1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
|
//===--- ClosedRange.swift ------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// FIXME: swift-3-indexing-model: Generalize all tests to check both
// [Closed]Range.
/// An interval from a lower bound up to, and including, an upper bound.
///
/// You create a `ClosedRange` instance by using the closed range
/// operator (`...`).
///
/// let throughFive = 0...5
///
/// A `ClosedRange` instance contains both its lower bound and its
/// upper bound.
///
/// throughFive.contains(3)
/// // true
/// throughFive.contains(10)
/// // false
/// throughFive.contains(5)
/// // true
///
/// Because a closed range includes its upper bound, a closed range whose lower
/// bound is equal to the upper bound contains that value. Therefore, a
/// `ClosedRange` instance cannot represent an empty range.
///
/// let zeroInclusive = 0...0
/// zeroInclusive.contains(0)
/// // true
/// zeroInclusive.isEmpty
/// // false
///
/// Using a Closed Range as a Collection of Consecutive Values
/// ----------------------------------------------------------
///
/// When a closed range uses integers as its lower and upper bounds, or any
/// other type that conforms to the `Strideable` protocol with an integer
/// stride, you can use that range in a `for`-`in` loop or with any sequence or
/// collection method. The elements of the range are the consecutive values
/// from its lower bound up to, and including, its upper bound.
///
/// for n in 3...5 {
/// print(n)
/// }
/// // Prints "3"
/// // Prints "4"
/// // Prints "5"
///
/// Because floating-point types such as `Float` and `Double` are their own
/// `Stride` types, they cannot be used as the bounds of a countable range. If
/// you need to iterate over consecutive floating-point values, see the
/// `stride(from:through:by:)` function.
@frozen
public struct ClosedRange<Bound: Comparable> {
/// The range's lower bound.
public let lowerBound: Bound
/// The range's upper bound.
public let upperBound: Bound
// This works around _debugPrecondition() impacting the performance of
// optimized code. (rdar://72246338)
@_alwaysEmitIntoClient @inline(__always)
internal init(_uncheckedBounds bounds: (lower: Bound, upper: Bound)) {
self.lowerBound = bounds.lower
self.upperBound = bounds.upper
}
/// Creates an instance with the given bounds.
///
/// Because this initializer does not perform any checks, it should be used
/// as an optimization only when you are absolutely certain that `lower` is
/// less than or equal to `upper`. Using the closed range operator (`...`)
/// to form `ClosedRange` instances is preferred.
///
/// - Parameter bounds: A tuple of the lower and upper bounds of the range.
@inlinable
public init(uncheckedBounds bounds: (lower: Bound, upper: Bound)) {
_debugPrecondition(bounds.lower <= bounds.upper,
"ClosedRange requires lowerBound <= upperBound")
self.init(_uncheckedBounds: (lower: bounds.lower, upper: bounds.upper))
}
}
// define isEmpty, which is available even on an uncountable ClosedRange
extension ClosedRange {
/// A Boolean value indicating whether the range contains no elements.
///
/// Because a closed range cannot represent an empty range, this property is
/// always `false`.
@inlinable
public var isEmpty: Bool {
return false
}
}
extension ClosedRange: RangeExpression {
@inlinable // trivial-implementation
public func relative<C: Collection>(to collection: C) -> Range<Bound>
where C.Index == Bound {
return Range(
_uncheckedBounds: (
lower: lowerBound,
upper: collection.index(after: self.upperBound)))
}
/// Returns a Boolean value indicating whether the given element is contained
/// within the range.
///
/// A `ClosedRange` instance contains both its lower and upper bound.
/// `element` is contained in the range if it is between the two bounds or
/// equal to either bound.
///
/// - Parameter element: The element to check for containment.
/// - Returns: `true` if `element` is contained in the range; otherwise,
/// `false`.
@inlinable
public func contains(_ element: Bound) -> Bool {
return element >= self.lowerBound && element <= self.upperBound
}
}
extension ClosedRange: Sequence
where Bound: Strideable, Bound.Stride: SignedInteger {
public typealias Element = Bound
public typealias Iterator = IndexingIterator<ClosedRange<Bound>>
}
extension ClosedRange where Bound: Strideable, Bound.Stride: SignedInteger {
@frozen // FIXME(resilience)
public enum Index {
case pastEnd
case inRange(Bound)
}
}
extension ClosedRange.Index: Comparable {
@inlinable
public static func == (
lhs: ClosedRange<Bound>.Index,
rhs: ClosedRange<Bound>.Index
) -> Bool {
switch (lhs, rhs) {
case (.inRange(let l), .inRange(let r)):
return l == r
case (.pastEnd, .pastEnd):
return true
default:
return false
}
}
@inlinable
public static func < (
lhs: ClosedRange<Bound>.Index,
rhs: ClosedRange<Bound>.Index
) -> Bool {
switch (lhs, rhs) {
case (.inRange(let l), .inRange(let r)):
return l < r
case (.inRange, .pastEnd):
return true
default:
return false
}
}
}
extension ClosedRange.Index: Hashable
where Bound: Strideable, Bound.Stride: SignedInteger, Bound: Hashable {
/// Hashes the essential components of this value by feeding them into the
/// given hasher.
///
/// - Parameter hasher: The hasher to use when combining the components
/// of this instance.
@inlinable
public func hash(into hasher: inout Hasher) {
switch self {
case .inRange(let value):
hasher.combine(0 as Int8)
hasher.combine(value)
case .pastEnd:
hasher.combine(1 as Int8)
}
}
}
// FIXME: this should only be conformance to RandomAccessCollection but
// the compiler balks without all 3
extension ClosedRange: Collection, BidirectionalCollection, RandomAccessCollection
where Bound: Strideable, Bound.Stride: SignedInteger
{
// while a ClosedRange can't be empty, a _slice_ of a ClosedRange can,
// so ClosedRange can't be its own self-slice unlike Range
public typealias SubSequence = Slice<ClosedRange<Bound>>
/// The position of the first element in the range.
@inlinable
public var startIndex: Index {
return .inRange(lowerBound)
}
/// The range's "past the end" position---that is, the position one greater
/// than the last valid subscript argument.
@inlinable
public var endIndex: Index {
return .pastEnd
}
@inlinable
public func index(after i: Index) -> Index {
switch i {
case .inRange(let x):
return x == upperBound
? .pastEnd
: .inRange(x.advanced(by: 1))
case .pastEnd:
_preconditionFailure("Incrementing past end index")
}
}
@inlinable
public func index(before i: Index) -> Index {
switch i {
case .inRange(let x):
_precondition(x > lowerBound, "Incrementing past start index")
return .inRange(x.advanced(by: -1))
case .pastEnd:
_precondition(upperBound >= lowerBound, "Incrementing past start index")
return .inRange(upperBound)
}
}
@inlinable
public func index(_ i: Index, offsetBy distance: Int) -> Index {
switch i {
case .inRange(let x):
let d = x.distance(to: upperBound)
if distance <= d {
let newPosition = x.advanced(by: numericCast(distance))
_precondition(newPosition >= lowerBound,
"Advancing past start index")
return .inRange(newPosition)
}
if d - -1 == distance { return .pastEnd }
_preconditionFailure("Advancing past end index")
case .pastEnd:
if distance == 0 {
return i
}
if distance < 0 {
return index(.inRange(upperBound), offsetBy: numericCast(distance + 1))
}
_preconditionFailure("Advancing past end index")
}
}
@inlinable
public func distance(from start: Index, to end: Index) -> Int {
switch (start, end) {
case let (.inRange(left), .inRange(right)):
// in range <--> in range
return numericCast(left.distance(to: right))
case let (.inRange(left), .pastEnd):
// in range --> end
return numericCast(1 + left.distance(to: upperBound))
case let (.pastEnd, .inRange(right)):
// in range <-- end
return numericCast(upperBound.distance(to: right) - 1)
case (.pastEnd, .pastEnd):
// end <--> end
return 0
}
}
/// Accesses the element at specified position.
///
/// You can subscript a collection with any valid index other than the
/// collection's end index. The end index refers to the position one past
/// the last element of a collection, so it doesn't correspond with an
/// element.
///
/// - Parameter position: The position of the element to access. `position`
/// must be a valid index of the range, and must not equal the range's end
/// index.
@inlinable
public subscript(position: Index) -> Bound {
// FIXME: swift-3-indexing-model: range checks and tests.
switch position {
case .inRange(let x): return x
case .pastEnd: _preconditionFailure("Index out of range")
}
}
@inlinable
public subscript(bounds: Range<Index>)
-> Slice<ClosedRange<Bound>> {
return Slice(base: self, bounds: bounds)
}
@inlinable
public func _customContainsEquatableElement(_ element: Bound) -> Bool? {
return lowerBound <= element && element <= upperBound
}
@inlinable
public func _customIndexOfEquatableElement(_ element: Bound) -> Index?? {
return lowerBound <= element && element <= upperBound
? .inRange(element) : nil
}
@inlinable
public func _customLastIndexOfEquatableElement(_ element: Bound) -> Index?? {
// The first and last elements are the same because each element is unique.
return _customIndexOfEquatableElement(element)
}
}
extension Comparable {
/// Returns a closed range that contains both of its bounds.
///
/// Use the closed range operator (`...`) to create a closed range of any type
/// that conforms to the `Comparable` protocol. This example creates a
/// `ClosedRange<Character>` from "a" up to, and including, "z".
///
/// let lowercase = "a"..."z"
/// print(lowercase.contains("z"))
/// // Prints "true"
///
/// - Parameters:
/// - minimum: The lower bound for the range.
/// - maximum: The upper bound for the range.
///
/// - Precondition: `minimum <= maximum`.
@_transparent
public static func ... (minimum: Self, maximum: Self) -> ClosedRange<Self> {
_precondition(
minimum <= maximum, "Range requires lowerBound <= upperBound")
return ClosedRange(_uncheckedBounds: (lower: minimum, upper: maximum))
}
}
extension ClosedRange: Equatable {
/// Returns a Boolean value indicating whether two ranges are equal.
///
/// Two ranges are equal when they have the same lower and upper bounds.
///
/// let x = 5...15
/// print(x == 5...15)
/// // Prints "true"
/// print(x == 10...20)
/// // Prints "false"
///
/// - Parameters:
/// - lhs: A range to compare.
/// - rhs: Another range to compare.
@inlinable
public static func == (
lhs: ClosedRange<Bound>, rhs: ClosedRange<Bound>
) -> Bool {
return lhs.lowerBound == rhs.lowerBound && lhs.upperBound == rhs.upperBound
}
}
extension ClosedRange: Hashable where Bound: Hashable {
@inlinable
public func hash(into hasher: inout Hasher) {
hasher.combine(lowerBound)
hasher.combine(upperBound)
}
}
@_unavailableInEmbedded
extension ClosedRange: CustomStringConvertible {
/// A textual representation of the range.
@inlinable // trivial-implementation...
public var description: String {
return "\(lowerBound)...\(upperBound)"
}
}
@_unavailableInEmbedded
extension ClosedRange: CustomDebugStringConvertible {
/// A textual representation of the range, suitable for debugging.
public var debugDescription: String {
return "ClosedRange(\(String(reflecting: lowerBound))"
+ "...\(String(reflecting: upperBound)))"
}
}
#if SWIFT_ENABLE_REFLECTION
extension ClosedRange: CustomReflectable {
public var customMirror: Mirror {
return Mirror(
self, children: ["lowerBound": lowerBound, "upperBound": upperBound])
}
}
#endif
extension ClosedRange {
/// Returns a copy of this range clamped to the given limiting range.
///
/// The bounds of the result are always limited to the bounds of `limits`.
/// For example:
///
/// let x: ClosedRange = 0...20
/// print(x.clamped(to: 10...1000))
/// // Prints "10...20"
///
/// If the two ranges do not overlap, the result is a single-element range at
/// the upper or lower bound of `limits`.
///
/// let y: ClosedRange = 0...5
/// print(y.clamped(to: 10...1000))
/// // Prints "10...10"
///
/// - Parameter limits: The range to clamp the bounds of this range.
/// - Returns: A new range clamped to the bounds of `limits`.
@inlinable // trivial-implementation
@inline(__always)
public func clamped(to limits: ClosedRange) -> ClosedRange {
let lower =
limits.lowerBound > self.lowerBound ? limits.lowerBound
: limits.upperBound < self.lowerBound ? limits.upperBound
: self.lowerBound
let upper =
limits.upperBound < self.upperBound ? limits.upperBound
: limits.lowerBound > self.upperBound ? limits.lowerBound
: self.upperBound
return ClosedRange(_uncheckedBounds: (lower: lower, upper: upper))
}
}
extension ClosedRange where Bound: Strideable, Bound.Stride: SignedInteger {
/// Creates an instance equivalent to the given `Range`.
///
/// - Parameter other: A `Range` to convert to a `ClosedRange` instance.
///
/// An equivalent range must be representable as a closed range.
/// For example, passing an empty range as `other` triggers a runtime error,
/// because an empty range cannot be represented by a closed range instance.
@inlinable
public init(_ other: Range<Bound>) {
_precondition(!other.isEmpty, "Can't form an empty closed range")
let upperBound = other.upperBound.advanced(by: -1)
self.init(_uncheckedBounds: (lower: other.lowerBound, upper: upperBound))
}
}
extension ClosedRange {
@inlinable
public func overlaps(_ other: ClosedRange<Bound>) -> Bool {
// Disjoint iff the other range is completely before or after our range.
// Unlike a `Range`, a `ClosedRange` can *not* be empty, so no check for
// that case is needed here.
let isDisjoint = other.upperBound < self.lowerBound
|| self.upperBound < other.lowerBound
return !isDisjoint
}
@inlinable
public func overlaps(_ other: Range<Bound>) -> Bool {
return other.overlaps(self)
}
}
// Note: this is not for compatibility only, it is considered a useful
// shorthand. TODO: Add documentation
public typealias CountableClosedRange<Bound: Strideable> = ClosedRange<Bound>
where Bound.Stride: SignedInteger
@_unavailableInEmbedded
extension ClosedRange: Decodable where Bound: Decodable {
public init(from decoder: Decoder) throws {
var container = try decoder.unkeyedContainer()
let lowerBound = try container.decode(Bound.self)
let upperBound = try container.decode(Bound.self)
guard lowerBound <= upperBound else {
throw DecodingError.dataCorrupted(
DecodingError.Context(
codingPath: decoder.codingPath,
debugDescription: "Cannot initialize \(ClosedRange.self) with a lowerBound (\(lowerBound)) greater than upperBound (\(upperBound))"))
}
self.init(_uncheckedBounds: (lower: lowerBound, upper: upperBound))
}
}
@_unavailableInEmbedded
extension ClosedRange: Encodable where Bound: Encodable {
public func encode(to encoder: Encoder) throws {
var container = encoder.unkeyedContainer()
try container.encode(self.lowerBound)
try container.encode(self.upperBound)
}
}
extension ClosedRange: Sendable where Bound: Sendable { }
extension ClosedRange.Index: Sendable where Bound: Sendable { }
|