1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// A single extended grapheme cluster that approximates a user-perceived
/// character.
///
/// The `Character` type represents a character made up of one or more Unicode
/// scalar values, grouped by a Unicode boundary algorithm. Generally, a
/// `Character` instance matches what the reader of a string will perceive as
/// a single character. Strings are collections of `Character` instances, so
/// the number of visible characters is generally the most natural way to
/// count the length of a string.
///
/// let greeting = "Hello! π₯"
/// print("Length: \(greeting.count)")
/// // Prints "Length: 8"
///
/// Because each character in a string can be made up of one or more Unicode
/// scalar values, the number of characters in a string may not match the
/// length of the Unicode scalar value representation or the length of the
/// string in a particular binary representation.
///
/// print("Unicode scalar value count: \(greeting.unicodeScalars.count)")
/// // Prints "Unicode scalar value count: 8"
///
/// print("UTF-8 representation count: \(greeting.utf8.count)")
/// // Prints "UTF-8 representation count: 11"
///
/// Every `Character` instance is composed of one or more Unicode scalar values
/// that are grouped together as an *extended grapheme cluster*. The way these
/// scalar values are grouped is defined by a canonical, localized, or
/// otherwise tailored Unicode segmentation algorithm.
///
/// For example, a country's Unicode flag character is made up of two regional
/// indicator scalar values that correspond to that country's ISO 3166-1
/// alpha-2 code. The alpha-2 code for The United States is "US", so its flag
/// character is made up of the Unicode scalar values `"\u{1F1FA}"` (REGIONAL
/// INDICATOR SYMBOL LETTER U) and `"\u{1F1F8}"` (REGIONAL INDICATOR SYMBOL
/// LETTER S). When placed next to each other in a string literal, these two
/// scalar values are combined into a single grapheme cluster, represented by
/// a `Character` instance in Swift.
///
/// let usFlag: Character = "\u{1F1FA}\u{1F1F8}"
/// print(usFlag)
/// // Prints "πΊπΈ"
///
/// For more information about the Unicode terms used in this discussion, see
/// the [Unicode.org glossary][glossary]. In particular, this discussion
/// mentions [extended grapheme clusters][clusters] and [Unicode scalar
/// values][scalars].
///
/// [glossary]: http://www.unicode.org/glossary/
/// [clusters]: http://www.unicode.org/glossary/#extended_grapheme_cluster
/// [scalars]: http://www.unicode.org/glossary/#unicode_scalar_value
@frozen
public struct Character: Sendable {
@usableFromInline
internal var _str: String
@inlinable @inline(__always)
internal init(unchecked str: String) {
self._str = str
_invariantCheck()
}
}
extension Character {
#if !INTERNAL_CHECKS_ENABLED
@inlinable @inline(__always) internal func _invariantCheck() {}
#else
@usableFromInline @inline(never) @_effects(releasenone)
internal func _invariantCheck() {
_internalInvariant(_str.count == 1)
_internalInvariant(_str._guts.isFastUTF8)
_internalInvariant(_str._guts._object.isPreferredRepresentation)
}
#endif // INTERNAL_CHECKS_ENABLED
}
extension Character {
/// A view of a character's contents as a collection of UTF-8 code units. See
/// String.UTF8View for more information
public typealias UTF8View = String.UTF8View
/// A UTF-8 encoding of `self`.
@inlinable
public var utf8: UTF8View { return _str.utf8 }
/// A view of a character's contents as a collection of UTF-16 code units. See
/// String.UTF16View for more information
public typealias UTF16View = String.UTF16View
/// A UTF-16 encoding of `self`.
@inlinable
public var utf16: UTF16View { return _str.utf16 }
public typealias UnicodeScalarView = String.UnicodeScalarView
@inlinable
public var unicodeScalars: UnicodeScalarView { return _str.unicodeScalars }
}
extension Character :
_ExpressibleByBuiltinExtendedGraphemeClusterLiteral,
ExpressibleByExtendedGraphemeClusterLiteral
{
/// Creates a character containing the given Unicode scalar value.
///
/// - Parameter content: The Unicode scalar value to convert into a character.
@inlinable @inline(__always)
public init(_ content: Unicode.Scalar) {
self.init(unchecked: String(content))
}
@inlinable @inline(__always)
@_effects(readonly)
public init(_builtinUnicodeScalarLiteral value: Builtin.Int32) {
self.init(Unicode.Scalar(_builtinUnicodeScalarLiteral: value))
}
// Inlining ensures that the whole constructor can be folded away to a single
// integer constant in case of small character literals.
@inlinable @inline(__always)
@_effects(readonly)
public init(
_builtinExtendedGraphemeClusterLiteral start: Builtin.RawPointer,
utf8CodeUnitCount: Builtin.Word,
isASCII: Builtin.Int1
) {
self.init(unchecked: String(
_builtinExtendedGraphemeClusterLiteral: start,
utf8CodeUnitCount: utf8CodeUnitCount,
isASCII: isASCII))
}
/// Creates a character with the specified value.
///
/// Do not call this initializer directly. It is used by the compiler when
/// you use a string literal to initialize a `Character` instance. For
/// example:
///
/// let oBreve: Character = "o\u{306}"
/// print(oBreve)
/// // Prints "Ε"
///
/// The assignment to the `oBreve` constant calls this initializer behind the
/// scenes.
@inlinable @inline(__always)
public init(extendedGraphemeClusterLiteral value: Character) {
self.init(unchecked: value._str)
}
/// Creates a character from a single-character string.
///
/// The following example creates a new character from the uppercase version
/// of a string that only holds one character.
///
/// let a = "a"
/// let capitalA = Character(a.uppercased())
///
/// - Parameter s: The single-character string to convert to a `Character`
/// instance. `s` must contain exactly one extended grapheme cluster.
@inlinable @inline(__always)
public init(_ s: String) {
_precondition(!s.isEmpty,
"Can't form a Character from an empty String")
_debugPrecondition(s.index(after: s.startIndex) == s.endIndex,
"Can't form a Character from a String containing more than one extended grapheme cluster")
if _fastPath(s._guts._object.isPreferredRepresentation) {
self.init(unchecked: s)
return
}
self.init(unchecked: String._copying(s))
}
}
extension Character: CustomStringConvertible {
@inlinable
public var description: String {
return _str
}
}
extension Character: LosslessStringConvertible { }
extension Character: CustomDebugStringConvertible {
/// A textual representation of the character, suitable for debugging.
public var debugDescription: String {
return _str.debugDescription
}
}
extension String {
/// Creates a string containing the given character.
///
/// - Parameter c: The character to convert to a string.
@inlinable @inline(__always)
public init(_ c: Character) {
self.init(c._str._guts)
}
}
extension Character: Equatable {
@inlinable @inline(__always)
@_effects(readonly)
public static func == (lhs: Character, rhs: Character) -> Bool {
return lhs._str == rhs._str
}
}
extension Character: Comparable {
@inlinable @inline(__always)
@_effects(readonly)
public static func < (lhs: Character, rhs: Character) -> Bool {
return lhs._str < rhs._str
}
}
extension Character: Hashable {
// not @inlinable (performance)
/// Hashes the essential components of this value by feeding them into the
/// given hasher.
///
/// - Parameter hasher: The hasher to use when combining the components
/// of this instance.
@_effects(releasenone)
public func hash(into hasher: inout Hasher) {
_str.hash(into: &hasher)
}
}
extension Character {
@usableFromInline // @testable
internal var _isSmall: Bool {
return _str._guts.isSmall
}
}
|