just initialize the storage normally
      task->_private().Local.initializeLinkParent(task, parent);
    }
  }

  // Configure the initial context.
  //
  // FIXME: if we store a null pointer here using the standard ABI for
  // signed null pointers, then we'll have to authenticate context pointers
  // as if they might be null, even though the only time they ever might
  // be is the final hop.  Store a signed null instead.
  initialContext->Parent = nullptr;

  // FIXME: add discarding flag
  // FIXME: add task executor
  concurrency::trace::task_create(
      task, parent, group, asyncLet,
      static_cast<uint8_t>(task->Flags.getPriority()),
      task->Flags.task_isChildTask(), task->Flags.task_isFuture(),
      task->Flags.task_isGroupChildTask(), task->Flags.task_isAsyncLetTask());

  // Attach to the group, if needed.
  if (group) {
    swift_taskGroup_attachChild(group, task);
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
    // We need to take a retain here to keep the child task for the task group
    // alive. In the non-task-to-thread model, we'd always take this retain
    // below since we'd enqueue the child task. But since we're not going to be
    // enqueueing the child task in this model, we need to take this +1 to
    // balance out the release that exists after the task group child task
    // creation
    swift_retain(task);
#endif
  }

  // If we're supposed to copy task locals, do so now.
  if (taskCreateFlags.copyTaskLocals()) {
    swift_task_localsCopyTo(task);
  }

  // Push the async let task status record.
  if (asyncLet) {
    asyncLet_addImpl(task, asyncLet, !hasAsyncLetResultBuffer);
  }

  // Task executor preference
  // If the task does not have a specific executor set already via create
  // options, and there is a task executor preference set in the parent, we
  // inherit it by deep-copying the preference record. if
  // (shouldPushTaskExecutorPreferenceRecord || taskExecutor.isDefined()) {
  if (jobFlags.task_hasInitialTaskExecutorPreference()) {
    // Implementation note: we must do this AFTER `swift_taskGroup_attachChild`
    // because the group takes a fast-path when attaching the child record.
    assert(jobFlags.task_hasInitialTaskExecutorPreference());
    task->pushInitialTaskExecutorPreference(
        taskExecutor, /*owned=*/taskExecutorIsOwned);
  }

  // If we're supposed to enqueue the task, do so now.
  if (taskCreateFlags.enqueueJob()) {
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
    assert(false && "Should not be enqueuing tasks in task-to-thread model");
#endif
    swift_retain(task);
    task->flagAsAndEnqueueOnExecutor(
        serialExecutor);
  }

  return {task, initialContext};
}

/// Extract the entry point address and initial context size from an async closure value.
template<typename AsyncSignature, uint16_t AuthDiscriminator>
SWIFT_ALWAYS_INLINE // so this doesn't hang out as a ptrauth gadget
std::pair<typename AsyncSignature::FunctionType *, size_t>
getAsyncClosureEntryPointAndContextSize(void *function) {
  auto fnPtr =
      reinterpret_cast<const AsyncFunctionPointer<AsyncSignature> *>(function);
#if SWIFT_PTRAUTH
  fnPtr = (const AsyncFunctionPointer<AsyncSignature> *)ptrauth_auth_data(
      (void *)fnPtr, ptrauth_key_process_independent_data, AuthDiscriminator);
#endif
  return {reinterpret_cast<typename AsyncSignature::FunctionType *>(
              fnPtr->Function.get()),
          fnPtr->ExpectedContextSize};
}

#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
SWIFT_CC(swift)
void swift::swift_task_run_inline(OpaqueValue *result, void *closureAFP,
                                  OpaqueValue *closureContext,
                                  const Metadata *futureResultTypeMetadata) {
  // Ensure that we're currently in a synchronous context.
  if (swift_task_getCurrent()) {
    swift_Concurrency_fatalError(0, "called runInline within an async context");
  }

  ResultTypeInfo futureResultType;
#if !SWIFT_CONCURRENCY_EMBEDDED
  futureResultType.metadata = futureResultTypeMetadata;
#endif

  // Unpack the asynchronous function pointer.
  FutureAsyncSignature::FunctionType *closure;
  size_t closureContextSize;
  std::tie(closure, closureContextSize) =
      getAsyncClosureEntryPointAndContextSize<
          FutureAsyncSignature,
          SpecialPointerAuthDiscriminators::AsyncFutureFunction>(closureAFP);

  // If the initial task and initial async frame aren't too big, allocate enough
  // stack space for them and for use as the initial task slab.
  //
  // If they are too big, swift_task_create_common will fall back to malloc.
  size_t candidateAllocationBytes = SWIFT_TASK_RUN_INLINE_INITIAL_CONTEXT_BYTES;
  size_t minimumAllocationSize =
      amountToAllocateForHeaderAndTask(/*parent=*/nullptr, /*group=*/nullptr,
                                       futureResultType, closureContextSize)
          .second;
  void *allocation = nullptr;
  size_t allocationBytes = 0;
  if (minimumAllocationSize <= candidateAllocationBytes) {
    allocationBytes = candidateAllocationBytes;
    allocation = alloca(allocationBytes);
  }

  // Create a task to run the closure.  Pass a RunInlineTaskOptionRecord
  // containing a pointer to the allocation enabling us to provide our stack
  // allocation rather than swift_task_create_common having to malloc it.
  RunInlineTaskOptionRecord option(allocation, allocationBytes);
  size_t taskCreateFlags = 1 << TaskCreateFlags::Task_IsInlineTask;

  auto taskAndContext = swift_task_create_common(
      taskCreateFlags, &option, futureResultTypeMetadata,
      reinterpret_cast<TaskContinuationFunction *>(closure), closureContext,
      /*initialContextSize=*/closureContextSize);

  // Run the task.
  swift_job_run(taskAndContext.Task, SerialExecutorRef::generic());
  // Under the task-to-thread concurrency model, the task should always have
  // completed by this point.

  // Copy the result out to our caller.
  auto *futureResult = taskAndContext.Task->futureFragment()->getStoragePtr();
  futureResultType.vw_initializeWithCopy(result, futureResult);

  // Destroy the task.
  taskAndContext.Task->~AsyncTask();
}
#endif

SWIFT_CC(swift)
AsyncTaskAndContext swift::swift_task_create(
    size_t rawTaskCreateFlags,
    TaskOptionRecord *options,
    const Metadata *futureResultType,
    void *closureEntry, HeapObject *closureContext) {
  TaskCreateFlags taskCreateFlags(rawTaskCreateFlags);

  if (taskCreateFlags.isDiscardingTask()) {
    ThinNullaryAsyncSignature::FunctionType *taskEntry;
    size_t initialContextSize;

    std::tie(taskEntry, initialContextSize) =
      getAsyncClosureEntryPointAndContextSize<
        ThinNullaryAsyncSignature,
        SpecialPointerAuthDiscriminators::AsyncThinNullaryFunction>(closureEntry);

    return swift_task_create_common(
        rawTaskCreateFlags, options, futureResultType,
        reinterpret_cast<TaskContinuationFunction *>(taskEntry), closureContext,
        initialContextSize);

  } else {
    FutureAsyncSignature::FunctionType *taskEntry;
    size_t initialContextSize;

    std::tie(taskEntry, initialContextSize) =
        getAsyncClosureEntryPointAndContextSize<
            FutureAsyncSignature,
            SpecialPointerAuthDiscriminators::AsyncFutureFunction>(closureEntry);

    return swift_task_create_common(
        rawTaskCreateFlags, options, futureResultType,
        reinterpret_cast<TaskContinuationFunction *>(taskEntry), closureContext,
        initialContextSize);
  }
}

#ifdef __ARM_ARCH_7K__
__attribute__((noinline))
SWIFT_CC(swiftasync) static void workaround_function_swift_task_future_waitImpl(
    OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
    AsyncTask *task, TaskContinuationFunction resumeFunction,
    AsyncContext *callContext) {
  // Make sure we don't eliminate calls to this function.
  asm volatile("" // Do nothing.
               :  // Output list, empty.
               : "r"(result), "r"(callerContext), "r"(task) // Input list.
               : // Clobber list, empty.
  );
  return;
}
#endif

SWIFT_CC(swiftasync)
static void swift_task_future_waitImpl(
  OpaqueValue *result,
  SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
  AsyncTask *task,
  TaskContinuationFunction *resumeFn,
  AsyncContext *callContext) {
  // Suspend the waiting task.
  auto waitingTask = swift_task_getCurrent();
  waitingTask->ResumeTask = task_future_wait_resume_adapter;
  waitingTask->ResumeContext = callContext;

  // Wait on the future.
  assert(task->isFuture());

  switch (task->waitFuture(waitingTask, callContext, resumeFn, callerContext,
                           result)) {
  case FutureFragment::Status::Executing:
    // The waiting task has been queued on the future.
#ifdef __ARM_ARCH_7K__
    return workaround_function_swift_task_future_waitImpl(
        result, callerContext, task, resumeFn, callContext);
#else
    return;
#endif

  case FutureFragment::Status::Success: {
    // Run the task with a successful result.
    auto future = task->futureFragment();
    future->getResultType().vw_initializeWithCopy(result, future->getStoragePtr());
    return resumeFn(callerContext);
  }

  case FutureFragment::Status::Error:
    swift_Concurrency_fatalError(0, "future reported an error, but wait cannot throw");
  }
}

#ifdef __ARM_ARCH_7K__
__attribute__((noinline))
SWIFT_CC(swiftasync) static void workaround_function_swift_task_future_wait_throwingImpl(
    OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
    AsyncTask *task, ThrowingTaskFutureWaitContinuationFunction resumeFunction,
    AsyncContext *callContext) {
  // Make sure we don't eliminate calls to this function.
  asm volatile("" // Do nothing.
               :  // Output list, empty.
               : "r"(result), "r"(callerContext), "r"(task) // Input list.
               : // Clobber list, empty.
  );
  return;
}
#endif

SWIFT_CC(swiftasync)
void swift_task_future_wait_throwingImpl(
    OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
    AsyncTask *task,
    ThrowingTaskFutureWaitContinuationFunction *resumeFunction,
    AsyncContext *callContext) {
  auto waitingTask = swift_task_getCurrent();
  // Suspend the waiting task.
  waitingTask->ResumeTask = task_wait_throwing_resume_adapter;
  waitingTask->ResumeContext = callContext;

  auto resumeFn = reinterpret_cast<TaskContinuationFunction *>(resumeFunction);

  // Wait on the future.
  assert(task->isFuture());

  switch (task->waitFuture(waitingTask, callContext, resumeFn, callerContext,
                           result)) {
  case FutureFragment::Status::Executing:
    // The waiting task has been queued on the future.
#ifdef __ARM_ARCH_7K__
    return workaround_function_swift_task_future_wait_throwingImpl(
        result, callerContext, task, resumeFunction, callContext);
#else
    return;
#endif

  case FutureFragment::Status::Success: {
    auto future = task->futureFragment();
    future->getResultType().vw_initializeWithCopy(result, future->getStoragePtr());
    return resumeFunction(callerContext, nullptr /*error*/);
  }

  case FutureFragment::Status::Error: {
    #if SWIFT_CONCURRENCY_EMBEDDED
    swift_unreachable("untyped error used in embedded Swift");
    #else
    // Run the task with an error result.
    auto future = task->futureFragment();
    auto error = future->getError();
    swift_errorRetain(error);
    return resumeFunction(callerContext, error);
    #endif
  }
  }
}

size_t swift::swift_task_getJobFlags(AsyncTask *task) {
  return task->Flags.getOpaqueValue();
}

// This function exists primarily for the purpose of the concurrency runtime
// unit tests and does not serve a functional purpose.
SWIFT_CC(swift)
static AsyncTask *swift_task_suspendImpl() {
  auto task = swift_task_getCurrent();
  task->flagAsSuspendedOnContinuation(nullptr);
  _swift_task_clearCurrent();
  return task;
}

SWIFT_CC(swift)
static void swift_task_enqueueTaskOnExecutorImpl(AsyncTask *task,
                                                 SerialExecutorRef executor) {
  // TODO: is 'swift_task_enqueueTaskOnExecutorImpl' used at all, outside tests?
  task->flagAsAndEnqueueOnExecutor(executor);
}

namespace continuationChecking {

enum class State : uint8_t { Uninitialized, On, Off };

static std::atomic<State> CurrentState;

static LazyMutex ActiveContinuationsLock;
static Lazy<std::unordered_set<ContinuationAsyncContext *>> ActiveContinuations;

static bool isEnabled() {
  auto state = CurrentState.load(std::memory_order_relaxed);
  if (state == State::Uninitialized) {
    bool enabled =
        runtime::environment::concurrencyValidateUncheckedContinuations();
    state = enabled ? State::On : State::Off;
    CurrentState.store(state, std::memory_order_relaxed);
  }
  return state == State::On;
}

static void init(ContinuationAsyncContext *context) {
  if (!isEnabled())
    return;

  LazyMutex::ScopedLock guard(ActiveContinuationsLock);
  auto result = ActiveContinuations.get().insert(context);
  auto inserted = std::get<1>(result);
  if (!inserted)
    swift_Concurrency_fatalError(
        0,
        "Initializing continuation context %p that was already initialized.\n",
        context);
}

static void willResume(ContinuationAsyncContext *context) {
  if (!isEnabled())
    return;

  LazyMutex::ScopedLock guard(ActiveContinuationsLock);
  auto removed = ActiveContinuations.get().erase(context);
  if (!removed)
    swift_Concurrency_fatalError(0,
                      "Resuming continuation context %p that was not awaited "
                      "(may have already been resumed).\n",
                      context);
}

} // namespace continuationChecking

SWIFT_CC(swift)
static AsyncTask *swift_continuation_initImpl(ContinuationAsyncContext *context,
                                              AsyncContinuationFlags flags) {
  continuationChecking::init(context);
  context->Flags = ContinuationAsyncContext::FlagsType();
  if (flags.canThrow()) context->Flags.setCanThrow(true);
  if (flags.isExecutorSwitchForced())
    context->Flags.setIsExecutorSwitchForced(true);
  context->ErrorResult = nullptr;

  // Set the generic executor as the target executor unless there's
  // an executor override.
  if (!flags.hasExecutorOverride())
    context->ResumeToExecutor = SerialExecutorRef::generic();

  // We can initialize this with a relaxed store because resumption
  // must happen-after this call.
  context->AwaitSynchronization.store(flags.isPreawaited()
                                        ? ContinuationStatus::Awaited
                                        : ContinuationStatus::Pending,
                                      std::memory_order_relaxed);
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
  context->Cond = nullptr;
#endif
  AsyncTask *task;

  // A preawait immediately suspends the task.
  if (flags.isPreawaited()) {
    task = swift_task_getCurrent();
    assert(task && "initializing a continuation with no current task");
    task->flagAsSuspendedOnContinuation(context);
    _swift_task_clearCurrent();
  } else {
    task = swift_task_getCurrent();
    assert(task && "initializing a continuation with no current task");
  }

  task->ResumeContext = context;
  task->ResumeTask = context->ResumeParent;

  concurrency::trace::task_continuation_init(task, context);

  return task;
}

SWIFT_CC(swiftasync)
static void swift_continuation_awaitImpl(ContinuationAsyncContext *context) {
#ifndef NDEBUG
  auto task = swift_task_getCurrent();
  assert(task && "awaiting continuation without a task");
  assert(task->ResumeContext == context);
  assert(task->ResumeTask == context->ResumeParent);
#endif

  concurrency::trace::task_continuation_await(context);

  auto &sync = context->AwaitSynchronization;

  auto oldStatus = sync.load(std::memory_order_acquire);
  assert((oldStatus == ContinuationStatus::Pending ||
          oldStatus == ContinuationStatus::Resumed) &&
         "awaiting a corrupt or already-awaited continuation");

  // If the status is already Resumed, we can resume immediately.
  if (oldStatus == ContinuationStatus::Resumed) {
    if (context->isExecutorSwitchForced())
      return swift_task_switch(context, context->ResumeParent,
                               context->ResumeToExecutor);
    return context->ResumeParent(context);
  }

  // Load the current task (we already did this in assertions builds).
#ifdef NDEBUG
  auto task = swift_task_getCurrent();
#endif

#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
  // In the task to thread model, we do not suspend the task that is waiting on
  // the continuation resumption. Instead we simply block the thread on a
  // condition variable keep the task alive on the thread.
  //
  // This condition variable can be allocated on the stack of the blocking
  // thread - with the address of it published to the resuming thread via the
  // context.
  ConditionVariable Cond;

  context->Cond = &Cond;
#else /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
  // Flag the task as suspended on the continuation.
  task->flagAsSuspendedOnContinuation(context);
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */

#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
  // If the cmpxchg is successful, the store release also publishes the write to
  // the Cond in the ContinuationAsyncContext to any concurrent accessing
  // thread.
  //
  // If it failed, then someone concurrently resumed the continuation in which
  // case, we don't care about publishing the Cond in the
  // ContinuationAsyncContext anyway.
#endif
  // Try to transition to Awaited
  bool success =
    sync.compare_exchange_strong(oldStatus, ContinuationStatus::Awaited,
                                 /*success*/ std::memory_order_release,
                                 /*failure*/ std::memory_order_acquire);

  if (success) {
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
    // This lock really protects nothing but we need to hold it
    // while calling the condition wait
    Cond.lock();

    // Condition variables can have spurious wakeups so we need to check this in
    // a do-while loop.
    do {
      Cond.wait();
      oldStatus = sync.load(std::memory_order_relaxed);
    } while (oldStatus != ContinuationStatus::Resumed);

    Cond.unlock();
#else
    // If that succeeded, we have nothing to do since we've successfully
    // suspended the task
    _swift_task_clearCurrent();
    return;
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
  }

  // If it failed, it should be because someone concurrently resumed
  // (note that the compare-exchange above is strong).
  assert(oldStatus == ContinuationStatus::Resumed &&
         "continuation was concurrently corrupted or awaited");

#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
  // Since the condition variable is stack allocated, we don't need to do
  // anything here to clean up
#else
  // Restore the running state of the task and resume it.
  task->flagAsRunning();
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */

  if (context->isExecutorSwitchForced())
    return swift_task_switch(context, context->ResumeParent,
                             context->ResumeToExecutor);
  return context->ResumeParent(context);
}

static void resumeTaskAfterContinuation(AsyncTask *task,
                                        ContinuationAsyncContext *context) {
  continuationChecking::willResume(context);

  auto &sync = context->AwaitSynchronization;

  auto status = sync.load(std::memory_order_acquire);
  assert(status != ContinuationStatus::Resumed &&
         "continuation was already resumed");

  // Make sure TSan knows that the resume call happens-before the task
  // restarting.
  _swift_tsan_release(static_cast<Job *>(task));

  // The status should be either Pending or Awaited.
  //
  // Case 1: Status is Pending
  // No one has awaited us, we just need to set it to Resumed; if that fails
  // (with a strong cmpxchg), it should be because the original thread
  // concurrently set it to Awaited, in which case, we fall into Case 2.
  //
  // Case 2: Status is Awaited
  // This is probably the more frequently hit case.
  // In task-to-thread model, we update status to be Resumed and signal the
  // waiting thread. In regular model, we immediately enqueue the task and can
  // skip updates to the continuation state since there shouldn't be a racing
  // attempt to resume the continuation.
  if (status == ContinuationStatus::Pending &&
      sync.compare_exchange_strong(status, ContinuationStatus::Resumed,
                                   /*success*/ std::memory_order_release,
                                   /*failure*/ std::memory_order_acquire)) {
    return;
  }
  assert(status == ContinuationStatus::Awaited &&
         "detected concurrent attempt to resume continuation");
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
  // If we see status == ContinuationStatus::Awaited, then we should also be
  // seeing a pointer to the cond var since we're doing a load acquire on sync
  // which pairs with the store release in swift_continuation_awaitImpl
  assert(context->Cond != nullptr);

  sync.store(ContinuationStatus::Resumed, std::memory_order_relaxed);
  context->Cond->signal();
#else
  // TODO: maybe in some mode we should set the status to Resumed here
  // to make a stronger best-effort attempt to catch racing attempts to
  // resume the continuation?
  task->flagAsAndEnqueueOnExecutor(context->ResumeToExecutor);
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
}

SWIFT_CC(swift)
static void swift_continuation_resumeImpl(AsyncTask *task) {
  auto context = static_cast<ContinuationAsyncContext*>(task->ResumeContext);
  concurrency::trace::task_continuation_resume(context, false);
  resumeTaskAfterContinuation(task, context);
}

SWIFT_CC(swift)
static void swift_continuation_throwingResumeImpl(AsyncTask *task) {
  auto context = static_cast<ContinuationAsyncContext*>(task->ResumeContext);
  concurrency::trace::task_continuation_resume(context, false);
  resumeTaskAfterContinuation(task, context);
}


SWIFT_CC(swift)
static void swift_continuation_throwingResumeWithErrorImpl(AsyncTask *task,
                                                /* +1 */ SwiftError *error) {
  auto context = static_cast<ContinuationAsyncContext*>(task->ResumeContext);
  concurrency::trace::task_continuation_resume(context, true);
  context->ErrorResult = error;
  resumeTaskAfterContinuation(task, context);
}

bool swift::swift_task_isCancelled(AsyncTask *task) {
  return task->isCancelled();
}

SWIFT_CC(swift)
static CancellationNotificationStatusRecord*
swift_task_addCancellationHandlerImpl(
    CancellationNotificationStatusRecord::FunctionType handler,
    void *context) {
  void *allocation =
      swift_task_alloc(sizeof(CancellationNotificationStatusRecord));
  auto unsigned_handler = swift_auth_code(handler, 3848);
  auto *record = ::new (allocation)
      CancellationNotificationStatusRecord(unsigned_handler, context);

  bool fireHandlerNow = false;

  addStatusRecordToSelf(record, [&](ActiveTaskStatus oldStatus, ActiveTaskStatus& newStatus) {
    if (oldStatus.isCancelled()) {
      fireHandlerNow = true;
      // We don't fire the cancellation handler here since this function needs
      // to be idempotent
    }
    return true;
  });

  if (fireHandlerNow) {
    record->run();
  }
  return record;
}

SWIFT_CC(swift)
static void swift_task_removeCancellationHandlerImpl(
    CancellationNotificationStatusRecord *record) {
  removeStatusRecordFromSelf(record);
  swift_task_dealloc(record);
}

SWIFT_CC(swift)
static NullaryContinuationJob*
swift_task_createNullaryContinuationJobImpl(
    size_t priority,
    AsyncTask *continuation) {
  auto *job = new NullaryContinuationJob(swift_task_getCurrent(),
        static_cast<JobPriority>(priority), continuation);

  return job;
}

SWIFT_CC(swift)
void swift::swift_continuation_logFailedCheck(const char *message) {
  swift_reportError(0, message);
}

SWIFT_RUNTIME_ATTRIBUTE_NORETURN
SWIFT_CC(swift)
static void swift_task_asyncMainDrainQueueImpl() {
#if SWIFT_CONCURRENCY_COOPERATIVE_GLOBAL_EXECUTOR
  bool Finished = false;
  swift_task_donateThreadToGlobalExecutorUntil([](void *context) {
    return *reinterpret_cast<bool*>(context);
  }, &Finished);
  swift_unreachable(
      "Returned from swift_task_donateThreadToGlobalExecutorUntil()");
#elif !SWIFT_CONCURRENCY_ENABLE_DISPATCH
  // FIXME: consider implementing a concurrent global main queue for
  // these environments?
  swift_reportError(0, "operation unsupported without libdispatch: "
                       "swift_task_asyncMainDrainQueue");
#else
#if defined(_WIN32)
  HMODULE hModule = LoadLibraryW(L"dispatch.dll");
  if (hModule == NULL) {
    swift_Concurrency_fatalError(0,
      "unable to load dispatch.dll: %lu", GetLastError());
  }

  auto pfndispatch_main = reinterpret_cast<void (FAR *)(void)>(
    GetProcAddress(hModule, "dispatch_main"));
  if (pfndispatch_main == NULL) {
    swift_Concurrency_fatalError(0,
      "unable to locate dispatch_main in dispatch.dll: %lu", GetLastError());
  }

  pfndispatch_main();
  swift_unreachable("Returned from dispatch_main()");
#else
  // CFRunLoop is not available on non-Darwin targets.  Foundation has an
  // implementation, but CoreFoundation is not meant to be exposed.  We can only
  // assume the existence of `CFRunLoopRun` on Darwin platforms, where the
  // system provides an implementation of CoreFoundation.
#if defined(__APPLE__)
  auto runLoop =
      reinterpret_cast<void (*)(void)>(dlsym(RTLD_DEFAULT, "CFRunLoopRun"));
  if (runLoop) {
    runLoop();
    exit(0);
  }
#endif

    dispatch_main();
#endif
#endif
}

SWIFT_CC(swift)
void (*swift::swift_task_asyncMainDrainQueue_hook)(
    swift_task_asyncMainDrainQueue_original original,
    swift_task_asyncMainDrainQueue_override compatOverride) = nullptr;

SWIFT_CC(swift)
static void swift_task_startOnMainActorImpl(AsyncTask* task) {
  AsyncTask * originalTask = _swift_task_clearCurrent();
  SerialExecutorRef mainExecutor = swift_task_getMainExecutor();
  if (!swift_task_isCurrentExecutor(mainExecutor))
    swift_Concurrency_fatalError(0, "Not on the main executor");
  swift_retain(task);
  swift_job_run(task, mainExecutor);
  _swift_task_setCurrent(originalTask);
}

#define OVERRIDE_TASK COMPATIBILITY_OVERRIDE

#ifdef SWIFT_STDLIB_SUPPORT_BACK_DEPLOYMENT
/// The original COMPATIBILITY_OVERRIDE defined in CompatibilityOverride.h
/// returns the result of the impl function and override function. This results
/// in a warning emitted for noreturn functions. Overriding the override macro
/// to not return.
#define HOOKED_OVERRIDE_TASK_NORETURN(name, attrs, ccAttrs, namespace,         \
                                      typedArgs, namedArgs)                    \
  attrs ccAttrs void namespace swift_##name COMPATIBILITY_PAREN(typedArgs) {   \
    static Override_##name Override;                                           \
    static swift_once_t Predicate;                                             \
    swift_once(                                                                \
        &Predicate, [](void *) { Override = getOverride_##name(); }, nullptr); \
    if (swift_##name##_hook) {                                                 \
      swift_##name##_hook(COMPATIBILITY_UNPAREN_WITH_COMMA(namedArgs)          \
                              swift_##name##Impl,                              \
                          Override);                                           \
      abort();                                                                 \
    }                                                                          \
    if (Override != nullptr)                                                   \
      Override(COMPATIBILITY_UNPAREN_WITH_COMMA(namedArgs)                     \
                   swift_##name##Impl);                                        \
    swift_##name##Impl COMPATIBILITY_PAREN(namedArgs);                         \
  }

#else // ifndef SWIFT_STDLIB_SUPPORT_BACK_DEPLOYMENT
// Call directly through to the original implementation when we don't support
// overrides.
#define HOOKED_OVERRIDE_TASK_NORETURN(name, attrs, ccAttrs, namespace,         \
                                      typedArgs, namedArgs)                    \
  attrs ccAttrs void namespace swift_##name COMPATIBILITY_PAREN(typedArgs) {   \
    if (swift_##name##_hook) {                                                 \
      swift_##name##_hook(swift_##name##Impl, nullptr);                        \
      abort();                                                                 \
    }                                                                          \
    swift_##name##Impl COMPATIBILITY_PAREN(namedArgs);                         \
  }
#endif // #else SWIFT_STDLIB_SUPPORT_BACK_DEPLOYMENT

#include COMPATIBILITY_OVERRIDE_INCLUDE_PATH