1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift Atomics open source project
//
// Copyright (c) 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// A type that supports atomic operations through a separate atomic storage
/// representation.
///
/// Types that conform to the `AtomicRepresentable` protocol can be used as the
/// `Value` type parameter with the `Atomic` type. Conformances that utilize
/// existing atomic storage representations as their own representation will get
/// the primitive atomic operations available on `Atomic` for free. Such
/// operations include `load`, `store`, `exchange`, `compareExchange`, and
/// `weakCompareExchange`.
///
/// Conforming to the AtomicRepresentable protocol
/// --------------------------------------
///
/// Conforming your own custom types allow them to be used in the `Atomic` type
/// and get access to all of the primitive atomic operations explained above.
/// There are two main ways to conform your type to `AtomicRepresentable`:
///
/// 1. Using a predefined `RawRepresentable` conformance
/// 2. Manually conforming to `AtomicRepresentable`
///
/// If you custom type already conforms to `RawRepresentable`, then adding the
/// `AtomicRepresentable` conformance may be really simple! If the `RawValue`
/// associated type of your type is already itself an `AtomicRepresentable`,
/// then all you need to do is add the conformance and you're done!
///
/// enum TrafficLight: UInt8 {
/// case red
/// case yellow
/// case green
/// }
///
/// extension TrafficLight: AtomicRepresentable {}
///
/// And that's it! Here, we're utilizing Swift's automatic `RawRepresentable`
/// conformance synthesis for enums by declaring our "raw value" to be a
/// `UInt8`. By adding the `AtomicRepresentable` conformance, we automatically
/// figure out how to do the conformance from the `RawRepresentable`
/// implementation and do all of th necessary work for you. However, it is still
/// possible to customize this behavior using the manual method explained below.
///
/// Defining your own `AtomicRepresentable` conformance is pretty simple. All
/// you have to do is decide what atomic storage representation fits best for
/// your type, and create the bidirectional relationship between the two.
///
/// // A point in an x-y coordinate system.
/// struct GridPoint {
/// var x: Int
/// var y: Int
/// }
///
/// extension GridPoint: AtomicRepresentable {
/// typealias AtomicRepresentation = WordPair.AtomicRepresentation
///
/// static func encodeAtomicRepresentation(
/// _ value: consuming GridPoint
/// ) -> AtomicRepresentation {
/// let wordPair = WordPair(
/// first: UInt(bitPattern: value.x),
/// second: UInt(bitPattern: value.y)
/// )
///
/// return WordPair.encodeAtomicRepresentation(wordPair)
/// }
///
/// static func decodeAtomicRepresentation(
/// _ representation: consuming AtomicRepresentation
/// ) -> GridPoint {
/// let wordPair = WordPair.decodeAtomicRepresentation(representation)
///
/// return GridPoint(
/// x: Int(bitPattern: wordPair.first),
/// y: Int(bitPattern: wordPair.second)
/// )
/// }
/// }
///
/// Here, we're going to select `WordPair`'s atomic storage representation as
/// our own. This is very important because we only get the atomic operations
/// like `load` and `store` if our representation is one of the _fundamental_
/// storage representations. Luckily for us, `WordPair` does use one of these
/// types as its storage type.
///
/// In addition to selecting what storage representation our type will use, we
/// define two static functions that go from both our custom type to its
/// representation and the representation back to our own type. Because our
/// representation is the same as `WordPair.AtomicRepresentation`, we will
/// actually go through `WordPair`'s `AtomicRepresentable` conformance to help
/// define our own.
///
/// This is all you need to do to conform your custom type to the
/// `AtomicRepresentable` protocol. From here, you can use this type in all of
/// the primitive atomic operations like shown below:
///
/// func atomicGridPoint(_ gridPoint: Atomic<GridPoint>) {
/// let newGridPoint = GridPoint(x: 123, y: -456)
///
/// let oldGridPoint1 = gridPoint.load(ordering: .relaxed)
///
/// gridPoint.store(newGridPoint, ordering: .releasing)
///
/// let oldGridPoint2 = gridPoint.exchange(
/// desired: oldGridPoint1,
/// ordering: .acquiringAndReleasing
/// )
///
/// let (exchanged1, oldGridPoint2) = gridPoint.compareExchange(
/// expected: oldGridPoint1,
/// desired: newGridPoint,
/// ordering: .sequentiallyConsistent
/// )
///
/// let (exchanged2, oldGridPoint3) = gridPoint.weakCompareExchange(
/// expected: newGridPoint,
/// desired: oldGridPoint2,
/// ordering: .relaxed
/// )
/// }
///
/// List of Fundamental Atomic Representations
/// ------------------------------------------
///
/// When defining your own `AtomicRepresentable` conformance, it is critical
/// that your custom type should choose from the following list of types as its
/// own `AtomicRepresentation`:
///
/// - `UInt8.AtomicRepresentation`
/// - `UInt16.AtomicRepresentation`
/// - `UInt32.AtomicRepresentation`
/// - `UInt64.AtomicRepresentation`
/// - `UInt.AtomicRepresentation`
/// - `Int8.AtomicRepresentation`
/// - `Int16.AtomicRepresentation`
/// - `Int32.AtomicRepresentation`
/// - `Int64.AtomicRepresentation`
/// - `Int.AtomicRepresentation`
/// - `WordPair.AtomicRepresentation`
///
/// - Note: `Int8.AtomicRepresentation` is the same type as
/// `UInt8.AtomicRepresentation` and the same is true for all of the same
/// sized integer types. If your type wraps an unsigned integer, you should
/// prefer to use an unsigned integer's atomic representation instead of a
/// signed ones and vice versa. `Int` and `UInt`'s representation will be
/// 64 bits wide on 64 bit systems and 32 bit wide on 32 bit systems. `Int64`
/// and `UInt64` always conform to `AtomicRepresentable` on 64 bit systems,
/// but on 32 bit systems they will only conform if the platform supports
/// double wide atomics. `WordPair` will only conform to `AtomicRepresentable`
/// on platforms that support double wide atomics, but if they do it will be
/// 128 bits wide on 64 bit systems and 64 bits wide on 32 bit systems.
///
@available(SwiftStdlib 6.0, *)
public protocol AtomicRepresentable {
/// The storage representation type that `Self` encodes to and decodes from
/// which is a suitable type when used in atomic operations.
associatedtype AtomicRepresentation: BitwiseCopyable
/// Destroys a value of `Self` and prepares an `AtomicRepresentation` storage
/// type to be used for atomic operations.
///
/// - Note: This is not an atomic operation. This simply encodes the logical
/// type `Self` into its storage representation suitable for atomic
/// operations, `AtomicRepresentation`.
///
/// - Parameter value: A valid instance of `Self` that's about to be destroyed
/// to encode an instance of its `AtomicRepresentation`.
/// - Returns: The newly encoded `AtomicRepresentation` storage.
static func encodeAtomicRepresentation(
_ value: consuming Self
) -> AtomicRepresentation
/// Recovers the logical atomic type `Self` by destroying some
/// `AtomicRepresentation` storage instance returned from an atomic operation.
///
/// - Note: This is not an atomic operation. This simply decodes the storage
/// representation used in atomic operations back into the logical type for
/// normal use, `Self`.
///
/// - Parameter storage: The storage representation for `Self` that's used
/// within atomic operations.
/// - Returns: The newly decoded logical type `Self`.
static func decodeAtomicRepresentation(
_ storage: consuming AtomicRepresentation
) -> Self
}
//===----------------------------------------------------------------------===//
// RawRepresentable AtomicRepresentable conformance
//===----------------------------------------------------------------------===//
@available(SwiftStdlib 6.0, *)
extension RawRepresentable
where
Self: AtomicRepresentable,
RawValue: AtomicRepresentable
{
/// The storage representation type that `Self` encodes to and decodes from
/// which is a suitable type when used in atomic operations.
@available(SwiftStdlib 6.0, *)
public typealias AtomicRepresentation = RawValue.AtomicRepresentation
/// Destroys a value of `Self` and prepares an `AtomicRepresentation` storage
/// type to be used for atomic operations.
///
/// - Note: This is not an atomic operation. This simply encodes the logical
/// type `Self` into its storage representation suitable for atomic
/// operations, `AtomicRepresentation`.
///
/// - Parameter value: A valid instance of `Self` that's about to be destroyed
/// to encode an instance of its `AtomicRepresentation`.
/// - Returns: The newly encoded `AtomicRepresentation` storage.
@available(SwiftStdlib 6.0, *)
@_alwaysEmitIntoClient
@_transparent
public static func encodeAtomicRepresentation(
_ value: consuming Self
) -> RawValue.AtomicRepresentation {
RawValue.encodeAtomicRepresentation(value.rawValue)
}
/// Recovers the logical atomic type `Self` by destroying some
/// `AtomicRepresentation` storage instance returned from an atomic operation.
///
/// - Note: This is not an atomic operation. This simply decodes the storage
/// representation used in atomic operations back into the logical type for
/// normal use, `Self`.
///
/// - Parameter storage: The storage representation for `Self` that's used
/// within atomic operations.
/// - Returns: The newly decoded logical type `Self`.
@available(SwiftStdlib 6.0, *)
@_alwaysEmitIntoClient
@_transparent
public static func decodeAtomicRepresentation(
_ representation: consuming RawValue.AtomicRepresentation
) -> Self {
Self(rawValue: RawValue.decodeAtomicRepresentation(representation))!
}
}
//===----------------------------------------------------------------------===//
// Never AtomicRepresentable conformance
//===----------------------------------------------------------------------===//
@available(SwiftStdlib 6.0, *)
extension Never: AtomicRepresentable {
/// The storage representation type that `Self` encodes to and decodes from
/// which is a suitable type when used in atomic operations.
@available(SwiftStdlib 6.0, *)
public typealias AtomicRepresentation = Never
/// Destroys a value of `Self` and prepares an `AtomicRepresentation` storage
/// type to be used for atomic operations.
///
/// - Note: This is not an atomic operation. This simply encodes the logical
/// type `Self` into its storage representation suitable for atomic
/// operations, `AtomicRepresentation`.
///
/// - Parameter value: A valid instance of `Self` that's about to be destroyed
/// to encode an instance of its `AtomicRepresentation`.
/// - Returns: The newly encoded `AtomicRepresentation` storage.
@available(SwiftStdlib 6.0, *)
@_alwaysEmitIntoClient
@_transparent
public static func encodeAtomicRepresentation(
_ value: consuming Never
) -> Never {}
/// Recovers the logical atomic type `Self` by destroying some
/// `AtomicRepresentation` storage instance returned from an atomic operation.
///
/// - Note: This is not an atomic operation. This simply decodes the storage
/// representation used in atomic operations back into the logical type for
/// normal use, `Self`.
///
/// - Parameter storage: The storage representation for `Self` that's used
/// within atomic operations.
/// - Returns: The newly decoded logical type `Self`.
@available(SwiftStdlib 6.0, *)
@_alwaysEmitIntoClient
@_transparent
public static func decodeAtomicRepresentation(
_ representation: consuming Never
) -> Never {}
}
//===----------------------------------------------------------------------===//
// Duration AtomicRepresentable conformance
//===----------------------------------------------------------------------===//
#if _pointerBitWidth(_64) && _hasAtomicBitWidth(_128)
@available(SwiftStdlib 6.0, *)
extension Duration: AtomicRepresentable {
/// The storage representation type that `Self` encodes to and decodes from
/// which is a suitable type when used in atomic operations.
@available(SwiftStdlib 6.0, *)
public typealias AtomicRepresentation = WordPair.AtomicRepresentation
/// Destroys a value of `Self` and prepares an `AtomicRepresentation` storage
/// type to be used for atomic operations.
///
/// - Note: This is not an atomic operation. This simply encodes the logical
/// type `Self` into its storage representation suitable for atomic
/// operations, `AtomicRepresentation`.
///
/// - Parameter value: A valid instance of `Self` that's about to be destroyed
/// to encode an instance of its `AtomicRepresentation`.
/// - Returns: The newly encoded `AtomicRepresentation` storage.
@available(SwiftStdlib 6.0, *)
@_alwaysEmitIntoClient
@_transparent
public static func encodeAtomicRepresentation(
_ value: consuming Duration
) -> AtomicRepresentation {
WordPair.encodeAtomicRepresentation(
WordPair(
first: UInt(truncatingIfNeeded: value._high),
second: UInt(truncatingIfNeeded: value._low)
)
)
}
/// Recovers the logical atomic type `Self` by destroying some
/// `AtomicRepresentation` storage instance returned from an atomic operation.
///
/// - Note: This is not an atomic operation. This simply decodes the storage
/// representation used in atomic operations back into the logical type for
/// normal use, `Self`.
///
/// - Parameter storage: The storage representation for `Self` that's used
/// within atomic operations.
/// - Returns: The newly decoded logical type `Self`.
@available(SwiftStdlib 6.0, *)
@_alwaysEmitIntoClient
@_transparent
public static func decodeAtomicRepresentation(
_ representation: consuming AtomicRepresentation
) -> Duration {
let wp = WordPair.decodeAtomicRepresentation(representation)
return Duration(
_high: Int64(truncatingIfNeeded: wp.first),
low: UInt64(truncatingIfNeeded: wp.second)
)
}
}
#endif
|