1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
|
//===--- TaskGroup.cpp - Task Groups --------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Object management for child tasks that are children of a task group.
//
//===----------------------------------------------------------------------===//
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "Debug.h"
#include "TaskGroupPrivate.h"
#include "TaskPrivate.h"
#include "bitset"
#include "queue" // TODO: remove and replace with usage of our mpsc queue
#include "string"
#include "swift/ABI/HeapObject.h"
#include "swift/ABI/Metadata.h"
#include "swift/ABI/Task.h"
#include "swift/ABI/TaskGroup.h"
#include "swift/Basic/RelativePointer.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Runtime/Concurrency.h"
#include "swift/Runtime/Config.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Threading/Mutex.h"
#include <atomic>
#include <new>
#if SWIFT_STDLIB_HAS_ASL
#include <asl.h>
#elif defined(__ANDROID__)
#include <android/log.h>
#endif
#if __has_include(<unistd.h>)
#include <unistd.h>
#endif
#if defined(_WIN32)
#include <io.h>
#endif
#include <assert.h>
#if SWIFT_CONCURRENCY_ENABLE_DISPATCH
#include <dispatch/dispatch.h>
#endif
#if !defined(_WIN32) && !defined(__wasi__) && __has_include(<dlfcn.h>)
#include <dlfcn.h>
#endif
using namespace swift;
#if 0
#define SWIFT_TASK_GROUP_DEBUG_LOG_ENABLED 1
#define SWIFT_TASK_GROUP_DEBUG_LOG(group, fmt, ...) \
fprintf(stderr, "[%#lx] [%s:%d][group(%p%s)] (%s) " fmt "\n", \
(unsigned long)Thread::current().platformThreadId(), \
__FILE__, __LINE__, \
group, group->isDiscardingResults() ? ",discardResults" : "", \
__FUNCTION__, \
__VA_ARGS__)
#define SWIFT_TASK_GROUP_DEBUG_LOG_0(group, fmt, ...) \
fprintf(stderr, "[%#lx] [%s:%d][group(%p)] (%s) " fmt "\n", \
(unsigned long)Thread::current().platformThreadId(), \
__FILE__, __LINE__, \
group, \
__FUNCTION__, \
__VA_ARGS__)
#else
#define SWIFT_TASK_GROUP_DEBUG_LOG_ENABLED 0
#define SWIFT_TASK_GROUP_DEBUG_LOG(group, fmt, ...) (void)0
#define SWIFT_TASK_GROUP_DEBUG_LOG_0(group, fmt, ...) (void)0
#endif
using FutureFragment = AsyncTask::FutureFragment;
/// During evolution discussions we opted to implement the following semantic of
/// a discarding task-group throw:
/// - the error thrown out of withThrowingDiscardingTaskGroup(...) { ... } always "wins",
/// even if the group already had an error stored within.
///
/// This is harder to implement, since we have to always store the "first error from children",
/// and keep it around until body completes, and only then are we able to decide which error to
/// re-throw; If we threw the body task, we must swift_release the stored "first child error" (if it was present).
///
/// Implementation of "rethrow the first child error" just works in `waitAll`,
/// since we poll the error and resume the waiting task with it immediately.
///
/// Change this flag, or expose a boolean to offer developers a choice of behavior.
#define SWIFT_TASK_GROUP_BODY_THROWN_ERROR_WINS 1
namespace {
class TaskStatusRecord;
struct TaskGroupStatus;
class AccumulatingTaskGroup;
class DiscardingTaskGroup;
/*****************************************************************************/
/************************** QUEUE IMPL ***************************************/
/*****************************************************************************/
template<typename T>
class NaiveTaskGroupQueue {
std::queue <T> queue;
public:
NaiveTaskGroupQueue() = default;
NaiveTaskGroupQueue(const NaiveTaskGroupQueue<T> &) = delete;
NaiveTaskGroupQueue &operator=(const NaiveTaskGroupQueue<T> &) = delete;
NaiveTaskGroupQueue(NaiveTaskGroupQueue<T> &&other) {
queue = std::move(other.queue);
}
~NaiveTaskGroupQueue() {}
bool dequeue(T &output) {
if (queue.empty()) {
return false;
}
output = queue.front();
queue.pop();
return true;
}
bool isEmpty() const {
return queue.empty();
}
void enqueue(const T item) {
queue.push(item);
}
};
/******************************************************************************/
/*************************** TASK GROUP BASE **********************************/
/******************************************************************************/
class TaskGroupBase : public TaskGroupTaskStatusRecord {
public:
/// Describes the status of the group.
enum class ReadyStatus : uintptr_t {
/// The task group is empty, no tasks are pending.
/// Return immediately, there is no point in suspending.
///
/// The storage is not accessible.
Empty = 0b00,
/// A raw SwiftError is stored in the item's storage, rather than a Task with an Error inside.
///
/// Only used by DiscardingTaskGroup.
RawError = 0b01,
/// The future has completed with result (of type \c resultType).
///
/// Only used by AccumulatingTaskGroup.
Success = 0b10,
/// The future has completed by throwing an error (an \c Error existential).
///
/// Only used by AccumulatingTaskGroup.
Error = 0b11,
};
/// Status of a poll, i.e. is there a result we can return, or do we have to suspend.
enum class PollStatus : uintptr_t {
/// The group is known to be empty and we can immediately return nil.
Empty = 0b00,
/// The task has been enqueued to the groups wait queue.
MustWait = 0b01,
/// The task has completed with result (of type \c resultType).
Success = 0b10,
/// The task has completed by throwing an error (an \c Error existential).
Error = 0b11,
};
/// The result of waiting on a task group.
struct PollResult {
PollStatus status; // TODO: pack it into storage pointer or not worth it?
/// Storage for the result of the future.
///
/// When the future completed normally, this is a pointer to the storage
/// of the result value, which lives inside the future task itself.
///
/// When the future completed by throwing an error, this is the error
/// object itself.
OpaqueValue *storage;
ResultTypeInfo successType;
/// The completed task, if necessary to keep alive until consumed by next().
///
/// # Important: swift_release
/// If if a task is returned here, the task MUST be swift_released
/// once we are done with it, to balance out the retain made before
/// when the task was enqueued into the ready queue to keep it alive
/// until a next() call eventually picks it up.
AsyncTask *retainedTask;
static PollResult get(AsyncTask *asyncTask, bool hadErrorResult) {
auto fragment = asyncTask->futureFragment();
return PollResult{
/*status=*/hadErrorResult ?
PollStatus::Error :
PollStatus::Success,
/*storage=*/hadErrorResult ?
reinterpret_cast<OpaqueValue *>(fragment->getError()) :
fragment->getStoragePtr(),
/*successType=*/fragment->getResultType(),
/*retainedTask==*/asyncTask
};
}
static PollResult getEmpty(ResultTypeInfo successType) {
return PollResult{
/*status*/PollStatus::Empty,
/*storage*/nullptr,
/*successType*/successType,
/*task*/nullptr
};
}
static PollResult getError(SwiftError *error) {
assert(error);
return PollResult{
/*status*/PollStatus::Error,
/*storage*/reinterpret_cast<OpaqueValue *>(error),
/*successType*/ResultTypeInfo(),
/*task*/nullptr
};
}
};
/// An item within the message queue of a group.
struct ReadyQueueItem {
/// Mask used for the low status bits in a message queue item.
static const uintptr_t statusMask = 0x03;
uintptr_t storage;
ReadyStatus getStatus() const {
return static_cast<ReadyStatus>(storage & statusMask);
}
AsyncTask *getTask() const {
assert(getStatus() != ReadyStatus::RawError && "storage did contain raw error pointer, not task!");
return reinterpret_cast<AsyncTask *>(storage & ~statusMask);
}
SwiftError *getRawError(DiscardingTaskGroup *group) const {
assert(group && "only a discarding task group uses raw errors in the ready queue");
assert(getStatus() == ReadyStatus::RawError && "storage did not contain raw error pointer!");
return reinterpret_cast<SwiftError *>(storage & ~statusMask);
}
static ReadyQueueItem get(ReadyStatus status, AsyncTask *task) {
assert(task == nullptr || task->isFuture());
return ReadyQueueItem{
reinterpret_cast<uintptr_t>(task) | static_cast<uintptr_t>(status)};
}
static ReadyQueueItem getRawError(DiscardingTaskGroup *group, SwiftError *error) {
assert(group && "only a discarding task group uses raw errors in the ready queue");
return ReadyQueueItem{
reinterpret_cast<uintptr_t>(error) | static_cast<uintptr_t>(ReadyStatus::RawError)};
}
};
/// Simple wrapper type to ensure we use the right methods to prepare and run a waiting tas.
/// Run it with `runWaitingTask`.
struct PreparedWaitingTask {
AsyncTask *waitingTask;
};
protected:
// Guard with SWIFT_THREADING_NONE and not just SWIFT_STDLIB_SINGLE_THREADED_CONCURRENCY
// because the latter just means that the global executor is cooperative,
// but it doesn't mean that the target platform is always single-threaded. For example, on
// wasm32-unknown-wasip1-threads, the global executor is cooperative, but users can still set up their
// own TaskExecutor with multiple threads.
#if SWIFT_THREADING_NONE || SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// Synchronization is simple here. In a single threaded mode, all swift tasks
// run on a single thread so no coordination is needed. In a task-to-thread
// model, only the parent task which created the task group can
//
// (a) add child tasks to a group
// (b) run the child tasks
//
// So we shouldn't need to worry about coordinating between child tasks and
// parents in a task group
void lock() const {}
void unlock() const {}
#else
// TODO: move to lockless via the status atomic (make readyQueue an mpsc_queue_t<ReadyQueueItem>)
mutable Mutex mutex_;
void lock() const { mutex_.lock(); }
void unlock() const { mutex_.unlock(); }
#endif
/// Used for queue management, counting number of waiting and ready tasks
std::atomic<uint64_t> status;
/// The task currently waiting on `group.next()`. Since only the owning
/// task can ever be waiting on a group, this is just either a reference
/// to that task or null.
std::atomic<AsyncTask *> waitQueue;
/// Queue containing completed tasks offered into this group.
///
/// The low bits contain the status, the rest of the pointer is the
/// AsyncTask.
NaiveTaskGroupQueue<ReadyQueueItem> readyQueue;
ResultTypeInfo successType;
explicit TaskGroupBase(ResultTypeInfo T, uint64_t initialStatus)
: TaskGroupTaskStatusRecord(),
status(initialStatus),
waitQueue(nullptr),
readyQueue(),
successType(T) {}
TaskGroupBase(const TaskGroupBase &) = delete;
public:
virtual ~TaskGroupBase() {}
TaskStatusRecordKind getKind() const {
return Flags.getKind();
}
/// Destroy the storage associated with the group.
virtual void destroy() = 0;
bool isAccumulatingResults() const {
return !isDiscardingResults();
}
virtual bool isDiscardingResults() const = 0;
/// Any TaskGroup always IS its own TaskRecord.
/// This allows us to easily get the group while cancellation is propagated throughout the task tree.
TaskGroupTaskStatusRecord *getTaskRecord() {
return static_cast<TaskGroupTaskStatusRecord *>(this);
}
// ==== Queue operations ----------------------------------------------------
/// Offer result of a task into this task group.
///
/// If possible, and an existing task is already waiting on next(), this will
/// schedule it immediately. If not, the result is enqueued and will be picked
/// up whenever a task calls next() the next time.
virtual void offer(AsyncTask *completed, AsyncContext *context) = 0;
/// Attempt to park the `waitingTask` in the waiting queue.
///
/// If unable to complete the waiting task immediately (with an readily
/// available completed task), either returns an `PollStatus::Empty`
/// result if it is known that there are no pending tasks in the group,
/// or a `PollStatus::MustWait` result if there are tasks in flight
/// and the waitingTask eventually be woken up by a completion.
///
/// A `discardResults` TaskGroup is not able to wait on individual completions,
/// instead, it can only await on "all pending tasks have been processed".
///
/// There can be only at-most-one waiting task on a group at any given time,
/// and the waiting task is expected to be the parent task in which the group
/// body is running.
///
/// \param bodyError error thrown by the body of a with...TaskGroup method
/// \param waitingTask the task waiting on the group
/// \param rawContext used to resume the waiting task
void waitAll(SwiftError* bodyError, AsyncTask *waitingTask,
OpaqueValue *resultPointer, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
ThrowingTaskFutureWaitContinuationFunction *resumeFunction,
AsyncContext *rawContext);
// Enqueue the completed task onto ready queue if there are no waiting tasks yet
virtual void enqueueCompletedTask(AsyncTask *completedTask, bool hadErrorResult) = 0;
/// Resume waiting task with result from `completedTask`
PreparedWaitingTask prepareWaitingTaskWithTask(AsyncTask *waitingTask,
AsyncTask *completedTask,
TaskGroupStatus &assumed,
bool hadErrorResult,
bool alreadyDecremented = false,
bool taskWasRetained = false);
// NOTE: In today's implementation we MUST hold the group lock when claiming a task.
AsyncTask *claimWaitingTask();
/// Should be the final operation a group locking operation performs e.g. in waitAll or offer.
/// This resumes unlocks the group and resumes the waiting task.
void runWaitingTask(PreparedWaitingTask prepared);
// ==== Status manipulation -------------------------------------------------
TaskGroupStatus statusLoadRelaxed() const;
TaskGroupStatus statusLoadAcquire() const;
std::string statusString() const;
bool isEmpty() const;
uint64_t pendingTasks() const;
/// Compare-and-set old status to a status derived from the old one,
/// by simultaneously decrementing one Pending and one Waiting tasks.
///
/// This is used to atomically perform a waiting task completion.
/// The change is made 'relaxed' and may have to be retried.
///
/// This can be safely used in a discarding task group as well,
/// where the "ready" change will simply be ignored, since there
/// are no ready bits to change.
bool statusCompletePendingReadyWaiting(TaskGroupStatus &old);
/// Cancel the task group and all tasks within it.
///
/// Returns `true` if this is the first time cancelling the group, false otherwise.
bool isCancelled() const;
/// Set waiting status bit.
///
/// Returns *assumed* new status, including the just performed +1.
TaskGroupStatus statusMarkWaitingAssumeAcquire();
/// Remove waiting status bit.
TaskGroupStatus statusRemoveWaitingRelease();
/// Mark the waiting status bit.
/// A waiting task MUST have been already enqueued in the `waitQueue`.
TaskGroupStatus statusMarkWaitingAssumeRelease();
TaskGroupStatus statusAddPendingTaskAssumeRelaxed(bool unconditionally);
/// Cancels the group and returns true if was already cancelled before.
/// After this function returns, the group is guaranteed to be cancelled.
///
/// Prefer calling cancelAll if the intent is to cancel the group and all of its children.
///
/// \return true, if the group was already cancelled before, and false if it wasn't cancelled before (but now is).
bool statusCancel();
/// Cancel the group and all of its child tasks recursively.
/// This also sets
bool cancelAll();
};
[[maybe_unused]]
static std::string to_string(TaskGroupBase::PollStatus status) {
switch (status) {
case TaskGroupBase::PollStatus::Empty: return "Empty";
case TaskGroupBase::PollStatus::MustWait: return "MustWait";
case TaskGroupBase::PollStatus::Success: return "Success";
case TaskGroupBase::PollStatus::Error: return "Error";
}
}
/// The status of a task group.
///
/// Its exact structure depends on the type of group, and therefore a group must be passed to operations
/// which may be touching the 'ready' bits; Only an "accumulating" task group maintains the 'ready' count,
/// while all kinds of group use the 'pending' count (with varying width though).
///
/// Accumulating group status:
/// [1:cancelled][1:waiting][31:ready count][31:pending count]
/// Discarding group status:
/// [1:cancelled][1:waiting][62:pending count]
struct TaskGroupStatus {
static const uint64_t cancelled = 0b1000000000000000000000000000000000000000000000000000000000000000;
static const uint64_t waiting = 0b0100000000000000000000000000000000000000000000000000000000000000;
// 31 bits for ready tasks counter
static const uint64_t maskReady = 0b0011111111111111111111111111111110000000000000000000000000000000;
static const uint64_t oneReadyTask = 0b0000000000000000000000000000000010000000000000000000000000000000;
// 31 bits for pending tasks counter, while accumulating results (default mode)
static const uint64_t maskAccumulatingPending = 0b0000000000000000000000000000000001111111111111111111111111111111;
// 62 bits for pending tasks counter, while discarding results (discardResults)
static const uint64_t maskDiscardingPending = 0b0011111111111111111111111111111111111111111111111111111111111111;
static const uint64_t onePendingTask = 0b0000000000000000000000000000000000000000000000000000000000000001;
/// Depending on kind of task group, we can either support 2^31 or 2^62 pending tasks.
///
/// While a discarding task group's max pending count is unrealistic to be exceeded, the lower
/// maximum number used in an accumulating task group has potential to be exceeded, and thus we must crash
/// rather than start overflowing status if this were to happen.
static uint64_t maximumPendingTasks(TaskGroupBase* group) {
if (group->isAccumulatingResults()) {
return maskAccumulatingPending;
} else {
return maskDiscardingPending;
}
}
uint64_t status;
bool isCancelled() {
return (status & cancelled) > 0;
}
bool hasWaitingTask() {
return (status & waiting) > 0;
}
unsigned int readyTasks(const TaskGroupBase* _Nonnull group) {
assert(group->isAccumulatingResults()
&& "attempted to check ready tasks on group that does not accumulate results!");
return (status & maskReady) >> 31;
}
uint64_t pendingTasks(const TaskGroupBase* _Nonnull group) {
if (group->isAccumulatingResults()) {
return (status & maskAccumulatingPending);
} else {
return (status & maskDiscardingPending);
}
}
bool isEmpty(const TaskGroupBase *group) {
return pendingTasks(group) == 0;
}
/// Status value decrementing the Ready, Pending and Waiting counters by one.
TaskGroupStatus completingPendingReadyWaiting(const TaskGroupBase* _Nonnull group) {
assert(pendingTasks(group) &&
"can only complete waiting task when pending tasks available");
assert(group->isDiscardingResults() || readyTasks(group) &&
"can only complete waiting task when ready tasks available");
assert(hasWaitingTask() &&
"can only complete waiting task when waiting task available");
uint64_t change = waiting + onePendingTask;
// only while accumulating results does the status contain "ready" bits;
// so if we're in "discard results" mode, we must not decrement the ready count,
// as there is no ready count in the status.
change += group->isAccumulatingResults() ? oneReadyTask : 0;
return TaskGroupStatus{status - change};
}
TaskGroupStatus completingPendingReady(const TaskGroupBase* _Nonnull group) {
assert(pendingTasks(group) &&
"can only complete waiting task when pending tasks available");
assert(group->isDiscardingResults() || readyTasks(group) &&
"can only complete waiting task when ready tasks available");
auto change = onePendingTask;
change += group->isAccumulatingResults() ? oneReadyTask : 0;
return TaskGroupStatus{status - change};
}
TaskGroupStatus asCancelled(bool cancel) {
return TaskGroupStatus{status | (cancel ? cancelled : 0)};
}
static void reportPendingTaskOverflow(TaskGroupBase* group, TaskGroupStatus status) {
char *message;
swift_asprintf(
&message,
"error: %sTaskGroup: detected pending task count overflow, in task group %p! Status: %s",
group->isDiscardingResults() ? "Discarding" : "", group, status.to_string(group).c_str());
#if !SWIFT_CONCURRENCY_EMBEDDED
if (_swift_shouldReportFatalErrorsToDebugger()) {
RuntimeErrorDetails details = {
.version = RuntimeErrorDetails::currentVersion,
.errorType = "task-group-violation",
.currentStackDescription = "TaskGroup exceeded supported pending task count",
.framesToSkip = 1,
};
_swift_reportToDebugger(RuntimeErrorFlagFatal, message, &details);
}
#endif
#if defined(_WIN32)
#define STDERR_FILENO 2
_write(STDERR_FILENO, message, strlen(message));
#elif defined(STDERR_FILENO)
write(STDERR_FILENO, message, strlen(message));
#endif
#if defined(SWIFT_STDLIB_HAS_ASL)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
asl_log(nullptr, nullptr, ASL_LEVEL_ERR, "%s", message);
#pragma clang diagnostic pop
#elif defined(__ANDROID__)
__android_log_print(ANDROID_LOG_FATAL, "SwiftRuntime", "%s", message);
#endif
free(message);
abort();
}
/// Pretty prints the status, as follows:
/// If accumulating results:
/// TaskGroupStatus{ C:{cancelled} W:{waiting task} R:{ready tasks} P:{pending tasks} {binary repr} }
/// If discarding results:
/// TaskGroupStatus{ C:{cancelled} W:{waiting task} P:{pending tasks} {binary repr} }
std::string to_string(const TaskGroupBase* _Nullable group) {
std::string str;
str.append("TaskGroupStatus{ ");
str.append("C:"); // cancelled
str.append(isCancelled() ? "y" : "n");
str.append(" W:"); // has waiting task
str.append(hasWaitingTask() ? "y" : "n");
if (group && group->isAccumulatingResults()) {
str.append(" R:"); // ready
str.append(std::to_string(readyTasks(group)));
}
str.append(" P:"); // pending
str.append(std::to_string(pendingTasks(group)));
str.append(" " + std::bitset<64>(status).to_string());
str.append(" }");
return str;
}
/// Initially there are no waiting and no pending tasks.
static const TaskGroupStatus initial() {
return TaskGroupStatus{0};
};
};
bool TaskGroupBase::statusCompletePendingReadyWaiting(TaskGroupStatus &old) {
return status.compare_exchange_strong(
old.status, old.completingPendingReadyWaiting(this).status,
/*success*/ std::memory_order_relaxed,
/*failure*/ std::memory_order_relaxed);
}
AsyncTask *TaskGroupBase::claimWaitingTask() {
assert(statusLoadRelaxed().hasWaitingTask() &&
"attempted to claim waiting task but status indicates no waiting "
"task is present!");
auto waitingTask = waitQueue.load(std::memory_order_acquire);
if (!waitQueue.compare_exchange_strong(waitingTask, nullptr)) {
swift_Concurrency_fatalError(0, "Failed to claim waitingTask!");
}
return waitingTask;
}
void TaskGroupBase::runWaitingTask(PreparedWaitingTask prepared) {
// The reason we might not have a task here to schedule is if we were running in the
// task-per-thread single threaded mode, which would have executed the task in-line
// and we must not schedule it here anymore.
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
assert(prepared.waitingTask == nullptr &&
"unexpected task to schedule in TASK_TO_THREAD_MODEL!"
"In this mode we should have run the task in-line, "
"rather than return it for scheduling.");
#endif
if (auto waitingTask = prepared.waitingTask) {
// TODO: allow the caller to suggest an executor
waitingTask->flagAsAndEnqueueOnExecutor(SerialExecutorRef::generic());
}
}
bool TaskGroupBase::isCancelled() const {
auto old = TaskGroupStatus{status.load(std::memory_order_relaxed)};
return old.isCancelled();
}
TaskGroupStatus TaskGroupBase::statusLoadRelaxed() const {
return TaskGroupStatus{status.load(std::memory_order_relaxed)};
}
TaskGroupStatus TaskGroupBase::statusLoadAcquire() const {
return TaskGroupStatus{status.load(std::memory_order_acquire)};
}
std::string TaskGroupBase::statusString() const {
return statusLoadRelaxed().to_string(this);
}
bool TaskGroupBase::isEmpty() const {
auto oldStatus = TaskGroupStatus{status.load(std::memory_order_relaxed)};
return oldStatus.pendingTasks(this) == 0;
}
uint64_t TaskGroupBase::pendingTasks() const {
auto s = TaskGroupStatus{status.load(std::memory_order_relaxed)};
return s.pendingTasks(this);
}
TaskGroupStatus TaskGroupBase::statusMarkWaitingAssumeAcquire() {
auto old = status.fetch_or(TaskGroupStatus::waiting, std::memory_order_acquire);
return TaskGroupStatus{old | TaskGroupStatus::waiting};
}
TaskGroupStatus TaskGroupBase::statusMarkWaitingAssumeRelease() {
auto old = status.fetch_or(TaskGroupStatus::waiting,
std::memory_order_release);
return TaskGroupStatus{old | TaskGroupStatus::waiting};
}
/// Add a single pending task to the status counter.
/// This is used to implement next() properly, as we need to know if there
/// are pending tasks worth suspending/waiting for or not.
///
/// Note that the group does *not* store child tasks at all, as they are
/// stored in the `TaskGroupTaskStatusRecord` inside the current task, that
/// is currently executing the group. Here we only need the counts of
/// pending/ready tasks.
///
/// If the `unconditionally` parameter is `true` the operation always successfully
/// adds a pending task, even if the group is cancelled. If the unconditionally
/// flag is `false`, the added pending count will be *reverted* before returning.
/// This is because we will NOT add a task to a cancelled group, unless doing
/// so unconditionally.
///
/// Returns *assumed* new status, including the just performed +1.
TaskGroupStatus TaskGroupBase::statusAddPendingTaskAssumeRelaxed(bool unconditionally) {
auto old = status.fetch_add(TaskGroupStatus::onePendingTask,
std::memory_order_relaxed);
auto s = TaskGroupStatus{old + TaskGroupStatus::onePendingTask};
if (s.pendingTasks(this) == TaskGroupStatus::maximumPendingTasks(this)) {
TaskGroupStatus::reportPendingTaskOverflow(this, s); // this will abort()
}
if (!unconditionally && s.isCancelled()) {
// revert that add, it was meaningless
auto o = status.fetch_sub(TaskGroupStatus::onePendingTask,
std::memory_order_relaxed);
s = TaskGroupStatus{o - TaskGroupStatus::onePendingTask};
}
SWIFT_TASK_GROUP_DEBUG_LOG(this, "addPending, after: %s", s.to_string(this).c_str());
return s;
}
TaskGroupStatus TaskGroupBase::statusRemoveWaitingRelease() {
auto old = status.fetch_and(~TaskGroupStatus::waiting,
std::memory_order_release);
return TaskGroupStatus{old};
}
bool TaskGroupBase::statusCancel() {
/// The cancelled bit is always the same, the first one, between all task group implementations:
const uint64_t cancelled = TaskGroupStatus::cancelled;
auto old = status.fetch_or(cancelled, std::memory_order_relaxed);
// return if the status was already cancelled before we flipped it or not
return old & cancelled;
}
/******************************************************************************/
/*************** ACCUMULATING (DEFAULT) TASK GROUP ****************************/
/******************************************************************************/
/// The default TaskGroup implementation, which accumulates results until they are consumed using `await next()`.
class AccumulatingTaskGroup: public TaskGroupBase {
friend class ::swift::AsyncTask;
public:
explicit AccumulatingTaskGroup(ResultTypeInfo T)
: TaskGroupBase(T, TaskGroupStatus::initial().status) {}
virtual void destroy() override;
virtual ~AccumulatingTaskGroup() {}
virtual bool isDiscardingResults() const override {
return false;
}
/// Returns *assumed* new status.
///
/// If the group is not accumulating results, the "ready" count does not exist,
/// and this is just a plan load().
TaskGroupStatus statusAddReadyAssumeAcquire() {
auto old = status.fetch_add(TaskGroupStatus::oneReadyTask,
std::memory_order_acquire);
auto s = TaskGroupStatus{old + TaskGroupStatus::oneReadyTask};
assert(s.readyTasks(this) <= s.pendingTasks(this));
return s;
}
virtual void offer(AsyncTask *completed, AsyncContext *context) override;
virtual void enqueueCompletedTask(AsyncTask *completedTask, bool hadErrorResult) override;
/// Attempt to dequeue ready tasks and complete the waitingTask.
///
/// If unable to complete the waiting task immediately (with an readily
/// available completed task), either returns an `PollStatus::Empty`
/// result if it is known that no pending tasks in the group,
/// or a `PollStatus::MustWait` result if there are tasks in flight
/// and the waitingTask eventually be woken up by a completion.
PollResult poll(AsyncTask *waitingTask);
};
/******************************************************************************/
/********************** DISCARDING TASK GROUP *********************************/
/******************************************************************************/
class DiscardingTaskGroup: public TaskGroupBase {
friend class ::swift::AsyncTask;
public:
explicit DiscardingTaskGroup(ResultTypeInfo T)
: TaskGroupBase(T, TaskGroupStatus::initial().status) {}
virtual void destroy() override;
virtual ~DiscardingTaskGroup() {}
virtual bool isDiscardingResults() const override {
return true;
}
/// Returns *assumed* new status.
TaskGroupStatus statusAddReadyAssumeAcquire(const DiscardingTaskGroup *group) {
assert(group->isDiscardingResults());
return TaskGroupStatus{status.load(std::memory_order_acquire)};
}
TaskGroupStatus statusLoadRelaxed() {
return TaskGroupStatus{status.load(std::memory_order_relaxed)};
}
TaskGroupStatus statusLoadAcquire() {
return TaskGroupStatus{status.load(std::memory_order_acquire)};
}
/// Compare-and-set old status to a status derived from the old one,
/// by simultaneously decrementing one Pending and one Waiting tasks.
///
/// This is used to atomically perform a waiting task completion.
bool statusCompletePendingReadyWaiting(TaskGroupStatus &old) {
return status.compare_exchange_strong(
old.status, old.completingPendingReadyWaiting(this).status,
/*success*/ std::memory_order_relaxed,
/*failure*/ std::memory_order_relaxed);
}
/// Decrement the pending status count.
/// Returns the *assumed* new status, including the just performed -1.
TaskGroupStatus statusCompletePendingAssumeRelease() {
auto old = status.fetch_sub(TaskGroupStatus::onePendingTask,
std::memory_order_release);
assert(TaskGroupStatus{old}.pendingTasks(this) > 0 && "attempted to decrement pending count when it was 0 already");
return TaskGroupStatus{old - TaskGroupStatus::onePendingTask};
}
virtual void offer(AsyncTask *completed, AsyncContext *context) override;
virtual void enqueueCompletedTask(AsyncTask *completedTask, bool hadErrorResult) override;
/// Attempt to dequeue ready tasks and complete the waitingTask.
///
/// If unable to complete the waiting task immediately (with an readily
/// available completed task), either returns an `PollStatus::Empty`
/// result if it is known that no pending tasks in the group,
/// or a `PollStatus::MustWait` result if there are tasks in flight
/// and the waitingTask eventually be woken up by a completion.
PollResult poll(AsyncTask *waitingTask);
private:
/// Resume waiting task with specified error
PreparedWaitingTask prepareWaitingTaskWithError(AsyncTask* waitingTask,
SwiftError *error,
TaskGroupStatus &assumed,
bool alreadyDecremented);
};
} // end anonymous namespace
/******************************************************************************/
/************************ TASK GROUP PUBLIC API *******************************/
/******************************************************************************/
using ReadyQueueItem = TaskGroupBase::ReadyQueueItem;
using ReadyStatus = TaskGroupBase::ReadyStatus;
using PollResult = TaskGroupBase::PollResult;
using PollStatus = TaskGroupBase::PollStatus;
static_assert(sizeof(AccumulatingTaskGroup) <= sizeof(TaskGroup) &&
alignof(AccumulatingTaskGroup) <= alignof(TaskGroup),
"TaskGroupBase doesn't fit in TaskGroup");
static_assert(sizeof(DiscardingTaskGroup) <= sizeof(TaskGroup) &&
alignof(DiscardingTaskGroup) <= alignof(TaskGroup),
"DiscardingTaskGroup doesn't fit in TaskGroup");
static TaskGroupBase *asBaseImpl(TaskGroup *group) {
return reinterpret_cast<TaskGroupBase*>(group);
}
static AccumulatingTaskGroup *asAccumulatingImpl(TaskGroupBase *group) {
assert(group->isAccumulatingResults());
return static_cast<AccumulatingTaskGroup*>(group);
}
static AccumulatingTaskGroup *asAccumulatingImpl(TaskGroup *group) {
assert(group->isAccumulatingResults());
return asAccumulatingImpl(asBaseImpl(group));
}
static DiscardingTaskGroup *asDiscardingImpl(TaskGroupBase *group) {
assert(group->isDiscardingResults());
return static_cast<DiscardingTaskGroup*>(group);
}
[[maybe_unused]]
static DiscardingTaskGroup *asDiscardingImpl(TaskGroup *group) {
assert(group->isDiscardingResults());
return asDiscardingImpl(asBaseImpl(group));
}
static TaskGroup *asAbstract(TaskGroupBase *group) {
return reinterpret_cast<TaskGroup*>(group);
}
static TaskGroup *asAbstract(AccumulatingTaskGroup *group) {
return reinterpret_cast<TaskGroup*>(group);
}
static TaskGroup *asAbstract(DiscardingTaskGroup *group) {
return reinterpret_cast<TaskGroup*>(group);
}
TaskGroupTaskStatusRecord *TaskGroup::getTaskRecord() {
return asBaseImpl(this)->getTaskRecord();
}
bool TaskGroup::isDiscardingResults() {
return asBaseImpl(this)->isDiscardingResults();
}
TaskGroup* TaskGroupTaskStatusRecord::getGroup() {
return reinterpret_cast<TaskGroup *>(static_cast<TaskGroupBase*>(this));
}
// =============================================================================
// ==== initialize -------------------------------------------------------------
// Initializes into the preallocated _group an actual TaskGroupBase.
SWIFT_CC(swift)
static void swift_taskGroup_initializeImpl(TaskGroup *group, const Metadata *T) {
swift_taskGroup_initializeWithFlags(0, group, T);
}
// Initializes into the preallocated _group an actual instance.
SWIFT_CC(swift)
static void swift_taskGroup_initializeWithFlagsImpl(size_t rawGroupFlags,
TaskGroup *group, const Metadata *T) {
#if !SWIFT_CONCURRENCY_EMBEDDED
ResultTypeInfo resultType;
resultType.metadata = T;
TaskGroupFlags groupFlags(rawGroupFlags);
SWIFT_TASK_GROUP_DEBUG_LOG_0(group, "create group, from task:%p; flags: isDiscardingResults=%d",
swift_task_getCurrent(),
groupFlags.isDiscardResults());
TaskGroupBase *impl;
if (groupFlags.isDiscardResults()) {
impl = ::new(group) DiscardingTaskGroup(resultType);
} else {
impl = ::new(group) AccumulatingTaskGroup(resultType);
}
TaskGroupTaskStatusRecord *record = impl->getTaskRecord();
assert(record->getKind() == swift::TaskStatusRecordKind::TaskGroup);
// ok, now that the group actually is initialized: attach it to the task
addStatusRecordToSelf(record, [&](ActiveTaskStatus oldStatus, ActiveTaskStatus& newStatus) {
// If the task has already been cancelled, reflect that immediately in
// the group's status.
if (oldStatus.isCancelled()) {
impl->statusCancel();
}
return true;
});
#else
swift_unreachable("task groups not supported yet in embedded Swift");
#endif
}
// =============================================================================
// ==== child task management --------------------------------------------------
void TaskGroup::addChildTask(AsyncTask *child) {
SWIFT_TASK_GROUP_DEBUG_LOG(this, "attach child task = %p", child);
// Add the child task to this task group. The corresponding removal
// won't happen until the parent task successfully polls for this child
// task, either synchronously in poll (if a task is available
// synchronously) or asynchronously in offer (otherwise). In either
// case, the work ends up being non-concurrent with the parent task.
// The task status record lock is held during this operation, which
// prevents us from racing with cancellation or escalation. We don't
// need to acquire the task group lock because the child list is only
// accessed under the task status record lock.
auto base = asBaseImpl(this);
auto record = base->getTaskRecord();
record->attachChild(child);
}
void TaskGroup::removeChildTask(AsyncTask *child) {
SWIFT_TASK_GROUP_DEBUG_LOG(this, "detach child task = %p", child);
auto groupRecord = asBaseImpl(this)->getTaskRecord();
// The task status record lock is held during this operation, which
// prevents us from racing with cancellation or escalation. We don't
// need to acquire the task group lock because the child list is only
// accessed under the task status record lock.
groupRecord->detachChild(child);
}
// =============================================================================
// ==== destroy ----------------------------------------------------------------
SWIFT_CC(swift)
static void swift_taskGroup_destroyImpl(TaskGroup *group) {
asBaseImpl(group)->destroy();
}
void AccumulatingTaskGroup::destroy() {
#if SWIFT_TASK_GROUP_DEBUG_LOG_ENABLED
if (!this->isEmpty()) {
auto status = this->statusLoadRelaxed();
SWIFT_TASK_GROUP_DEBUG_LOG(this, "destroy, tasks .ready = %d, .pending = %llu",
status.readyTasks(this), status.pendingTasks(this));
} else {
SWIFT_TASK_DEBUG_LOG("destroying task group = %p", this);
}
#endif
// Verify using the group's status that indeed we're expected to be empty
assert(this->isEmpty() && "Attempted to destroy non-empty task group!");
// Double check by inspecting the group record, it should contain no children
assert(getTaskRecord()->getFirstChild() == nullptr && "Task group record still has child task!");
// First, remove the group from the task and deallocate the record
removeStatusRecordFromSelf(getTaskRecord());
// No need to drain our queue here, as by the time we call destroy,
// all tasks inside the group must have been awaited on already.
// This is done in Swift's withTaskGroup function explicitly.
// destroy the group's storage
this->~AccumulatingTaskGroup();
}
void DiscardingTaskGroup::destroy() {
#if SWIFT_TASK_GROUP_DEBUG_LOG_ENABLED
if (!this->isEmpty()) {
auto status = this->statusLoadRelaxed();
SWIFT_TASK_GROUP_DEBUG_LOG(this, "destroy, tasks .ready = %d, .pending = %llu",
status.readyTasks(this), status.pendingTasks(this));
} else {
SWIFT_TASK_DEBUG_LOG("destroying discarding task group = %p", this);
}
#endif
// Verify using the group's status that indeed we're expected to be empty
assert(this->isEmpty() && "Attempted to destroy non-empty task group!");
// Double check by inspecting the group record, it should contain no children
assert(getTaskRecord()->getFirstChild() == nullptr && "Task group record still has child task!");
// First, remove the group from the task and deallocate the record
removeStatusRecordFromSelf(getTaskRecord());
// No need to drain our queue here, as by the time we call destroy,
// all tasks inside the group must have been awaited on already.
// This is done in Swift's withTaskGroup function explicitly.
// destroy the group's storage
this->~DiscardingTaskGroup();
}
bool TaskGroup::isCancelled() {
return asBaseImpl(this)->isCancelled();
}
// =============================================================================
// ==== offer ------------------------------------------------------------------
static void fillGroupNextErrorResult(TaskFutureWaitAsyncContext *context,
SwiftError *error) {
context->fillWithError(error);
}
static void fillGroupNextResult(TaskFutureWaitAsyncContext *context,
PollResult result) {
/// Fill in the result value
switch (result.status) {
case PollStatus::MustWait:
assert(false && "filling a waiting status?");
return;
case PollStatus::Error: {
auto error = reinterpret_cast<SwiftError *>(result.storage);
fillGroupNextErrorResult(context, error);
return;
}
case PollStatus::Success: {
// Initialize the result as an Optional<Success>.
OpaqueValue *destPtr = context->successResultPointer;
// TODO: figure out a way to try to optimistically take the
// value out of the finished task's future, if there are no
// remaining references to it.
result.successType.vw_initializeWithCopy(destPtr, result.storage);
result.successType.vw_storeEnumTagSinglePayload(destPtr, 0, 1);
return;
}
case PollStatus::Empty: {
// Initialize the result as a .none Optional<Success>.
OpaqueValue *destPtr = context->successResultPointer;
result.successType.vw_storeEnumTagSinglePayload(destPtr, 1, 1);
return;
}
}
}
static void _enqueueCompletedTask(NaiveTaskGroupQueue<ReadyQueueItem> *readyQueue,
AsyncTask *completedTask,
bool hadErrorResult) {
auto readyItem = ReadyQueueItem::get(
hadErrorResult ? ReadyStatus::Error : ReadyStatus::Success,
completedTask
);
assert(completedTask == readyItem.getTask());
assert(readyItem.getTask()->isFuture());
readyQueue->enqueue(readyItem);
}
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
static void _enqueueRawError(DiscardingTaskGroup *group,
NaiveTaskGroupQueue<ReadyQueueItem> *readyQueue,
SwiftError *error) {
auto readyItem = ReadyQueueItem::getRawError(group, error);
readyQueue->enqueue(readyItem);
}
#endif
// TaskGroup is locked upon entry and exit
void AccumulatingTaskGroup::enqueueCompletedTask(AsyncTask *completedTask, bool hadErrorResult) {
// Retain the task while it is in the queue; it must remain alive until
// it is found by poll. This retain will be balanced by the release in poll.
swift_retain(completedTask);
_enqueueCompletedTask(&readyQueue, completedTask, hadErrorResult);
}
// TaskGroup is locked upon entry and exit
void DiscardingTaskGroup::enqueueCompletedTask(AsyncTask *completedTask, bool hadErrorResult) {
if (!readyQueue.isEmpty()) {
SWIFT_TASK_GROUP_DEBUG_LOG(this, "discard task, we already have an error stored, completedTask:%p",
completedTask);
}
if (hadErrorResult) {
// we only store the FIRST error in discardResults mode
SWIFT_TASK_GROUP_DEBUG_LOG(this, "store first error, completedTask:%p", completedTask);
// continue handling as usual, which will perform the enqueue
} else {
SWIFT_TASK_GROUP_DEBUG_LOG(this, "discard successful result, %p", completedTask);
// DO NOT RETAIN THE TASK.
// We know it is Void, so we don't need to store the result;
// By releasing tasks eagerly we're able to keep "infinite" task groups,
// running, that never consume their values. Even more-so,
return;
}
// Retain the task while it is in the queue; it must remain alive until
// it is found by poll. This retain will be balanced by the release in waitAll.
assert(hadErrorResult); // a discarding group may only store an errored task.
swift_retain(completedTask);
_enqueueCompletedTask(&readyQueue, completedTask, hadErrorResult);
}
void TaskGroup::offer(AsyncTask *completedTask, AsyncContext *context) {
asBaseImpl(this)->offer(completedTask, context);
}
void AccumulatingTaskGroup::offer(AsyncTask *completedTask, AsyncContext *context) {
assert(completedTask);
assert(completedTask->isFuture());
assert(completedTask->hasChildFragment());
assert(completedTask->hasGroupChildFragment());
assert(completedTask->groupChildFragment()->getGroup() == asAbstract(this));
// The current ownership convention is that we are *not* given ownership
// of a retain on completedTask; we're called from the task completion
// handler, and the task will release itself. So if we need the task
// to survive this call (e.g. because there isn't an immediate waiting
// task), we will need to retain it, which we do in enqueueCompletedTask.
// This is wasteful, and the task completion function should be fixed to
// transfer ownership of a retain into this function, in which case we
// will need to release in the other path.
lock();
SWIFT_TASK_GROUP_DEBUG_LOG(this, "offer, completedTask:%p, status:%s",
completedTask,
statusString().c_str());
// Immediately increment ready count and acquire the status
//
// NOTE: If the group is `discardResults` this becomes a plain load(),
// since there is no ready count to maintain.
//
// Examples:
// W:n R:0 P:3 -> W:n R:1 P:3 // no waiter, 2 more pending tasks
// W:n R:0 P:1 -> W:n R:1 P:1 // no waiter, no more pending tasks
// W:n R:0 P:1 -> W:y R:1 P:1 // complete immediately
// W:n R:0 P:1 -> W:y R:1 P:3 // complete immediately, 2 more pending tasks
TaskGroupStatus assumed = statusAddReadyAssumeAcquire();
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(FutureAsyncContextPrefix));
bool hadErrorResult = false;
auto errorObject = asyncContextPrefix->errorResult;
if (errorObject) {
// instead, we need to enqueue this result:
hadErrorResult = true;
}
SWIFT_TASK_GROUP_DEBUG_LOG(this, "ready: %d, pending: %llu",
assumed.readyTasks(this), assumed.pendingTasks(this));
// ==== a) has waiting task, so let us complete it right away
if (assumed.hasWaitingTask()) {
auto waitingTask = claimWaitingTask();
auto prepared = prepareWaitingTaskWithTask(
/*complete=*/waitingTask, /*with=*/completedTask,
assumed, hadErrorResult);
// we must unlock before running the waiting task,
// in order to avoid the potential for the resumed task
// to cause a group destroy, in which case the unlock might
// attempt memory in an invalid state.
unlock();
return runWaitingTask(prepared);
} else {
// ==== b) enqueue completion ------------------------------------------------
//
// else, no-one was waiting (yet), so we have to instead enqueue to the message
// queue when a task polls during next() it will notice that we have a value
// ready for it, and will process it immediately without suspending.
assert(!waitQueue.load(std::memory_order_relaxed));
enqueueCompletedTask(completedTask, hadErrorResult);
return unlock();
}
}
void DiscardingTaskGroup::offer(AsyncTask *completedTask, AsyncContext *context) {
assert(completedTask);
assert(completedTask->isFuture());
assert(completedTask->hasChildFragment());
assert(completedTask->hasGroupChildFragment());
assert(completedTask->groupChildFragment()->getGroup() == asAbstract(this));
lock();
// Since we don't maintain ready counts in a discarding group, only load the status.
TaskGroupStatus assumed = statusLoadAcquire();
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(FutureAsyncContextPrefix));
bool hadErrorResult = false;
auto errorObject = asyncContextPrefix->errorResult;
if (errorObject) {
// instead, we need to enqueue this result:
hadErrorResult = true;
}
SWIFT_TASK_GROUP_DEBUG_LOG(this, "offer, completedTask:%p, error:%d, status:%s",
completedTask, hadErrorResult, assumed.to_string(this).c_str());
// Immediately decrement the pending count.
// We can do this, since in this mode there is no ready count to keep track of,
// and we immediately discard the result.
auto afterComplete = statusCompletePendingAssumeRelease();
const bool alreadyDecrementedStatus = true;
SWIFT_TASK_GROUP_DEBUG_LOG(this, "offer, complete, status afterComplete:%s", afterComplete.to_string(this).c_str());
// Errors need special treatment
if (hadErrorResult) {
// Discarding results mode immediately treats a child failure as group cancellation.
// "All for one, one for all!" - any task failing must cause the group and all sibling tasks to be cancelled,
// such that the discarding group can exit as soon as possible.
cancelAll();
if (afterComplete.hasWaitingTask() && afterComplete.pendingTasks(this) == 0) {
// We grab the waiting task while holding the group lock, because this
// allows a single task to get the waiting task and attempt to complete it.
// As another offer gets to run, it will have either a different waiting task, or no waiting task at all.
auto waitingTask = claimWaitingTask();
// This is the last pending task, and we must resume the waiting task.
// - if there already was a previous error stored, we resume using it,
// - otherwise, we resume using this current (failed) completedTask
ReadyQueueItem readyErrorItem;
if (readyQueue.dequeue(readyErrorItem)) {
// Always detach the completed task, we're instead going to use the stored value from the readyQueue
_swift_taskGroup_detachChild(asAbstract(this), completedTask);
switch (readyErrorItem.getStatus()) {
case ReadyStatus::RawError: {
SWIFT_TASK_GROUP_DEBUG_LOG(
this, "offer, complete, resume waitingTask:%p, with raw error:%p",
waitingTask, readyErrorItem.getRawError(this));
auto prepared = prepareWaitingTaskWithError(
/*complete=*/waitingTask,
/*with=*/readyErrorItem.getRawError(this), assumed,
alreadyDecrementedStatus);
// we must unlock before running the waiting task,
// in order to avoid the potential for the resumed task
// to cause a group destroy, in which case the unlock might
// attempt memory in an invalid state.
unlock();
return runWaitingTask(prepared);
}
case ReadyStatus::Error: {
// The completed task failed, but we already stored a different failed
// task. Thus we discard this error and complete with the previously
// stored.
SWIFT_TASK_GROUP_DEBUG_LOG(
this,
"offer, complete waitingTask:%p, discard error completedTask:%p, "
"resume with errorItem.task:%p",
waitingTask, completedTask, readyErrorItem.getTask());
auto prepared = prepareWaitingTaskWithTask(
/*complete*/ waitingTask,
/*with=*/readyErrorItem.getTask(), assumed,
/*hadErrorResult=*/true, alreadyDecrementedStatus,
/*taskWasRetained=*/true);
// we must unlock before running the waiting task,
// in order to avoid the potential for the resumed task
// to cause a group destroy, in which case the unlock might
// attempt memory in an invalid state.
unlock();
return runWaitingTask(prepared);
}
default: {
swift_Concurrency_fatalError(
0, "only errors can be stored by a discarding task group, yet it "
"wasn't an error! 1");
}
}
} else {
// The following MUST be done in the following order: detach, unlock, resume waitingTask.
// because we do not want to allow another task to run and have the potential to lock or even destroy
// the group before we've given up the lock.
_swift_taskGroup_detachChild(asAbstract(this), completedTask);
// There was no prior failed task stored, so we should resume the waitingTask with this (failed) completedTask
auto prepared = prepareWaitingTaskWithTask(/*complete=*/waitingTask, /*with=*/completedTask,
assumed, hadErrorResult, alreadyDecrementedStatus);
// we must unlock before running the waiting task,
// in order to avoid the potential for the resumed task
// to cause a group destroy, in which case the unlock might
// attempt memory in an invalid state.
unlock();
return runWaitingTask(prepared);
}
} else if (readyQueue.isEmpty()) {
// There was no waiting task, or other tasks are still pending, so we cannot
// it is the first error we encountered, thus we need to store it for future throwing
SWIFT_TASK_GROUP_DEBUG_LOG(this, "offer, enqueue child task:%p", completedTask);
enqueueCompletedTask(completedTask, hadErrorResult);
return unlock();
} else {
SWIFT_TASK_GROUP_DEBUG_LOG(this, "offer, complete, discard child task:%p", completedTask);
_swift_taskGroup_detachChild(asAbstract(this), completedTask);
return unlock();
}
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunreachable-code"
// This _should_ be statically unreachable, but we leave it in as a
// safeguard in case the control flow above changes.
swift_unreachable("expected to early return from when handling offer of last task in group");
#pragma clang diagnostic pop
}
assert(!hadErrorResult && "only successfully completed tasks can reach here");
if (afterComplete.hasWaitingTask() && afterComplete.pendingTasks(this) == 0) {
// We grab the waiting task while holding the group lock, because this
// allows a single task to get the waiting task and attempt to complete it.
// As another offer gets to run, it will have either a different waiting task, or no waiting task at all.
auto waitingTask = waitQueue.load(std::memory_order_acquire);
if (!waitQueue.compare_exchange_strong(waitingTask, nullptr)) {
swift_Concurrency_fatalError(0, "Failed to claim waitingTask!");
}
assert(waitingTask && "status claimed to have waitingTask but waitQueue was empty!");
SWIFT_TASK_GROUP_DEBUG_LOG(this,
"offer, last pending task completed successfully, resume waitingTask:%p with completedTask:%p",
waitingTask, completedTask);
/// If there was an error previously stored, we must resume the waitingTask using that error.
ReadyQueueItem readyErrorItem;
if (readyQueue.dequeue(readyErrorItem)) {
// Always detach the completed task, we're instead going to use the stored value from the readyQueue
_swift_taskGroup_detachChild(asAbstract(this), completedTask);
switch (readyErrorItem.getStatus()) {
case ReadyStatus::RawError: {
auto task = prepareWaitingTaskWithError(
/*complete=*/waitingTask, /*with=*/readyErrorItem.getRawError(this),
assumed, alreadyDecrementedStatus);
// we must unlock before running the waiting task,
// in order to avoid the potential for the resumed task
// to cause a group destroy, in which case the unlock might
// attempt memory in an invalid state.
unlock();
return runWaitingTask(task);
}
case ReadyStatus::Error: {
auto preparedWaitingTask = prepareWaitingTaskWithTask(
/*complete=*/waitingTask,
/*with=*/readyErrorItem.getTask(), assumed,
/*hadErrorResult=*/true, alreadyDecrementedStatus,
/*taskWasRetained=*/true);
// we must unlock before running the waiting task,
// in order to avoid the potential for the resumed task
// to cause a group destroy, in which case the unlock might
// attempt memory in an invalid state.
unlock();
return runWaitingTask(preparedWaitingTask);
}
default: {
swift_Concurrency_fatalError(
0, "only errors can be stored by a discarding task group, yet it "
"wasn't an error! 2");
}
}
} else {
// This is the last task, we have a waiting task and there was no error stored previously;
// We must resume the waiting task with a success, so let us return here.
auto prepared = prepareWaitingTaskWithTask(
/*complete=*/waitingTask, /*with=*/completedTask,
assumed, /*hadErrorResult=*/false, alreadyDecrementedStatus);
// we must unlock before running the waiting task,
// in order to avoid the potential for the resumed task
// to cause a group destroy, in which case the unlock might
// attempt memory in an invalid state.
unlock();
return runWaitingTask(prepared);
}
} else {
// it wasn't the last pending task, and there is no-one to resume;
// Since this is a successful result, and we're a discarding task group -- always just ignore this task.
_swift_taskGroup_detachChild(asAbstract(this), completedTask);
return unlock();
}
}
/// Must be called while holding the TaskGroup lock.
TaskGroupBase::PreparedWaitingTask TaskGroupBase::prepareWaitingTaskWithTask(
AsyncTask *waitingTask,
AsyncTask *completedTask,
TaskGroupStatus &assumed,
bool hadErrorResult,
bool alreadyDecremented,
bool taskWasRetained) {
SWIFT_TASK_GROUP_DEBUG_LOG(this, "resume, waitingTask = %p, completedTask = %p, alreadyDecremented:%d, error:%d",
waitingTask, alreadyDecremented, hadErrorResult, completedTask);
assert(waitingTask && "waitingTask must not be null when attempting to resume it");
assert(assumed.hasWaitingTask());
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// In the task-to-thread model, child tasks are always actually
// run synchronously on the parent task's thread. For task groups
// specifically, this means that poll() will pick a child task
// that was added to the group and run it to completion as a
// subroutine. Therefore, when we enter offer(), we know that
// the parent task is waiting and we can just return to it.
// The task-to-thread logic in poll() currently expects the child
// task to enqueue itself instead of just filling in the result in
// the waiting task. This is a little wasteful; there's no reason
// we can't just have the parent task set itself up as a waiter.
// But since it's what we're doing, we basically take the same
// path as we would if there wasn't a waiter.
enqueueCompletedTask(completedTask, hadErrorResult);
return {nullptr};
#else /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
if (!alreadyDecremented) {
(void) statusCompletePendingReadyWaiting(assumed);
}
// Populate the waiting task with value from completedTask.
auto result = PollResult::get(completedTask, hadErrorResult);
SWIFT_TASK_GROUP_DEBUG_LOG(this,
"resume waiting DONE, task = %p, error:%d, complete with = %p, status = %s",
waitingTask, hadErrorResult, completedTask, statusString().c_str());
auto waitingContext =
static_cast<TaskFutureWaitAsyncContext *>(
waitingTask->ResumeContext);
fillGroupNextResult(waitingContext, result);
// Remove the child from the task group's running tasks list.
// The parent task isn't currently running (we're about to wake
// it up), so we're still synchronous with it. We can safely
// acquire our parent's status record lock here (which would
// ordinarily run the risk of deadlock, since e.g. cancellation
// does a parent -> child traversal while recursively holding
// locks) because we know that the child task is completed and
// we can't be holding its locks ourselves.
_swift_taskGroup_detachChild(asAbstract(this), completedTask);
if (isDiscardingResults() && hadErrorResult && taskWasRetained) {
// We only used the task to keep the error in the future fragment around
// so now that we emitted the error and detached the task, we are free to release the task immediately.
swift_release(completedTask);
}
_swift_tsan_acquire(static_cast<Job *>(waitingTask));
return {waitingTask};
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
}
/// Must be called while holding the TaskGroup lock.
TaskGroupBase::PreparedWaitingTask
DiscardingTaskGroup::prepareWaitingTaskWithError(AsyncTask *waitingTask,
SwiftError *error,
TaskGroupStatus &assumed,
bool alreadyDecremented) {
assert(waitingTask && "cannot resume 'null' waiting task!");
SWIFT_TASK_GROUP_DEBUG_LOG(this,
"resume waiting task = %p, with error = %p",
waitingTask, error);
assert(assumed.hasWaitingTask());
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// In the task-to-thread model, child tasks are always actually
// run synchronously on the parent task's thread. For task groups
// specifically, this means that poll() will pick a child task
// that was added to the group and run it to completion as a
// subroutine. Therefore, when we enter offer(), we know that
// the parent task is waiting and we can just return to it.
// The task-to-thread logic in poll() currently expects the child
// task to enqueue itself instead of just filling in the result in
// the waiting task. This is a little wasteful; there's no reason
// we can't just have the parent task set itself up as a waiter.
// But since it's what we're doing, we basically take the same
// path as we would if there wasn't a waiter.
_enqueueRawError(this, &readyQueue, error);
return {nullptr};
#else /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
if (!alreadyDecremented) {
statusCompletePendingReadyWaiting(assumed);
}
// Run the task.
auto result = PollResult::getError(error);
auto waitingContext = static_cast<TaskFutureWaitAsyncContext *>(
waitingTask->ResumeContext);
fillGroupNextResult(waitingContext, result);
_swift_tsan_acquire(static_cast<Job *>(waitingTask));
return {waitingTask};
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
}
SWIFT_CC(swiftasync)
static void
task_group_wait_resume_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto context = static_cast<TaskFutureWaitAsyncContext *>(_context);
auto resumeWithError =
reinterpret_cast<AsyncVoidClosureResumeEntryPoint *>(context->ResumeParent);
return resumeWithError(context->Parent, context->errorResult);
}
#ifdef __ARM_ARCH_7K__
__attribute__((noinline))
SWIFT_CC(swiftasync) static void workaround_function_swift_taskGroup_wait_next_throwingImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
TaskGroup *_group,
ThrowingTaskFutureWaitContinuationFunction resumeFunction,
AsyncContext *callContext) {
// Make sure we don't eliminate calls to this function.
asm volatile("" // Do nothing.
: // Output list, empty.
: "r"(result), "r"(callerContext), "r"(_group) // Input list.
: // Clobber list, empty.
);
return;
}
__attribute__((noinline))
SWIFT_CC(swiftasync) static void workaround_function_swift_taskGroup_waitAllImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
TaskGroup *_group,
SwiftError *bodyError,
ThrowingTaskFutureWaitContinuationFunction resumeFunction,
AsyncContext *callContext) {
// Make sure we don't eliminate calls to this function.
asm volatile("" // Do nothing.
: // Output list, empty.
: "r"(result), "r"(callerContext), "r"(_group) // Input list.
: // Clobber list, empty.
);
return;
}
#endif
// =============================================================================
// ==== group.next() implementation (wait_next and groupPoll) ------------------
SWIFT_CC(swiftasync)
static void swift_taskGroup_wait_next_throwingImpl(
OpaqueValue *resultPointer, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
TaskGroup *_group,
ThrowingTaskFutureWaitContinuationFunction *resumeFunction,
AsyncContext *rawContext) {
auto waitingTask = swift_task_getCurrent();
waitingTask->ResumeTask = task_group_wait_resume_adapter;
waitingTask->ResumeContext = rawContext;
auto context = static_cast<TaskFutureWaitAsyncContext *>(rawContext);
context->ResumeParent =
reinterpret_cast<TaskContinuationFunction *>(resumeFunction);
context->Parent = callerContext;
context->errorResult = nullptr;
context->successResultPointer = resultPointer;
auto group = asAccumulatingImpl(_group);
assert(group && "swift_taskGroup_wait_next_throwing was passed context without group!");
PollResult polled = group->poll(waitingTask);
switch (polled.status) {
case PollStatus::MustWait:
SWIFT_TASK_DEBUG_LOG("poll group = %p, no ready tasks, waiting task = %p",
group, waitingTask);
// The waiting task has been queued on the channel,
// there were pending tasks so it will be woken up eventually.
#ifdef __ARM_ARCH_7K__
return workaround_function_swift_taskGroup_wait_next_throwingImpl(
resultPointer, callerContext, _group, resumeFunction, rawContext);
#else /* __ARM_ARCH_7K__ */
return;
#endif /* __ARM_ARCH_7K__ */
case PollStatus::Empty:
case PollStatus::Error:
case PollStatus::Success:
SWIFT_TASK_GROUP_DEBUG_LOG(group, "poll, task = %p, ready task available = %p",
waitingTask, polled.retainedTask);
fillGroupNextResult(context, polled);
if (auto completedTask = polled.retainedTask) {
// Remove the child from the task group's running tasks list.
_swift_taskGroup_detachChild(asAbstract(group), completedTask);
// Balance the retain done by enqueueCompletedTask.
swift_release(completedTask);
}
return waitingTask->runInFullyEstablishedContext();
}
}
PollResult AccumulatingTaskGroup::poll(AsyncTask *waitingTask) {
SWIFT_TASK_GROUP_DEBUG_LOG(this, "poll, waitingTask:%p", waitingTask);
lock();
assert(isAccumulatingResults() &&
"attempted to poll TaskGroup in discard-results mode!");
PollResult result;
result.storage = nullptr;
result.successType = ResultTypeInfo();
result.retainedTask = nullptr;
// Have we suspended the task?
bool hasSuspended = false;
bool haveRunOneChildTaskInline = false;
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
reevaluate_if_taskgroup_has_results:;
#endif
auto assumed = statusMarkWaitingAssumeAcquire();
if (haveRunOneChildTaskInline) {
assert(assumed.readyTasks(this));
}
// ==== 1) bail out early if no tasks are pending ----------------------------
if (assumed.isEmpty(this)) {
SWIFT_TASK_DEBUG_LOG("poll group = %p, group is empty, no pending tasks", this);
// No tasks in flight, we know no tasks were submitted before this poll
// was issued, and if we parked here we'd potentially never be woken up.
// Bail out and return `nil` from `group.next()`.
statusRemoveWaitingRelease();
result.status = PollStatus::Empty;
result.successType = this->successType;
unlock();
return result;
}
auto waitHead = waitQueue.load(std::memory_order_acquire);
// ==== 2) Ready task was polled, return with it immediately -----------------
if (assumed.readyTasks(this)) {
SWIFT_TASK_DEBUG_LOG("poll group = %p, tasks .ready = %d, .pending = %llu",
this, assumed.readyTasks(this), assumed.pendingTasks(this));
auto assumedStatus = assumed.status;
auto newStatus = TaskGroupStatus{assumedStatus};
if (status.compare_exchange_strong(
assumedStatus, newStatus.completingPendingReadyWaiting(this).status,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire)) {
// We're going back to running the task, so if we suspended before,
// we need to flag it as running again.
if (hasSuspended) {
waitingTask->flagAsRunning();
}
// Success! We are allowed to poll.
ReadyQueueItem item;
bool taskDequeued = readyQueue.dequeue(item);
assert(taskDequeued); (void) taskDequeued;
auto futureFragment =
item.getStatus() == ReadyStatus::RawError ?
nullptr :
item.getTask()->futureFragment();
// Store the task in the result, so after we're done processing it may
// be swift_release'd; we kept it alive while it was in the readyQueue by
// an additional retain issued as we enqueued it there.
// Note that the task was detached from the task group when it
// completed, so we don't need to do that bit of record-keeping here.
switch (item.getStatus()) {
case ReadyStatus::Success:
// Immediately return the polled value
result.status = PollStatus::Success;
result.storage = futureFragment->getStoragePtr();
result.successType = futureFragment->getResultType();
result.retainedTask = item.getTask();
assert(result.retainedTask && "polled a task, it must be not null");
_swift_tsan_acquire(static_cast<Job *>(result.retainedTask));
unlock();
return result;
case ReadyStatus::Error:
// Immediately return the polled value
result.status = PollStatus::Error;
result.storage =
reinterpret_cast<OpaqueValue *>(futureFragment->getError());
result.successType = ResultTypeInfo();
result.retainedTask = item.getTask();
assert(result.retainedTask && "polled a task, it must be not null");
_swift_tsan_acquire(static_cast<Job *>(result.retainedTask));
unlock();
return result;
case ReadyStatus::Empty:
result.status = PollStatus::Empty;
result.storage = nullptr;
result.retainedTask = nullptr;
result.successType = this->successType;
unlock();
return result;
case ReadyStatus::RawError:
swift_Concurrency_fatalError(0, "accumulating task group should never use raw-errors!");
}
swift_Concurrency_fatalError(0, "must return result when status compare-and-swap was successful");
} // else, we failed status-cas (some other waiter claimed a ready pending task, try again)
}
// ==== 3) Add to wait queue -------------------------------------------------
assert(assumed.readyTasks(this) == 0);
_swift_tsan_release(static_cast<Job *>(waitingTask));
if (!hasSuspended) {
waitingTask->flagAsSuspendedOnTaskGroup(asAbstract(this));
hasSuspended = true;
}
while (true) {
// Put the waiting task at the beginning of the wait queue.
SWIFT_TASK_GROUP_DEBUG_LOG(this, "WATCH OUT, SET WAITER ONTO waitQueue.head = %p", waitQueue.load(std::memory_order_relaxed));
if (waitQueue.compare_exchange_weak(
waitHead, waitingTask,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire)) {
// we must unlock before running the waiting task,
// in order to avoid the potential for the resumed task
// to cause a group destroy, in which case the unlock might
// attempt memory in an invalid state.
unlock();
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// The logic here is paired with the logic in TaskGroupBase::offer. Once
// we run the
auto oldTask = _swift_task_clearCurrent();
assert(oldTask == waitingTask);
auto childTask = getTaskRecord()->getFirstChild();
assert(childTask != NULL);
SWIFT_TASK_DEBUG_LOG("[RunInline] Switching away from running %p to now running %p", oldTask, childTask);
// Run the new task on the same thread now - this should run the new task to
// completion. All swift tasks in task-to-thread model run on generic
// executor
swift_job_run(childTask, SerialExecutorRef::generic());
haveRunOneChildTaskInline = true;
SWIFT_TASK_DEBUG_LOG("[RunInline] Switching back from running %p to now running %p", childTask, oldTask);
// We are back to being the parent task and now that we've run the child
// task, we should reevaluate parent task
_swift_task_setCurrent(oldTask);
goto reevaluate_if_taskgroup_has_results;
#endif
// no ready tasks, so we must wait.
result.status = PollStatus::MustWait;
_swift_task_clearCurrent();
return result;
} // else, try again
}
}
// =============================================================================
// ==== _taskGroupWaitAll implementation ---------------------------------------
SWIFT_CC(swiftasync)
static void swift_taskGroup_waitAllImpl(
OpaqueValue *resultPointer, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
TaskGroup *_group,
SwiftError *bodyError,
ThrowingTaskFutureWaitContinuationFunction *resumeFunction,
AsyncContext *rawContext) {
auto waitingTask = swift_task_getCurrent();
auto group = asBaseImpl(_group);
return group->waitAll(
bodyError, waitingTask,
resultPointer, callerContext, resumeFunction, rawContext);
}
void TaskGroupBase::waitAll(SwiftError* bodyError, AsyncTask *waitingTask,
OpaqueValue *resultPointer, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
ThrowingTaskFutureWaitContinuationFunction *resumeFunction,
AsyncContext *rawContext) {
lock();
// must mutate the waiting task while holding the group lock,
// so we don't get an offer concurrently trying to do so
waitingTask->ResumeTask = task_group_wait_resume_adapter;
waitingTask->ResumeContext = rawContext;
auto context = static_cast<TaskFutureWaitAsyncContext *>(rawContext);
context->ResumeParent =
reinterpret_cast<TaskContinuationFunction *>(resumeFunction);
context->Parent = callerContext;
context->errorResult = nullptr;
context->successResultPointer = resultPointer;
SWIFT_TASK_GROUP_DEBUG_LOG(this, "waitAll, bodyError = %p, status = %s", bodyError, statusString().c_str());
PollResult result = PollResult::getEmpty(this->successType);
result.status = PollStatus::Empty;
result.storage = nullptr;
result.retainedTask = nullptr;
// Have we suspended the task?
bool hasSuspended = false;
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
bool haveRunOneChildTaskInline = false;
reevaluate_if_TaskGroup_has_results:;
#endif
// Paired with a release when marking Waiting,
// otherwise we don't modify the status
auto assumed = statusLoadAcquire();
SWIFT_TASK_GROUP_DEBUG_LOG(this, "waitAll, status = %s", assumed.to_string(this).c_str());
// ==== 1) may be able to bail out early if no tasks are pending -------------
if (assumed.isEmpty(this)) {
/// A discarding task group may be empty already, but have stored an error that must be thrown
/// out of waitAll - providing the "the first error gets thrown" semantics of the group.
/// The readyQueue is allowed to have exactly one error element in this case.
if (isDiscardingResults()) {
// ---- 1.1) A discarding group needs to check if there is a stored error to throw
auto discardingGroup = asDiscardingImpl(this);
ReadyQueueItem firstErrorItem;
if (readyQueue.dequeue(firstErrorItem)) {
if (firstErrorItem.getStatus() == ReadyStatus::Error) {
result = PollResult::get(firstErrorItem.getTask(), /*hadErrorResult=*/true);
} else if (firstErrorItem.getStatus() == ReadyStatus::RawError) {
result.storage = reinterpret_cast<OpaqueValue*>(firstErrorItem.getRawError(discardingGroup));
result.status = PollStatus::Error;
}
} // else, we're definitely Empty
} // else (in an accumulating group), a waitAll can bail out early Empty
SWIFT_TASK_GROUP_DEBUG_LOG(this, "waitAll, early return, no pending tasks, bodyError:%p, status = %s",
bodyError, assumed.to_string(this).c_str());
// No tasks in flight, we know no tasks were submitted before this poll
// was issued, and if we parked here we'd potentially never be woken up.
#if SWIFT_TASK_GROUP_BODY_THROWN_ERROR_WINS
if (bodyError) {
fillGroupNextErrorResult(context, bodyError);
} else {
fillGroupNextResult(context, result);
}
#else // so, not SWIFT_TASK_GROUP_BODY_THROWN_ERROR_WINS
fillGroupNextResult(context, polled);
#endif // SWIFT_TASK_GROUP_BODY_THROWN_ERROR_WINS
if (auto completedTask = result.retainedTask) {
// Remove the child from the task group's running tasks list.
_swift_taskGroup_detachChild(asAbstract(this), completedTask);
// Balance the retain done by enqueueCompletedTask.
swift_release(completedTask);
}
// We MUST release the lock before we resume the waiting task, because the resumption
// will allow it to destroy the task group, in which case the unlock()
// would be performed on freed memory (!)
unlock();
waitingTask->runInFullyEstablishedContext();
return;
}
// ==== 2) Add to wait queue -------------------------------------------------
// ---- 2.1) Discarding task group may need to story the bodyError before we park
if (bodyError && isDiscardingResults() && readyQueue.isEmpty()) {
auto discardingGroup = asDiscardingImpl(this);
auto readyItem = ReadyQueueItem::getRawError(discardingGroup, bodyError);
readyQueue.enqueue(readyItem);
}
auto waitHead = waitQueue.load(std::memory_order_acquire);
_swift_tsan_release(static_cast<Job *>(waitingTask));
if (!hasSuspended) {
waitingTask->flagAsSuspendedOnTaskGroup(asAbstract(this));
hasSuspended = true;
}
while (true) {
// Put the waiting task at the beginning of the wait queue.
if (waitQueue.compare_exchange_weak(
waitHead, waitingTask,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire)) {
statusMarkWaitingAssumeRelease();
SWIFT_TASK_GROUP_DEBUG_LOG(this, "waitAll, marked waiting status = %s", statusString().c_str());
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// The logic here is paired with the logic in TaskGroupBase::offer. Once
// we run the
auto oldTask = _swift_task_clearCurrent();
assert(oldTask == waitingTask);
auto childTask = getTaskRecord()->getFirstChild();
assert(childTask != NULL);
SWIFT_TASK_DEBUG_LOG("[RunInline] Switching away from running %p to now running %p", oldTask, childTask);
// Run the new task on the same thread now - this should run the new task to
// completion. All swift tasks in task-to-thread model run on generic
// executor
swift_job_run(childTask, SerialExecutorRef::generic());
haveRunOneChildTaskInline = true;
SWIFT_TASK_DEBUG_LOG("[RunInline] Switching back from running %p to now running %p", childTask, oldTask);
// We are back to being the parent task and now that we've run the child
// task, we should reevaluate parent task
_swift_task_setCurrent(oldTask);
goto reevaluate_if_TaskGroup_has_results;
#endif
// The waiting task has been queued on the channel,
// there were pending tasks so it will be woken up eventually.
#ifdef __ARM_ARCH_7K__
workaround_function_swift_taskGroup_waitAllImpl(
resultPointer, callerContext, asAbstract(this), bodyError, resumeFunction, rawContext);
#endif /* __ARM_ARCH_7K__ */
_swift_task_clearCurrent();
unlock();
return;
} // else, try again
}
}
// =============================================================================
// ==== Task Group status and flag checks -------------------------------------
SWIFT_CC(swift)
static bool swift_taskGroup_isEmptyImpl(TaskGroup *group) {
return asBaseImpl(group)->isEmpty();
}
SWIFT_CC(swift)
static bool swift_taskGroup_isCancelledImpl(TaskGroup *group) {
return asBaseImpl(group)->isCancelled();
}
// =============================================================================
// ==== cancelAll --------------------------------------------------------------
SWIFT_CC(swift)
static void swift_taskGroup_cancelAllImpl(TaskGroup *group) {
asBaseImpl(group)->cancelAll();
}
bool TaskGroupBase::cancelAll() {
SWIFT_TASK_DEBUG_LOG("cancel all tasks in group = %p", this);
// Flag the task group itself as cancelled. If this was already
// done, any existing child tasks should already have been cancelled,
// and cancellation should automatically flow to any new child tasks,
// so there's nothing else for us to do.
auto wasCancelledBefore = statusCancel();
if (wasCancelledBefore) {
return false;
}
// Cancel all the child tasks. TaskGroup is not a Sendable type,
// so cancelAll() can only be called from the owning task. This
// satisfies the precondition on cancelAllChildren().
_swift_taskGroup_cancelAllChildren(asAbstract(this));
return true;
}
SWIFT_CC(swift)
static void swift_task_cancel_group_child_tasksImpl(TaskGroup *group) {
// TaskGroup is not a Sendable type, and so this operation (which is not
// currently exposed in the API) can only be called from the owning
// task. This satisfies the precondition on cancelAllChildren().
_swift_taskGroup_cancelAllChildren(group);
}
/// Cancel all the children of the given task group.
///
/// The caller must guarantee that this is either called from the
/// owning task of the task group or while holding the owning task's
/// status record lock.
void swift::_swift_taskGroup_cancelAllChildren(TaskGroup *group) {
// Because only the owning task of the task group can modify the
// child list of a task group status record, and it can only do so
// while holding the owning task's status record lock, we do not need
// any additional synchronization within this function.
for (auto childTask: group->getTaskRecord()->children())
swift_task_cancel(childTask);
}
// =============================================================================
// ==== addPending -------------------------------------------------------------
SWIFT_CC(swift)
static bool swift_taskGroup_addPendingImpl(TaskGroup *_group, bool unconditionally) {
auto group = asBaseImpl(_group);
auto assumed = group->statusAddPendingTaskAssumeRelaxed(unconditionally);
SWIFT_TASK_DEBUG_LOG("add pending %s to group(%p), tasks pending = %d",
unconditionally ? "unconditionally" : "",
group, assumed.pendingTasks(group));
return !assumed.isCancelled();
}
#define OVERRIDE_TASK_GROUP COMPATIBILITY_OVERRIDE
#include COMPATIBILITY_OVERRIDE_INCLUDE_PATH
|