1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
//===--- tgmath.swift.gyb -------------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
// Generic functions implementable directly on FloatingPoint.
@_transparent
@available(swift, deprecated: 4.2/*, obsoleted: 5.1*/, renamed: "abs")
public func fabs<T: FloatingPoint>(_ x: T) -> T {
return x.magnitude
}
@_transparent
public func sqrt<T: FloatingPoint>(_ x: T) -> T {
return x.squareRoot()
}
@_transparent
public func fma<T: FloatingPoint>(_ x: T, _ y: T, _ z: T) -> T {
return z.addingProduct(x, y)
}
@_transparent
public func remainder<T: FloatingPoint>(_ x: T, _ y: T) -> T {
return x.remainder(dividingBy: y)
}
@_transparent
public func fmod<T: FloatingPoint>(_ x: T, _ y: T) -> T {
return x.truncatingRemainder(dividingBy: y)
}
@_transparent
public func ceil<T: FloatingPoint>(_ x: T) -> T {
return x.rounded(.up)
}
@_transparent
public func floor<T: FloatingPoint>(_ x: T) -> T {
return x.rounded(.down)
}
@_transparent
public func round<T: FloatingPoint>(_ x: T) -> T {
return x.rounded()
}
@_transparent
public func trunc<T: FloatingPoint>(_ x: T) -> T {
return x.rounded(.towardZero)
}
@_transparent
public func scalbn<T: FloatingPoint>(_ x: T, _ n : Int) -> T {
return T(sign: .plus, exponent: T.Exponent(n), significand: x)
}
@_transparent
public func modf<T: FloatingPoint>(_ x: T) -> (T, T) {
// inf/NaN: return canonicalized x, fractional part zero.
guard x.isFinite else { return (x+0, 0) }
let integral = trunc(x)
let fractional = x - integral
return (integral, fractional)
}
@_transparent
public func frexp<T: BinaryFloatingPoint>(_ x: T) -> (T, Int) {
guard x.isFinite else { return (x+0, 0) }
guard x != 0 else { return (x, 0) }
// The C stdlib `frexp` uses a different notion of significand / exponent
// than IEEE 754, so we need to adjust them by a factor of two.
return (x.significand / 2, Int(x.exponent + 1))
}
%for T in ['Float','Double']:
@available(swift, deprecated: 4.2, renamed: "scalbn")
@_transparent
public func ldexp(_ x: ${T}, _ n : Int) -> ${T} {
return ${T}(sign: .plus, exponent: n, significand: x)
}
%end
// Floating-point properties that are exposed as functions in the C math
// library. Mark those function names unavailable and direct users to the
// properties instead.
@available(*, unavailable, message: "use the floatingPointClass property.")
public func fpclassify<T: FloatingPoint>(_ value: T) -> Int { fatalError() }
@available(*, unavailable, message: "use the isNormal property.")
public func isnormal<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
@available(*, unavailable, message: "use the isFinite property.")
public func isfinite<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
@available(*, unavailable, message: "use the isInfinite property.")
public func isinf<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
@available(*, unavailable, message: "use the isNaN property.")
public func isnan<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
@available(*, unavailable, message: "use the sign property.")
public func signbit<T: FloatingPoint>(_ value: T) -> Int { fatalError() }
@available(swift, deprecated: 4.2/*, obsoleted: 5.1*/, message: "use the exponent property.")
public func ilogb<T: BinaryFloatingPoint>(_ x: T) -> Int {
return Int(x.exponent)
}
%{
# Don't need 64-bit (Double/CDouble) overlays. The ordinary C imports work fine.
overlayFloatBits = [32, 80]
allFloatBits = [32, 64, 80]
def floatName(bits):
if bits == 32:
return 'Float'
if bits == 64:
return 'Double'
if bits == 80:
return 'Float80'
def cFloatName(bits):
if bits == 32:
return 'CFloat'
if bits == 64:
return 'CDouble'
if bits == 80:
return 'CLongDouble'
def cFuncSuffix(bits):
if bits == 32:
return 'f'
if bits == 64:
return ''
if bits == 80:
return 'l'
# Each of the following lists is ordered to match math.h
# (T) -> T
# These functions do not have a corresponding LLVM intrinsic
UnaryFunctions = [
'acos', 'asin', 'atan', 'tan',
'acosh', 'asinh', 'atanh', 'cosh', 'sinh', 'tanh',
'expm1',
'log1p', 'logb',
'cbrt', 'erf', 'erfc', 'tgamma',
]
# These functions have a corresponding LLVM intrinsic
# We call this intrinsic via the Builtin method so keep this list in
# sync with core/BuiltinMath.swift.gyb
UnaryIntrinsicFunctions = [
'cos', 'sin',
'exp', 'exp2',
'log', 'log10', 'log2',
'nearbyint', 'rint',
]
# (T, T) -> T
BinaryFunctions = [
'atan2', 'hypot', 'pow',
'copysign', 'nextafter', 'fdim', 'fmax', 'fmin'
]
# These functions have special implementations.
OtherFunctions = [
'scalbn', 'lgamma', 'remquo', 'nan', 'jn', 'yn'
]
# These functions are imported correctly as-is.
OkayFunctions = ['j0', 'j1', 'y0', 'y1']
# These functions are not supported for various reasons.
UnhandledFunctions = [
'math_errhandling', 'scalbln',
'lrint', 'lround', 'llrint', 'llround', 'nexttoward',
'isgreater', 'isgreaterequal', 'isless', 'islessequal',
'islessgreater', 'isunordered', '__exp10',
'__sincos', '__cospi', '__sinpi', '__tanpi', '__sincospi'
]
def AllFloatTypes():
for bits in allFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
def OverlayFloatTypes():
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
def TypedUnaryFunctions():
for ufunc in UnaryFunctions:
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), ufunc
def TypedUnaryIntrinsicFunctions():
for ufunc in UnaryIntrinsicFunctions:
for bits in allFloatBits:
yield floatName(bits), ufunc
def TypedBinaryFunctions():
for bfunc in BinaryFunctions:
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), bfunc
}%
// Unary functions
// Note these do not have a corresponding LLVM intrinsic
% for T, CT, f, ufunc in TypedUnaryFunctions():
% if T == 'Float80':
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS))))
% end
@_transparent
public func ${ufunc}(_ x: ${T}) -> ${T} {
return ${T}(${ufunc}${f}(${CT}(x)))
}
% if T == 'Float80':
#endif
% end
% end
#if os(macOS) || os(iOS) || os(tvOS) || os(watchOS) || os(visionOS)
// Unary intrinsic functions
// Note these have a corresponding LLVM intrinsic
% for T, ufunc in TypedUnaryIntrinsicFunctions():
% if T == 'Float80':
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS))))
% end
@_transparent
public func ${ufunc}(_ x: ${T}) -> ${T} {
return _${ufunc}(x)
}
% if T == 'Float80':
#endif
% end
% end
#else
// FIXME: As of now, we cannot declare 64-bit (Double/CDouble) overlays here.
// Since CoreFoundation also exports libc functions, they will conflict with
// Swift overlays when building Foundation. For now, just like normal
// UnaryFunctions, we define overlays only for OverlayFloatTypes.
% for ufunc in UnaryIntrinsicFunctions:
% for T, CT, f in OverlayFloatTypes():
% if T == 'Float80':
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS))))
% end
@_transparent
public func ${ufunc}(_ x: ${T}) -> ${T} {
return ${T}(${ufunc}${f}(${CT}(x)))
}
% if T == 'Float80':
#endif
% end
% end
% end
#endif
// Binary functions
% for T, CT, f, bfunc in TypedBinaryFunctions():
% if T == 'Float80':
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS))))
% end
@_transparent
public func ${bfunc}(_ lhs: ${T}, _ rhs: ${T}) -> ${T} {
return ${T}(${bfunc}${f}(${CT}(lhs), ${CT}(rhs)))
}
% if T == 'Float80':
#endif
% end
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
% if T == 'Float80':
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || os(OpenBSD) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS))))
% else:
// lgamma not available on Windows, apparently?
#if !os(Windows)
% end
@_transparent
public func lgamma(_ x: ${T}) -> (${T}, Int) {
var sign = Int32(0)
let value = lgamma${f}_r(${CT}(x), &sign)
return (${T}(value), Int(sign))
}
#endif
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
% if T == 'Float80':
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS))))
% end
@_transparent
public func remquo(_ x: ${T}, _ y: ${T}) -> (${T}, Int) {
var quo = Int32(0)
let rem = remquo${f}(${CT}(x), ${CT}(y), &quo)
return (${T}(rem), Int(quo))
}
% if T == 'Float80':
#endif
% end
% end
% for T, CT, f in OverlayFloatTypes():
% if T == 'Float80':
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS))))
% end
@available(swift, deprecated: 4.2/*, obsoleted: 5.1*/, message:
"use ${T}(nan: ${T}.RawSignificand).")
@_transparent
@_unavailableInEmbedded
public func nan(_ tag: String) -> ${T} {
return ${T}(nan${f}(tag))
}
% if T == 'Float80':
#endif
% end
% end
% # These C functions only support double. The overlay fixes the Int parameter.
@_transparent
public func jn(_ n: Int, _ x: Double) -> Double {
#if os(Windows)
return _jn(Int32(n), x)
#else
return jn(Int32(n), x)
#endif
}
@_transparent
public func yn(_ n: Int, _ x: Double) -> Double {
#if os(Windows)
return _yn(Int32(n), x)
#else
return yn(Int32(n), x)
#endif
}
% end
// ${'Local Variables'}:
// eval: (read-only-mode 1)
// End:
|