1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
|
//===--- TypeLowering.cpp - Swift Type Lowering for Reflection ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Implements logic for computing in-memory layouts from TypeRefs loaded from
// reflection metadata.
//
// This has to match up with layout algorithms used in IRGen and the runtime,
// and a bit of SIL type lowering to boot.
//
//===----------------------------------------------------------------------===//
#if SWIFT_ENABLE_REFLECTION
#include "llvm/Support/MathExtras.h"
#include "swift/ABI/Enum.h"
#include "swift/ABI/MetadataValues.h"
#include "swift/RemoteInspection/BitMask.h"
#include "swift/RemoteInspection/TypeLowering.h"
#include "swift/RemoteInspection/TypeRef.h"
#include "swift/RemoteInspection/TypeRefBuilder.h"
#include "swift/Basic/Unreachable.h"
#include <iostream>
#include <sstream>
#include <limits>
#ifdef DEBUG_TYPE_LOWERING
#define DEBUG_LOG(expr) expr;
#else
#define DEBUG_LOG(expr)
#endif
namespace swift {
namespace reflection {
void TypeInfo::dump() const {
dump(std::cerr);
}
namespace {
class PrintTypeInfo {
std::ostream &stream;
unsigned Indent;
std::ostream &indent(unsigned Amount) {
for (unsigned i = 0; i < Amount; ++i)
stream << " ";
return stream;
}
std::ostream &printHeader(const std::string &name) {
indent(Indent) << "(" << name;
return stream;
}
std::ostream &printField(const std::string &name, const std::string &value) {
if (!name.empty())
stream << " " << name << "=" << value;
else
stream << " " << name;
return stream;
}
void printRec(const TypeInfo &TI) {
stream << "\n";
Indent += 2;
print(TI);
Indent -= 2;
}
void printBasic(const TypeInfo &TI) {
printField("size", std::to_string(TI.getSize()));
printField("alignment", std::to_string(TI.getAlignment()));
printField("stride", std::to_string(TI.getStride()));
printField("num_extra_inhabitants", std::to_string(TI.getNumExtraInhabitants()));
printField("bitwise_takable", TI.isBitwiseTakable() ? "1" : "0");
}
void printFields(const RecordTypeInfo &TI) {
Indent += 2;
for (auto Field : TI.getFields()) {
stream << "\n";
printHeader("field");
if (!Field.Name.empty())
printField("name", Field.Name);
printField("offset", std::to_string(Field.Offset));
printRec(Field.TI);
stream << ")";
}
Indent -= 2;
}
void printCases(const EnumTypeInfo &TI) {
Indent += 2;
int Index = -1;
for (auto Case : TI.getCases()) {
Index += 1;
stream << "\n";
printHeader("case");
if (!Case.Name.empty())
printField("name", Case.Name);
printField("index", std::to_string(Index));
if (Case.TR) {
printField("offset", std::to_string(Case.Offset));
printRec(Case.TI);
}
stream << ")";
}
Indent -= 2;
}
public:
PrintTypeInfo(std::ostream &stream, unsigned Indent)
: stream(stream), Indent(Indent) {}
void print(const TypeInfo &TI) {
switch (TI.getKind()) {
case TypeInfoKind::Invalid:
printHeader("invalid");
stream << ")";
return;
case TypeInfoKind::Builtin:
printHeader("builtin");
printBasic(TI);
stream << ")";
return;
case TypeInfoKind::Record: {
auto &RecordTI = cast<RecordTypeInfo>(TI);
switch (RecordTI.getRecordKind()) {
case RecordKind::Invalid:
printHeader("invalid");
break;
case RecordKind::Struct:
printHeader("struct");
break;
case RecordKind::Tuple:
printHeader("tuple");
break;
case RecordKind::ThickFunction:
printHeader("thick_function");
break;
case RecordKind::OpaqueExistential:
printHeader("opaque_existential");
break;
case RecordKind::ClassExistential:
printHeader("class_existential");
break;
case RecordKind::ErrorExistential:
printHeader("error_existential");
break;
case RecordKind::ExistentialMetatype:
printHeader("existential_metatype");
break;
case RecordKind::ClassInstance:
printHeader("class_instance");
break;
case RecordKind::ClosureContext:
printHeader("closure_context");
break;
}
printBasic(TI);
printFields(RecordTI);
stream << ")";
return;
}
case TypeInfoKind::Enum: {
auto &EnumTI = cast<EnumTypeInfo>(TI);
switch (EnumTI.getEnumKind()) {
case EnumKind::NoPayloadEnum:
printHeader("no_payload_enum");
break;
case EnumKind::SinglePayloadEnum:
printHeader("single_payload_enum");
break;
case EnumKind::MultiPayloadEnum:
printHeader("multi_payload_enum");
break;
}
printBasic(TI);
printCases(EnumTI);
stream << ")";
return;
}
case TypeInfoKind::Reference: {
printHeader("reference");
auto &ReferenceTI = cast<ReferenceTypeInfo>(TI);
switch (ReferenceTI.getReferenceKind()) {
case ReferenceKind::Strong: printField("kind", "strong"); break;
#define REF_STORAGE(Name, name, ...) \
case ReferenceKind::Name: printField("kind", #name); break;
#include "swift/AST/ReferenceStorage.def"
}
switch (ReferenceTI.getReferenceCounting()) {
case ReferenceCounting::Native:
printField("refcounting", "native");
break;
case ReferenceCounting::Unknown:
printField("refcounting", "unknown");
break;
}
stream << ")";
return;
}
}
swift_unreachable("Bad TypeInfo kind");
}
};
} // end anonymous namespace
void TypeInfo::dump(std::ostream &stream, unsigned Indent) const {
PrintTypeInfo(stream, Indent).print(*this);
stream << "\n";
}
BitMask ReferenceTypeInfo::getSpareBits(TypeConverter &TC, bool &hasAddrOnly) const {
auto mpePointerSpareBits = TC.getBuilder().getMultiPayloadEnumPointerMask();
return BitMask(getSize(), mpePointerSpareBits);
}
BuiltinTypeInfo::BuiltinTypeInfo(TypeRefBuilder &builder,
BuiltinTypeDescriptorBase &descriptor)
: TypeInfo(TypeInfoKind::Builtin, descriptor.Size,
descriptor.Alignment, descriptor.Stride,
descriptor.NumExtraInhabitants,
descriptor.IsBitwiseTakable),
Name(descriptor.getMangledTypeName()) {}
BuiltinTypeInfo::BuiltinTypeInfo(unsigned Size, unsigned Alignment,
unsigned Stride, unsigned NumExtraInhabitants,
bool BitwiseTakable)
: TypeInfo(TypeInfoKind::Builtin, Size, Alignment, Stride,
NumExtraInhabitants, BitwiseTakable) {}
// Builtin.Int<N> is mangled as 'Bi' N '_'
// Returns 0 if this isn't an Int
static unsigned intTypeBitSize(std::string name) {
llvm::StringRef nameRef(name);
if (nameRef.starts_with("Bi") && nameRef.endswith("_")) {
llvm::StringRef naturalRef = nameRef.drop_front(2).drop_back();
uint8_t natural;
if (naturalRef.getAsInteger(10, natural)) {
return 0;
}
return natural;
}
return 0;
}
bool BuiltinTypeInfo::readExtraInhabitantIndex(
remote::MemoryReader &reader, remote::RemoteAddress address,
int *extraInhabitantIndex) const {
if (getNumExtraInhabitants() == 0) {
*extraInhabitantIndex = -1;
return true;
}
// If it has extra inhabitants, it could be an integer type with extra
// inhabitants (such as a bool) or a pointer.
unsigned intSize = intTypeBitSize(Name);
if (intSize > 0) {
// This is an integer type
// If extra inhabitants are impossible, return early...
// (assert in debug builds)
assert(intSize < getSize() * 8
&& "Standard-sized int cannot have extra inhabitants");
if (intSize > 64 || getSize() > 8 || intSize >= getSize() * 8) {
*extraInhabitantIndex = -1;
return true;
}
// Compute range of extra inhabitants
uint64_t maxValidValue = (((uint64_t)1) << intSize) - 1;
uint64_t maxAvailableValue = (((uint64_t)1) << (getSize() * 8)) - 1;
uint64_t computedExtraInhabitants = maxAvailableValue - maxValidValue;
if (computedExtraInhabitants > ValueWitnessFlags::MaxNumExtraInhabitants) {
computedExtraInhabitants = ValueWitnessFlags::MaxNumExtraInhabitants;
}
assert(getNumExtraInhabitants() == computedExtraInhabitants &&
"Unexpected number of extra inhabitants in an odd-sized integer");
// Example: maxValidValue is 1 for a 1-bit bool, so any larger value
// is an extra inhabitant.
uint64_t rawValue;
if (!reader.readInteger(address, getSize(), &rawValue))
return false;
if (maxValidValue < rawValue) {
*extraInhabitantIndex = rawValue - maxValidValue - 1;
} else {
*extraInhabitantIndex = -1;
}
return true;
} else if (Name == "yyXf") {
// But there are two different conventions, one for function pointers:
return reader.readFunctionPointerExtraInhabitantIndex(address,
extraInhabitantIndex);
} else {
// And one for pointers to heap-allocated blocks of memory
return reader.readHeapObjectExtraInhabitantIndex(address,
extraInhabitantIndex);
}
}
BitMask BuiltinTypeInfo::getSpareBits(TypeConverter &TC, bool &hasAddrOnly) const {
unsigned intSize = intTypeBitSize(Name);
if (intSize > 0) {
// Odd-sized integers export spare bits
// In particular: bool fields are Int1 and export 7 spare bits
auto mask = BitMask::oneMask(getSize());
mask.keepOnlyMostSignificantBits(getSize() * 8 - intSize);
return mask;
} else if (
Name == "ypXp" || // Any.Type
Name == "yyXf" // 'yyXf' = @thin () -> Void function
) {
// Builtin types that expose pointer spare bits
auto mpePointerSpareBits = TC.getBuilder().getMultiPayloadEnumPointerMask();
return BitMask(getSize(), mpePointerSpareBits);
} else {
// Everything else
return BitMask::zeroMask(getSize());
}
}
bool RecordTypeInfo::readExtraInhabitantIndex(remote::MemoryReader &reader,
remote::RemoteAddress address,
int *extraInhabitantIndex) const {
*extraInhabitantIndex = -1;
switch (SubKind) {
case RecordKind::Invalid:
case RecordKind::ClosureContext:
return false;
case RecordKind::OpaqueExistential:
case RecordKind::ExistentialMetatype: {
if (Fields.size() < 1) {
return false;
}
auto metadata = Fields[0];
auto metadataFieldAddress = address + metadata.Offset;
return metadata.TI.readExtraInhabitantIndex(
reader, metadataFieldAddress, extraInhabitantIndex);
}
case RecordKind::ThickFunction: {
if (Fields.size() < 2) {
return false;
}
auto function = Fields[0];
auto context = Fields[1];
if (function.Offset != 0) {
return false;
}
auto functionFieldAddress = address;
return function.TI.readExtraInhabitantIndex(
reader, functionFieldAddress, extraInhabitantIndex);
}
case RecordKind::ClassExistential:
case RecordKind::ErrorExistential: {
if (Fields.size() < 1) {
return true;
}
auto first = Fields[0];
auto firstFieldAddress = address + first.Offset;
return first.TI.readExtraInhabitantIndex(reader, firstFieldAddress,
extraInhabitantIndex);
}
case RecordKind::ClassInstance:
// This case seems unlikely to ever happen; if we're using XIs with a
// class, it'll be with a reference, not with the instance itself (i.e.
// we'll be in the RecordKind::ClassExistential case).
return false;
case RecordKind::Tuple:
case RecordKind::Struct: {
if (Fields.size() == 0) {
return true;
}
// Tuples and Structs inherit XIs from their most capacious member
auto mostCapaciousField = std::max_element(
Fields.begin(), Fields.end(),
[](const FieldInfo &lhs, const FieldInfo &rhs) {
return lhs.TI.getNumExtraInhabitants() < rhs.TI.getNumExtraInhabitants();
});
auto fieldAddress = remote::RemoteAddress(address.getAddressData()
+ mostCapaciousField->Offset);
return mostCapaciousField->TI.readExtraInhabitantIndex(
reader, fieldAddress, extraInhabitantIndex);
}
}
return false;
}
BitMask RecordTypeInfo::getSpareBits(TypeConverter &TC, bool &hasAddrOnly) const {
auto mask = BitMask::oneMask(getSize());
switch (SubKind) {
case RecordKind::Invalid:
return mask; // FIXME: Should invalid have all spare bits? Or none? Does it matter?
case RecordKind::Tuple:
case RecordKind::Struct:
break;
case RecordKind::ThickFunction:
break;
case RecordKind::OpaqueExistential: {
// Existential storage isn't recorded as a field,
// so we handle it specially here...
int pointerSize = TC.targetPointerSize();
BitMask submask = BitMask::zeroMask(pointerSize * 3);
mask.andMask(submask, 0);
hasAddrOnly = true;
break;
}
case RecordKind::ClassExistential:
break;
case RecordKind::ExistentialMetatype:
break; // Field 0 is metadata pointer, a Builtin of type 'yyXf'
case RecordKind::ErrorExistential:
break;
case RecordKind::ClassInstance:
break;
case RecordKind::ClosureContext:
break;
}
for (auto Field : Fields) {
if (Field.TR != 0) {
BitMask submask = Field.TI.getSpareBits(TC, hasAddrOnly);
mask.andMask(submask, Field.Offset);
}
}
return mask;
}
class UnsupportedEnumTypeInfo: public EnumTypeInfo {
public:
UnsupportedEnumTypeInfo(unsigned Size, unsigned Alignment,
unsigned Stride, unsigned NumExtraInhabitants,
bool BitwiseTakable, EnumKind Kind,
const std::vector<FieldInfo> &Cases)
: EnumTypeInfo(Size, Alignment, Stride, NumExtraInhabitants,
BitwiseTakable, Kind, Cases) {}
bool readExtraInhabitantIndex(remote::MemoryReader &reader,
remote::RemoteAddress address,
int *index) const override {
return false;
}
BitMask getSpareBits(TypeConverter &TC, bool &hasAddrOnly) const override {
return BitMask::zeroMask(getSize());
}
bool projectEnumValue(remote::MemoryReader &reader,
remote::RemoteAddress address,
int *CaseIndex) const override {
return false;
}
};
// An Enum with no cases has no values, requires no storage,
// and cannot be instantiated.
// It is an uninhabited type (similar to Never).
class EmptyEnumTypeInfo: public EnumTypeInfo {
public:
EmptyEnumTypeInfo(const std::vector<FieldInfo> &Cases)
: EnumTypeInfo(/*Size*/ 0, /* Alignment*/ 1, /*Stride*/ 1,
/*NumExtraInhabitants*/ 0, /*BitwiseTakable*/ true,
EnumKind::NoPayloadEnum, Cases) {
// No cases
assert(Cases.size() == 0);
}
bool readExtraInhabitantIndex(remote::MemoryReader &reader,
remote::RemoteAddress address,
int *index) const override {
return false;
}
BitMask getSpareBits(TypeConverter &TC, bool &hasAddrOnly) const override {
return BitMask::zeroMask(getSize());
}
bool projectEnumValue(remote::MemoryReader &reader,
remote::RemoteAddress address,
int *CaseIndex) const override {
return false;
}
};
// Non-generic Enum with a single non-payload case
// This enum requires no storage, since it only has
// one possible value.
class TrivialEnumTypeInfo: public EnumTypeInfo {
public:
TrivialEnumTypeInfo(EnumKind Kind, const std::vector<FieldInfo> &Cases)
: EnumTypeInfo(/*Size*/ 0,
/* Alignment*/ 1,
/*Stride*/ 1,
/*NumExtraInhabitants*/ 0,
/*BitwiseTakable*/ true,
Kind, Cases) {
// Exactly one case
assert(Cases.size() == 1);
// The only case has no payload, or a zero-sized payload
assert(Cases[0].TR == 0 || Cases[0].TI.getSize() == 0);
}
bool readExtraInhabitantIndex(remote::MemoryReader &reader,
remote::RemoteAddress address,
int *index) const override {
*index = -1;
return true;
}
BitMask getSpareBits(TypeConverter &TC, bool &hasAddrOnly) const override {
return BitMask::zeroMask(getSize());
}
bool projectEnumValue(remote::MemoryReader &reader,
remote::RemoteAddress address,
int *CaseIndex) const override {
*CaseIndex = 0;
return true;
}
};
// Given a count, return a mask that is just
// big enough to preserve values less than that count.
// E.g., given a count of 6, max value is 5 (binary 0101),
// so we want to return binary 0111.
static uint32_t maskForCount(uint32_t t) {
t -= 1; // Convert count => max value
// Set all bits below highest bit...
t |= t >> 16;
t |= t >> 8;
t |= t >> 4;
t |= t >> 2;
t |= t >> 1;
return t;
}
// Enum with 2 or more non-payload cases and no payload cases
class NoPayloadEnumTypeInfo: public EnumTypeInfo {
public:
NoPayloadEnumTypeInfo(unsigned Size, unsigned Alignment,
unsigned Stride, unsigned NumExtraInhabitants,
EnumKind Kind,
const std::vector<FieldInfo> &Cases)
: EnumTypeInfo(Size, Alignment, Stride, NumExtraInhabitants,
/*BitwiseTakable*/ true,
Kind, Cases) {
// There are at least 2 cases
// (one case would be trivial, zero is impossible)
assert(Cases.size() >= 2);
// No non-empty payloads
assert(getNumNonEmptyPayloadCases() == 0);
}
bool readExtraInhabitantIndex(remote::MemoryReader &reader,
remote::RemoteAddress address,
int *index) const override {
uint32_t tag = 0;
if (!reader.readInteger(address, getSize(), &tag)) {
return false;
}
if (tag < getNumCases()) {
*index = -1;
} else {
*index = tag - getNumCases();
}
return true;
}
BitMask getSpareBits(TypeConverter &TC, bool &hasAddrOnly) const override {
auto mask = BitMask(getSize(), maskForCount(getNumCases()));
mask.complement();
return mask;
}
bool projectEnumValue(remote::MemoryReader &reader,
remote::RemoteAddress address,
int *CaseIndex) const override {
uint32_t tag = 0;
if (!reader.readInteger(address, getSize(), &tag)) {
return false;
}
// Strip bits that might be used by a containing MPE:
uint32_t mask = maskForCount(getNumCases());
tag &= mask;
if (tag < getNumCases()) {
*CaseIndex = tag;
return true;
} else {
return false;
}
}
};
// Enum with 1 payload case and zero or more non-payload cases
class SinglePayloadEnumTypeInfo: public EnumTypeInfo {
public:
SinglePayloadEnumTypeInfo(unsigned Size, unsigned Alignment,
unsigned Stride, unsigned NumExtraInhabitants,
bool BitwiseTakable,
EnumKind Kind,
const std::vector<FieldInfo> &Cases)
: EnumTypeInfo(Size, Alignment, Stride, NumExtraInhabitants,
BitwiseTakable, Kind, Cases) {
// The first case has a payload (possibly empty)
assert(Cases[0].TR != 0);
// At most one non-empty payload case
assert(getNumNonEmptyPayloadCases() <= 1);
}
bool readExtraInhabitantIndex(remote::MemoryReader &reader,
remote::RemoteAddress address,
int *extraInhabitantIndex) const override {
FieldInfo PayloadCase = getCases()[0];
if (getSize() < PayloadCase.TI.getSize()) {
// Single payload enums that use a separate tag don't export any XIs
// So this is an invalid request.
return false;
}
// Single payload enums inherit XIs from their payload type
auto NumCases = getNumCases();
if (NumCases == 1) {
*extraInhabitantIndex = -1;
return true;
} else {
if (!PayloadCase.TI.readExtraInhabitantIndex(reader, address,
extraInhabitantIndex)) {
return false;
}
auto NumNonPayloadCases = NumCases - 1;
if (*extraInhabitantIndex < 0
|| (unsigned long)*extraInhabitantIndex < NumNonPayloadCases) {
*extraInhabitantIndex = -1;
} else {
*extraInhabitantIndex -= NumNonPayloadCases;
}
return true;
}
}
BitMask getSpareBits(TypeConverter &TC, bool &hasAddrOnly) const override {
FieldInfo PayloadCase = getCases()[0];
size_t payloadSize = PayloadCase.TI.getSize();
if (getSize() <= payloadSize) {
return BitMask::zeroMask(getSize());
}
size_t tagSize = getSize() - payloadSize;
auto mask = BitMask::oneMask(getSize());
mask.keepOnlyMostSignificantBits(tagSize * 8); // Clear payload bits
auto tagMaskUsedBits = BitMask(getSize(), maskForCount(getNumCases()));
mask.andNotMask(tagMaskUsedBits, payloadSize); // Clear used tag bits
return mask;
}
// Think of a single-payload enum as being encoded in "pages".
// The discriminator (tag) tells us which page we're on:
// * Page 0 is the payload page which can either store
// the single payload case (any valid value
// for the payload) or any of N non-payload cases
// (encoded as XIs for the payload)
// * Other pages use the payload area to encode non-payload
// cases. The number of cases that can be encoded
// on each such page depends only on the size of the
// payload area.
//
// The above logic generalizes the following important cases:
// * A payload with XIs will generally have enough to
// encode all payload cases. If so, then it will have
// no discriminator allocated, so the discriminator is
// always treated as zero.
// * If the payload has no XIs but is not zero-sized, then
// we'll need a page one. That page will usually be
// large enough to encode all non-payload cases.
// * If the payload is zero-sized, then we only have a
// discriminator. In effect, the single-payload enum
// degenerates in this case to a non-payload enum
// (except for the subtle distinction that the
// single-payload enum doesn't export XIs).
bool projectEnumValue(remote::MemoryReader &reader,
remote::RemoteAddress address,
int *CaseIndex) const override {
auto PayloadCase = getCases()[0];
auto PayloadSize = PayloadCase.TI.getSize();
auto DiscriminatorAddress = address + PayloadSize;
auto DiscriminatorSize = getSize() - PayloadSize;
unsigned discriminator = 0;
if (DiscriminatorSize > 0) {
if (!reader.readInteger(DiscriminatorAddress,
DiscriminatorSize,
&discriminator)) {
return false;
}
}
unsigned nonPayloadCasesUsingXIs = PayloadCase.TI.getNumExtraInhabitants();
int ComputedCase = 0;
if (discriminator == 0) {
// This is Page 0, which encodes payload case and some additional cases in Xis
int XITag;
if (!PayloadCase.TI.readExtraInhabitantIndex(reader, address, &XITag)) {
return false;
}
ComputedCase = XITag < 0 ? 0 : XITag + 1;
} else {
// This is some other page, so the entire payload area is just a case index
unsigned payloadTag;
if (!reader.readInteger(address, PayloadSize, &payloadTag)) {
return false;
}
auto casesPerNonPayloadPage =
PayloadSize >= 4
? ValueWitnessFlags::MaxNumExtraInhabitants
: (1UL << (PayloadSize * 8UL));
ComputedCase =
1 + nonPayloadCasesUsingXIs // Cases on page 0
+ (discriminator - 1) * casesPerNonPayloadPage // Cases on other pages
+ payloadTag; // Cases on this page
}
if (static_cast<unsigned>(ComputedCase) < getNumCases()) {
*CaseIndex = ComputedCase;
return true;
}
*CaseIndex = -1;
return false;
}
};
// *Tagged* Multi-payload enums use a separate tag value exclusively.
// This may be because it only has one payload (with no XIs) or
// because it's a true MPE but with no "spare bits" in the payload area.
// This includes cases such as:
//
// ```
// // Enums with non-pointer payloads (only pointers carry spare bits)
// enum A {
// case a(Int)
// case b(Double)
// case c((Int8, UInt8))
// }
//
// // Generic enums (compiler doesn't have layout details)
// enum Either<T,U>{
// case a(T)
// case b(U)
// }
//
// // Enums where payload is covered by a non-pointer
// enum A {
// case a(ClassTypeA)
// case b(ClassTypeB)
// case c(Int)
// }
//
// // Enums with one non-empty payload but that has no XIs
// // (This is almost but not quite the same as the single-payload
// // case. Different in that this MPE exposes extra tag values
// // as XIs to an enclosing enum; SPEs don't do that.)
// enum A {
// case a(Int)
// case b(Void)
// }
// ```
class TaggedMultiPayloadEnumTypeInfo: public EnumTypeInfo {
unsigned NumEffectivePayloadCases;
public:
TaggedMultiPayloadEnumTypeInfo(unsigned Size, unsigned Alignment,
unsigned Stride, unsigned NumExtraInhabitants,
bool BitwiseTakable,
const std::vector<FieldInfo> &Cases,
unsigned NumEffectivePayloadCases)
: EnumTypeInfo(Size, Alignment, Stride, NumExtraInhabitants,
BitwiseTakable, EnumKind::MultiPayloadEnum, Cases),
NumEffectivePayloadCases(NumEffectivePayloadCases) {
// Definition of "multi-payload enum"
assert(getCases().size() > 1); // At least 2 cases
assert(Cases[0].TR != 0); // At least 2 payloads
// assert(Cases[1].TR != 0);
// At least one payload is non-empty (otherwise this would get
// laid out as a non-payload enum). Commented out this assert
// because it doesn't hold when there are generic cases with
// zero-sized payload.
// assert(getNumNonEmptyPayloadCases() > 0);
// There's a tag, so the total size must be bigger than any payload
// assert(getSize() > getPayloadSize());
}
bool readExtraInhabitantIndex(remote::MemoryReader &reader,
remote::RemoteAddress address,
int *extraInhabitantIndex) const override {
unsigned long PayloadSize = getPayloadSize();
unsigned PayloadCount = getNumPayloadCases();
unsigned TagSize = getSize() - PayloadSize;
unsigned tag = 0;
if (!reader.readInteger(address + PayloadSize,
getSize() - PayloadSize,
&tag)) {
return false;
}
if (tag < PayloadCount + 1) {
*extraInhabitantIndex = -1; // Valid payload, not an XI
} else {
// XIs are coded starting from the highest value that fits
// E.g., for 1-byte tag, tag 255 == XI #0, tag 254 == XI #1, etc.
unsigned maxTag = (TagSize >= 4) ? ~0U : (1U << (TagSize * 8U)) - 1;
*extraInhabitantIndex = maxTag - tag;
}
return true;
}
BitMask getSpareBits(TypeConverter &TC, bool &hasAddrOnly) const override {
// Walk the child cases to set `hasAddrOnly` correctly.
for (auto Case : getCases()) {
if (Case.TR != 0) {
auto submask = Case.TI.getSpareBits(TC, hasAddrOnly);
}
}
return BitMask::zeroMask(getSize());
}
bool projectEnumValue(remote::MemoryReader &reader,
remote::RemoteAddress address,
int *CaseIndex) const override {
unsigned long PayloadSize = getPayloadSize();
unsigned PayloadCount = NumEffectivePayloadCases;
unsigned NumCases = getNumCases();
unsigned TagSize = getSize() - PayloadSize;
unsigned tag = 0;
if (!reader.readInteger(address + PayloadSize,
getSize() - PayloadSize,
&tag)) {
return false;
}
if (tag > ValueWitnessFlags::MaxNumExtraInhabitants) {
return false;
} else if (tag < PayloadCount) {
*CaseIndex = tag;
} else if (PayloadSize >= 4) {
unsigned payloadTag = 0;
if (tag > PayloadCount
|| !reader.readInteger(address, PayloadSize, &payloadTag)
|| PayloadCount + payloadTag >= getNumCases()) {
return false;
}
*CaseIndex = PayloadCount + payloadTag;
} else {
unsigned payloadTagCount = (1U << (TagSize * 8U)) - 1;
unsigned maxValidTag = (NumCases - PayloadCount) / payloadTagCount + PayloadCount;
unsigned payloadTag = 0;
if (tag > maxValidTag
|| !reader.readInteger(address, PayloadSize, &payloadTag)) {
return false;
}
unsigned ComputedCase = PayloadCount
+ (tag - PayloadCount) * payloadTagCount + payloadTag;
if (ComputedCase >= NumCases) {
return false;
}
*CaseIndex = ComputedCase;
}
return true;
}
};
// General multi-payload enum support for enums that do use spare
// bits in the payload.
class MultiPayloadEnumTypeInfo: public EnumTypeInfo {
BitMask spareBitsMask;
// "Effective" payload cases includes those with
// generic payload and non-generic cases that are
// statically known to have non-zero size.
// It does not include cases with payloads that are
// non-generic and zero-sized (these are treated as
// non-payload cases for many purposes).
unsigned NumEffectivePayloadCases;
public:
MultiPayloadEnumTypeInfo(unsigned Size, unsigned Alignment,
unsigned Stride, unsigned NumExtraInhabitants,
bool BitwiseTakable,
const std::vector<FieldInfo> &Cases,
BitMask spareBitsMask,
unsigned NumEffectivePayloadCases)
: EnumTypeInfo(Size, Alignment, Stride, NumExtraInhabitants,
BitwiseTakable, EnumKind::MultiPayloadEnum, Cases),
spareBitsMask(spareBitsMask),
NumEffectivePayloadCases(NumEffectivePayloadCases) {
assert(Cases[0].TR != 0);
assert(Cases[1].TR != 0);
assert(getNumNonEmptyPayloadCases() > 1);
}
bool readExtraInhabitantIndex(remote::MemoryReader &reader,
remote::RemoteAddress address,
int *extraInhabitantIndex) const override {
unsigned long payloadSize = getPayloadSize();
// Multi payload enums that use spare bits export unused tag values as XIs.
uint32_t tag = 0;
unsigned tagBits = 0;
// The full tag value is built by combining three sets of bits:
// Low-order bits: payload tag bits (most-significant spare bits)
// Middle: spare bits that are not payload tag bits
// High-order: extra discriminator byte
auto payloadTagLowBitsMask = getMultiPayloadTagBitsMask();
auto payloadTagLowBitCount = payloadTagLowBitsMask.countSetBits();
uint32_t payloadTagLow = 0;
if (!payloadTagLowBitsMask.readMaskedInteger(reader, address, &payloadTagLow)) {
return false;
}
// Add the payload tag bits to the growing tag...
tag = payloadTagLow;
tagBits = payloadTagLowBitCount;
// Read the other spare bits from the payload area
auto otherSpareBitsMask = spareBitsMask; // copy
otherSpareBitsMask.keepOnlyLeastSignificantBytes(getPayloadSize());
otherSpareBitsMask.andNotMask(payloadTagLowBitsMask, 0);
auto otherSpareBitsCount = otherSpareBitsMask.countSetBits();
if (otherSpareBitsCount > 0) {
// Add other spare bits to the growing tag...
uint32_t otherSpareBits = 0;
if (!otherSpareBitsMask.readMaskedInteger(reader, address, &otherSpareBits)) {
return false;
}
tag |= otherSpareBits << tagBits;
tagBits += otherSpareBitsCount;
}
// If there is an extra discriminator tag, add those bits to the tag
auto extraTagSize = getSize() - payloadSize;
unsigned extraTag = 0;
if (extraTagSize > 0 && tagBits < 32) {
auto extraTagAddress = address + payloadSize;
if (!reader.readInteger(extraTagAddress, extraTagSize,
&extraTag)) {
return false;
}
}
tag |= extraTag << tagBits;
tagBits += extraTagSize * 8;
// Check whether this tag is used for valid content
auto payloadCases = getNumPayloadCases();
auto nonPayloadCases = getNumCases() - payloadCases;
uint32_t inhabitedTags;
if (nonPayloadCases == 0) {
inhabitedTags = payloadCases;
} else {
auto payloadBitsForTags = spareBitsMask.countZeroBits();
uint32_t nonPayloadTags
= (nonPayloadCases + (1 << payloadBitsForTags) - 1)
>> payloadBitsForTags;
inhabitedTags = payloadCases + nonPayloadTags;
}
if (tag < inhabitedTags) {
*extraInhabitantIndex = -1;
return true;
}
// Transform the tag value into the XI index
uint32_t maxTag = (tagBits >= 32) ? ~0u : (1UL << tagBits) - 1;
*extraInhabitantIndex = maxTag - tag;
return true;
}
BitMask getSpareBits(TypeConverter &TC, bool &hasAddrOnly) const override {
auto mask = spareBitsMask;
// Bits we've used for our tag can't be re-used by a containing enum...
mask.andNotMask(getMultiPayloadTagBitsMask(), 0);
return mask;
}
bool projectEnumValue(remote::MemoryReader &reader,
remote::RemoteAddress address,
int *CaseIndex) const override {
unsigned long payloadSize = getPayloadSize();
// Extra Tag (if any) holds upper bits of case value
auto extraTagSize = getSize() - payloadSize;
unsigned extraTag = 0;
if (extraTagSize > 0) {
auto extraTagAddress = address + payloadSize;
if (!reader.readInteger(extraTagAddress, extraTagSize,
&extraTag)) {
return false;
}
}
// The `payloadTagMask` is a subset of the spare bits
// where we encode the rest of the case value.
auto payloadTagMask = getMultiPayloadTagBitsMask();
auto numPayloadTagBits = payloadTagMask.countSetBits();
uint64_t payloadTag = 0;
if (!payloadTagMask.readMaskedInteger(reader, address, &payloadTag)) {
return false;
}
// Combine the extra tag and payload tag info:
int tagValue = 0;
if (numPayloadTagBits >= 32) {
tagValue = payloadTag;
} else {
tagValue = (extraTag << numPayloadTagBits) | payloadTag;
}
// If the above identifies a payload case, we're done
if (static_cast<unsigned>(tagValue) < NumEffectivePayloadCases) {
*CaseIndex = tagValue;
return true;
}
// Otherwise, combine with other payload data to select a non-payload case
auto occupiedBits = spareBitsMask; // Copy
occupiedBits.complement();
auto occupiedBitCount = occupiedBits.countSetBits();
uint64_t payloadValue = 0;
if (!occupiedBits.readMaskedInteger(reader, address, &payloadValue)) {
return false;
}
int ComputedCase = 0;
if (occupiedBitCount >= 32) {
ComputedCase = payloadValue + NumEffectivePayloadCases;
} else {
ComputedCase = (((tagValue - NumEffectivePayloadCases) << occupiedBitCount) | payloadValue) + NumEffectivePayloadCases;
}
if (static_cast<unsigned>(ComputedCase) < getNumCases()) {
*CaseIndex = ComputedCase;
return true;
} else {
*CaseIndex = -1;
return false;
}
}
// The case value is stored in three pieces:
// * A separate "discriminator" tag appended to the payload (if necessary)
// * A "payload tag" that uses (a subset of) the spare bits in the payload
// * The remainder of the payload bits (for non-payload cases)
// This computes the bits used for the payload tag.
BitMask getMultiPayloadTagBitsMask() const {
auto payloadTagValues = NumEffectivePayloadCases - 1;
if (getNumCases() > NumEffectivePayloadCases) {
payloadTagValues += 1;
}
int payloadTagBits = 0;
while (payloadTagValues > 0) {
payloadTagValues >>= 1;
payloadTagBits += 1;
}
BitMask payloadTagBitsMask = spareBitsMask;
payloadTagBitsMask.keepOnlyLeastSignificantBytes(getPayloadSize());
payloadTagBitsMask.keepOnlyMostSignificantBits(payloadTagBits);
return payloadTagBitsMask;
}
};
/// Utility class for building values that contain witness tables.
class ExistentialTypeInfoBuilder {
TypeConverter &TC;
std::vector<const TypeRef *> Protocols;
const TypeRef *Superclass = nullptr;
ExistentialTypeRepresentation Representation;
ReferenceCounting Refcounting;
bool ObjC;
unsigned WitnessTableCount;
bool Invalid;
bool isSingleError() const {
// If we changed representation, it means we added a
// superclass constraint or an AnyObject member.
if (Representation != ExistentialTypeRepresentation::Opaque)
return false;
if (Protocols.size() != 1)
return false;
if (Superclass)
return false;
for (auto *P : Protocols) {
if (auto *NTD = dyn_cast<NominalTypeRef>(P))
if (NTD->isErrorProtocol())
return true;
}
return false;
}
void examineProtocols() {
if (isSingleError()) {
Representation = ExistentialTypeRepresentation::Error;
// No extra witness table for protocol<Error>
return;
}
for (auto *P : Protocols) {
auto *NTD = dyn_cast<NominalTypeRef>(P);
auto *OP = dyn_cast<ObjCProtocolTypeRef>(P);
if (!NTD && !OP) {
DEBUG_LOG(fprintf(stderr, "Bad protocol: "); P->dump())
Invalid = true;
continue;
}
// Don't look up field info for imported Objective-C protocols.
if (OP) {
ObjC = true;
continue;
}
auto FD = TC.getBuilder().getFieldDescriptor(P);
if (FD == nullptr) {
DEBUG_LOG(fprintf(stderr, "No field descriptor: "); P->dump())
Invalid = true;
continue;
}
switch (FD->Kind) {
case FieldDescriptorKind::ObjCProtocol:
// Objective-C protocols do not have any witness tables.
ObjC = true;
continue;
case FieldDescriptorKind::ClassProtocol:
Representation = ExistentialTypeRepresentation::Class;
++WitnessTableCount;
if (auto *Superclass = TC.getBuilder().lookupSuperclass(P)) {
// ObjC class info should be available in the metadata, so it's safe
// to not pass an external provider here. This helps preserving the
// layering.
auto *SuperclassTI = TC.getTypeInfo(Superclass, nullptr);
if (SuperclassTI == nullptr) {
DEBUG_LOG(fprintf(stderr, "No TypeInfo for superclass: ");
Superclass->dump());
Invalid = true;
continue;
}
if (!isa<ReferenceTypeInfo>(SuperclassTI)) {
DEBUG_LOG(fprintf(stderr, "Superclass not a reference type: ");
SuperclassTI->dump());
Invalid = true;
continue;
}
if (cast<ReferenceTypeInfo>(SuperclassTI)->getReferenceCounting()
== ReferenceCounting::Native) {
Refcounting = ReferenceCounting::Native;
}
}
continue;
case FieldDescriptorKind::Protocol:
++WitnessTableCount;
continue;
case FieldDescriptorKind::ObjCClass:
case FieldDescriptorKind::Struct:
case FieldDescriptorKind::Enum:
case FieldDescriptorKind::MultiPayloadEnum:
case FieldDescriptorKind::Class:
Invalid = true;
continue;
}
}
}
public:
ExistentialTypeInfoBuilder(TypeConverter &TC)
: TC(TC), Representation(ExistentialTypeRepresentation::Opaque),
Refcounting(ReferenceCounting::Unknown),
ObjC(false), WitnessTableCount(0),
Invalid(false) {}
void addProtocol(const TypeRef *P) {
Protocols.push_back(P);
}
void addProtocolComposition(const ProtocolCompositionTypeRef *PC) {
for (auto *T : PC->getProtocols()) {
addProtocol(T);
}
if (PC->hasExplicitAnyObject())
addAnyObject();
if (auto *T = PC->getSuperclass()) {
// Anything else should either be a superclass constraint, or
// we have an invalid typeref.
if (!isa<NominalTypeRef>(T) &&
!isa<BoundGenericTypeRef>(T) &&
!isa<ObjCClassTypeRef>(T)) {
DEBUG_LOG(fprintf(stderr, "Bad existential member: "); T->dump())
Invalid = true;
return;
}
// Don't look up field info for imported Objective-C classes.
if (isa<ObjCClassTypeRef>(T)) {
addAnyObject();
return;
}
const auto &FD = TC.getBuilder().getFieldDescriptor(T);
if (FD == nullptr) {
DEBUG_LOG(fprintf(stderr, "No field descriptor: "); T->dump())
Invalid = true;
return;
}
// We have a valid superclass constraint. It only affects
// lowering by class-constraining the entire existential.
switch (FD->Kind) {
case FieldDescriptorKind::Class:
Refcounting = ReferenceCounting::Native;
SWIFT_FALLTHROUGH;
case FieldDescriptorKind::ObjCClass:
addAnyObject();
break;
default:
DEBUG_LOG(fprintf(stderr, "Bad existential member: "); T->dump())
Invalid = true;
return;
}
}
}
void addAnyObject() {
Representation = ExistentialTypeRepresentation::Class;
}
void markInvalid() {
Invalid = true;
}
const TypeInfo *build(remote::TypeInfoProvider *ExternalTypeInfo) {
examineProtocols();
if (Invalid)
return nullptr;
if (ObjC) {
if (WitnessTableCount > 0) {
DEBUG_LOG(fprintf(stderr, "@objc existential with witness tables\n"));
return nullptr;
}
return TC.getReferenceTypeInfo(ReferenceKind::Strong,
Refcounting);
}
RecordKind Kind;
switch (Representation) {
case ExistentialTypeRepresentation::Class:
Kind = RecordKind::ClassExistential;
break;
case ExistentialTypeRepresentation::Opaque:
Kind = RecordKind::OpaqueExistential;
break;
case ExistentialTypeRepresentation::Error:
Kind = RecordKind::ErrorExistential;
break;
}
RecordTypeInfoBuilder builder(TC, Kind);
switch (Representation) {
case ExistentialTypeRepresentation::Class:
// Class existentials consist of a single retainable pointer
// followed by witness tables.
if (Refcounting == ReferenceCounting::Unknown)
builder.addField("object", TC.getUnknownObjectTypeRef(),
ExternalTypeInfo);
else
builder.addField("object", TC.getNativeObjectTypeRef(),
ExternalTypeInfo);
break;
case ExistentialTypeRepresentation::Opaque: {
auto *TI = TC.getTypeInfo(TC.getRawPointerTypeRef(), ExternalTypeInfo);
if (TI == nullptr) {
DEBUG_LOG(fprintf(stderr, "No TypeInfo for RawPointer\n"));
return nullptr;
}
// Non-class existentials consist of a three-word buffer,
// value metadata, and finally zero or more witness tables.
// The buffer is always bitwise takable, since non-bitwise
// takable payloads are stored out of line.
builder.addField(TI->getSize() * 3,
TI->getAlignment(),
/*numExtraInhabitants=*/0,
/*bitwiseTakable=*/true);
builder.addField("metadata", TC.getAnyMetatypeTypeRef(), ExternalTypeInfo);
break;
}
case ExistentialTypeRepresentation::Error:
builder.addField("error", TC.getUnknownObjectTypeRef(), ExternalTypeInfo);
break;
}
for (unsigned i = 0; i < WitnessTableCount; ++i)
builder.addField("wtable", TC.getRawPointerTypeRef(), ExternalTypeInfo);
return builder.build();
}
const TypeInfo *buildMetatype(remote::TypeInfoProvider *ExternalTypeInfo) {
examineProtocols();
if (Invalid)
return nullptr;
if (ObjC) {
if (WitnessTableCount > 0) {
DEBUG_LOG(fprintf(stderr, "@objc existential with witness tables\n"));
return nullptr;
}
return TC.getAnyMetatypeTypeInfo();
}
RecordTypeInfoBuilder builder(TC, RecordKind::ExistentialMetatype);
builder.addField("metadata", TC.getAnyMetatypeTypeRef(), ExternalTypeInfo);
for (unsigned i = 0; i < WitnessTableCount; ++i)
builder.addField("wtable", TC.getRawPointerTypeRef(), ExternalTypeInfo);
return builder.build();
}
};
unsigned RecordTypeInfoBuilder::addField(unsigned fieldSize,
unsigned fieldAlignment,
unsigned numExtraInhabitants,
bool bitwiseTakable) {
assert(fieldAlignment > 0);
// Align the current size appropriately
Size = ((Size + fieldAlignment - 1) & ~(fieldAlignment - 1));
// Record the offset
unsigned offset = Size;
// Update the aggregate size
Size += fieldSize;
// Update the aggregate alignment
Alignment = std::max(Alignment, fieldAlignment);
// The aggregate is bitwise takable if all elements are.
BitwiseTakable &= bitwiseTakable;
switch (Kind) {
// The extra inhabitants of a struct or tuple are the same as the extra
// inhabitants of the field that has the most.
// Opaque existentials pick up the extra inhabitants of their type metadata
// field.
case RecordKind::Struct:
case RecordKind::OpaqueExistential:
case RecordKind::Tuple:
NumExtraInhabitants = std::max(NumExtraInhabitants, numExtraInhabitants);
break;
// For other kinds of records, we only use the extra inhabitants of the
// first field.
case RecordKind::ClassExistential:
case RecordKind::ClassInstance:
case RecordKind::ClosureContext:
case RecordKind::ErrorExistential:
case RecordKind::ExistentialMetatype:
case RecordKind::Invalid:
case RecordKind::ThickFunction:
if (Empty) {
NumExtraInhabitants = numExtraInhabitants;
}
break;
}
Empty = false;
return offset;
}
void RecordTypeInfoBuilder::addField(
const std::string &Name, const TypeRef *TR,
remote::TypeInfoProvider *ExternalTypeInfo) {
const TypeInfo *TI = TC.getTypeInfo(TR, ExternalTypeInfo);
if (TI == nullptr) {
DEBUG_LOG(fprintf(stderr, "No TypeInfo for field type: "); TR->dump());
Invalid = true;
return;
}
unsigned offset = addField(TI->getSize(),
TI->getAlignment(),
TI->getNumExtraInhabitants(),
TI->isBitwiseTakable());
Fields.push_back({Name, offset, -1, TR, *TI});
}
const RecordTypeInfo *RecordTypeInfoBuilder::build() {
if (Invalid)
return nullptr;
// Calculate the stride
unsigned Stride = ((Size + Alignment - 1) & ~(Alignment - 1));
if (Stride == 0)
Stride = 1;
return TC.makeTypeInfo<RecordTypeInfo>(
Size, Alignment, Stride,
NumExtraInhabitants, BitwiseTakable,
Kind, Fields);
}
const ReferenceTypeInfo *TypeConverter::getReferenceTypeInfo(
ReferenceKind Kind, ReferenceCounting Refcounting) {
auto key = std::make_pair(unsigned(Kind), unsigned(Refcounting));
auto found = ReferenceCache.find(key);
if (found != ReferenceCache.end())
return found->second;
const TypeRef *TR;
switch (Refcounting) {
case ReferenceCounting::Native:
TR = getNativeObjectTypeRef();
break;
case ReferenceCounting::Unknown:
TR = getUnknownObjectTypeRef();
break;
}
// Unowned and unmanaged references have the same extra inhabitants
// as the underlying type.
//
// Weak references do not have any extra inhabitants.
auto BuiltinTI = Builder.getBuiltinTypeDescriptor(TR);
if (BuiltinTI == nullptr) {
DEBUG_LOG(fprintf(stderr, "No TypeInfo for reference type: "); TR->dump());
return nullptr;
}
unsigned numExtraInhabitants = BuiltinTI->NumExtraInhabitants;
bool bitwiseTakable = true;
switch (Kind) {
case ReferenceKind::Strong:
break;
case ReferenceKind::Weak:
numExtraInhabitants = 0;
bitwiseTakable = false;
break;
case ReferenceKind::Unowned:
if (Refcounting == ReferenceCounting::Unknown)
bitwiseTakable = false;
break;
case ReferenceKind::Unmanaged:
break;
}
auto *TI = makeTypeInfo<ReferenceTypeInfo>(BuiltinTI->Size,
BuiltinTI->Alignment,
BuiltinTI->Stride,
numExtraInhabitants,
bitwiseTakable,
Kind, Refcounting);
ReferenceCache[key] = TI;
return TI;
}
/// Thin functions consist of a function pointer. We do not use
/// Builtin.RawPointer here, since the extra inhabitants differ.
const TypeInfo *
TypeConverter::getThinFunctionTypeInfo() {
if (ThinFunctionTI != nullptr)
return ThinFunctionTI;
auto descriptor =
getBuilder().getBuiltinTypeDescriptor(getThinFunctionTypeRef());
if (descriptor == nullptr) {
DEBUG_LOG(fprintf(stderr, "No TypeInfo for function type\n"));
return nullptr;
}
ThinFunctionTI = makeTypeInfo<BuiltinTypeInfo>(getBuilder(), *descriptor.get());
return ThinFunctionTI;
}
/// Thick functions consist of a function pointer and nullable retainable
/// context pointer. The context is modeled exactly like a native Swift
/// class reference.
const TypeInfo *TypeConverter::getThickFunctionTypeInfo() {
if (ThickFunctionTI != nullptr)
return ThickFunctionTI;
RecordTypeInfoBuilder builder(*this, RecordKind::ThickFunction);
builder.addField("function", getThinFunctionTypeRef(), nullptr);
builder.addField("context", getNativeObjectTypeRef(), nullptr);
ThickFunctionTI = builder.build();
return ThickFunctionTI;
}
/// Thick metatypes consist of a single pointer, possibly followed
/// by witness tables. We do not use Builtin.RawPointer here, since
/// the extra inhabitants differ.
const TypeInfo *
TypeConverter::getAnyMetatypeTypeInfo() {
if (AnyMetatypeTI != nullptr)
return AnyMetatypeTI;
auto descriptor =
getBuilder().getBuiltinTypeDescriptor(getAnyMetatypeTypeRef());
if (descriptor == nullptr) {
DEBUG_LOG(fprintf(stderr, "No TypeInfo for metatype type\n"));
return nullptr;
}
AnyMetatypeTI = makeTypeInfo<BuiltinTypeInfo>(getBuilder(), *descriptor.get());
return AnyMetatypeTI;
}
const TypeInfo *TypeConverter::getDefaultActorStorageTypeInfo() {
if (DefaultActorStorageTI != nullptr)
return DefaultActorStorageTI;
// The default actor storage is an opaque fixed-size buffer. Use the raw
// pointer descriptor to find the word size and pointer alignment in the
// current platform.
auto descriptor =
getBuilder().getBuiltinTypeDescriptor(getRawPointerTypeRef());
if (descriptor == nullptr) {
DEBUG_LOG(fprintf(stderr, "No TypeInfo for default actor storage type\n"));
return nullptr;
}
auto size = descriptor->Size * NumWords_DefaultActor;
auto alignment = 2 * descriptor->Alignment;
DefaultActorStorageTI = makeTypeInfo<BuiltinTypeInfo>(
/*Size=*/size, /*Alignment*/ alignment, /*Stride=*/size,
/*NumExtraInhabitants*/ 0, /*BitwiseTakable*/ true);
return DefaultActorStorageTI;
}
const TypeInfo *TypeConverter::getEmptyTypeInfo() {
if (EmptyTI != nullptr)
return EmptyTI;
EmptyTI = makeTypeInfo<BuiltinTypeInfo>();
return EmptyTI;
}
const TypeRef *TypeConverter::getRawPointerTypeRef() {
if (RawPointerTR != nullptr)
return RawPointerTR;
RawPointerTR = BuiltinTypeRef::create(Builder, "Bp");
return RawPointerTR;
}
const TypeRef *TypeConverter::getNativeObjectTypeRef() {
if (NativeObjectTR != nullptr)
return NativeObjectTR;
NativeObjectTR = BuiltinTypeRef::create(Builder, "Bo");
return NativeObjectTR;
}
const TypeRef *TypeConverter::getUnknownObjectTypeRef() {
if (UnknownObjectTR != nullptr)
return UnknownObjectTR;
UnknownObjectTR = BuiltinTypeRef::create(Builder, "BO");
return UnknownObjectTR;
}
const TypeRef *TypeConverter::getThinFunctionTypeRef() {
if (ThinFunctionTR != nullptr)
return ThinFunctionTR;
ThinFunctionTR = BuiltinTypeRef::create(Builder, "yyXf");
return ThinFunctionTR;
}
const TypeRef *TypeConverter::getAnyMetatypeTypeRef() {
if (AnyMetatypeTR != nullptr)
return AnyMetatypeTR;
AnyMetatypeTR = BuiltinTypeRef::create(Builder, "ypXp");
return AnyMetatypeTR;
}
enum class MetatypeRepresentation : unsigned {
/// Singleton metatype values are empty.
Thin,
/// Metatypes containing classes, or where the original unsubstituted
/// type contains a type parameter, must be represented as pointers
/// to metadata structures.
Thick,
/// Insufficient information to determine which.
Unknown
};
/// Visitor class to determine if a type has a fixed size.
///
/// Conservative approximation.
class HasFixedSize
: public TypeRefVisitor<HasFixedSize, bool> {
public:
HasFixedSize() {}
using TypeRefVisitor<HasFixedSize, bool>::visit;
bool visitBuiltinTypeRef(const BuiltinTypeRef *B) {
return true;
}
bool visitNominalTypeRef(const NominalTypeRef *N) {
return true;
}
bool visitBoundGenericTypeRef(const BoundGenericTypeRef *BG) {
if (BG->isClass())
return true;
for (auto Arg : BG->getGenericParams()) {
if (!visit(Arg))
return false;
}
return true;
}
bool visitTupleTypeRef(const TupleTypeRef *T) {
for (auto Element : T->getElements())
if (!visit(Element))
return false;
return true;
}
bool visitFunctionTypeRef(const FunctionTypeRef *F) {
return true;
}
bool
visitProtocolCompositionTypeRef(const ProtocolCompositionTypeRef *PC) {
return true;
}
bool visitMetatypeTypeRef(const MetatypeTypeRef *M) {
return true;
}
bool
visitExistentialMetatypeTypeRef(const ExistentialMetatypeTypeRef *EM) {
return true;
}
bool
visitConstrainedExistentialTypeRef(const ConstrainedExistentialTypeRef *CET) {
return true;
}
bool
visitSILBoxTypeRef(const SILBoxTypeRef *SB) {
return true;
}
bool visitSILBoxTypeWithLayoutTypeRef(const SILBoxTypeWithLayoutTypeRef *SB) {
return true;
}
bool
visitForeignClassTypeRef(const ForeignClassTypeRef *F) {
return true;
}
bool visitObjCClassTypeRef(const ObjCClassTypeRef *OC) {
return true;
}
bool visitObjCProtocolTypeRef(const ObjCProtocolTypeRef *OP) {
return true;
}
#define REF_STORAGE(Name, ...) \
bool \
visit##Name##StorageTypeRef(const Name##StorageTypeRef *US) { \
return true; \
}
#include "swift/AST/ReferenceStorage.def"
bool
visitGenericTypeParameterTypeRef(const GenericTypeParameterTypeRef *GTP) {
return false;
}
bool
visitDependentMemberTypeRef(const DependentMemberTypeRef *DM) {
return false;
}
bool visitOpaqueTypeRef(const OpaqueTypeRef *O) {
return false;
}
bool visitOpaqueArchetypeTypeRef(const OpaqueArchetypeTypeRef *O) {
return false;
}
};
bool TypeConverter::hasFixedSize(const TypeRef *TR) {
return HasFixedSize().visit(TR);
}
MetatypeRepresentation combineRepresentations(MetatypeRepresentation rep1,
MetatypeRepresentation rep2) {
if (rep1 == rep2)
return rep1;
if (rep1 == MetatypeRepresentation::Unknown ||
rep2 == MetatypeRepresentation::Unknown)
return MetatypeRepresentation::Unknown;
if (rep1 == MetatypeRepresentation::Thick ||
rep2 == MetatypeRepresentation::Thick)
return MetatypeRepresentation::Thick;
return MetatypeRepresentation::Thin;
}
/// Visitor class to determine if a metatype should use the empty
/// representation.
///
/// This relies on substitution correctly setting wasAbstract() on
/// MetatypeTypeRefs.
class HasSingletonMetatype
: public TypeRefVisitor<HasSingletonMetatype, MetatypeRepresentation> {
public:
HasSingletonMetatype() {}
using TypeRefVisitor<HasSingletonMetatype, MetatypeRepresentation>::visit;
MetatypeRepresentation visitBuiltinTypeRef(const BuiltinTypeRef *B) {
return MetatypeRepresentation::Thin;
}
MetatypeRepresentation visitNominalTypeRef(const NominalTypeRef *N) {
if (N->isClass())
return MetatypeRepresentation::Thick;
return MetatypeRepresentation::Thin;
}
MetatypeRepresentation visitBoundGenericTypeRef(const BoundGenericTypeRef *BG) {
if (BG->isClass())
return MetatypeRepresentation::Thick;
return MetatypeRepresentation::Thin;
}
MetatypeRepresentation visitTupleTypeRef(const TupleTypeRef *T) {
auto result = MetatypeRepresentation::Thin;
for (auto Element : T->getElements())
result = combineRepresentations(result, visit(Element));
return result;
}
MetatypeRepresentation visitFunctionTypeRef(const FunctionTypeRef *F) {
auto result = visit(F->getResult());
for (const auto &Param : F->getParameters())
result = combineRepresentations(result, visit(Param.getType()));
return result;
}
MetatypeRepresentation
visitProtocolCompositionTypeRef(const ProtocolCompositionTypeRef *PC) {
return MetatypeRepresentation::Thin;
}
MetatypeRepresentation
visitConstrainedExistentialTypeRef(const ConstrainedExistentialTypeRef *CET) {
return MetatypeRepresentation::Thin;
}
MetatypeRepresentation visitMetatypeTypeRef(const MetatypeTypeRef *M) {
if (M->wasAbstract())
return MetatypeRepresentation::Thick;
return visit(M->getInstanceType());
}
MetatypeRepresentation
visitExistentialMetatypeTypeRef(const ExistentialMetatypeTypeRef *EM) {
return MetatypeRepresentation::Thin;
}
MetatypeRepresentation
visitSILBoxTypeRef(const SILBoxTypeRef *SB) {
return MetatypeRepresentation::Thin;
}
MetatypeRepresentation
visitSILBoxTypeWithLayoutTypeRef(const SILBoxTypeWithLayoutTypeRef *SB) {
return MetatypeRepresentation::Thin;
}
MetatypeRepresentation
visitGenericTypeParameterTypeRef(const GenericTypeParameterTypeRef *GTP) {
DEBUG_LOG(fprintf(stderr, "Unresolved generic TypeRef: "); GTP->dump());
return MetatypeRepresentation::Unknown;
}
MetatypeRepresentation
visitDependentMemberTypeRef(const DependentMemberTypeRef *DM) {
DEBUG_LOG(fprintf(stderr, "Unresolved generic TypeRef: "); DM->dump());
return MetatypeRepresentation::Unknown;
}
MetatypeRepresentation
visitForeignClassTypeRef(const ForeignClassTypeRef *F) {
return MetatypeRepresentation::Unknown;
}
MetatypeRepresentation visitObjCClassTypeRef(const ObjCClassTypeRef *OC) {
return MetatypeRepresentation::Unknown;
}
MetatypeRepresentation visitObjCProtocolTypeRef(const ObjCProtocolTypeRef *OP) {
return MetatypeRepresentation::Unknown;
}
#define REF_STORAGE(Name, ...) \
MetatypeRepresentation \
visit##Name##StorageTypeRef(const Name##StorageTypeRef *US) { \
return MetatypeRepresentation::Unknown; \
}
#include "swift/AST/ReferenceStorage.def"
MetatypeRepresentation visitOpaqueTypeRef(const OpaqueTypeRef *O) {
return MetatypeRepresentation::Unknown;
}
MetatypeRepresentation visitOpaqueArchetypeTypeRef(const OpaqueArchetypeTypeRef *O) {
return MetatypeRepresentation::Unknown;
}
};
class EnumTypeInfoBuilder {
TypeConverter &TC;
unsigned Size, Alignment, NumExtraInhabitants;
bool BitwiseTakable;
std::vector<FieldInfo> Cases;
bool Invalid;
const TypeRef *getCaseTypeRef(FieldTypeInfo Case) {
// An indirect case is like a payload case with an argument type
// of Builtin.NativeObject.
if (Case.Indirect)
return TC.getNativeObjectTypeRef();
return Case.TR;
}
void addCase(const std::string &Name) {
// FieldInfo's TI field is a reference, so give it a reference to a value
// that stays alive forever.
static TypeInfo emptyTI;
Cases.push_back({Name, /*offset=*/0, /*value=*/-1, nullptr, emptyTI});
}
void addCase(const std::string &Name, const TypeRef *TR,
const TypeInfo *TI) {
if (TI == nullptr) {
DEBUG_LOG(fprintf(stderr, "No TypeInfo for case type: "); TR->dump());
Invalid = true;
static TypeInfo emptyTI;
Cases.push_back({Name, /*offset=*/0, /*value=*/-1, TR, emptyTI});
} else {
Size = std::max(Size, TI->getSize());
Alignment = std::max(Alignment, TI->getAlignment());
BitwiseTakable &= TI->isBitwiseTakable();
Cases.push_back({Name, /*offset=*/0, /*value=*/-1, TR, *TI});
}
}
public:
EnumTypeInfoBuilder(TypeConverter &TC)
: TC(TC), Size(0), Alignment(1), NumExtraInhabitants(0),
BitwiseTakable(true), Invalid(false) {}
const TypeInfo *build(const TypeRef *TR, FieldDescriptorBase &FD,
remote::TypeInfoProvider *ExternalTypeInfo) {
// Count various categories of cases:
unsigned NonPayloadCases = 0; // `case a`
unsigned NonGenericEmptyPayloadCases = 0; // `case a(Void)` or `case b(Never)`
unsigned NonGenericNonEmptyPayloadCases = 0; // `case a(Int)` or `case d([Int?])`
unsigned GenericPayloadCases = 0; // `case a(T)` or `case a([String : (Int, T)])`
// For a single-payload enum, this is the only payload
const TypeRef *LastPayloadCaseTR = nullptr;
std::vector<FieldTypeInfo> Fields;
if (!TC.getBuilder().getFieldTypeRefs(TR, FD, ExternalTypeInfo, Fields)) {
Invalid = true;
return nullptr;
}
// Sort and classify the fields
for (auto Case : Fields) {
if (Case.TR == nullptr) {
++NonPayloadCases;
addCase(Case.Name);
} else {
auto *CaseTR = getCaseTypeRef(Case);
assert(CaseTR != nullptr);
auto *CaseTI = TC.getTypeInfo(CaseTR, ExternalTypeInfo);
if (CaseTI == nullptr) {
// We don't have typeinfo; something is very broken.
Invalid = true;
return nullptr;
} else if (Case.Generic) {
++GenericPayloadCases;
LastPayloadCaseTR = CaseTR;
} else if (CaseTI->getSize() == 0) {
++NonGenericEmptyPayloadCases;
} else {
++NonGenericNonEmptyPayloadCases;
LastPayloadCaseTR = CaseTR;
}
addCase(Case.Name, CaseTR, CaseTI);
}
}
// For determining a layout strategy, cases w/ empty payload are treated the
// same as cases with no payload, and generic cases are always considered
// non-empty.
unsigned EffectiveNoPayloadCases = NonPayloadCases + NonGenericEmptyPayloadCases;
unsigned EffectivePayloadCases = GenericPayloadCases + NonGenericNonEmptyPayloadCases;
if (Cases.empty()) {
return TC.makeTypeInfo<EmptyEnumTypeInfo>(Cases);
}
// `Kind` is used when dumping data, so it reflects how the enum was
// declared in source; the various *TypeInfo classes mentioned below reflect
// the in-memory layout, which may be different because non-generic cases
// with zero-sized payloads get treated for layout purposes as non-payload
// cases.
EnumKind Kind;
switch (GenericPayloadCases + NonGenericEmptyPayloadCases + NonGenericNonEmptyPayloadCases) {
case 0: Kind = EnumKind::NoPayloadEnum; break;
case 1: Kind = EnumKind::SinglePayloadEnum; break;
default: Kind = EnumKind::MultiPayloadEnum; break;
}
// Sanity: Ignore any enum that claims to have a size more than 1MiB
// This avoids allocating lots of memory for spare bit mask calculations
// when clients try to interpret random chunks of memory as type descriptions.
if (Size > (1024ULL * 1024)) {
unsigned Stride = ((Size + Alignment - 1) & ~(Alignment - 1));
return TC.makeTypeInfo<UnsupportedEnumTypeInfo>(
Size, Alignment, Stride, NumExtraInhabitants, BitwiseTakable, Kind, Cases);
}
if (Cases.size() == 1) {
if (EffectivePayloadCases == 0) {
// Zero-sized enum with only one empty case
return TC.makeTypeInfo<TrivialEnumTypeInfo>(Kind, Cases);
} else {
// Enum that has only one payload case is represented as that case
return TC.getTypeInfo(LastPayloadCaseTR, ExternalTypeInfo);
}
}
if (EffectivePayloadCases == 0) {
// Enum with no non-empty payloads. (It may
// formally be a single-payload or multi-payload enum,
// but all the actual payloads have zero size.)
// Represent it as a 1-, 2-, or 4-byte integer
unsigned Size, NumExtraInhabitants;
if (EffectiveNoPayloadCases < 256) {
Size = 1;
NumExtraInhabitants = 256 - EffectiveNoPayloadCases;
} else if (EffectiveNoPayloadCases < 65536) {
Size = 2;
NumExtraInhabitants = 65536 - EffectiveNoPayloadCases;
} else {
Size = 4;
NumExtraInhabitants = std::numeric_limits<uint32_t>::max() - EffectiveNoPayloadCases + 1;
}
if (NonGenericEmptyPayloadCases > 0) {
// This enum uses no-payload layout, but the source actually does
// have payloads (they're just all zero-sized).
// If this is really a single-payload or multi-payload enum, we
// formally take extra inhabitants from the first payload, which is
// zero sized in this case.
NumExtraInhabitants = 0;
}
if (NumExtraInhabitants > ValueWitnessFlags::MaxNumExtraInhabitants) {
NumExtraInhabitants = ValueWitnessFlags::MaxNumExtraInhabitants;
}
return TC.makeTypeInfo<NoPayloadEnumTypeInfo>(
/* Size */ Size, /* Alignment */ Size, /* Stride */ Size,
NumExtraInhabitants, Kind, Cases);
}
if (EffectivePayloadCases == 1) {
// SinglePayloadEnumImplStrategy
// This is a true single-payload enum with
// a single non-zero-sized payload, or an MPE
// with a single payload that is not statically empty.
// It also has at least one non-payload (or empty) case.
auto *CaseTR = LastPayloadCaseTR;
auto *CaseTI = TC.getTypeInfo(CaseTR, ExternalTypeInfo);
if (CaseTR == nullptr || CaseTI == nullptr) {
return nullptr;
}
// Below logic should match the runtime function
// swift_initEnumMetadataSinglePayload().
auto PayloadExtraInhabitants = CaseTI->getNumExtraInhabitants();
if (PayloadExtraInhabitants >= EffectiveNoPayloadCases) {
// Extra inhabitants can encode all no-payload cases.
NumExtraInhabitants = PayloadExtraInhabitants - EffectiveNoPayloadCases;
} else {
// Not enough extra inhabitants for all cases. We have to add an
// extra tag field.
NumExtraInhabitants = 0;
auto tagCounts = getEnumTagCounts(Size, EffectiveNoPayloadCases,
/*payloadCases=*/1);
Size += tagCounts.numTagBytes;
Alignment = std::max(Alignment, tagCounts.numTagBytes);
}
unsigned Stride = ((Size + Alignment - 1) & ~(Alignment - 1));
return TC.makeTypeInfo<SinglePayloadEnumTypeInfo>(
Size, Alignment, Stride, NumExtraInhabitants, BitwiseTakable, Kind, Cases);
}
//
// Multi-Payload Enum strategies
//
// We now know this is a multi-payload enum with at least one non-zero-sized
// payload case.
//
// Do we have a fixed layout?
auto FixedDescriptor = TC.getBuilder().getBuiltinTypeDescriptor(TR);
if (!FixedDescriptor || GenericPayloadCases > 0) {
// This is a "dynamic multi-payload enum". For example,
// this occurs with generics such as:
// ```
// class ClassWithEnum<T> {
// enum E {
// case t(T)
// case u(Int)
// }
// var e: E?
// }
// ```
// and when we have a resilient inner enum, such as:
// ```
// enum E2 {
// case y(E1_resilient)
// case z(Int)
// }
auto tagCounts = getEnumTagCounts(Size, EffectiveNoPayloadCases,
EffectivePayloadCases);
Size += tagCounts.numTagBytes;
if (tagCounts.numTagBytes >= 4) {
NumExtraInhabitants = ValueWitnessFlags::MaxNumExtraInhabitants;
} else {
NumExtraInhabitants =
(1 << (tagCounts.numTagBytes * 8)) - tagCounts.numTags;
if (NumExtraInhabitants > ValueWitnessFlags::MaxNumExtraInhabitants) {
NumExtraInhabitants = ValueWitnessFlags::MaxNumExtraInhabitants;
}
}
unsigned Stride = ((Size + Alignment - 1) & ~(Alignment - 1));
if (Stride == 0)
Stride = 1;
return TC.makeTypeInfo<TaggedMultiPayloadEnumTypeInfo>(
Size, Alignment, Stride, NumExtraInhabitants,
BitwiseTakable, Cases, EffectivePayloadCases);
}
// This is a multi-payload enum that:
// * Has no generic cases
// * Has at least two cases with non-zero payload size
// * Has a descriptor stored as BuiltinTypeInfo
Size = FixedDescriptor->Size;
Alignment = FixedDescriptor->Alignment;
NumExtraInhabitants = FixedDescriptor->NumExtraInhabitants;
BitwiseTakable = FixedDescriptor->IsBitwiseTakable;
unsigned Stride = ((Size + Alignment - 1) & ~(Alignment - 1));
if (Stride == 0)
Stride = 1;
// Compute the spare bit mask and determine if we have any address-only fields
auto localSpareBitMask = BitMask::oneMask(Size);
bool hasAddrOnly = false;
for (auto Case : Cases) {
if (Case.TR != 0) {
auto submask = Case.TI.getSpareBits(TC, hasAddrOnly);
localSpareBitMask.andMask(submask, 0);
}
}
if (localSpareBitMask.isZero() || hasAddrOnly) {
// Simple tag-only layout does not use spare bits.
// Either:
// * There are no spare bits, or
// * We can't copy it to strip spare bits.
return TC.makeTypeInfo<TaggedMultiPayloadEnumTypeInfo>(
Size, Alignment, Stride, NumExtraInhabitants,
BitwiseTakable, Cases, EffectivePayloadCases);
} else {
// General case can mix spare bits and extra discriminator
return TC.makeTypeInfo<MultiPayloadEnumTypeInfo>(
Size, Alignment, Stride, NumExtraInhabitants,
BitwiseTakable, Cases, localSpareBitMask,
EffectivePayloadCases);
}
}
};
class LowerType
: public TypeRefVisitor<LowerType, const TypeInfo *> {
TypeConverter &TC;
remote::TypeInfoProvider *ExternalTypeInfo;
public:
using TypeRefVisitor<LowerType, const TypeInfo *>::visit;
LowerType(TypeConverter &TC, remote::TypeInfoProvider *ExternalTypeInfo)
: TC(TC), ExternalTypeInfo(ExternalTypeInfo) {}
const TypeInfo *visitBuiltinTypeRef(const BuiltinTypeRef *B) {
/// The context field of a thick function is a Builtin.NativeObject.
/// Since we want this to round-trip, lower these as reference
/// types.
if (B->getMangledName() == "Bo") {
return TC.getReferenceTypeInfo(ReferenceKind::Strong,
ReferenceCounting::Native);
} else if (B->getMangledName() == "BO") {
return TC.getReferenceTypeInfo(ReferenceKind::Strong,
ReferenceCounting::Unknown);
} else if (B->getMangledName() == "BD") {
return TC.getDefaultActorStorageTypeInfo();
}
/// Otherwise, get the fixed layout information from reflection
/// metadata.
auto descriptor = TC.getBuilder().getBuiltinTypeDescriptor(B);
if (descriptor == nullptr) {
DEBUG_LOG(fprintf(stderr, "No TypeInfo for builtin type: "); B->dump());
return nullptr;
}
return TC.makeTypeInfo<BuiltinTypeInfo>(TC.getBuilder(), *descriptor.get());
}
const TypeInfo *visitAnyNominalTypeRef(const TypeRef *TR) {
auto QueryExternalTypeInfoProvider = [&]() -> const TypeInfo * {
if (ExternalTypeInfo) {
std::string MangledName;
if (auto N = dyn_cast<NominalTypeRef>(TR))
MangledName = N->getMangledName();
else if (auto BG = dyn_cast<BoundGenericTypeRef>(TR))
MangledName = BG->getMangledName();
if (!MangledName.empty())
if (auto *imported = ExternalTypeInfo->getTypeInfo(MangledName))
return imported;
}
return nullptr;
};
auto FD = TC.getBuilder().getFieldDescriptor(TR);
if (FD == nullptr || FD->isStruct()) {
// Maybe this type is opaque -- look for a builtin
// descriptor to see if we at least know its size
// and alignment.
if (auto ImportedTypeDescriptor =
TC.getBuilder().getBuiltinTypeDescriptor(TR)) {
// This might be an external type we treat as opaque (like C structs),
// the external type info provider might have better type information,
// so ask it first.
if (auto External = QueryExternalTypeInfoProvider())
return External;
return TC.makeTypeInfo<BuiltinTypeInfo>(TC.getBuilder(),
*ImportedTypeDescriptor.get());
}
if (FD == nullptr) {
// If we still have no type info ask the external provider.
if (auto External = QueryExternalTypeInfoProvider())
return External;
// If the external provider also fails we're out of luck.
DEBUG_LOG(fprintf(stderr, "No TypeInfo for nominal type: "); TR->dump());
return nullptr;
}
}
switch (FD->Kind) {
case FieldDescriptorKind::Class:
// A value of class type is a single retainable pointer.
return TC.getReferenceTypeInfo(ReferenceKind::Strong,
ReferenceCounting::Native);
case FieldDescriptorKind::Struct: {
// Lower the struct's fields using substitutions from the
// TypeRef to make field types concrete.
RecordTypeInfoBuilder builder(TC, RecordKind::Struct);
std::vector<FieldTypeInfo> Fields;
if (!TC.getBuilder().getFieldTypeRefs(TR, *FD.get(), ExternalTypeInfo,
Fields))
return nullptr;
for (auto Field : Fields)
builder.addField(Field.Name, Field.TR, ExternalTypeInfo);
return builder.build();
}
case FieldDescriptorKind::Enum:
case FieldDescriptorKind::MultiPayloadEnum: {
EnumTypeInfoBuilder builder(TC);
return builder.build(TR, *FD.get(), ExternalTypeInfo);
}
case FieldDescriptorKind::ObjCClass:
return TC.getReferenceTypeInfo(ReferenceKind::Strong,
ReferenceCounting::Unknown);
case FieldDescriptorKind::ObjCProtocol:
case FieldDescriptorKind::ClassProtocol:
case FieldDescriptorKind::Protocol:
DEBUG_LOG(fprintf(stderr, "Invalid field descriptor: "); TR->dump());
return nullptr;
}
swift_unreachable("Unhandled FieldDescriptorKind in switch.");
}
const TypeInfo *visitNominalTypeRef(const NominalTypeRef *N) {
return visitAnyNominalTypeRef(N);
}
const TypeInfo *visitBoundGenericTypeRef(const BoundGenericTypeRef *BG) {
return visitAnyNominalTypeRef(BG);
}
const TypeInfo *visitTupleTypeRef(const TupleTypeRef *T) {
RecordTypeInfoBuilder builder(TC, RecordKind::Tuple);
for (auto Element : T->getElements())
// The label is not going to be relevant/harmful for looking up type info.
builder.addField("", Element, ExternalTypeInfo);
return builder.build();
}
const TypeInfo *visitFunctionTypeRef(const FunctionTypeRef *F) {
switch (F->getFlags().getConvention()) {
case FunctionMetadataConvention::Swift:
return TC.getThickFunctionTypeInfo();
case FunctionMetadataConvention::Block:
// FIXME: Native convention if blocks are ever supported on Linux?
return TC.getReferenceTypeInfo(ReferenceKind::Strong,
ReferenceCounting::Unknown);
case FunctionMetadataConvention::Thin:
case FunctionMetadataConvention::CFunctionPointer:
return TC.getTypeInfo(TC.getThinFunctionTypeRef(), ExternalTypeInfo);
}
swift_unreachable("Unhandled FunctionMetadataConvention in switch.");
}
const TypeInfo *
visitProtocolCompositionTypeRef(const ProtocolCompositionTypeRef *PC) {
ExistentialTypeInfoBuilder builder(TC);
builder.addProtocolComposition(PC);
return builder.build(ExternalTypeInfo);
}
const TypeInfo *
visitConstrainedExistentialTypeRef(const ConstrainedExistentialTypeRef *CET) {
return visitProtocolCompositionTypeRef(CET->getBase());
}
const TypeInfo *visitMetatypeTypeRef(const MetatypeTypeRef *M) {
switch (HasSingletonMetatype().visit(M)) {
case MetatypeRepresentation::Unknown:
DEBUG_LOG(fprintf(stderr, "Unknown metatype representation: "); M->dump());
return nullptr;
case MetatypeRepresentation::Thin:
return TC.getEmptyTypeInfo();
case MetatypeRepresentation::Thick:
return TC.getTypeInfo(TC.getAnyMetatypeTypeRef(), ExternalTypeInfo);
}
swift_unreachable("Unhandled MetatypeRepresentation in switch.");
}
const TypeInfo *
visitExistentialMetatypeTypeRef(const ExistentialMetatypeTypeRef *EM) {
ExistentialTypeInfoBuilder builder(TC);
auto *TR = EM->getInstanceType();
if (auto *PC = dyn_cast<ProtocolCompositionTypeRef>(TR)) {
builder.addProtocolComposition(PC);
} else {
DEBUG_LOG(fprintf(stderr, "Invalid existential metatype: "); EM->dump());
return nullptr;
}
return builder.buildMetatype(ExternalTypeInfo);
}
const TypeInfo *
visitGenericTypeParameterTypeRef(const GenericTypeParameterTypeRef *GTP) {
DEBUG_LOG(fprintf(stderr, "Unresolved generic TypeRef: "); GTP->dump());
return nullptr;
}
const TypeInfo *
visitDependentMemberTypeRef(const DependentMemberTypeRef *DM) {
DEBUG_LOG(fprintf(stderr, "Unresolved generic TypeRef: "); DM->dump());
return nullptr;
}
const TypeInfo *visitForeignClassTypeRef(const ForeignClassTypeRef *F) {
return TC.getReferenceTypeInfo(ReferenceKind::Strong,
ReferenceCounting::Unknown);
}
const TypeInfo *visitObjCClassTypeRef(const ObjCClassTypeRef *OC) {
return TC.getReferenceTypeInfo(ReferenceKind::Strong,
ReferenceCounting::Unknown);
}
const TypeInfo *visitObjCProtocolTypeRef(const ObjCProtocolTypeRef *OP) {
return TC.getReferenceTypeInfo(ReferenceKind::Strong,
ReferenceCounting::Unknown);
}
// Apply a storage qualifier, like 'weak', 'unowned' or 'unowned(unsafe)'
// to a type with reference semantics, such as a class reference or
// class-bound existential.
const TypeInfo *
rebuildStorageTypeInfo(const TypeInfo *TI, ReferenceKind Kind) {
// If we can't lower the original storage type, give up.
if (TI == nullptr) {
DEBUG_LOG(fprintf(stderr, "Invalid reference type"));
return nullptr;
}
// Simple case: Just change the reference kind
if (auto *ReferenceTI = dyn_cast<ReferenceTypeInfo>(TI))
return TC.getReferenceTypeInfo(Kind, ReferenceTI->getReferenceCounting());
if (auto *EnumTI = dyn_cast<EnumTypeInfo>(TI)) {
if (EnumTI->isOptional() &&
(Kind == ReferenceKind::Weak || Kind == ReferenceKind::Unowned ||
Kind == ReferenceKind::Unmanaged)) {
auto *TI = TC.getTypeInfo(EnumTI->getCases()[0].TR, ExternalTypeInfo);
return rebuildStorageTypeInfo(TI, Kind);
}
}
if (auto *RecordTI = dyn_cast<RecordTypeInfo>(TI)) {
auto SubKind = RecordTI->getRecordKind();
// Class existentials are represented as record types.
// Destructure the existential and replace the "object"
// field with the right reference kind.
if (SubKind == RecordKind::ClassExistential) {
bool BitwiseTakable = RecordTI->isBitwiseTakable();
std::vector<FieldInfo> Fields;
for (auto &Field : RecordTI->getFields()) {
if (Field.Name == "object") {
auto *FieldTI = rebuildStorageTypeInfo(&Field.TI, Kind);
BitwiseTakable &= FieldTI->isBitwiseTakable();
Fields.push_back({Field.Name, Field.Offset, /*value=*/-1, Field.TR, *FieldTI});
continue;
}
Fields.push_back(Field);
}
return TC.makeTypeInfo<RecordTypeInfo>(
RecordTI->getSize(),
RecordTI->getAlignment(),
RecordTI->getStride(),
RecordTI->getNumExtraInhabitants(),
BitwiseTakable,
SubKind, Fields);
}
}
// Anything else -- give up
DEBUG_LOG(fprintf(stderr, "Invalid reference type"));
return nullptr;
}
const TypeInfo *
visitAnyStorageTypeRef(const TypeRef *TR, ReferenceKind Kind) {
return rebuildStorageTypeInfo(TC.getTypeInfo(TR, ExternalTypeInfo), Kind);
}
#define REF_STORAGE(Name, name, ...) \
const TypeInfo * \
visit##Name##StorageTypeRef(const Name##StorageTypeRef *US) { \
return visitAnyStorageTypeRef(US->getType(), ReferenceKind::Name); \
}
#include "swift/AST/ReferenceStorage.def"
const TypeInfo *visitSILBoxTypeRef(const SILBoxTypeRef *SB) {
return TC.getReferenceTypeInfo(ReferenceKind::Strong,
ReferenceCounting::Native);
}
const TypeInfo *
visitSILBoxTypeWithLayoutTypeRef(const SILBoxTypeWithLayoutTypeRef *SB) {
return TC.getReferenceTypeInfo(ReferenceKind::Strong,
ReferenceCounting::Native);
}
const TypeInfo *visitOpaqueTypeRef(const OpaqueTypeRef *O) {
DEBUG_LOG(fprintf(stderr, "Can't lower opaque TypeRef"));
return nullptr;
}
const TypeInfo *visitOpaqueArchetypeTypeRef(const OpaqueArchetypeTypeRef *O) {
// TODO: Provide a hook for the client to try to resolve the opaque archetype
// with additional information?
DEBUG_LOG(fprintf(stderr, "Can't lower unresolved opaque archetype TypeRef"));
return nullptr;
}
};
const TypeInfo *
TypeConverter::getTypeInfo(const TypeRef *TR,
remote::TypeInfoProvider *ExternalTypeInfo) {
if (!TR) {
DEBUG_LOG(fprintf(stderr, "null TypeRef"));
return nullptr;
}
auto ExternalTypeInfoId =
ExternalTypeInfo ? ExternalTypeInfo->getId() : 0;
// See if we already computed the result
auto found = Cache.find({TR, ExternalTypeInfoId});
if (found != Cache.end())
return found->second;
// Detect invalid recursive value types (IRGen should not emit
// them in the first place, but there might be bugs)
if (!RecursionCheck.insert(TR).second) {
DEBUG_LOG(fprintf(stderr, "TypeRef recursion detected"));
return nullptr;
}
// Compute the result and cache it
auto *TI = LowerType(*this, ExternalTypeInfo).visit(TR);
Cache.insert({{TR, ExternalTypeInfoId}, TI});
RecursionCheck.erase(TR);
return TI;
}
const RecordTypeInfo *TypeConverter::getClassInstanceTypeInfo(
const TypeRef *TR, unsigned start,
remote::TypeInfoProvider *ExternalTypeInfo) {
auto FD = getBuilder().getFieldDescriptor(TR);
if (FD == nullptr) {
DEBUG_LOG(fprintf(stderr, "No field descriptor: "); TR->dump());
return nullptr;
}
switch (FD->Kind) {
case FieldDescriptorKind::Class:
case FieldDescriptorKind::ObjCClass: {
// Lower the class's fields using substitutions from the
// TypeRef to make field types concrete.
RecordTypeInfoBuilder builder(*this, RecordKind::ClassInstance);
std::vector<FieldTypeInfo> Fields;
if (!getBuilder().getFieldTypeRefs(TR, *FD.get(), ExternalTypeInfo, Fields))
return nullptr;
// Start layout from the given instance start offset. This should
// be the superclass instance size.
builder.addField(/*size=*/start,
/*alignment=*/1,
/*numExtraInhabitants=*/0,
/*bitwiseTakable=*/true);
for (auto Field : Fields)
builder.addField(Field.Name, Field.TR, ExternalTypeInfo);
return builder.build();
}
case FieldDescriptorKind::Struct:
case FieldDescriptorKind::Enum:
case FieldDescriptorKind::MultiPayloadEnum:
case FieldDescriptorKind::ObjCProtocol:
case FieldDescriptorKind::ClassProtocol:
case FieldDescriptorKind::Protocol:
// Invalid field descriptor.
DEBUG_LOG(fprintf(stderr, "Invalid field descriptor: "); TR->dump());
return nullptr;
}
swift_unreachable("Unhandled FieldDescriptorKind in switch.");
}
} // namespace reflection
} // namespace swift
#endif
|