1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// A type that iterates over a collection using its indices.
///
/// The `IndexingIterator` type is the default iterator for any collection that
/// doesn't declare its own. It acts as an iterator by using a collection's
/// indices to step over each value in the collection. Most collections in the
/// standard library use `IndexingIterator` as their iterator.
///
/// By default, any custom collection type you create will inherit a
/// `makeIterator()` method that returns an `IndexingIterator` instance,
/// making it unnecessary to declare your own. When creating a custom
/// collection type, add the minimal requirements of the `Collection`
/// protocol: starting and ending indices and a subscript for accessing
/// elements. With those elements defined, the inherited `makeIterator()`
/// method satisfies the requirements of the `Sequence` protocol.
///
/// Here's an example of a type that declares the minimal requirements for a
/// collection. The `CollectionOfTwo` structure is a fixed-size collection
/// that always holds two elements of a specific type.
///
/// struct CollectionOfTwo<Element>: Collection {
/// let elements: (Element, Element)
///
/// init(_ first: Element, _ second: Element) {
/// self.elements = (first, second)
/// }
///
/// var startIndex: Int { return 0 }
/// var endIndex: Int { return 2 }
///
/// subscript(index: Int) -> Element {
/// switch index {
/// case 0: return elements.0
/// case 1: return elements.1
/// default: fatalError("Index out of bounds.")
/// }
/// }
///
/// func index(after i: Int) -> Int {
/// precondition(i < endIndex, "Can't advance beyond endIndex")
/// return i + 1
/// }
/// }
///
/// Because `CollectionOfTwo` doesn't define its own `makeIterator()`
/// method or `Iterator` associated type, it uses the default iterator type,
/// `IndexingIterator`. This example shows how a `CollectionOfTwo` instance
/// can be created holding the values of a point, and then iterated over
/// using a `for`-`in` loop.
///
/// let point = CollectionOfTwo(15.0, 20.0)
/// for element in point {
/// print(element)
/// }
/// // Prints "15.0"
/// // Prints "20.0"
@frozen
public struct IndexingIterator<Elements: Collection> {
@usableFromInline
internal let _elements: Elements
@usableFromInline
internal var _position: Elements.Index
/// Creates an iterator over the given collection.
@inlinable
@inline(__always)
public /// @testable
init(_elements: Elements) {
self._elements = _elements
self._position = _elements.startIndex
}
/// Creates an iterator over the given collection.
@inlinable
@inline(__always)
public /// @testable
init(_elements: Elements, _position: Elements.Index) {
self._elements = _elements
self._position = _position
}
}
extension IndexingIterator: IteratorProtocol, Sequence {
public typealias Element = Elements.Element
public typealias Iterator = IndexingIterator<Elements>
public typealias SubSequence = AnySequence<Element>
/// Advances to the next element and returns it, or `nil` if no next element
/// exists.
///
/// Repeatedly calling this method returns all the elements of the underlying
/// sequence in order. As soon as the sequence has run out of elements, all
/// subsequent calls return `nil`.
///
/// This example shows how an iterator can be used explicitly to emulate a
/// `for`-`in` loop. First, retrieve a sequence's iterator, and then call
/// the iterator's `next()` method until it returns `nil`.
///
/// let numbers = [2, 3, 5, 7]
/// var numbersIterator = numbers.makeIterator()
///
/// while let num = numbersIterator.next() {
/// print(num)
/// }
/// // Prints "2"
/// // Prints "3"
/// // Prints "5"
/// // Prints "7"
///
/// - Returns: The next element in the underlying sequence if a next element
/// exists; otherwise, `nil`.
@inlinable
@inline(__always)
public mutating func next() -> Elements.Element? {
if _position == _elements.endIndex { return nil }
let element = _elements[_position]
_elements.formIndex(after: &_position)
return element
}
}
extension IndexingIterator: Sendable
where Elements: Sendable, Elements.Index: Sendable { }
/// A sequence whose elements can be traversed multiple times,
/// nondestructively, and accessed by an indexed subscript.
///
/// Collections are used extensively throughout the standard library. When you
/// use arrays, dictionaries, and other collections, you benefit from the
/// operations that the `Collection` protocol declares and implements. In
/// addition to the operations that collections inherit from the `Sequence`
/// protocol, you gain access to methods that depend on accessing an element
/// at a specific position in a collection.
///
/// For example, if you want to print only the first word in a string, you can
/// search for the index of the first space, and then create a substring up to
/// that position.
///
/// let text = "Buffalo buffalo buffalo buffalo."
/// if let firstSpace = text.firstIndex(of: " ") {
/// print(text[..<firstSpace])
/// }
/// // Prints "Buffalo"
///
/// The `firstSpace` constant is an index into the `text` string---the position
/// of the first space in the string. You can store indices in variables, and
/// pass them to collection algorithms or use them later to access the
/// corresponding element. In the example above, `firstSpace` is used to
/// extract the prefix that contains elements up to that index.
///
/// Accessing Individual Elements
/// =============================
///
/// You can access an element of a collection through its subscript by using
/// any valid index except the collection's `endIndex` property. This property
/// is a "past the end" index that does not correspond with any element of the
/// collection.
///
/// Here's an example of accessing the first character in a string through its
/// subscript:
///
/// let firstChar = text[text.startIndex]
/// print(firstChar)
/// // Prints "B"
///
/// The `Collection` protocol declares and provides default implementations for
/// many operations that depend on elements being accessible by their
/// subscript. For example, you can also access the first character of `text`
/// using the `first` property, which has the value of the first element of
/// the collection, or `nil` if the collection is empty.
///
/// print(text.first)
/// // Prints "Optional("B")"
///
/// You can pass only valid indices to collection operations. You can find a
/// complete set of a collection's valid indices by starting with the
/// collection's `startIndex` property and finding every successor up to, and
/// including, the `endIndex` property. All other values of the `Index` type,
/// such as the `startIndex` property of a different collection, are invalid
/// indices for this collection.
///
/// Saved indices may become invalid as a result of mutating operations. For
/// more information about index invalidation in mutable collections, see the
/// reference for the `MutableCollection` and `RangeReplaceableCollection`
/// protocols, as well as for the specific type you're using.
///
/// Accessing Slices of a Collection
/// ================================
///
/// You can access a slice of a collection through its ranged subscript or by
/// calling methods like `prefix(while:)` or `suffix(_:)`. A slice of a
/// collection can contain zero or more of the original collection's elements
/// and shares the original collection's semantics.
///
/// The following example creates a `firstWord` constant by using the
/// `prefix(while:)` method to get a slice of the `text` string.
///
/// let firstWord = text.prefix(while: { $0 != " " })
/// print(firstWord)
/// // Prints "Buffalo"
///
/// You can retrieve the same slice using the string's ranged subscript, which
/// takes a range expression.
///
/// if let firstSpace = text.firstIndex(of: " ") {
/// print(text[..<firstSpace]
/// // Prints "Buffalo"
/// }
///
/// The retrieved slice of `text` is equivalent in each of these cases.
///
/// Slices Share Indices
/// --------------------
///
/// A collection and its slices share the same indices. An element of a
/// collection is located under the same index in a slice as in the base
/// collection, as long as neither the collection nor the slice has been
/// mutated since the slice was created.
///
/// For example, suppose you have an array holding the number of absences from
/// each class during a session.
///
/// var absences = [0, 2, 0, 4, 0, 3, 1, 0]
///
/// You're tasked with finding the day with the most absences in the second
/// half of the session. To find the index of the day in question, follow
/// these steps:
///
/// 1) Create a slice of the `absences` array that holds the second half of the
/// days.
/// 2) Use the `max(by:)` method to determine the index of the day with the
/// most absences.
/// 3) Print the result using the index found in step 2 on the original
/// `absences` array.
///
/// Here's an implementation of those steps:
///
/// let secondHalf = absences.suffix(absences.count / 2)
/// if let i = secondHalf.indices.max(by: { secondHalf[$0] < secondHalf[$1] }) {
/// print("Highest second-half absences: \(absences[i])")
/// }
/// // Prints "Highest second-half absences: 3"
///
/// Slices Inherit Collection Semantics
/// -----------------------------------
///
/// A slice inherits the value or reference semantics of its base collection.
/// That is, when working with a slice of a mutable collection that has value
/// semantics, such as an array, mutating the original collection triggers a
/// copy of that collection and does not affect the contents of the slice.
///
/// For example, if you update the last element of the `absences` array from
/// `0` to `2`, the `secondHalf` slice is unchanged.
///
/// absences[7] = 2
/// print(absences)
/// // Prints "[0, 2, 0, 4, 0, 3, 1, 2]"
/// print(secondHalf)
/// // Prints "[0, 3, 1, 0]"
///
/// Traversing a Collection
/// =======================
///
/// Although a sequence can be consumed as it is traversed, a collection is
/// guaranteed to be *multipass*: Any element can be repeatedly accessed by
/// saving its index. Moreover, a collection's indices form a finite range of
/// the positions of the collection's elements. The fact that all collections
/// are finite guarantees the safety of many sequence operations, such as
/// using the `contains(_:)` method to test whether a collection includes an
/// element.
///
/// Iterating over the elements of a collection by their positions yields the
/// same elements in the same order as iterating over that collection using
/// its iterator. This example demonstrates that the `characters` view of a
/// string returns the same characters in the same order whether the view's
/// indices or the view itself is being iterated.
///
/// let word = "Swift"
/// for character in word {
/// print(character)
/// }
/// // Prints "S"
/// // Prints "w"
/// // Prints "i"
/// // Prints "f"
/// // Prints "t"
///
/// for i in word.indices {
/// print(word[i])
/// }
/// // Prints "S"
/// // Prints "w"
/// // Prints "i"
/// // Prints "f"
/// // Prints "t"
///
/// Conforming to the Collection Protocol
/// =====================================
///
/// If you create a custom sequence that can provide repeated access to its
/// elements, make sure that its type conforms to the `Collection` protocol in
/// order to give a more useful and more efficient interface for sequence and
/// collection operations. To add `Collection` conformance to your type, you
/// must declare at least the following requirements:
///
/// - The `startIndex` and `endIndex` properties
/// - A subscript that provides at least read-only access to your type's
/// elements
/// - The `index(after:)` method for advancing an index into your collection
///
/// Expected Performance
/// ====================
///
/// Types that conform to `Collection` are expected to provide the `startIndex`
/// and `endIndex` properties and subscript access to elements as O(1)
/// operations. Types that are not able to guarantee this performance must
/// document the departure, because many collection operations depend on O(1)
/// subscripting performance for their own performance guarantees.
///
/// The performance of some collection operations depends on the type of index
/// that the collection provides. For example, a random-access collection,
/// which can measure the distance between two indices in O(1) time, can
/// calculate its `count` property in O(1) time. Conversely, because a forward
/// or bidirectional collection must traverse the entire collection to count
/// the number of contained elements, accessing its `count` property is an
/// O(*n*) operation.
public protocol Collection<Element>: Sequence {
// FIXME: ideally this would be in MigrationSupport.swift, but it needs
// to be on the protocol instead of as an extension
@available(*, deprecated/*, obsoleted: 5.0*/, message: "all index distances are now of type Int")
typealias IndexDistance = Int
// FIXME: Associated type inference requires this.
override associatedtype Element
// FIXME: <rdar://problem/34142121>
// This typealias should be removed as it predates the source compatibility
// guarantees of Swift 3, but it cannot due to a bug.
@available(swift, deprecated: 3.2, obsoleted: 5.0, renamed: "Element")
typealias _Element = Element
/// A type that represents a position in the collection.
///
/// Valid indices consist of the position of every element and a
/// "past the end" position that's not valid for use as a subscript
/// argument.
associatedtype Index: Comparable
/// The position of the first element in a nonempty collection.
///
/// If the collection is empty, `startIndex` is equal to `endIndex`.
var startIndex: Index { get }
/// The collection's "past the end" position---that is, the position one
/// greater than the last valid subscript argument.
///
/// When you need a range that includes the last element of a collection, use
/// the half-open range operator (`..<`) with `endIndex`. The `..<` operator
/// creates a range that doesn't include the upper bound, so it's always
/// safe to use with `endIndex`. For example:
///
/// let numbers = [10, 20, 30, 40, 50]
/// if let index = numbers.firstIndex(of: 30) {
/// print(numbers[index ..< numbers.endIndex])
/// }
/// // Prints "[30, 40, 50]"
///
/// If the collection is empty, `endIndex` is equal to `startIndex`.
var endIndex: Index { get }
/// A type that provides the collection's iteration interface and
/// encapsulates its iteration state.
///
/// By default, a collection conforms to the `Sequence` protocol by
/// supplying `IndexingIterator` as its associated `Iterator`
/// type.
associatedtype Iterator = IndexingIterator<Self>
// FIXME: Only needed for associated type inference. Otherwise,
// we get an `IndexingIterator` rather than properly deducing the
// Iterator type from makeIterator(). <rdar://problem/21539115>
/// Returns an iterator over the elements of the collection.
override __consuming func makeIterator() -> Iterator
/// A collection representing a contiguous subrange of this collection's
/// elements. The subsequence shares indices with the original collection.
///
/// The default subsequence type for collections that don't define their own
/// is `Slice`.
associatedtype SubSequence: Collection = Slice<Self>
where SubSequence.Index == Index,
Element == SubSequence.Element,
SubSequence.SubSequence == SubSequence
/// Accesses the element at the specified position.
///
/// The following example accesses an element of an array through its
/// subscript to print its value:
///
/// var streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// print(streets[1])
/// // Prints "Bryant"
///
/// You can subscript a collection with any valid index other than the
/// collection's end index. The end index refers to the position one past
/// the last element of a collection, so it doesn't correspond with an
/// element.
///
/// - Parameter position: The position of the element to access. `position`
/// must be a valid index of the collection that is not equal to the
/// `endIndex` property.
///
/// - Complexity: O(1)
@_borrowed
subscript(position: Index) -> Element { get }
/// Accesses a contiguous subrange of the collection's elements.
///
/// For example, using a `PartialRangeFrom` range expression with an array
/// accesses the subrange from the start of the range expression until the
/// end of the array.
///
/// let streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// let streetsSlice = streets[2..<5]
/// print(streetsSlice)
/// // ["Channing", "Douglas", "Evarts"]
///
/// The accessed slice uses the same indices for the same elements as the
/// original collection. This example searches `streetsSlice` for one of the
/// strings in the slice, and then uses that index in the original array.
///
/// let index = streetsSlice.firstIndex(of: "Evarts")! // 4
/// print(streets[index])
/// // "Evarts"
///
/// Always use the slice's `startIndex` property instead of assuming that its
/// indices start at a particular value. Attempting to access an element by
/// using an index outside the bounds of the slice may result in a runtime
/// error, even if that index is valid for the original collection.
///
/// print(streetsSlice.startIndex)
/// // 2
/// print(streetsSlice[2])
/// // "Channing"
///
/// print(streetsSlice[0])
/// // error: Index out of bounds
///
/// - Parameter bounds: A range of the collection's indices. The bounds of
/// the range must be valid indices of the collection.
///
/// - Complexity: O(1)
subscript(bounds: Range<Index>) -> SubSequence { get }
/// A type that represents the indices that are valid for subscripting the
/// collection, in ascending order.
associatedtype Indices: Collection = DefaultIndices<Self>
where Indices.Element == Index,
Indices.Index == Index,
Indices.SubSequence == Indices
/// The indices that are valid for subscripting the collection, in ascending
/// order.
///
/// A collection's `indices` property can hold a strong reference to the
/// collection itself, causing the collection to be nonuniquely referenced.
/// If you mutate the collection while iterating over its indices, a strong
/// reference can result in an unexpected copy of the collection. To avoid
/// the unexpected copy, use the `index(after:)` method starting with
/// `startIndex` to produce indices instead.
///
/// var c = MyFancyCollection([10, 20, 30, 40, 50])
/// var i = c.startIndex
/// while i != c.endIndex {
/// c[i] /= 5
/// i = c.index(after: i)
/// }
/// // c == MyFancyCollection([2, 4, 6, 8, 10])
var indices: Indices { get }
/// A Boolean value indicating whether the collection is empty.
///
/// When you need to check whether your collection is empty, use the
/// `isEmpty` property instead of checking that the `count` property is
/// equal to zero. For collections that don't conform to
/// `RandomAccessCollection`, accessing the `count` property iterates
/// through the elements of the collection.
///
/// let horseName = "Silver"
/// if horseName.isEmpty {
/// print("My horse has no name.")
/// } else {
/// print("Hi ho, \(horseName)!")
/// }
/// // Prints "Hi ho, Silver!"
///
/// - Complexity: O(1)
var isEmpty: Bool { get }
/// The number of elements in the collection.
///
/// To check whether a collection is empty, use its `isEmpty` property
/// instead of comparing `count` to zero. Unless the collection guarantees
/// random-access performance, calculating `count` can be an O(*n*)
/// operation.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*n*), where *n* is the length
/// of the collection.
var count: Int { get }
// The following requirements enable dispatching for firstIndex(of:) and
// lastIndex(of:) when the element type is Equatable.
/// Returns `Optional(Optional(index))` if an element was found
/// or `Optional(nil)` if an element was determined to be missing;
/// otherwise, `nil`.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
func _customIndexOfEquatableElement(_ element: Element) -> Index??
/// Customization point for `Collection.lastIndex(of:)`.
///
/// Define this method if the collection can find an element in less than
/// O(*n*) by exploiting collection-specific knowledge.
///
/// - Returns: `nil` if a linear search should be attempted instead,
/// `Optional(nil)` if the element was not found, or
/// `Optional(Optional(index))` if an element was found.
///
/// - Complexity: Hopefully less than O(`count`).
func _customLastIndexOfEquatableElement(_ element: Element) -> Index??
/// Returns an index that is the specified distance from the given index.
///
/// The following example obtains an index advanced four positions from a
/// string's starting index and then prints the character at that position.
///
/// let s = "Swift"
/// let i = s.index(s.startIndex, offsetBy: 4)
/// print(s[i])
/// // Prints "t"
///
/// The value passed as `distance` must not offset `i` beyond the bounds of
/// the collection.
///
/// - Parameters:
/// - i: A valid index of the collection.
/// - distance: The distance to offset `i`. `distance` must not be negative
/// unless the collection conforms to the `BidirectionalCollection`
/// protocol.
/// - Returns: An index offset by `distance` from the index `i`. If
/// `distance` is positive, this is the same value as the result of
/// `distance` calls to `index(after:)`. If `distance` is negative, this
/// is the same value as the result of `abs(distance)` calls to
/// `index(before:)`.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*k*), where *k* is the absolute
/// value of `distance`.
func index(_ i: Index, offsetBy distance: Int) -> Index
/// Returns an index that is the specified distance from the given index,
/// unless that distance is beyond a given limiting index.
///
/// The following example obtains an index advanced four positions from a
/// string's starting index and then prints the character at that position.
/// The operation doesn't require going beyond the limiting `s.endIndex`
/// value, so it succeeds.
///
/// let s = "Swift"
/// if let i = s.index(s.startIndex, offsetBy: 4, limitedBy: s.endIndex) {
/// print(s[i])
/// }
/// // Prints "t"
///
/// The next example attempts to retrieve an index six positions from
/// `s.startIndex` but fails, because that distance is beyond the index
/// passed as `limit`.
///
/// let j = s.index(s.startIndex, offsetBy: 6, limitedBy: s.endIndex)
/// print(j)
/// // Prints "nil"
///
/// The value passed as `distance` must not offset `i` beyond the bounds of
/// the collection, unless the index passed as `limit` prevents offsetting
/// beyond those bounds.
///
/// - Parameters:
/// - i: A valid index of the collection.
/// - distance: The distance to offset `i`. `distance` must not be negative
/// unless the collection conforms to the `BidirectionalCollection`
/// protocol.
/// - limit: A valid index of the collection to use as a limit. If
/// `distance > 0`, a limit that is less than `i` has no effect.
/// Likewise, if `distance < 0`, a limit that is greater than `i` has no
/// effect.
/// - Returns: An index offset by `distance` from the index `i`, unless that
/// index would be beyond `limit` in the direction of movement. In that
/// case, the method returns `nil`.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*k*), where *k* is the absolute
/// value of `distance`.
func index(
_ i: Index, offsetBy distance: Int, limitedBy limit: Index
) -> Index?
/// Returns the distance between two indices.
///
/// Unless the collection conforms to the `BidirectionalCollection` protocol,
/// `start` must be less than or equal to `end`.
///
/// - Parameters:
/// - start: A valid index of the collection.
/// - end: Another valid index of the collection. If `end` is equal to
/// `start`, the result is zero.
/// - Returns: The distance between `start` and `end`. The result can be
/// negative only if the collection conforms to the
/// `BidirectionalCollection` protocol.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*k*), where *k* is the
/// resulting distance.
func distance(from start: Index, to end: Index) -> Int
/// Performs a range check in O(1), or a no-op when a range check is not
/// implementable in O(1).
///
/// The range check, if performed, is equivalent to:
///
/// precondition(bounds.contains(index))
///
/// Use this function to perform a cheap range check for QoI purposes when
/// memory safety is not a concern. Do not rely on this range check for
/// memory safety.
///
/// The default implementation for forward and bidirectional indices is a
/// no-op. The default implementation for random access indices performs a
/// range check.
///
/// - Complexity: O(1).
func _failEarlyRangeCheck(_ index: Index, bounds: Range<Index>)
func _failEarlyRangeCheck(_ index: Index, bounds: ClosedRange<Index>)
/// Performs a range check in O(1), or a no-op when a range check is not
/// implementable in O(1).
///
/// The range check, if performed, is equivalent to:
///
/// precondition(
/// bounds.contains(range.lowerBound) ||
/// range.lowerBound == bounds.upperBound)
/// precondition(
/// bounds.contains(range.upperBound) ||
/// range.upperBound == bounds.upperBound)
///
/// Use this function to perform a cheap range check for QoI purposes when
/// memory safety is not a concern. Do not rely on this range check for
/// memory safety.
///
/// The default implementation for forward and bidirectional indices is a
/// no-op. The default implementation for random access indices performs a
/// range check.
///
/// - Complexity: O(1).
func _failEarlyRangeCheck(_ range: Range<Index>, bounds: Range<Index>)
/// Returns the position immediately after the given index.
///
/// The successor of an index must be well defined. For an index `i` into a
/// collection `c`, calling `c.index(after: i)` returns the same index every
/// time.
///
/// - Parameter i: A valid index of the collection. `i` must be less than
/// `endIndex`.
/// - Returns: The index value immediately after `i`.
func index(after i: Index) -> Index
/// Replaces the given index with its successor.
///
/// - Parameter i: A valid index of the collection. `i` must be less than
/// `endIndex`.
func formIndex(after i: inout Index)
}
/// Default implementation for forward collections.
extension Collection {
/// Replaces the given index with its successor.
///
/// - Parameter i: A valid index of the collection. `i` must be less than
/// `endIndex`.
@inlinable // protocol-only
@inline(__always)
public func formIndex(after i: inout Index) {
i = index(after: i)
}
@inlinable
public func _failEarlyRangeCheck(_ index: Index, bounds: Range<Index>) {
// FIXME: swift-3-indexing-model: tests.
_precondition(
bounds.lowerBound <= index && index < bounds.upperBound,
"Index out of bounds")
}
@inlinable
public func _failEarlyRangeCheck(_ index: Index, bounds: ClosedRange<Index>) {
// FIXME: swift-3-indexing-model: tests.
_precondition(
bounds.lowerBound <= index && index <= bounds.upperBound,
"Index out of bounds")
}
@inlinable
public func _failEarlyRangeCheck(_ range: Range<Index>, bounds: Range<Index>) {
// FIXME: swift-3-indexing-model: tests.
_precondition(
bounds.lowerBound <= range.lowerBound &&
range.upperBound <= bounds.upperBound,
"Range out of bounds")
}
/// Returns an index that is the specified distance from the given index.
///
/// The following example obtains an index advanced four positions from a
/// string's starting index and then prints the character at that position.
///
/// let s = "Swift"
/// let i = s.index(s.startIndex, offsetBy: 4)
/// print(s[i])
/// // Prints "t"
///
/// The value passed as `distance` must not offset `i` beyond the bounds of
/// the collection.
///
/// - Parameters:
/// - i: A valid index of the collection.
/// - distance: The distance to offset `i`. `distance` must not be negative
/// unless the collection conforms to the `BidirectionalCollection`
/// protocol.
/// - Returns: An index offset by `distance` from the index `i`. If
/// `distance` is positive, this is the same value as the result of
/// `distance` calls to `index(after:)`. If `distance` is negative, this
/// is the same value as the result of `abs(distance)` calls to
/// `index(before:)`.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*k*), where *k* is the absolute
/// value of `distance`.
@inlinable
public func index(_ i: Index, offsetBy distance: Int) -> Index {
return self._advanceForward(i, by: distance)
}
/// Returns an index that is the specified distance from the given index,
/// unless that distance is beyond a given limiting index.
///
/// The following example obtains an index advanced four positions from a
/// string's starting index and then prints the character at that position.
/// The operation doesn't require going beyond the limiting `s.endIndex`
/// value, so it succeeds.
///
/// let s = "Swift"
/// if let i = s.index(s.startIndex, offsetBy: 4, limitedBy: s.endIndex) {
/// print(s[i])
/// }
/// // Prints "t"
///
/// The next example attempts to retrieve an index six positions from
/// `s.startIndex` but fails, because that distance is beyond the index
/// passed as `limit`.
///
/// let j = s.index(s.startIndex, offsetBy: 6, limitedBy: s.endIndex)
/// print(j)
/// // Prints "nil"
///
/// The value passed as `distance` must not offset `i` beyond the bounds of
/// the collection, unless the index passed as `limit` prevents offsetting
/// beyond those bounds.
///
/// - Parameters:
/// - i: A valid index of the collection.
/// - distance: The distance to offset `i`. `distance` must not be negative
/// unless the collection conforms to the `BidirectionalCollection`
/// protocol.
/// - limit: A valid index of the collection to use as a limit. If
/// `distance > 0`, a limit that is less than `i` has no effect.
/// Likewise, if `distance < 0`, a limit that is greater than `i` has no
/// effect.
/// - Returns: An index offset by `distance` from the index `i`, unless that
/// index would be beyond `limit` in the direction of movement. In that
/// case, the method returns `nil`.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*k*), where *k* is the absolute
/// value of `distance`.
@inlinable
public func index(
_ i: Index, offsetBy distance: Int, limitedBy limit: Index
) -> Index? {
return self._advanceForward(i, by: distance, limitedBy: limit)
}
/// Offsets the given index by the specified distance.
///
/// The value passed as `distance` must not offset `i` beyond the bounds of
/// the collection.
///
/// - Parameters:
/// - i: A valid index of the collection.
/// - distance: The distance to offset `i`. `distance` must not be negative
/// unless the collection conforms to the `BidirectionalCollection`
/// protocol.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*k*), where *k* is the absolute
/// value of `distance`.
@inlinable
public func formIndex(_ i: inout Index, offsetBy distance: Int) {
i = index(i, offsetBy: distance)
}
/// Offsets the given index by the specified distance, or so that it equals
/// the given limiting index.
///
/// The value passed as `distance` must not offset `i` beyond the bounds of
/// the collection, unless the index passed as `limit` prevents offsetting
/// beyond those bounds.
///
/// - Parameters:
/// - i: A valid index of the collection.
/// - distance: The distance to offset `i`. `distance` must not be negative
/// unless the collection conforms to the `BidirectionalCollection`
/// protocol.
/// - limit: A valid index of the collection to use as a limit. If
/// `distance > 0`, a limit that is less than `i` has no effect.
/// Likewise, if `distance < 0`, a limit that is greater than `i` has no
/// effect.
/// - Returns: `true` if `i` has been offset by exactly `distance` steps
/// without going beyond `limit`; otherwise, `false`. When the return
/// value is `false`, the value of `i` is equal to `limit`.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*k*), where *k* is the absolute
/// value of `distance`.
@inlinable
public func formIndex(
_ i: inout Index, offsetBy distance: Int, limitedBy limit: Index
) -> Bool {
if let advancedIndex = index(i, offsetBy: distance, limitedBy: limit) {
i = advancedIndex
return true
}
i = limit
return false
}
/// Returns the distance between two indices.
///
/// Unless the collection conforms to the `BidirectionalCollection` protocol,
/// `start` must be less than or equal to `end`.
///
/// - Parameters:
/// - start: A valid index of the collection.
/// - end: Another valid index of the collection. If `end` is equal to
/// `start`, the result is zero.
/// - Returns: The distance between `start` and `end`. The result can be
/// negative only if the collection conforms to the
/// `BidirectionalCollection` protocol.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*k*), where *k* is the
/// resulting distance.
@inlinable
public func distance(from start: Index, to end: Index) -> Int {
_precondition(start <= end,
"Only BidirectionalCollections can have end come before start")
var start = start
var count = 0
while start != end {
count = count + 1
formIndex(after: &start)
}
return count
}
/// Returns a random element of the collection, using the given generator as
/// a source for randomness.
///
/// Call `randomElement(using:)` to select a random element from an array or
/// another collection when you are using a custom random number generator.
/// This example picks a name at random from an array:
///
/// let names = ["Zoey", "Chloe", "Amani", "Amaia"]
/// let randomName = names.randomElement(using: &myGenerator)!
/// // randomName == "Amani"
///
/// - Parameter generator: The random number generator to use when choosing a
/// random element.
/// - Returns: A random element from the collection. If the collection is
/// empty, the method returns `nil`.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*n*), where *n* is the length
/// of the collection.
/// - Note: The algorithm used to select a random element may change in a
/// future version of Swift. If you're passing a generator that results in
/// the same sequence of elements each time you run your program, that
/// sequence may change when your program is compiled using a different
/// version of Swift.
@inlinable
public func randomElement<T: RandomNumberGenerator>(
using generator: inout T
) -> Element? {
guard !isEmpty else { return nil }
let random = Int.random(in: 0 ..< count, using: &generator)
let idx = index(startIndex, offsetBy: random)
return self[idx]
}
/// Returns a random element of the collection.
///
/// Call `randomElement()` to select a random element from an array or
/// another collection. This example picks a name at random from an array:
///
/// let names = ["Zoey", "Chloe", "Amani", "Amaia"]
/// let randomName = names.randomElement()!
/// // randomName == "Amani"
///
/// This method is equivalent to calling `randomElement(using:)`, passing in
/// the system's default random generator.
///
/// - Returns: A random element from the collection. If the collection is
/// empty, the method returns `nil`.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*n*), where *n* is the length
/// of the collection.
@inlinable
public func randomElement() -> Element? {
var g = SystemRandomNumberGenerator()
return randomElement(using: &g)
}
/// Do not use this method directly; call advanced(by: n) instead.
@inlinable
@inline(__always)
internal func _advanceForward(_ i: Index, by n: Int) -> Index {
_precondition(n >= 0,
"Only BidirectionalCollections can be advanced by a negative amount")
var i = i
for _ in stride(from: 0, to: n, by: 1) {
formIndex(after: &i)
}
return i
}
/// Do not use this method directly; call advanced(by: n, limit) instead.
@inlinable
@inline(__always)
internal func _advanceForward(
_ i: Index, by n: Int, limitedBy limit: Index
) -> Index? {
_precondition(n >= 0,
"Only BidirectionalCollections can be advanced by a negative amount")
var i = i
for _ in stride(from: 0, to: n, by: 1) {
if i == limit {
return nil
}
formIndex(after: &i)
}
return i
}
}
/// Supply the default `makeIterator()` method for `Collection` models
/// that accept the default associated `Iterator`,
/// `IndexingIterator<Self>`.
extension Collection where Iterator == IndexingIterator<Self> {
/// Returns an iterator over the elements of the collection.
@inlinable // trivial-implementation
@inline(__always)
public __consuming func makeIterator() -> IndexingIterator<Self> {
return IndexingIterator(_elements: self)
}
}
/// Supply the default "slicing" `subscript` for `Collection` models
/// that accept the default associated `SubSequence`, `Slice<Self>`.
extension Collection where SubSequence == Slice<Self> {
/// Accesses a contiguous subrange of the collection's elements.
///
/// The accessed slice uses the same indices for the same elements as the
/// original collection. Always use the slice's `startIndex` property
/// instead of assuming that its indices start at a particular value.
///
/// This example demonstrates getting a slice of an array of strings, finding
/// the index of one of the strings in the slice, and then using that index
/// in the original array.
///
/// let streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// let streetsSlice = streets[2 ..< streets.endIndex]
/// print(streetsSlice)
/// // Prints "["Channing", "Douglas", "Evarts"]"
///
/// let index = streetsSlice.firstIndex(of: "Evarts") // 4
/// print(streets[index!])
/// // Prints "Evarts"
///
/// - Parameter bounds: A range of the collection's indices. The bounds of
/// the range must be valid indices of the collection.
///
/// - Complexity: O(1)
@inlinable
public subscript(bounds: Range<Index>) -> Slice<Self> {
_failEarlyRangeCheck(bounds, bounds: startIndex..<endIndex)
return Slice(base: self, bounds: bounds)
}
}
extension Collection {
// This unavailable default implementation of `subscript(bounds: Range<_>)`
// prevents incomplete Collection implementations from satisfying the
// protocol through the use of the generic convenience implementation
// `subscript<R: RangeExpression>(r: R)`. If that were the case, at
// runtime the generic implementation would call itself
// in an infinite recursion because of the absence of a better option.
@available(*, unavailable)
@_alwaysEmitIntoClient
public subscript(bounds: Range<Index>) -> SubSequence { fatalError() }
}
extension Collection where SubSequence == Self {
/// Removes and returns the first element of the collection.
///
/// - Returns: The first element of the collection if the collection is
/// not empty; otherwise, `nil`.
///
/// - Complexity: O(1)
@inlinable
public mutating func popFirst() -> Element? {
// TODO: swift-3-indexing-model - review the following
guard !isEmpty else { return nil }
let element = first!
self = self[index(after: startIndex)..<endIndex]
return element
}
}
/// Default implementations of core requirements
extension Collection {
/// A Boolean value indicating whether the collection is empty.
///
/// When you need to check whether your collection is empty, use the
/// `isEmpty` property instead of checking that the `count` property is
/// equal to zero. For collections that don't conform to
/// `RandomAccessCollection`, accessing the `count` property iterates
/// through the elements of the collection.
///
/// let horseName = "Silver"
/// if horseName.isEmpty {
/// print("My horse has no name.")
/// } else {
/// print("Hi ho, \(horseName)!")
/// }
/// // Prints "Hi ho, Silver!")
///
/// - Complexity: O(1)
@inlinable
public var isEmpty: Bool {
return startIndex == endIndex
}
/// The first element of the collection.
///
/// If the collection is empty, the value of this property is `nil`.
///
/// let numbers = [10, 20, 30, 40, 50]
/// if let firstNumber = numbers.first {
/// print(firstNumber)
/// }
/// // Prints "10"
@inlinable
public var first: Element? {
let start = startIndex
if start != endIndex { return self[start] }
else { return nil }
}
/// A value less than or equal to the number of elements in the collection.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*n*), where *n* is the length
/// of the collection.
@inlinable
public var underestimatedCount: Int {
// TODO: swift-3-indexing-model - review the following
return count
}
/// The number of elements in the collection.
///
/// To check whether a collection is empty, use its `isEmpty` property
/// instead of comparing `count` to zero. Unless the collection guarantees
/// random-access performance, calculating `count` can be an O(*n*)
/// operation.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*n*), where *n* is the length
/// of the collection.
@inlinable
public var count: Int {
return distance(from: startIndex, to: endIndex)
}
// TODO: swift-3-indexing-model - rename the following to _customIndexOfEquatable(element)?
/// Customization point for `Collection.firstIndex(of:)`.
///
/// Define this method if the collection can find an element in less than
/// O(*n*) by exploiting collection-specific knowledge.
///
/// - Returns: `nil` if a linear search should be attempted instead,
/// `Optional(nil)` if the element was not found, or
/// `Optional(Optional(index))` if an element was found.
///
/// - Complexity: Hopefully less than O(`count`).
@inlinable
@inline(__always)
public // dispatching
func _customIndexOfEquatableElement(_: Element) -> Index?? {
return nil
}
/// Customization point for `Collection.lastIndex(of:)`.
///
/// Define this method if the collection can find an element in less than
/// O(*n*) by exploiting collection-specific knowledge.
///
/// - Returns: `nil` if a linear search should be attempted instead,
/// `Optional(nil)` if the element was not found, or
/// `Optional(Optional(index))` if an element was found.
///
/// - Complexity: Hopefully less than O(`count`).
@inlinable
@inline(__always)
public // dispatching
func _customLastIndexOfEquatableElement(_ element: Element) -> Index?? {
return nil
}
}
//===----------------------------------------------------------------------===//
// Default implementations for Collection
//===----------------------------------------------------------------------===//
extension Collection {
/// Returns an array containing the results of mapping the given closure
/// over the sequence's elements.
///
/// In this example, `map` is used first to convert the names in the array
/// to lowercase strings and then to count their characters.
///
/// let cast = ["Vivien", "Marlon", "Kim", "Karl"]
/// let lowercaseNames = cast.map { $0.lowercased() }
/// // 'lowercaseNames' == ["vivien", "marlon", "kim", "karl"]
/// let letterCounts = cast.map { $0.count }
/// // 'letterCounts' == [6, 6, 3, 4]
///
/// - Parameter transform: A mapping closure. `transform` accepts an
/// element of this sequence as its parameter and returns a transformed
/// value of the same or of a different type.
/// - Returns: An array containing the transformed elements of this
/// sequence.
@inlinable
@_alwaysEmitIntoClient
public func map<T, E>(
_ transform: (Element) throws(E) -> T
) throws(E) -> [T] {
// TODO: swift-3-indexing-model - review the following
let n = self.count
if n == 0 {
return []
}
var result = ContiguousArray<T>()
result.reserveCapacity(n)
var i = self.startIndex
for _ in 0..<n {
result.append(try transform(self[i]))
formIndex(after: &i)
}
_expectEnd(of: self, is: i)
return Array(result)
}
// ABI-only entrypoint for the rethrows version of map, which has been
// superseded by the typed-throws version. Expressed as "throws", which is
// ABI-compatible with "rethrows".
@usableFromInline
@_silgen_name("$sSlsE3mapySayqd__Gqd__7ElementQzKXEKlF")
func __rethrows_map<T>(
_ transform: (Element) throws -> T
) throws -> [T] {
try map(transform)
}
/// Returns a subsequence containing all but the given number of initial
/// elements.
///
/// If the number of elements to drop exceeds the number of elements in
/// the collection, the result is an empty subsequence.
///
/// let numbers = [1, 2, 3, 4, 5]
/// print(numbers.dropFirst(2))
/// // Prints "[3, 4, 5]"
/// print(numbers.dropFirst(10))
/// // Prints "[]"
///
/// - Parameter k: The number of elements to drop from the beginning of
/// the collection. `k` must be greater than or equal to zero.
/// - Returns: A subsequence starting after the specified number of
/// elements.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*k*), where *k* is the number of
/// elements to drop from the beginning of the collection.
@inlinable
public __consuming func dropFirst(_ k: Int = 1) -> SubSequence {
_precondition(k >= 0, "Can't drop a negative number of elements from a collection")
let start = index(startIndex, offsetBy: k, limitedBy: endIndex) ?? endIndex
return self[start..<endIndex]
}
/// Returns a subsequence containing all but the specified number of final
/// elements.
///
/// If the number of elements to drop exceeds the number of elements in the
/// collection, the result is an empty subsequence.
///
/// let numbers = [1, 2, 3, 4, 5]
/// print(numbers.dropLast(2))
/// // Prints "[1, 2, 3]"
/// print(numbers.dropLast(10))
/// // Prints "[]"
///
/// - Parameter k: The number of elements to drop off the end of the
/// collection. `k` must be greater than or equal to zero.
/// - Returns: A subsequence that leaves off the specified number of elements
/// at the end.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*n*), where *n* is the length of
/// the collection.
@inlinable
public __consuming func dropLast(_ k: Int = 1) -> SubSequence {
_precondition(
k >= 0, "Can't drop a negative number of elements from a collection")
let amount = Swift.max(0, count - k)
let end = index(startIndex,
offsetBy: amount, limitedBy: endIndex) ?? endIndex
return self[startIndex..<end]
}
/// Returns a subsequence by skipping elements while `predicate` returns
/// `true` and returning the remaining elements.
///
/// - Parameter predicate: A closure that takes an element of the
/// sequence as its argument and returns `true` if the element should
/// be skipped or `false` if it should be included. Once the predicate
/// returns `false` it will not be called again.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
@inlinable
public __consuming func drop(
while predicate: (Element) throws -> Bool
) rethrows -> SubSequence {
var start = startIndex
while try start != endIndex && predicate(self[start]) {
formIndex(after: &start)
}
return self[start..<endIndex]
}
/// Returns a subsequence, up to the specified maximum length, containing
/// the initial elements of the collection.
///
/// If the maximum length exceeds the number of elements in the collection,
/// the result contains all the elements in the collection.
///
/// let numbers = [1, 2, 3, 4, 5]
/// print(numbers.prefix(2))
/// // Prints "[1, 2]"
/// print(numbers.prefix(10))
/// // Prints "[1, 2, 3, 4, 5]"
///
/// - Parameter maxLength: The maximum number of elements to return.
/// `maxLength` must be greater than or equal to zero.
/// - Returns: A subsequence starting at the beginning of this collection
/// with at most `maxLength` elements.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*k*), where *k* is the number of
/// elements to select from the beginning of the collection.
@inlinable
public __consuming func prefix(_ maxLength: Int) -> SubSequence {
_precondition(
maxLength >= 0,
"Can't take a prefix of negative length from a collection")
let end = index(startIndex,
offsetBy: maxLength, limitedBy: endIndex) ?? endIndex
return self[startIndex..<end]
}
/// Returns a subsequence containing the initial elements until `predicate`
/// returns `false` and skipping the remaining elements.
///
/// - Parameter predicate: A closure that takes an element of the
/// sequence as its argument and returns `true` if the element should
/// be included or `false` if it should be excluded. Once the predicate
/// returns `false` it will not be called again.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
@inlinable
public __consuming func prefix(
while predicate: (Element) throws -> Bool
) rethrows -> SubSequence {
var end = startIndex
while try end != endIndex && predicate(self[end]) {
formIndex(after: &end)
}
return self[startIndex..<end]
}
/// Returns a subsequence, up to the given maximum length, containing the
/// final elements of the collection.
///
/// If the maximum length exceeds the number of elements in the collection,
/// the result contains all the elements in the collection.
///
/// let numbers = [1, 2, 3, 4, 5]
/// print(numbers.suffix(2))
/// // Prints "[4, 5]"
/// print(numbers.suffix(10))
/// // Prints "[1, 2, 3, 4, 5]"
///
/// - Parameter maxLength: The maximum number of elements to return. The
/// value of `maxLength` must be greater than or equal to zero.
/// - Returns: A subsequence terminating at the end of the collection with at
/// most `maxLength` elements.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*n*), where *n* is the length of
/// the collection.
@inlinable
public __consuming func suffix(_ maxLength: Int) -> SubSequence {
_precondition(
maxLength >= 0,
"Can't take a suffix of negative length from a collection")
let amount = Swift.max(0, count - maxLength)
let start = index(startIndex,
offsetBy: amount, limitedBy: endIndex) ?? endIndex
return self[start..<endIndex]
}
/// Returns a subsequence from the start of the collection up to, but not
/// including, the specified position.
///
/// The resulting subsequence *does not include* the element at the position
/// `end`. The following example searches for the index of the number `40`
/// in an array of integers, and then prints the prefix of the array up to,
/// but not including, that index:
///
/// let numbers = [10, 20, 30, 40, 50, 60]
/// if let i = numbers.firstIndex(of: 40) {
/// print(numbers.prefix(upTo: i))
/// }
/// // Prints "[10, 20, 30]"
///
/// Passing the collection's starting index as the `end` parameter results in
/// an empty subsequence.
///
/// print(numbers.prefix(upTo: numbers.startIndex))
/// // Prints "[]"
///
/// Using the `prefix(upTo:)` method is equivalent to using a partial
/// half-open range as the collection's subscript. The subscript notation is
/// preferred over `prefix(upTo:)`.
///
/// if let i = numbers.firstIndex(of: 40) {
/// print(numbers[..<i])
/// }
/// // Prints "[10, 20, 30]"
///
/// - Parameter end: The "past the end" index of the resulting subsequence.
/// `end` must be a valid index of the collection.
/// - Returns: A subsequence up to, but not including, the `end` position.
///
/// - Complexity: O(1)
@inlinable
public __consuming func prefix(upTo end: Index) -> SubSequence {
return self[startIndex..<end]
}
/// Returns a subsequence from the specified position to the end of the
/// collection.
///
/// The following example searches for the index of the number `40` in an
/// array of integers, and then prints the suffix of the array starting at
/// that index:
///
/// let numbers = [10, 20, 30, 40, 50, 60]
/// if let i = numbers.firstIndex(of: 40) {
/// print(numbers.suffix(from: i))
/// }
/// // Prints "[40, 50, 60]"
///
/// Passing the collection's `endIndex` as the `start` parameter results in
/// an empty subsequence.
///
/// print(numbers.suffix(from: numbers.endIndex))
/// // Prints "[]"
///
/// Using the `suffix(from:)` method is equivalent to using a partial range
/// from the index as the collection's subscript. The subscript notation is
/// preferred over `suffix(from:)`.
///
/// if let i = numbers.firstIndex(of: 40) {
/// print(numbers[i...])
/// }
/// // Prints "[40, 50, 60]"
///
/// - Parameter start: The index at which to start the resulting subsequence.
/// `start` must be a valid index of the collection.
/// - Returns: A subsequence starting at the `start` position.
///
/// - Complexity: O(1)
@inlinable
public __consuming func suffix(from start: Index) -> SubSequence {
return self[start..<endIndex]
}
/// Returns a subsequence from the start of the collection through the
/// specified position.
///
/// The resulting subsequence *includes* the element at the position
/// specified by the `through` parameter.
/// The following example searches for the index of the number `40` in an
/// array of integers, and then prints the prefix of the array up to, and
/// including, that index:
///
/// let numbers = [10, 20, 30, 40, 50, 60]
/// if let i = numbers.firstIndex(of: 40) {
/// print(numbers.prefix(through: i))
/// }
/// // Prints "[10, 20, 30, 40]"
///
/// Using the `prefix(through:)` method is equivalent to using a partial
/// closed range as the collection's subscript. The subscript notation is
/// preferred over `prefix(through:)`.
///
/// if let i = numbers.firstIndex(of: 40) {
/// print(numbers[...i])
/// }
/// // Prints "[10, 20, 30, 40]"
///
/// - Parameter position: The index of the last element to include in the
/// resulting subsequence. `position` must be a valid index of the collection
/// that is not equal to the `endIndex` property.
/// - Returns: A subsequence up to, and including, the given position.
///
/// - Complexity: O(1)
@inlinable
public __consuming func prefix(through position: Index) -> SubSequence {
return prefix(upTo: index(after: position))
}
/// Returns the longest possible subsequences of the collection, in order,
/// that don't contain elements satisfying the given predicate.
///
/// The resulting array consists of at most `maxSplits + 1` subsequences.
/// Elements that are used to split the sequence are not returned as part of
/// any subsequence.
///
/// The following examples show the effects of the `maxSplits` and
/// `omittingEmptySubsequences` parameters when splitting a string using a
/// closure that matches spaces. The first use of `split` returns each word
/// that was originally separated by one or more spaces.
///
/// let line = "BLANCHE: I don't want realism. I want magic!"
/// print(line.split(whereSeparator: { $0 == " " }))
/// // Prints "["BLANCHE:", "I", "don\'t", "want", "realism.", "I", "want", "magic!"]"
///
/// The second example passes `1` for the `maxSplits` parameter, so the
/// original string is split just once, into two new strings.
///
/// print(line.split(maxSplits: 1, whereSeparator: { $0 == " " }))
/// // Prints "["BLANCHE:", " I don\'t want realism. I want magic!"]"
///
/// The final example passes `false` for the `omittingEmptySubsequences`
/// parameter, so the returned array contains empty strings where spaces
/// were repeated.
///
/// print(line.split(omittingEmptySubsequences: false, whereSeparator: { $0 == " " }))
/// // Prints "["BLANCHE:", "", "", "I", "don\'t", "want", "realism.", "I", "want", "magic!"]"
///
/// - Parameters:
/// - maxSplits: The maximum number of times to split the collection, or
/// one less than the number of subsequences to return. If
/// `maxSplits + 1` subsequences are returned, the last one is a suffix
/// of the original collection containing the remaining elements.
/// `maxSplits` must be greater than or equal to zero. The default value
/// is `Int.max`.
/// - omittingEmptySubsequences: If `false`, an empty subsequence is
/// returned in the result for each pair of consecutive elements
/// satisfying the `isSeparator` predicate and for each element at the
/// start or end of the collection satisfying the `isSeparator`
/// predicate. The default value is `true`.
/// - isSeparator: A closure that takes an element as an argument and
/// returns a Boolean value indicating whether the collection should be
/// split at that element.
/// - Returns: An array of subsequences, split from this collection's
/// elements.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
@inlinable
public __consuming func split(
maxSplits: Int = Int.max,
omittingEmptySubsequences: Bool = true,
whereSeparator isSeparator: (Element) throws -> Bool
) rethrows -> [SubSequence] {
// TODO: swift-3-indexing-model - review the following
_precondition(maxSplits >= 0, "Must take zero or more splits")
var result: [SubSequence] = []
var subSequenceStart: Index = startIndex
func appendSubsequence(end: Index) -> Bool {
if subSequenceStart == end && omittingEmptySubsequences {
return false
}
result.append(self[subSequenceStart..<end])
return true
}
if maxSplits == 0 || isEmpty {
_ = appendSubsequence(end: endIndex)
return result
}
var subSequenceEnd = subSequenceStart
let cachedEndIndex = endIndex
while subSequenceEnd != cachedEndIndex {
if try isSeparator(self[subSequenceEnd]) {
let didAppend = appendSubsequence(end: subSequenceEnd)
formIndex(after: &subSequenceEnd)
subSequenceStart = subSequenceEnd
if didAppend && result.count == maxSplits {
break
}
continue
}
formIndex(after: &subSequenceEnd)
}
if subSequenceStart != cachedEndIndex || !omittingEmptySubsequences {
result.append(self[subSequenceStart..<cachedEndIndex])
}
return result
}
}
extension Collection where Element: Equatable {
/// Returns the longest possible subsequences of the collection, in order,
/// around elements equal to the given element.
///
/// The resulting array consists of at most `maxSplits + 1` subsequences.
/// Elements that are used to split the collection are not returned as part
/// of any subsequence.
///
/// The following examples show the effects of the `maxSplits` and
/// `omittingEmptySubsequences` parameters when splitting a string at each
/// space character (" "). The first use of `split` returns each word that
/// was originally separated by one or more spaces.
///
/// let line = "BLANCHE: I don't want realism. I want magic!"
/// print(line.split(separator: " "))
/// // Prints "["BLANCHE:", "I", "don\'t", "want", "realism.", "I", "want", "magic!"]"
///
/// The second example passes `1` for the `maxSplits` parameter, so the
/// original string is split just once, into two new strings.
///
/// print(line.split(separator: " ", maxSplits: 1))
/// // Prints "["BLANCHE:", " I don\'t want realism. I want magic!"]"
///
/// The final example passes `false` for the `omittingEmptySubsequences`
/// parameter, so the returned array contains empty strings where spaces
/// were repeated.
///
/// print(line.split(separator: " ", omittingEmptySubsequences: false))
/// // Prints "["BLANCHE:", "", "", "I", "don\'t", "want", "realism.", "I", "want", "magic!"]"
///
/// - Parameters:
/// - separator: The element that should be split upon.
/// - maxSplits: The maximum number of times to split the collection, or
/// one less than the number of subsequences to return. If
/// `maxSplits + 1` subsequences are returned, the last one is a suffix
/// of the original collection containing the remaining elements.
/// `maxSplits` must be greater than or equal to zero. The default value
/// is `Int.max`.
/// - omittingEmptySubsequences: If `false`, an empty subsequence is
/// returned in the result for each consecutive pair of `separator`
/// elements in the collection and for each instance of `separator` at
/// the start or end of the collection. If `true`, only nonempty
/// subsequences are returned. The default value is `true`.
/// - Returns: An array of subsequences, split from this collection's
/// elements.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
@inlinable
public __consuming func split(
separator: Element,
maxSplits: Int = Int.max,
omittingEmptySubsequences: Bool = true
) -> [SubSequence] {
// TODO: swift-3-indexing-model - review the following
return split(
maxSplits: maxSplits,
omittingEmptySubsequences: omittingEmptySubsequences,
whereSeparator: { $0 == separator })
}
}
extension Collection where SubSequence == Self {
/// Removes and returns the first element of the collection.
///
/// The collection must not be empty.
///
/// - Returns: The first element of the collection.
///
/// - Complexity: O(1)
@inlinable
@discardableResult
public mutating func removeFirst() -> Element {
// TODO: swift-3-indexing-model - review the following
_precondition(!isEmpty, "Can't remove items from an empty collection")
let element = first!
self = self[index(after: startIndex)..<endIndex]
return element
}
/// Removes the specified number of elements from the beginning of the
/// collection.
///
/// - Parameter k: The number of elements to remove. `k` must be greater than
/// or equal to zero, and must be less than or equal to the number of
/// elements in the collection.
///
/// - Complexity: O(1) if the collection conforms to
/// `RandomAccessCollection`; otherwise, O(*k*), where *k* is the specified
/// number of elements.
@inlinable
public mutating func removeFirst(_ k: Int) {
if k == 0 { return }
_precondition(k >= 0, "Number of elements to remove should be non-negative")
guard let idx = index(startIndex, offsetBy: k, limitedBy: endIndex) else {
_preconditionFailure(
"Can't remove more items from a collection than it contains")
}
self = self[idx..<endIndex]
}
}
|