1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
|
//===--- Task.cpp - Task object and management ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Object management routines for asynchronous task objects.
//
//===----------------------------------------------------------------------===//
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#endif
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "Debug.h"
#include "Error.h"
#include "TaskGroupPrivate.h"
#include "TaskPrivate.h"
#include "Tracing.h"
#include "swift/ABI/Metadata.h"
#include "swift/ABI/Task.h"
#include "swift/ABI/TaskLocal.h"
#include "swift/ABI/TaskOptions.h"
#include "swift/Basic/Lazy.h"
#include "swift/Runtime/Concurrency.h"
#include "swift/Runtime/EnvironmentVariables.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Threading/Mutex.h"
#include <atomic>
#include <new>
#include <unordered_set>
#if SWIFT_CONCURRENCY_ENABLE_DISPATCH
#include <dispatch/dispatch.h>
#endif
#if !defined(_WIN32) && !defined(__wasi__) && __has_include(<dlfcn.h>)
#include <dlfcn.h>
#endif
#if defined(SWIFT_CONCURRENCY_BACK_DEPLOYMENT)
#include <Availability.h>
#include <TargetConditionals.h>
#if TARGET_OS_WATCH
// Bitcode compilation for the watch device precludes defining the following asm
// symbols, so we don't use them... but simulators are okay.
#if TARGET_OS_SIMULATOR
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x0");
#endif
#else
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x0");
#endif
#else
#ifdef __APPLE__
#if __POINTER_WIDTH__ == 64
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x1000000000000000");
#elif __ARM64_ARCH_8_32__
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x10000000");
#else
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x0");
#endif
#endif // __APPLE__
#endif // !defined(SWIFT_CONCURRENCY_BACK_DEPLOYMENT)
using namespace swift;
using FutureFragment = AsyncTask::FutureFragment;
using TaskGroup = swift::TaskGroup;
Metadata swift::TaskAllocatorSlabMetadata;
const void *const swift::_swift_concurrency_debug_asyncTaskSlabMetadata =
&TaskAllocatorSlabMetadata;
bool swift::_swift_concurrency_debug_supportsPriorityEscalation =
SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION;
void FutureFragment::destroy() {
auto queueHead = waitQueue.load(std::memory_order_acquire);
switch (queueHead.getStatus()) {
case Status::Executing:
swift_unreachable("destroying a task that never completed");
case Status::Success:
resultType.vw_destroy(getStoragePtr());
break;
case Status::Error:
#if SWIFT_CONCURRENCY_EMBEDDED
swift_unreachable("untyped error used in embedded Swift");
#else
swift_errorRelease(getError());
#endif
break;
}
}
FutureFragment::Status AsyncTask::waitFuture(AsyncTask *waitingTask,
AsyncContext *waitingTaskContext,
TaskContinuationFunction *resumeFn,
AsyncContext *callerContext,
OpaqueValue *result) {
using Status = FutureFragment::Status;
using WaitQueueItem = FutureFragment::WaitQueueItem;
assert(isFuture());
auto fragment = futureFragment();
// NOTE: this acquire synchronizes with `completeFuture`.
auto queueHead = fragment->waitQueue.load(std::memory_order_acquire);
bool contextInitialized = false;
while (true) {
switch (queueHead.getStatus()) {
case Status::Error:
case Status::Success:
SWIFT_TASK_DEBUG_LOG("task %p waiting on task %p, completed immediately",
waitingTask, this);
_swift_tsan_acquire(static_cast<Job *>(this));
if (contextInitialized) waitingTask->flagAsRunning();
// The task is done; we don't need to wait.
return queueHead.getStatus();
case Status::Executing:
SWIFT_TASK_DEBUG_LOG("task %p waiting on task %p, going to sleep",
waitingTask, this);
_swift_tsan_release(static_cast<Job *>(waitingTask));
concurrency::trace::task_wait(
waitingTask, this, static_cast<uintptr_t>(queueHead.getStatus()));
// Task is not complete. We'll need to add ourselves to the queue.
break;
}
if (!contextInitialized) {
contextInitialized = true;
auto context =
reinterpret_cast<TaskFutureWaitAsyncContext *>(waitingTaskContext);
context->errorResult = nullptr;
context->successResultPointer = result;
context->ResumeParent = resumeFn;
context->Parent = callerContext;
waitingTask->flagAsSuspendedOnTask(this);
}
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// In the task to thread model, we will execute the task that we are waiting
// on, on the current thread itself. As a result, do not bother adding the
// waitingTask to any thread queue. Instead, we will clear the old task, run
// the new one and then reattempt to continue running the old task
auto oldTask = _swift_task_clearCurrent();
assert(oldTask == waitingTask);
SWIFT_TASK_DEBUG_LOG("[RunInline] Switching away from running %p to now running %p", oldTask, this);
// Run the new task on the same thread now - this should run the new task to
// completion. All swift tasks in task-to-thread model run on generic
// executor
swift_job_run(this, SerialExecutorRef::generic());
SWIFT_TASK_DEBUG_LOG("[RunInline] Switching back from running %p to now running %p", this, oldTask);
// We now are back in the context of the waiting task and need to reevaluate
// our state
_swift_task_setCurrent(oldTask);
queueHead = fragment->waitQueue.load(std::memory_order_acquire);
continue;
#else
// Put the waiting task at the beginning of the wait queue.
// NOTE: this acquire-release synchronizes with `completeFuture`.
waitingTask->getNextWaitingTask() = queueHead.getTask();
auto newQueueHead = WaitQueueItem::get(Status::Executing, waitingTask);
if (fragment->waitQueue.compare_exchange_weak(
queueHead, newQueueHead,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire)) {
_swift_task_clearCurrent();
return FutureFragment::Status::Executing;
}
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
}
}
// Implemented in Swift because we need to obtain the user-defined flags on the executor ref.
//
// We could inline this with effort, though.
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreturn-type-c-linkage"
extern "C" SWIFT_CC(swift)
TaskExecutorRef _task_taskExecutor_getTaskExecutorRef(
HeapObject *executor, const Metadata *selfType,
const TaskExecutorWitnessTable *wtable);
#pragma clang diagnostic pop
TaskExecutorRef
InitialTaskExecutorOwnedPreferenceTaskOptionRecord::getExecutorRefFromUnownedTaskExecutor() const {
TaskExecutorRef executorRef = _task_taskExecutor_getTaskExecutorRef(
Identity,
/*selfType=*/swift_getObjectType(Identity),
/*wtable=*/WitnessTable);
return executorRef;
}
void NullaryContinuationJob::process(Job *_job) {
auto *job = cast<NullaryContinuationJob>(_job);
auto *continuation = job->Continuation;
delete job;
auto *context =
static_cast<ContinuationAsyncContext*>(continuation->ResumeContext);
context->setErrorResult(nullptr);
swift_continuation_resume(continuation);
}
void AsyncTask::completeFuture(AsyncContext *context) {
using Status = FutureFragment::Status;
using WaitQueueItem = FutureFragment::WaitQueueItem;
SWIFT_TASK_DEBUG_LOG("complete future = %p", this);
assert(isFuture());
auto fragment = futureFragment();
// If an error was thrown, save it in the future fragment.
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(FutureAsyncContextPrefix));
bool hadErrorResult = false;
auto errorObject = asyncContextPrefix->errorResult;
fragment->getError() = errorObject;
if (errorObject) {
hadErrorResult = true;
}
_swift_tsan_release(static_cast<Job *>(this));
// Update the status to signal completion.
auto newQueueHead = WaitQueueItem::get(
hadErrorResult ? Status::Error : Status::Success,
nullptr
);
// NOTE: this acquire-release synchronizes with `waitFuture`.
auto queueHead = fragment->waitQueue.exchange(
newQueueHead, std::memory_order_acq_rel);
assert(queueHead.getStatus() == Status::Executing);
// If this is task group child, notify the parent group about the completion.
if (hasGroupChildFragment()) {
// then we must offer into the parent group that we completed,
// so it may `next()` poll completed child tasks in completion order.
auto group = groupChildFragment()->getGroup();
group->offer(this, context);
}
// Schedule every waiting task on the executor.
auto waitingTask = queueHead.getTask();
if (!waitingTask) {
SWIFT_TASK_DEBUG_LOG("task %p had no waiting tasks", this);
} else {
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
assert(false && "Task should have no waiters in task-to-thread model");
#endif
}
while (waitingTask) {
// Find the next waiting task before we invalidate it by resuming
// the task.
auto nextWaitingTask = waitingTask->getNextWaitingTask();
SWIFT_TASK_DEBUG_LOG("waking task %p from future of task %p", waitingTask,
this);
// Fill in the return context.
auto waitingContext =
static_cast<TaskFutureWaitAsyncContext *>(waitingTask->ResumeContext);
if (hadErrorResult) {
#if SWIFT_CONCURRENCY_EMBEDDED
swift_unreachable("untyped error used in embedded Swift");
#else
waitingContext->fillWithError(fragment);
#endif
} else {
waitingContext->fillWithSuccess(fragment);
}
_swift_tsan_acquire(static_cast<Job *>(waitingTask));
concurrency::trace::task_resume(waitingTask);
// Enqueue the waiter on the global executor.
// TODO: allow waiters to fill in a suggested executor
waitingTask->flagAsAndEnqueueOnExecutor(SerialExecutorRef::generic());
// Move to the next task.
waitingTask = nextWaitingTask;
}
}
SWIFT_CC(swift)
static void destroyJob(SWIFT_CONTEXT HeapObject *obj) {
assert(false && "A non-task job should never be destroyed as heap metadata.");
}
AsyncTask::~AsyncTask() {
flagAsDestroyed();
// For a future, destroy the result.
if (isFuture()) {
futureFragment()->destroy();
}
Private.destroy();
concurrency::trace::task_destroy(this);
}
void AsyncTask::setTaskId() {
static std::atomic<uint64_t> NextId(1);
// We want the 32-bit Job::Id to be non-zero, so loop if we happen upon zero.
uint64_t Fetched;
do {
Fetched = NextId.fetch_add(1, std::memory_order_relaxed);
Id = Fetched & 0xffffffff;
} while (Id == 0);
_private().Id = (Fetched >> 32) & 0xffffffff;
}
uint64_t AsyncTask::getTaskId() {
// Reconstitute a full 64-bit task ID from the 32-bit job ID and the upper
// 32 bits held in _private().
return (uint64_t)Id << _private().Id;
}
SWIFT_CC(swift)
static void destroyTask(SWIFT_CONTEXT HeapObject *obj) {
auto task = static_cast<AsyncTask*>(obj);
task->~AsyncTask();
// The task execution itself should always hold a reference to it, so
// if we get here, we know the task has finished running, which means
// swift_task_complete should have been run, which will have torn down
// the task-local allocator. There's actually nothing else to clean up
// here.
SWIFT_TASK_DEBUG_LOG("Destroyed task %p", task);
free(task);
}
static SerialExecutorRef executorForEnqueuedJob(Job *job) {
#if !SWIFT_CONCURRENCY_ENABLE_DISPATCH
return SerialExecutorRef::generic();
#else
void *jobQueue = job->SchedulerPrivate[Job::DispatchQueueIndex];
if (jobQueue == DISPATCH_QUEUE_GLOBAL_EXECUTOR) {
return SerialExecutorRef::generic();
}
if (auto identity = reinterpret_cast<HeapObject *>(jobQueue)) {
return SerialExecutorRef::forOrdinary(
identity, _swift_task_getDispatchQueueSerialExecutorWitnessTable());
}
return SerialExecutorRef::generic();
#endif
}
static void jobInvoke(void *obj, void *unused, uint32_t flags) {
(void)unused;
Job *job = reinterpret_cast<Job *>(obj);
swift_job_run(job, executorForEnqueuedJob(job));
}
// Magic constant to identify Swift Job vtables to Dispatch.
static const unsigned long dispatchSwiftObjectType = 1;
FullMetadata<DispatchClassMetadata> swift::jobHeapMetadata = {
{
{
/*type layout*/ nullptr,
},
{
&destroyJob
},
{
/*value witness table*/ nullptr
}
},
{
MetadataKind::Job,
dispatchSwiftObjectType,
jobInvoke
}
};
/// Heap metadata for an asynchronous task.
static FullMetadata<DispatchClassMetadata> taskHeapMetadata = {
{
{
/*type layout*/ nullptr
},
{
&destroyTask
},
{
/*value witness table*/ nullptr
}
},
{
MetadataKind::Task,
dispatchSwiftObjectType,
jobInvoke
}
};
const void *const swift::_swift_concurrency_debug_jobMetadata =
static_cast<Metadata *>(&jobHeapMetadata);
const void *const swift::_swift_concurrency_debug_asyncTaskMetadata =
static_cast<Metadata *>(&taskHeapMetadata);
static void completeTaskImpl(AsyncTask *task,
AsyncContext *context,
SwiftError *error) {
assert(task && "completing task, but there is no active task registered");
// Store the error result.
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(AsyncContextPrefix));
asyncContextPrefix->errorResult = error;
task->Private.complete(task);
SWIFT_TASK_DEBUG_LOG("task %p completed", task);
// Complete the future.
// Warning: This deallocates the task in case it's an async let task.
// The task must not be accessed afterwards.
if (task->isFuture()) {
task->completeFuture(context);
}
// TODO: set something in the status?
// if (task->hasChildFragment()) {
// TODO: notify the parent somehow?
// TODO: remove this task from the child-task chain?
// }
}
/// The function that we put in the context of a simple task
/// to handle the final return.
SWIFT_CC(swiftasync)
static void completeTask(SWIFT_ASYNC_CONTEXT AsyncContext *context,
SWIFT_CONTEXT SwiftError *error) {
// Set that there's no longer a running task in the current thread.
auto task = _swift_task_clearCurrent();
assert(task && "completing task, but there is no active task registered");
completeTaskImpl(task, context, error);
}
/// The function that we put in the context of a simple task
/// to handle the final return.
SWIFT_CC(swiftasync)
static void completeTaskAndRelease(SWIFT_ASYNC_CONTEXT AsyncContext *context,
SWIFT_CONTEXT SwiftError *error) {
// Set that there's no longer a running task in the current thread.
auto task = _swift_task_clearCurrent();
assert(task && "completing task, but there is no active task registered");
completeTaskImpl(task, context, error);
// Release the task, balancing the retain that a running task has on itself.
// If it was a group child task, it will remain until the group returns it.
swift_release(task);
}
/// The function that we put in the context of a simple task
/// to handle the final return from a closure.
SWIFT_CC(swiftasync)
static void completeTaskWithClosure(SWIFT_ASYNC_CONTEXT AsyncContext *context,
SWIFT_CONTEXT SwiftError *error) {
// Release the closure context.
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(AsyncContextPrefix));
swift_release((HeapObject *)asyncContextPrefix->closureContext);
// Clean up the rest of the task.
return completeTaskAndRelease(context, error);
}
/// The function that we put in the context of an inline task to handle the
/// final return.
///
/// Because inline tasks can't produce errors, this function doesn't have an
/// error parameter.
///
/// Because inline tasks' closures are noescaping, their closure contexts are
/// stack allocated; so this function doesn't release them.
SWIFT_CC(swiftasync)
static void completeInlineTask(SWIFT_ASYNC_CONTEXT AsyncContext *context) {
// Set that there's no longer a running task in the current thread.
auto task = _swift_task_clearCurrent();
assert(task && "completing task, but there is no active task registered");
completeTaskImpl(task, context, /*error=*/nullptr);
}
SWIFT_CC(swiftasync)
static void non_future_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(_context) - sizeof(AsyncContextPrefix));
return asyncContextPrefix->asyncEntryPoint(
_context, asyncContextPrefix->closureContext);
}
SWIFT_CC(swiftasync)
static void future_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(_context) - sizeof(FutureAsyncContextPrefix));
return asyncContextPrefix->asyncEntryPoint(
asyncContextPrefix->indirectResult, _context,
asyncContextPrefix->closureContext);
}
SWIFT_CC(swiftasync)
static void task_wait_throwing_resume_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto context = static_cast<TaskFutureWaitAsyncContext *>(_context);
auto resumeWithError =
reinterpret_cast<AsyncVoidClosureEntryPoint *>(context->ResumeParent);
return resumeWithError(context->Parent, context->errorResult);
}
SWIFT_CC(swiftasync)
static void
task_future_wait_resume_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
return _context->ResumeParent(_context->Parent);
}
const void *const swift::_swift_concurrency_debug_non_future_adapter =
reinterpret_cast<void *>(non_future_adapter);
const void *const swift::_swift_concurrency_debug_future_adapter =
reinterpret_cast<void *>(future_adapter);
const void
*const swift::_swift_concurrency_debug_task_wait_throwing_resume_adapter =
reinterpret_cast<void *>(task_wait_throwing_resume_adapter);
const void
*const swift::_swift_concurrency_debug_task_future_wait_resume_adapter =
reinterpret_cast<void *>(task_future_wait_resume_adapter);
const void *AsyncTask::getResumeFunctionForLogging(bool isStarting) {
const void *result = reinterpret_cast<const void *>(ResumeTask);
if (ResumeTask == non_future_adapter) {
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(ResumeContext) - sizeof(AsyncContextPrefix));
result =
reinterpret_cast<const void *>(asyncContextPrefix->asyncEntryPoint);
} else if (ResumeTask == future_adapter) {
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(ResumeContext) -
sizeof(FutureAsyncContextPrefix));
result =
reinterpret_cast<const void *>(asyncContextPrefix->asyncEntryPoint);
}
// Future contexts may not be valid if the task was already running before.
if (isStarting) {
if (ResumeTask == task_wait_throwing_resume_adapter) {
auto context = static_cast<TaskFutureWaitAsyncContext *>(ResumeContext);
result = reinterpret_cast<const void *>(context->ResumeParent);
} else if (ResumeTask == task_future_wait_resume_adapter) {
result = reinterpret_cast<const void *>(ResumeContext->ResumeParent);
}
}
return __ptrauth_swift_runtime_function_entry_strip(result);
}
JobPriority swift::swift_task_currentPriority(AsyncTask *task) {
// This is racey but this is to be used in an API is inherently racey anyways.
auto oldStatus = task->_private()._status().load(std::memory_order_relaxed);
return oldStatus.getStoredPriority();
}
JobPriority swift::swift_task_basePriority(AsyncTask *task) {
JobPriority pri = task->_private().BasePriority;
SWIFT_TASK_DEBUG_LOG("Task %p has base priority = %zu", task, pri);
return pri;
}
JobPriority swift::swift_concurrency_jobPriority(Job *job) {
return job->getPriority();
}
static inline bool isUnspecified(JobPriority priority) {
return priority == JobPriority::Unspecified;
}
static inline bool taskIsStructured(JobFlags jobFlags) {
return jobFlags.task_isAsyncLetTask() || jobFlags.task_isGroupChildTask();
}
static inline bool taskIsUnstructured(TaskCreateFlags createFlags, JobFlags jobFlags) {
return !taskIsStructured(jobFlags) && !createFlags.isInlineTask();
}
static inline bool taskIsDetached(TaskCreateFlags createFlags, JobFlags jobFlags) {
return taskIsUnstructured(createFlags, jobFlags) && !createFlags.copyTaskLocals();
}
static std::pair<size_t, size_t> amountToAllocateForHeaderAndTask(
const AsyncTask *parent, const TaskGroup *group,
ResultTypeInfo futureResultType, size_t initialContextSize) {
// Figure out the size of the header.
size_t headerSize = sizeof(AsyncTask);
if (parent) {
headerSize += sizeof(AsyncTask::ChildFragment);
}
if (group) {
headerSize += sizeof(AsyncTask::GroupChildFragment);
}
if (!futureResultType.isNull()) {
headerSize += FutureFragment::fragmentSize(headerSize, futureResultType);
// Add the future async context prefix.
headerSize += sizeof(FutureAsyncContextPrefix);
} else {
// Add the async context prefix.
headerSize += sizeof(AsyncContextPrefix);
}
headerSize = llvm::alignTo(headerSize, llvm::Align(alignof(AsyncContext)));
// Allocate the initial context together with the job.
// This means that we never get rid of this allocation.
size_t amountToAllocate = headerSize + initialContextSize;
assert(amountToAllocate % MaximumAlignment == 0);
return {headerSize, amountToAllocate};
}
/// Implementation of task creation.
SWIFT_CC(swift)
static AsyncTaskAndContext
swift_task_create_commonImpl(size_t rawTaskCreateFlags,
TaskOptionRecord *options,
const Metadata *futureResultTypeMetadata,
TaskContinuationFunction *function,
void *closureContext, size_t initialContextSize) {
TaskCreateFlags taskCreateFlags(rawTaskCreateFlags);
JobFlags jobFlags(JobKind::Task, JobPriority::Unspecified);
// Propagate task-creation flags to job flags as appropriate.
jobFlags.task_setIsChildTask(taskCreateFlags.isChildTask());
ResultTypeInfo futureResultType;
#if !SWIFT_CONCURRENCY_EMBEDDED
futureResultType.metadata = futureResultTypeMetadata;
#endif
// Collect the options we know about.
SerialExecutorRef serialExecutor = SerialExecutorRef::generic();
TaskExecutorRef taskExecutor = TaskExecutorRef::undefined();
bool taskExecutorIsOwned = false;
TaskGroup *group = nullptr;
AsyncLet *asyncLet = nullptr;
bool hasAsyncLetResultBuffer = false;
RunInlineTaskOptionRecord *runInlineOption = nullptr;
for (auto option = options; option; option = option->getParent()) {
switch (option->getKind()) {
case TaskOptionRecordKind::InitialSerialExecutor:
serialExecutor = cast<InitialSerialExecutorTaskOptionRecord>(option)
->getExecutorRef();
break;
case TaskOptionRecordKind::InitialTaskExecutorUnowned:
taskExecutor = cast<InitialTaskExecutorRefPreferenceTaskOptionRecord>(option)
->getExecutorRef();
jobFlags.task_setHasInitialTaskExecutorPreference(true);
taskExecutorIsOwned = false;
break;
case TaskOptionRecordKind::InitialTaskExecutorOwned:
#if SWIFT_CONCURRENCY_EMBEDDED
swift_unreachable("owned TaskExecutor cannot be used in embedded Swift");
#else
taskExecutor = cast<InitialTaskExecutorOwnedPreferenceTaskOptionRecord>(option)
->getExecutorRefFromUnownedTaskExecutor();
taskExecutorIsOwned = true;
jobFlags.task_setHasInitialTaskExecutorPreference(true);
#endif
break;
case TaskOptionRecordKind::TaskGroup:
group = cast<TaskGroupTaskOptionRecord>(option)->getGroup();
assert(group && "Missing group");
jobFlags.task_setIsGroupChildTask(true);
break;
case TaskOptionRecordKind::AsyncLet:
asyncLet = cast<AsyncLetTaskOptionRecord>(option)->getAsyncLet();
assert(asyncLet && "Missing async let storage");
jobFlags.task_setIsAsyncLetTask(true);
jobFlags.task_setIsChildTask(true);
break;
case TaskOptionRecordKind::AsyncLetWithBuffer: {
auto *aletRecord = cast<AsyncLetWithBufferTaskOptionRecord>(option);
asyncLet = aletRecord->getAsyncLet();
// TODO: Actually digest the result buffer into the async let task
// context, so that we can emplace the eventual result there instead
// of in a FutureFragment.
hasAsyncLetResultBuffer = true;
assert(asyncLet && "Missing async let storage");
jobFlags.task_setIsAsyncLetTask(true);
jobFlags.task_setIsChildTask(true);
break;
}
case TaskOptionRecordKind::RunInline: {
runInlineOption = cast<RunInlineTaskOptionRecord>(option);
// TODO (rokhinip): We seem to be creating runInline tasks like detached
// tasks but they need to maintain the voucher and priority of calling
// thread and therefore need to behave a bit more like SC child tasks.
break;
}
case TaskOptionRecordKind::ResultTypeInfo: {
#if SWIFT_CONCURRENCY_EMBEDDED
auto *typeInfo = cast<ResultTypeInfoTaskOptionRecord>(option);
futureResultType = {
.size = typeInfo->size,
.alignMask = typeInfo->alignMask,
.initializeWithCopy = typeInfo->initializeWithCopy,
.storeEnumTagSinglePayload = typeInfo->storeEnumTagSinglePayload,
.destroy = typeInfo->destroy,
};
break;
#else
swift_unreachable("ResultTypeInfo in non-embedded");
#endif
}
}
}
#if SWIFT_CONCURRENCY_EMBEDDED
assert(!futureResultType.isNull());
#endif
if (!futureResultType.isNull()) {
jobFlags.task_setIsFuture(true);
assert(initialContextSize >= sizeof(FutureAsyncContext));
}
AsyncTask *currentTask = swift_task_getCurrent();
AsyncTask *parent = jobFlags.task_isChildTask() ? currentTask : nullptr;
if (group) {
assert(parent && "a task created in a group must be a child task");
// Add to the task group, if requested.
if (taskCreateFlags.addPendingGroupTaskUnconditionally()) {
assert(group && "Missing group");
swift_taskGroup_addPending(group, /*unconditionally=*/true);
}
}
// Start with user specified priority at creation time (if any)
JobPriority basePriority = (taskCreateFlags.getRequestedPriority());
if (taskCreateFlags.isInlineTask()) {
SWIFT_TASK_DEBUG_LOG("Creating an inline task from %p", currentTask);
// We'll take the current priority and set it as base and escalated
// priority of the task. No UI->IN downgrade needed.
basePriority = swift_task_getCurrentThreadPriority();
} else if (taskIsDetached(taskCreateFlags, jobFlags)) {
SWIFT_TASK_DEBUG_LOG("Creating a detached task from %p", currentTask);
// Case 1: No priority specified
// Base priority = UN
// Escalated priority = UN
// Case 2: Priority specified
// Base priority = user specified priority
// Escalated priority = UN
//
// Task will be created with max priority = max(base priority, UN) = base
// priority. We shouldn't need to do any additional manipulations here since
// basePriority should already be the right value
} else if (taskIsUnstructured(taskCreateFlags, jobFlags)) {
SWIFT_TASK_DEBUG_LOG("Creating an unstructured task from %p", currentTask);
if (isUnspecified(basePriority)) {
// Case 1: No priority specified
// Base priority = Base priority of parent with a UI -> IN downgrade
// Escalated priority = UN
if (currentTask) {
basePriority = currentTask->_private().BasePriority;
} else {
basePriority = swift_task_getCurrentThreadPriority();
}
basePriority = withUserInteractivePriorityDowngrade(basePriority);
} else {
// Case 2: User specified a priority
// Base priority = user specified priority
// Escalated priority = UN
}
// Task will be created with max priority = max(base priority, UN) = base
// priority
} else {
// Is a structured concurrency child task. Must have a parent.
assert((asyncLet || group) && parent);
SWIFT_TASK_DEBUG_LOG("Creating an structured concurrency task from %p", currentTask);
if (isUnspecified(basePriority)) {
// Case 1: No priority specified
// Base priority = Base priority of parent with a UI -> IN downgrade
// Escalated priority = Escalated priority of parent with a UI -> IN
// downgrade
JobPriority parentBasePri = parent->_private().BasePriority;
basePriority = withUserInteractivePriorityDowngrade(parentBasePri);
} else {
// Case 2: User priority specified
// Base priority = User specified priority
// Escalated priority = Escalated priority of parent with a UI -> IN
// downgrade
}
// Task will be created with escalated priority = base priority. We will
// update the escalated priority with the right rules in
// updateNewChildWithParentAndGroupState when we link the child into
// the parent task/task group since we'll have the right
// synchronization then.
}
if (isUnspecified(basePriority)) {
basePriority = JobPriority::Default;
}
SWIFT_TASK_DEBUG_LOG("Task's base priority = %#zx", basePriority);
size_t headerSize, amountToAllocate;
std::tie(headerSize, amountToAllocate) = amountToAllocateForHeaderAndTask(
parent, group, futureResultType, initialContextSize);
unsigned initialSlabSize = 512;
void *allocation = nullptr;
if (asyncLet) {
assert(parent);
// If there isn't enough room in the fixed async let allocation to
// set up the initial context, then we'll have to allocate more space
// from the parent.
if (asyncLet->getSizeOfPreallocatedSpace() < amountToAllocate) {
hasAsyncLetResultBuffer = false;
}
// DEPRECATED. This is separated from the above condition because we
// also have to handle an older async let ABI that did not provide
// space for the initial slab in the compiler-generated preallocation.
if (!hasAsyncLetResultBuffer) {
allocation = _swift_task_alloc_specific(parent,
amountToAllocate + initialSlabSize);
} else {
allocation = asyncLet->getPreallocatedSpace();
assert(asyncLet->getSizeOfPreallocatedSpace() >= amountToAllocate
&& "async let does not preallocate enough space for child task");
initialSlabSize = asyncLet->getSizeOfPreallocatedSpace()
- amountToAllocate;
}
} else if (runInlineOption && runInlineOption->getAllocation()) {
// NOTE: If the space required for the task and initial context was
// greater than SWIFT_TASK_RUN_INLINE_INITIAL_CONTEXT_BYTES,
// getAllocation will return nullptr and we'll fall back to malloc to
// allocate the buffer.
//
// This was already checked in swift_task_run_inline.
size_t runInlineBufferBytes = runInlineOption->getAllocationBytes();
assert(amountToAllocate <= runInlineBufferBytes);
allocation = runInlineOption->getAllocation();
initialSlabSize = runInlineBufferBytes - amountToAllocate;
} else {
allocation = malloc(amountToAllocate);
}
SWIFT_TASK_DEBUG_LOG("allocate task %p, parent = %p, slab %u", allocation,
parent, initialSlabSize);
AsyncContext *initialContext =
reinterpret_cast<AsyncContext*>(
reinterpret_cast<char*>(allocation) + headerSize);
// We can't just use `function` because it uses the new async function entry
// ABI -- passing parameters, closure context, indirect result addresses
// directly -- but AsyncTask->ResumeTask expects the signature to be
// `void (*, *, swiftasync *)`.
// Instead we use an adapter. This adaptor should use the storage prefixed to
// the async context to get at the parameters.
// See e.g. FutureAsyncContextPrefix.
if (futureResultType.isNull() || taskCreateFlags.isDiscardingTask()) {
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(allocation) + headerSize -
sizeof(AsyncContextPrefix));
asyncContextPrefix->asyncEntryPoint =
reinterpret_cast<AsyncVoidClosureEntryPoint *>(function);
asyncContextPrefix->closureContext = closureContext;
function = non_future_adapter;
assert(sizeof(AsyncContextPrefix) == 3 * sizeof(void *));
} else {
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(allocation) + headerSize -
sizeof(FutureAsyncContextPrefix));
asyncContextPrefix->asyncEntryPoint =
reinterpret_cast<AsyncGenericClosureEntryPoint *>(function);
function = future_adapter;
asyncContextPrefix->closureContext = closureContext;
assert(sizeof(FutureAsyncContextPrefix) == 4 * sizeof(void *));
}
// Only attempt to inherit parent's executor preference if we didn't set one
// explicitly, which we've recorded in the flag by noticing a task create
// option higher up in this func.
if (!jobFlags.task_hasInitialTaskExecutorPreference()) {
// do we have a parent we can inherit the task executor from?
if (parent) {
auto parentTaskExecutor = parent->getPreferredTaskExecutor();
if (parentTaskExecutor.isDefined()) {
jobFlags.task_setHasInitialTaskExecutorPreference(true);
taskExecutor = parentTaskExecutor;
}
}
}
// Initialize the task so that resuming it will run the given
// function on the initial context.
AsyncTask *task = nullptr;
bool captureCurrentVoucher = !taskIsDetached(taskCreateFlags, jobFlags);
if (asyncLet) {
// Initialize the refcount bits to "immortal", so that
// ARC operations don't have any effect on the task.
task = new(allocation) AsyncTask(&taskHeapMetadata,
InlineRefCounts::Immortal, jobFlags,
function, initialContext,
captureCurrentVoucher);
} else {
task = new(allocation) AsyncTask(&taskHeapMetadata, jobFlags,
function, initialContext,
captureCurrentVoucher);
}
// Initialize the child fragment if applicable.
if (parent) {
auto childFragment = task->childFragment();
::new (childFragment) AsyncTask::ChildFragment(parent);
}
// Initialize the group child fragment if applicable.
if (group) {
auto groupChildFragment = task->groupChildFragment();
::new (groupChildFragment) AsyncTask::GroupChildFragment(group);
}
// Initialize the future fragment if applicable.
if (!futureResultType.isNull()) {
assert(task->isFuture());
auto futureFragment = task->futureFragment();
::new (futureFragment) FutureFragment(futureResultType);
// Set up the context for the future so there is no error, and a successful
// result will be written into the future fragment's storage.
auto futureAsyncContextPrefix =
reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(allocation) + headerSize -
sizeof(FutureAsyncContextPrefix));
futureAsyncContextPrefix->indirectResult = futureFragment->getStoragePtr();
}
SWIFT_TASK_DEBUG_LOG("creating task %p ID %" PRIu64
" with parent %p at base pri %zu",
task, task->getTaskId(), parent, basePriority);
// Initialize the task-local allocator.
initialContext->ResumeParent =
runInlineOption ? &completeInlineTask
: reinterpret_cast<TaskContinuationFunction *>(
asyncLet ? &completeTask
: closureContext ? &completeTaskWithClosure
: &completeTaskAndRelease);
if ((asyncLet || (runInlineOption && runInlineOption->getAllocation())) &&
initialSlabSize > 0) {
assert(parent || (runInlineOption && runInlineOption->getAllocation()));
void *initialSlab = (char*)allocation + amountToAllocate;
task->Private.initializeWithSlab(basePriority, initialSlab,
initialSlabSize);
} else {
task->Private.initialize(basePriority);
}
// Perform additional linking between parent and child task.
if (parent) {
// If the parent was already cancelled, we carry this flag forward to the child.
//
// In a task group we would not have allowed the `add` to create a child anymore,
// however better safe than sorry and `async let` are not expressed as task groups,
// so they may have been spawned in any case still.
if ((group && group->isCancelled()) || swift_task_isCancelled(parent))
swift_task_cancel(task);
// Initialize task locals storage
bool taskLocalStorageInitialized = false;
// Inside a task group, we may have to perform some defensive copying,
// check if doing so is necessary, and initialize storage using partial
// defensive copies if necessary.
if (group) {
assert(parent && "a task created in a group must be a child task");
// We are a child task in a task group; and it may happen that we are calling
// addTask specifically in such shape:
//
// $local.withValue(theValue) { addTask {} }
//
// If this is the case, we MUST copy `theValue` (and any other such directly
// wrapping the addTask value bindings), because those values will be popped
// when withValue returns - breaking our structured concurrency guarantees
// that we rely on for the "link directly to parent's task local Item".
//
// Values set outside the task group are not subject to this problem, as
// their structural lifetime guarantee is upheld by the group scope
// out-living any addTask created tasks.
auto ParentLocal = parent->_private().Local;
// If we were going to copy ALL values anyway, we don't need to
// perform this defensive partial copying. In practice, we currently
// do not have child tasks which force copying, but we could.
assert(!taskCreateFlags.copyTaskLocals() &&
"Currently we don't have child tasks which force copying task "
"locals; unexpected attempt to combine the two!");
if (auto taskLocalHeadLinkType = ParentLocal.peekHeadLinkType()) {
if (taskLocalHeadLinkType ==
swift::TaskLocal::NextLinkType::IsNextCreatedInTaskGroupBody) {
ParentLocal.copyToOnlyOnlyFromCurrentGroup(task);
taskLocalStorageInitialized = true;
}
}
}
if (!taskLocalStorageInitialized) {
// just initialize the storage normally
task->_private().Local.initializeLinkParent(task, parent);
}
}
// Configure the initial context.
//
// FIXME: if we store a null pointer here using the standard ABI for
// signed null pointers, then we'll have to authenticate context pointers
// as if they might be null, even though the only time they ever might
// be is the final hop. Store a signed null instead.
initialContext->Parent = nullptr;
// FIXME: add discarding flag
// FIXME: add task executor
concurrency::trace::task_create(
task, parent, group, asyncLet,
static_cast<uint8_t>(task->Flags.getPriority()),
task->Flags.task_isChildTask(), task->Flags.task_isFuture(),
task->Flags.task_isGroupChildTask(), task->Flags.task_isAsyncLetTask());
// Attach to the group, if needed.
if (group) {
swift_taskGroup_attachChild(group, task);
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// We need to take a retain here to keep the child task for the task group
// alive. In the non-task-to-thread model, we'd always take this retain
// below since we'd enqueue the child task. But since we're not going to be
// enqueueing the child task in this model, we need to take this +1 to
// balance out the release that exists after the task group child task
// creation
swift_retain(task);
#endif
}
// If we're supposed to copy task locals, do so now.
if (taskCreateFlags.copyTaskLocals()) {
swift_task_localsCopyTo(task);
}
// Push the async let task status record.
if (asyncLet) {
asyncLet_addImpl(task, asyncLet, !hasAsyncLetResultBuffer);
}
// Task executor preference
// If the task does not have a specific executor set already via create
// options, and there is a task executor preference set in the parent, we
// inherit it by deep-copying the preference record. if
// (shouldPushTaskExecutorPreferenceRecord || taskExecutor.isDefined()) {
if (jobFlags.task_hasInitialTaskExecutorPreference()) {
// Implementation note: we must do this AFTER `swift_taskGroup_attachChild`
// because the group takes a fast-path when attaching the child record.
assert(jobFlags.task_hasInitialTaskExecutorPreference());
task->pushInitialTaskExecutorPreference(
taskExecutor, /*owned=*/taskExecutorIsOwned);
}
// If we're supposed to enqueue the task, do so now.
if (taskCreateFlags.enqueueJob()) {
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
assert(false && "Should not be enqueuing tasks in task-to-thread model");
#endif
swift_retain(task);
task->flagAsAndEnqueueOnExecutor(
serialExecutor);
}
return {task, initialContext};
}
/// Extract the entry point address and initial context size from an async closure value.
template<typename AsyncSignature, uint16_t AuthDiscriminator>
SWIFT_ALWAYS_INLINE // so this doesn't hang out as a ptrauth gadget
std::pair<typename AsyncSignature::FunctionType *, size_t>
getAsyncClosureEntryPointAndContextSize(void *function) {
auto fnPtr =
reinterpret_cast<const AsyncFunctionPointer<AsyncSignature> *>(function);
#if SWIFT_PTRAUTH
fnPtr = (const AsyncFunctionPointer<AsyncSignature> *)ptrauth_auth_data(
(void *)fnPtr, ptrauth_key_process_independent_data, AuthDiscriminator);
#endif
return {reinterpret_cast<typename AsyncSignature::FunctionType *>(
fnPtr->Function.get()),
fnPtr->ExpectedContextSize};
}
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
SWIFT_CC(swift)
void swift::swift_task_run_inline(OpaqueValue *result, void *closureAFP,
OpaqueValue *closureContext,
const Metadata *futureResultTypeMetadata) {
// Ensure that we're currently in a synchronous context.
if (swift_task_getCurrent()) {
swift_Concurrency_fatalError(0, "called runInline within an async context");
}
ResultTypeInfo futureResultType;
#if !SWIFT_CONCURRENCY_EMBEDDED
futureResultType.metadata = futureResultTypeMetadata;
#endif
// Unpack the asynchronous function pointer.
FutureAsyncSignature::FunctionType *closure;
size_t closureContextSize;
std::tie(closure, closureContextSize) =
getAsyncClosureEntryPointAndContextSize<
FutureAsyncSignature,
SpecialPointerAuthDiscriminators::AsyncFutureFunction>(closureAFP);
// If the initial task and initial async frame aren't too big, allocate enough
// stack space for them and for use as the initial task slab.
//
// If they are too big, swift_task_create_common will fall back to malloc.
size_t candidateAllocationBytes = SWIFT_TASK_RUN_INLINE_INITIAL_CONTEXT_BYTES;
size_t minimumAllocationSize =
amountToAllocateForHeaderAndTask(/*parent=*/nullptr, /*group=*/nullptr,
futureResultType, closureContextSize)
.second;
void *allocation = nullptr;
size_t allocationBytes = 0;
if (minimumAllocationSize <= candidateAllocationBytes) {
allocationBytes = candidateAllocationBytes;
allocation = alloca(allocationBytes);
}
// Create a task to run the closure. Pass a RunInlineTaskOptionRecord
// containing a pointer to the allocation enabling us to provide our stack
// allocation rather than swift_task_create_common having to malloc it.
RunInlineTaskOptionRecord option(allocation, allocationBytes);
size_t taskCreateFlags = 1 << TaskCreateFlags::Task_IsInlineTask;
auto taskAndContext = swift_task_create_common(
taskCreateFlags, &option, futureResultTypeMetadata,
reinterpret_cast<TaskContinuationFunction *>(closure), closureContext,
/*initialContextSize=*/closureContextSize);
// Run the task.
swift_job_run(taskAndContext.Task, SerialExecutorRef::generic());
// Under the task-to-thread concurrency model, the task should always have
// completed by this point.
// Copy the result out to our caller.
auto *futureResult = taskAndContext.Task->futureFragment()->getStoragePtr();
futureResultType.vw_initializeWithCopy(result, futureResult);
// Destroy the task.
taskAndContext.Task->~AsyncTask();
}
#endif
SWIFT_CC(swift)
AsyncTaskAndContext swift::swift_task_create(
size_t rawTaskCreateFlags,
TaskOptionRecord *options,
const Metadata *futureResultType,
void *closureEntry, HeapObject *closureContext) {
TaskCreateFlags taskCreateFlags(rawTaskCreateFlags);
if (taskCreateFlags.isDiscardingTask()) {
ThinNullaryAsyncSignature::FunctionType *taskEntry;
size_t initialContextSize;
std::tie(taskEntry, initialContextSize) =
getAsyncClosureEntryPointAndContextSize<
ThinNullaryAsyncSignature,
SpecialPointerAuthDiscriminators::AsyncThinNullaryFunction>(closureEntry);
return swift_task_create_common(
rawTaskCreateFlags, options, futureResultType,
reinterpret_cast<TaskContinuationFunction *>(taskEntry), closureContext,
initialContextSize);
} else {
FutureAsyncSignature::FunctionType *taskEntry;
size_t initialContextSize;
std::tie(taskEntry, initialContextSize) =
getAsyncClosureEntryPointAndContextSize<
FutureAsyncSignature,
SpecialPointerAuthDiscriminators::AsyncFutureFunction>(closureEntry);
return swift_task_create_common(
rawTaskCreateFlags, options, futureResultType,
reinterpret_cast<TaskContinuationFunction *>(taskEntry), closureContext,
initialContextSize);
}
}
#ifdef __ARM_ARCH_7K__
__attribute__((noinline))
SWIFT_CC(swiftasync) static void workaround_function_swift_task_future_waitImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task, TaskContinuationFunction resumeFunction,
AsyncContext *callContext) {
// Make sure we don't eliminate calls to this function.
asm volatile("" // Do nothing.
: // Output list, empty.
: "r"(result), "r"(callerContext), "r"(task) // Input list.
: // Clobber list, empty.
);
return;
}
#endif
SWIFT_CC(swiftasync)
static void swift_task_future_waitImpl(
OpaqueValue *result,
SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task,
TaskContinuationFunction *resumeFn,
AsyncContext *callContext) {
// Suspend the waiting task.
auto waitingTask = swift_task_getCurrent();
waitingTask->ResumeTask = task_future_wait_resume_adapter;
waitingTask->ResumeContext = callContext;
// Wait on the future.
assert(task->isFuture());
switch (task->waitFuture(waitingTask, callContext, resumeFn, callerContext,
result)) {
case FutureFragment::Status::Executing:
// The waiting task has been queued on the future.
#ifdef __ARM_ARCH_7K__
return workaround_function_swift_task_future_waitImpl(
result, callerContext, task, resumeFn, callContext);
#else
return;
#endif
case FutureFragment::Status::Success: {
// Run the task with a successful result.
auto future = task->futureFragment();
future->getResultType().vw_initializeWithCopy(result, future->getStoragePtr());
return resumeFn(callerContext);
}
case FutureFragment::Status::Error:
swift_Concurrency_fatalError(0, "future reported an error, but wait cannot throw");
}
}
#ifdef __ARM_ARCH_7K__
__attribute__((noinline))
SWIFT_CC(swiftasync) static void workaround_function_swift_task_future_wait_throwingImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task, ThrowingTaskFutureWaitContinuationFunction resumeFunction,
AsyncContext *callContext) {
// Make sure we don't eliminate calls to this function.
asm volatile("" // Do nothing.
: // Output list, empty.
: "r"(result), "r"(callerContext), "r"(task) // Input list.
: // Clobber list, empty.
);
return;
}
#endif
SWIFT_CC(swiftasync)
void swift_task_future_wait_throwingImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task,
ThrowingTaskFutureWaitContinuationFunction *resumeFunction,
AsyncContext *callContext) {
auto waitingTask = swift_task_getCurrent();
// Suspend the waiting task.
waitingTask->ResumeTask = task_wait_throwing_resume_adapter;
waitingTask->ResumeContext = callContext;
auto resumeFn = reinterpret_cast<TaskContinuationFunction *>(resumeFunction);
// Wait on the future.
assert(task->isFuture());
switch (task->waitFuture(waitingTask, callContext, resumeFn, callerContext,
result)) {
case FutureFragment::Status::Executing:
// The waiting task has been queued on the future.
#ifdef __ARM_ARCH_7K__
return workaround_function_swift_task_future_wait_throwingImpl(
result, callerContext, task, resumeFunction, callContext);
#else
return;
#endif
case FutureFragment::Status::Success: {
auto future = task->futureFragment();
future->getResultType().vw_initializeWithCopy(result, future->getStoragePtr());
return resumeFunction(callerContext, nullptr /*error*/);
}
case FutureFragment::Status::Error: {
#if SWIFT_CONCURRENCY_EMBEDDED
swift_unreachable("untyped error used in embedded Swift");
#else
// Run the task with an error result.
auto future = task->futureFragment();
auto error = future->getError();
swift_errorRetain(error);
return resumeFunction(callerContext, error);
#endif
}
}
}
size_t swift::swift_task_getJobFlags(AsyncTask *task) {
return task->Flags.getOpaqueValue();
}
// This function exists primarily for the purpose of the concurrency runtime
// unit tests and does not serve a functional purpose.
SWIFT_CC(swift)
static AsyncTask *swift_task_suspendImpl() {
auto task = swift_task_getCurrent();
task->flagAsSuspendedOnContinuation(nullptr);
_swift_task_clearCurrent();
return task;
}
SWIFT_CC(swift)
static void swift_task_enqueueTaskOnExecutorImpl(AsyncTask *task,
SerialExecutorRef executor) {
// TODO: is 'swift_task_enqueueTaskOnExecutorImpl' used at all, outside tests?
task->flagAsAndEnqueueOnExecutor(executor);
}
namespace continuationChecking {
enum class State : uint8_t { Uninitialized, On, Off };
static std::atomic<State> CurrentState;
static LazyMutex ActiveContinuationsLock;
static Lazy<std::unordered_set<ContinuationAsyncContext *>> ActiveContinuations;
static bool isEnabled() {
auto state = CurrentState.load(std::memory_order_relaxed);
if (state == State::Uninitialized) {
bool enabled =
runtime::environment::concurrencyValidateUncheckedContinuations();
state = enabled ? State::On : State::Off;
CurrentState.store(state, std::memory_order_relaxed);
}
return state == State::On;
}
static void init(ContinuationAsyncContext *context) {
if (!isEnabled())
return;
LazyMutex::ScopedLock guard(ActiveContinuationsLock);
auto result = ActiveContinuations.get().insert(context);
auto inserted = std::get<1>(result);
if (!inserted)
swift_Concurrency_fatalError(
0,
"Initializing continuation context %p that was already initialized.\n",
context);
}
static void willResume(ContinuationAsyncContext *context) {
if (!isEnabled())
return;
LazyMutex::ScopedLock guard(ActiveContinuationsLock);
auto removed = ActiveContinuations.get().erase(context);
if (!removed)
swift_Concurrency_fatalError(0,
"Resuming continuation context %p that was not awaited "
"(may have already been resumed).\n",
context);
}
} // namespace continuationChecking
SWIFT_CC(swift)
static AsyncTask *swift_continuation_initImpl(ContinuationAsyncContext *context,
AsyncContinuationFlags flags) {
continuationChecking::init(context);
context->Flags = ContinuationAsyncContext::FlagsType();
if (flags.canThrow()) context->Flags.setCanThrow(true);
if (flags.isExecutorSwitchForced())
context->Flags.setIsExecutorSwitchForced(true);
context->ErrorResult = nullptr;
// Set the generic executor as the target executor unless there's
// an executor override.
if (!flags.hasExecutorOverride())
context->ResumeToExecutor = SerialExecutorRef::generic();
// We can initialize this with a relaxed store because resumption
// must happen-after this call.
context->AwaitSynchronization.store(flags.isPreawaited()
? ContinuationStatus::Awaited
: ContinuationStatus::Pending,
std::memory_order_relaxed);
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
context->Cond = nullptr;
#endif
AsyncTask *task;
// A preawait immediately suspends the task.
if (flags.isPreawaited()) {
task = swift_task_getCurrent();
assert(task && "initializing a continuation with no current task");
task->flagAsSuspendedOnContinuation(context);
_swift_task_clearCurrent();
} else {
task = swift_task_getCurrent();
assert(task && "initializing a continuation with no current task");
}
task->ResumeContext = context;
task->ResumeTask = context->ResumeParent;
concurrency::trace::task_continuation_init(task, context);
return task;
}
SWIFT_CC(swiftasync)
static void swift_continuation_awaitImpl(ContinuationAsyncContext *context) {
#ifndef NDEBUG
auto task = swift_task_getCurrent();
assert(task && "awaiting continuation without a task");
assert(task->ResumeContext == context);
assert(task->ResumeTask == context->ResumeParent);
#endif
concurrency::trace::task_continuation_await(context);
auto &sync = context->AwaitSynchronization;
auto oldStatus = sync.load(std::memory_order_acquire);
assert((oldStatus == ContinuationStatus::Pending ||
oldStatus == ContinuationStatus::Resumed) &&
"awaiting a corrupt or already-awaited continuation");
// If the status is already Resumed, we can resume immediately.
if (oldStatus == ContinuationStatus::Resumed) {
if (context->isExecutorSwitchForced())
return swift_task_switch(context, context->ResumeParent,
context->ResumeToExecutor);
return context->ResumeParent(context);
}
// Load the current task (we already did this in assertions builds).
#ifdef NDEBUG
auto task = swift_task_getCurrent();
#endif
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// In the task to thread model, we do not suspend the task that is waiting on
// the continuation resumption. Instead we simply block the thread on a
// condition variable keep the task alive on the thread.
//
// This condition variable can be allocated on the stack of the blocking
// thread - with the address of it published to the resuming thread via the
// context.
ConditionVariable Cond;
context->Cond = &Cond;
#else /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
// Flag the task as suspended on the continuation.
task->flagAsSuspendedOnContinuation(context);
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// If the cmpxchg is successful, the store release also publishes the write to
// the Cond in the ContinuationAsyncContext to any concurrent accessing
// thread.
//
// If it failed, then someone concurrently resumed the continuation in which
// case, we don't care about publishing the Cond in the
// ContinuationAsyncContext anyway.
#endif
// Try to transition to Awaited
bool success =
sync.compare_exchange_strong(oldStatus, ContinuationStatus::Awaited,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire);
if (success) {
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// This lock really protects nothing but we need to hold it
// while calling the condition wait
Cond.lock();
// Condition variables can have spurious wakeups so we need to check this in
// a do-while loop.
do {
Cond.wait();
oldStatus = sync.load(std::memory_order_relaxed);
} while (oldStatus != ContinuationStatus::Resumed);
Cond.unlock();
#else
// If that succeeded, we have nothing to do since we've successfully
// suspended the task
_swift_task_clearCurrent();
return;
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
}
// If it failed, it should be because someone concurrently resumed
// (note that the compare-exchange above is strong).
assert(oldStatus == ContinuationStatus::Resumed &&
"continuation was concurrently corrupted or awaited");
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// Since the condition variable is stack allocated, we don't need to do
// anything here to clean up
#else
// Restore the running state of the task and resume it.
task->flagAsRunning();
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
if (context->isExecutorSwitchForced())
return swift_task_switch(context, context->ResumeParent,
context->ResumeToExecutor);
return context->ResumeParent(context);
}
static void resumeTaskAfterContinuation(AsyncTask *task,
ContinuationAsyncContext *context) {
continuationChecking::willResume(context);
auto &sync = context->AwaitSynchronization;
auto status = sync.load(std::memory_order_acquire);
assert(status != ContinuationStatus::Resumed &&
"continuation was already resumed");
// Make sure TSan knows that the resume call happens-before the task
// restarting.
_swift_tsan_release(static_cast<Job *>(task));
// The status should be either Pending or Awaited.
//
// Case 1: Status is Pending
// No one has awaited us, we just need to set it to Resumed; if that fails
// (with a strong cmpxchg), it should be because the original thread
// concurrently set it to Awaited, in which case, we fall into Case 2.
//
// Case 2: Status is Awaited
// This is probably the more frequently hit case.
// In task-to-thread model, we update status to be Resumed and signal the
// waiting thread. In regular model, we immediately enqueue the task and can
// skip updates to the continuation state since there shouldn't be a racing
// attempt to resume the continuation.
if (status == ContinuationStatus::Pending &&
sync.compare_exchange_strong(status, ContinuationStatus::Resumed,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire)) {
return;
}
assert(status == ContinuationStatus::Awaited &&
"detected concurrent attempt to resume continuation");
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// If we see status == ContinuationStatus::Awaited, then we should also be
// seeing a pointer to the cond var since we're doing a load acquire on sync
// which pairs with the store release in swift_continuation_awaitImpl
assert(context->Cond != nullptr);
sync.store(ContinuationStatus::Resumed, std::memory_order_relaxed);
context->Cond->signal();
#else
// TODO: maybe in some mode we should set the status to Resumed here
// to make a stronger best-effort attempt to catch racing attempts to
// resume the continuation?
task->flagAsAndEnqueueOnExecutor(context->ResumeToExecutor);
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
}
SWIFT_CC(swift)
static void swift_continuation_resumeImpl(AsyncTask *task) {
auto context = static_cast<ContinuationAsyncContext*>(task->ResumeContext);
concurrency::trace::task_continuation_resume(context, false);
resumeTaskAfterContinuation(task, context);
}
SWIFT_CC(swift)
static void swift_continuation_throwingResumeImpl(AsyncTask *task) {
auto context = static_cast<ContinuationAsyncContext*>(task->ResumeContext);
concurrency::trace::task_continuation_resume(context, false);
resumeTaskAfterContinuation(task, context);
}
SWIFT_CC(swift)
static void swift_continuation_throwingResumeWithErrorImpl(AsyncTask *task,
/* +1 */ SwiftError *error) {
auto context = static_cast<ContinuationAsyncContext*>(task->ResumeContext);
concurrency::trace::task_continuation_resume(context, true);
context->ErrorResult = error;
resumeTaskAfterContinuation(task, context);
}
bool swift::swift_task_isCancelled(AsyncTask *task) {
return task->isCancelled();
}
SWIFT_CC(swift)
static CancellationNotificationStatusRecord*
swift_task_addCancellationHandlerImpl(
CancellationNotificationStatusRecord::FunctionType handler,
void *context) {
void *allocation =
swift_task_alloc(sizeof(CancellationNotificationStatusRecord));
auto unsigned_handler = swift_auth_code(handler, 3848);
auto *record = ::new (allocation)
CancellationNotificationStatusRecord(unsigned_handler, context);
bool fireHandlerNow = false;
addStatusRecordToSelf(record, [&](ActiveTaskStatus oldStatus, ActiveTaskStatus& newStatus) {
if (oldStatus.isCancelled()) {
fireHandlerNow = true;
// We don't fire the cancellation handler here since this function needs
// to be idempotent
}
return true;
});
if (fireHandlerNow) {
record->run();
}
return record;
}
SWIFT_CC(swift)
static void swift_task_removeCancellationHandlerImpl(
CancellationNotificationStatusRecord *record) {
removeStatusRecordFromSelf(record);
swift_task_dealloc(record);
}
SWIFT_CC(swift)
static NullaryContinuationJob*
swift_task_createNullaryContinuationJobImpl(
size_t priority,
AsyncTask *continuation) {
auto *job = new NullaryContinuationJob(swift_task_getCurrent(),
static_cast<JobPriority>(priority), continuation);
return job;
}
SWIFT_CC(swift)
void swift::swift_continuation_logFailedCheck(const char *message) {
swift_reportError(0, message);
}
SWIFT_RUNTIME_ATTRIBUTE_NORETURN
SWIFT_CC(swift)
static void swift_task_asyncMainDrainQueueImpl() {
#if SWIFT_CONCURRENCY_COOPERATIVE_GLOBAL_EXECUTOR
bool Finished = false;
swift_task_donateThreadToGlobalExecutorUntil([](void *context) {
return *reinterpret_cast<bool*>(context);
}, &Finished);
swift_unreachable(
"Returned from swift_task_donateThreadToGlobalExecutorUntil()");
#elif !SWIFT_CONCURRENCY_ENABLE_DISPATCH
// FIXME: consider implementing a concurrent global main queue for
// these environments?
swift_reportError(0, "operation unsupported without libdispatch: "
"swift_task_asyncMainDrainQueue");
#else
#if defined(_WIN32)
HMODULE hModule = LoadLibraryW(L"dispatch.dll");
if (hModule == NULL) {
swift_Concurrency_fatalError(0,
"unable to load dispatch.dll: %lu", GetLastError());
}
auto pfndispatch_main = reinterpret_cast<void (FAR *)(void)>(
GetProcAddress(hModule, "dispatch_main"));
if (pfndispatch_main == NULL) {
swift_Concurrency_fatalError(0,
"unable to locate dispatch_main in dispatch.dll: %lu", GetLastError());
}
pfndispatch_main();
swift_unreachable("Returned from dispatch_main()");
#else
// CFRunLoop is not available on non-Darwin targets. Foundation has an
// implementation, but CoreFoundation is not meant to be exposed. We can only
// assume the existence of `CFRunLoopRun` on Darwin platforms, where the
// system provides an implementation of CoreFoundation.
#if defined(__APPLE__)
auto runLoop =
reinterpret_cast<void (*)(void)>(dlsym(RTLD_DEFAULT, "CFRunLoopRun"));
if (runLoop) {
runLoop();
exit(0);
}
#endif
dispatch_main();
#endif
#endif
}
SWIFT_CC(swift)
void (*swift::swift_task_asyncMainDrainQueue_hook)(
swift_task_asyncMainDrainQueue_original original,
swift_task_asyncMainDrainQueue_override compatOverride) = nullptr;
SWIFT_CC(swift)
static void swift_task_startOnMainActorImpl(AsyncTask* task) {
AsyncTask * originalTask = _swift_task_clearCurrent();
SerialExecutorRef mainExecutor = swift_task_getMainExecutor();
if (!swift_task_isCurrentExecutor(mainExecutor))
swift_Concurrency_fatalError(0, "Not on the main executor");
swift_retain(task);
swift_job_run(task, mainExecutor);
_swift_task_setCurrent(originalTask);
}
#define OVERRIDE_TASK COMPATIBILITY_OVERRIDE
#ifdef SWIFT_STDLIB_SUPPORT_BACK_DEPLOYMENT
/// The original COMPATIBILITY_OVERRIDE defined in CompatibilityOverride.h
/// returns the result of the impl function and override function. This results
/// in a warning emitted for noreturn functions. Overriding the override macro
/// to not return.
#define HOOKED_OVERRIDE_TASK_NORETURN(name, attrs, ccAttrs, namespace, \
typedArgs, namedArgs) \
attrs ccAttrs void namespace swift_##name COMPATIBILITY_PAREN(typedArgs) { \
static Override_##name Override; \
static swift_once_t Predicate; \
swift_once( \
&Predicate, [](void *) { Override = getOverride_##name(); }, nullptr); \
if (swift_##name##_hook) { \
swift_##name##_hook(COMPATIBILITY_UNPAREN_WITH_COMMA(namedArgs) \
swift_##name##Impl, \
Override); \
abort(); \
} \
if (Override != nullptr) \
Override(COMPATIBILITY_UNPAREN_WITH_COMMA(namedArgs) \
swift_##name##Impl); \
swift_##name##Impl COMPATIBILITY_PAREN(namedArgs); \
}
#else // ifndef SWIFT_STDLIB_SUPPORT_BACK_DEPLOYMENT
// Call directly through to the original implementation when we don't support
// overrides.
#define HOOKED_OVERRIDE_TASK_NORETURN(name, attrs, ccAttrs, namespace, \
typedArgs, namedArgs) \
attrs ccAttrs void namespace swift_##name COMPATIBILITY_PAREN(typedArgs) { \
if (swift_##name##_hook) { \
swift_##name##_hook(swift_##name##Impl, nullptr); \
abort(); \
} \
swift_##name##Impl COMPATIBILITY_PAREN(namedArgs); \
}
#endif // #else SWIFT_STDLIB_SUPPORT_BACK_DEPLOYMENT
#include COMPATIBILITY_OVERRIDE_INCLUDE_PATH
|