File: Dictionary.swift

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (2139 lines) | stat: -rw-r--r-- 75,250 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

// Implementation notes
// ====================
//
// `Dictionary` uses two storage schemes: native storage and Cocoa storage.
//
// Native storage is a hash table with open addressing and linear probing. The
// bucket array forms a logical ring (e.g., a chain can wrap around the end of
// buckets array to the beginning of it).
//
// The logical bucket array is implemented as three arrays: Key, Value, and a
// bitmap that marks valid entries. An unoccupied entry marks the end of a
// chain.  There is always at least one unoccupied entry among the
// buckets. `Dictionary` does not use tombstones.
//
// In addition to the native storage, `Dictionary` can also wrap an
// `NSDictionary` in order to allow bridging `NSDictionary` to `Dictionary` in
// `O(1)`.
//
// Native dictionary storage uses a data structure like this::
//
//   struct Dictionary<K,V>
//   +------------------------------------------------+
//   | enum Dictionary<K,V>._Variant                  |
//   | +--------------------------------------------+ |
//   | | [struct _NativeDictionary<K,V>             | |
//   | +---|----------------------------------------+ |
//   +----/-------------------------------------------+
//       /
//      |
//      V
//   class __RawDictionaryStorage
//   +-----------------------------------------------------------+
//   | <isa>                                                     |
//   | <refcount>                                                |
//   | _count                                                    |
//   | _capacity                                                 |
//   | _scale                                                    |
//   | _age                                                      |
//   | _seed                                                     |
//   | _rawKeys                                                  |
//   | _rawValue                                                 |
//   | [inline bitset of occupied entries]                       |
//   | [inline array of keys]                                    |
//   | [inline array of values]                                  |
//   +-----------------------------------------------------------+
//
// Cocoa storage uses a data structure like this:
//
//   struct Dictionary<K,V>
//   +----------------------------------------------+
//   | enum Dictionary<K,V>._Variant                |
//   | +----------------------------------------+   |
//   | | [ struct __CocoaDictionary             |   |
//   | +---|------------------------------------+   |
//   +----/-----------------------------------------+
//       /
//      |
//      V
//   class NSDictionary
//   +--------------+
//   | [refcount#1] |
//   | etc.         |
//   +--------------+
//     ^
//     |
//      \  struct __CocoaDictionary.Index
//   +--|------------------------------------+
//   |  * base: __CocoaDictionary            |
//   |  allKeys: array of all keys           |
//   |  currentKeyIndex: index into allKeys  |
//   +---------------------------------------+
//
//
// The Native Kinds of Storage
// ---------------------------
//
// The native backing store is represented by three different classes:
// * `__RawDictionaryStorage`
// * `__EmptyDictionarySingleton` (extends Raw)
// * `_DictionaryStorage<K: Hashable, V>` (extends Raw)
//
// (Hereafter `Raw`, `Empty`, and `Storage`, respectively)
//
// In a less optimized implementation, `Raw` and `Empty` could be eliminated, as
// they exist only to provide special-case behaviors.
//
// `Empty` is the a type-punned empty singleton storage. Its single instance is
// created by the runtime during process startup. Because we use the same
// instance for all empty dictionaries, it cannot declare type parameters.
//
// `Storage` provides backing storage for regular native dictionaries. All
// non-empty native dictionaries use an instance of `Storage` to store their
// elements. `Storage` is a generic class with a nontrivial deinit.
//
// `Raw` is the base class for both `Empty` and `Storage`. It defines a full set
// of ivars to access dictionary contents. Like `Empty`, `Raw` is also
// non-generic; the base addresses it stores are represented by untyped raw
// pointers. The only reason `Raw` exists is to allow `_NativeDictionary` to
// treat `Empty` and `Storage` in a unified way.
//
// Storage classes don't contain much logic; `Raw` in particular is just a
// collection of ivars. `Storage` provides allocation/deinitialization logic,
// while `Empty`/`Storage` implement NSDictionary methods. All other operations
// are actually implemented by the `_NativeDictionary` and `_HashTable` structs.
//
// The `_HashTable` struct provides low-level hash table metadata operations.
// (Lookups, iteration, insertion, removal.) It owns and maintains the
// tail-allocated bitmap.
//
// `_NativeDictionary` implements the actual Dictionary operations.  It
// consists of a reference to a `Raw` instance, to allow for the possibility of
// the empty singleton.
//
//
// Index Invalidation
// ------------------
//
// FIXME: decide if this guarantee is worth making, as it restricts
// collision resolution to first-come-first-serve. The most obvious alternative
// would be robin hood hashing. The Rust code base is the best
// resource on a *practical* implementation of robin hood hashing I know of:
// https://github.com/rust-lang/rust/blob/ac919fcd9d4a958baf99b2f2ed5c3d38a2ebf9d0/src/libstd/collections/hash/map.rs#L70-L178
//
// Indexing a container, `c[i]`, uses the integral offset stored in the index
// to access the elements referenced by the container. Generally, an index into
// one container has no meaning for another. However copy-on-write currently
// preserves indices under insertion, as long as reallocation doesn't occur:
//
//   var (i, found) = d.find(k) // i is associated with d's storage
//   if found {
//      var e = d            // now d is sharing its data with e
//      e[newKey] = newValue // e now has a unique copy of the data
//      return e[i]          // use i to access e
//   }
//
// The result should be a set of iterator invalidation rules familiar to anyone
// familiar with the C++ standard library.  Note that because all accesses to a
// dictionary storage are bounds-checked, this scheme never compromises memory
// safety.
//
// As a safeguard against using invalid indices, Set and Dictionary maintain a
// mutation counter in their storage header (`_age`). This counter gets bumped
// every time an element is removed and whenever the contents are
// rehashed. Native indices include a copy of this counter so that index
// validation can verify it matches with current storage. This can't catch all
// misuse, because counters may match by accident; but it does make indexing a
// lot more reliable.
//
// Bridging
// ========
//
// Bridging `NSDictionary` to `Dictionary`
// ---------------------------------------
//
// FIXME(eager-bridging): rewrite this based on modern constraints.
//
// `NSDictionary` bridges to `Dictionary<NSObject, AnyObject>` in `O(1)`,
// without memory allocation.
//
// Bridging to `Dictionary<AnyHashable, AnyObject>` takes `O(n)` time, as the
// keys need to be fully rehashed after conversion to `AnyHashable`.
//
// Bridging `NSDictionary` to `Dictionary<Key, Value>` is O(1) if both Key and
// Value are bridged verbatim.
//
// Bridging `Dictionary` to `NSDictionary`
// ---------------------------------------
//
// `Dictionary<K, V>` bridges to `NSDictionary` in O(1)
// but may incur an allocation depending on the following conditions:
//
// * If the Dictionary is freshly allocated without any elements, then it
//   contains the empty singleton Storage which is returned as a toll-free
//   implementation of `NSDictionary`.
//
// * If both `K` and `V` are bridged verbatim, then `Dictionary<K, V>` is
//   still toll-free bridged to `NSDictionary` by returning its Storage.
//
// * If the Dictionary is actually a lazily bridged NSDictionary, then that
//   NSDictionary is returned.
//
// * Otherwise, bridging the `Dictionary` is done by wrapping it in a
//   `_SwiftDeferredNSDictionary<K, V>`. This incurs an O(1)-sized allocation.
//
//   Complete bridging of the native Storage's elements to another Storage
//   is performed on first access. This is O(n) work, but is hopefully amortized
//   by future accesses.
//
//   This design ensures that:
//   - Every time keys or values are accessed on the bridged `NSDictionary`,
//     new objects are not created.
//   - Accessing the same element (key or value) multiple times will return
//     the same pointer.
//
// Bridging `NSSet` to `Set` and vice versa
// ----------------------------------------
//
// Bridging guarantees for `Set<Element>` are the same as for
// `Dictionary<Element, NSObject>`.
//

/// A collection whose elements are key-value pairs.
///
/// A dictionary is a type of hash table, providing fast access to the entries
/// it contains. Each entry in the table is identified using its key, which is
/// a hashable type such as a string or number. You use that key to retrieve
/// the corresponding value, which can be any object. In other languages,
/// similar data types are known as hashes or associated arrays.
///
/// Create a new dictionary by using a dictionary literal. A dictionary literal
/// is a comma-separated list of key-value pairs, in which a colon separates
/// each key from its associated value, surrounded by square brackets. You can
/// assign a dictionary literal to a variable or constant or pass it to a
/// function that expects a dictionary.
///
/// Here's how you would create a dictionary of HTTP response codes and their
/// related messages:
///
///     var responseMessages = [200: "OK",
///                             403: "Access forbidden",
///                             404: "File not found",
///                             500: "Internal server error"]
///
/// The `responseMessages` variable is inferred to have type `[Int: String]`.
/// The `Key` type of the dictionary is `Int`, and the `Value` type of the
/// dictionary is `String`.
///
/// To create a dictionary with no key-value pairs, use an empty dictionary
/// literal (`[:]`).
///
///     var emptyDict: [String: String] = [:]
///
/// Any type that conforms to the `Hashable` protocol can be used as a
/// dictionary's `Key` type, including all of Swift's basic types. You can use
/// your own custom types as dictionary keys by making them conform to the
/// `Hashable` protocol.
///
/// Getting and Setting Dictionary Values
/// =====================================
///
/// The most common way to access values in a dictionary is to use a key as a
/// subscript. Subscripting with a key takes the following form:
///
///     print(responseMessages[200])
///     // Prints "Optional("OK")"
///
/// Subscripting a dictionary with a key returns an optional value, because a
/// dictionary might not hold a value for the key that you use in the
/// subscript.
///
/// The next example uses key-based subscripting of the `responseMessages`
/// dictionary with two keys that exist in the dictionary and one that does
/// not.
///
///     let httpResponseCodes = [200, 403, 301]
///     for code in httpResponseCodes {
///         if let message = responseMessages[code] {
///             print("Response \(code): \(message)")
///         } else {
///             print("Unknown response \(code)")
///         }
///     }
///     // Prints "Response 200: OK"
///     // Prints "Response 403: Access forbidden"
///     // Prints "Unknown response 301"
///
/// You can also update, modify, or remove keys and values from a dictionary
/// using the key-based subscript. To add a new key-value pair, assign a value
/// to a key that isn't yet a part of the dictionary.
///
///     responseMessages[301] = "Moved permanently"
///     print(responseMessages[301])
///     // Prints "Optional("Moved permanently")"
///
/// Update an existing value by assigning a new value to a key that already
/// exists in the dictionary. If you assign `nil` to an existing key, the key
/// and its associated value are removed. The following example updates the
/// value for the `404` code to be simply "Not found" and removes the
/// key-value pair for the `500` code entirely.
///
///     responseMessages[404] = "Not found"
///     responseMessages[500] = nil
///     print(responseMessages)
///     // Prints "[301: "Moved permanently", 200: "OK", 403: "Access forbidden", 404: "Not found"]"
///
/// In a mutable `Dictionary` instance, you can modify in place a value that
/// you've accessed through a keyed subscript. The code sample below declares a
/// dictionary called `interestingNumbers` with string keys and values that
/// are integer arrays, then sorts each array in-place in descending order.
///
///     var interestingNumbers = ["primes": [2, 3, 5, 7, 11, 13, 17],
///                               "triangular": [1, 3, 6, 10, 15, 21, 28],
///                               "hexagonal": [1, 6, 15, 28, 45, 66, 91]]
///     for key in interestingNumbers.keys {
///         interestingNumbers[key]?.sort(by: >)
///     }
///
///     print(interestingNumbers["primes"]!)
///     // Prints "[17, 13, 11, 7, 5, 3, 2]"
///
/// Iterating Over the Contents of a Dictionary
/// ===========================================
///
/// Every dictionary is an unordered collection of key-value pairs. You can
/// iterate over a dictionary using a `for`-`in` loop, decomposing each
/// key-value pair into the elements of a tuple.
///
///     let imagePaths = ["star": "/glyphs/star.png",
///                       "portrait": "/images/content/portrait.jpg",
///                       "spacer": "/images/shared/spacer.gif"]
///
///     for (name, path) in imagePaths {
///         print("The path to '\(name)' is '\(path)'.")
///     }
///     // Prints "The path to 'star' is '/glyphs/star.png'."
///     // Prints "The path to 'portrait' is '/images/content/portrait.jpg'."
///     // Prints "The path to 'spacer' is '/images/shared/spacer.gif'."
///
/// The order of key-value pairs in a dictionary is stable between mutations
/// but is otherwise unpredictable. If you need an ordered collection of
/// key-value pairs and don't need the fast key lookup that `Dictionary`
/// provides, see the `KeyValuePairs` type for an alternative.
///
/// You can search a dictionary's contents for a particular value using the
/// `contains(where:)` or `firstIndex(where:)` methods supplied by default
/// implementation. The following example checks to see if `imagePaths` contains
/// any paths in the `"/glyphs"` directory:
///
///     let glyphIndex = imagePaths.firstIndex(where: { $0.value.hasPrefix("/glyphs") })
///     if let index = glyphIndex {
///         print("The '\(imagePaths[index].key)' image is a glyph.")
///     } else {
///         print("No glyphs found!")
///     }
///     // Prints "The 'star' image is a glyph.")
///
/// Note that in this example, `imagePaths` is subscripted using a dictionary
/// index. Unlike the key-based subscript, the index-based subscript returns
/// the corresponding key-value pair as a non-optional tuple.
///
///     print(imagePaths[glyphIndex!])
///     // Prints "(key: "star", value: "/glyphs/star.png")"
///
/// A dictionary's indices stay valid across additions to the dictionary as
/// long as the dictionary has enough capacity to store the added values
/// without allocating more buffer. When a dictionary outgrows its buffer,
/// existing indices may be invalidated without any notification.
///
/// When you know how many new values you're adding to a dictionary, use the
/// `init(minimumCapacity:)` initializer to allocate the correct amount of
/// buffer.
///
/// Bridging Between Dictionary and NSDictionary
/// ============================================
///
/// You can bridge between `Dictionary` and `NSDictionary` using the `as`
/// operator. For bridging to be possible, the `Key` and `Value` types of a
/// dictionary must be classes, `@objc` protocols, or types that bridge to
/// Foundation types.
///
/// Bridging from `Dictionary` to `NSDictionary` always takes O(1) time and
/// space. When the dictionary's `Key` and `Value` types are neither classes
/// nor `@objc` protocols, any required bridging of elements occurs at the
/// first access of each element. For this reason, the first operation that
/// uses the contents of the dictionary may take O(*n*).
///
/// Bridging from `NSDictionary` to `Dictionary` first calls the `copy(with:)`
/// method (`- copyWithZone:` in Objective-C) on the dictionary to get an
/// immutable copy and then performs additional Swift bookkeeping work that
/// takes O(1) time. For instances of `NSDictionary` that are already
/// immutable, `copy(with:)` usually returns the same dictionary in O(1) time;
/// otherwise, the copying performance is unspecified. The instances of
/// `NSDictionary` and `Dictionary` share buffer using the same copy-on-write
/// optimization that is used when two instances of `Dictionary` share
/// buffer.
@frozen
@_eagerMove
public struct Dictionary<Key: Hashable, Value> {
  /// The element type of a dictionary: a tuple containing an individual
  /// key-value pair.
  public typealias Element = (key: Key, value: Value)

  @usableFromInline
  internal var _variant: _Variant

  @inlinable
  internal init(_native: __owned _NativeDictionary<Key, Value>) {
    _variant = _Variant(native: _native)
  }

#if _runtime(_ObjC)
  @inlinable
  internal init(_cocoa: __owned __CocoaDictionary) {
    _variant = _Variant(cocoa: _cocoa)
  }

  /// Private initializer used for bridging.
  ///
  /// Only use this initializer when both conditions are true:
  ///
  /// * it is statically known that the given `NSDictionary` is immutable;
  /// * `Key` and `Value` are bridged verbatim to Objective-C (i.e.,
  ///   are reference types).
  @inlinable
  public // SPI(Foundation)
  init(_immutableCocoaDictionary: __owned AnyObject) {
    _internalInvariant(
      _isBridgedVerbatimToObjectiveC(Key.self) &&
      _isBridgedVerbatimToObjectiveC(Value.self),
      """
      Dictionary can be backed by NSDictionary buffer only when both Key \
      and Value are bridged verbatim to Objective-C
      """)
    self.init(_cocoa: __CocoaDictionary(_immutableCocoaDictionary))
  }
#endif

  /// Creates an empty dictionary.
  @inlinable
  public init() {
    self.init(_native: _NativeDictionary())
  }

  /// Creates an empty dictionary with preallocated space for at least the
  /// specified number of elements.
  ///
  /// Use this initializer to avoid intermediate reallocations of a dictionary's
  /// storage buffer when you know how many key-value pairs you are adding to a
  /// dictionary after creation.
  ///
  /// - Parameter minimumCapacity: The minimum number of key-value pairs that
  ///   the newly created dictionary should be able to store without
  ///   reallocating its storage buffer.
  public // FIXME(reserveCapacity): Should be inlinable
  init(minimumCapacity: Int) {
    _variant = _Variant(native: _NativeDictionary(capacity: minimumCapacity))
  }

  /// Creates a new dictionary from the key-value pairs in the given sequence.
  ///
  /// You use this initializer to create a dictionary when you have a sequence
  /// of key-value tuples with unique keys. Passing a sequence with duplicate
  /// keys to this initializer results in a runtime error. If your
  /// sequence might have duplicate keys, use the
  /// `Dictionary(_:uniquingKeysWith:)` initializer instead.
  ///
  /// The following example creates a new dictionary using an array of strings
  /// as the keys and the integers in a countable range as the values:
  ///
  ///     let digitWords = ["one", "two", "three", "four", "five"]
  ///     let wordToValue = Dictionary(uniqueKeysWithValues: zip(digitWords, 1...5))
  ///     print(wordToValue["three"]!)
  ///     // Prints "3"
  ///     print(wordToValue)
  ///     // Prints "["three": 3, "four": 4, "five": 5, "one": 1, "two": 2]"
  ///
  /// - Parameter keysAndValues: A sequence of key-value pairs to use for
  ///   the new dictionary. Every key in `keysAndValues` must be unique.
  /// - Returns: A new dictionary initialized with the elements of
  ///   `keysAndValues`.
  /// - Precondition: The sequence must not have duplicate keys.
  @inlinable
  public init<S: Sequence>(
    uniqueKeysWithValues keysAndValues: __owned S
  ) where S.Element == (Key, Value) {
    if let d = keysAndValues as? Dictionary<Key, Value> {
      self = d
      return
    }
    var native = _NativeDictionary<Key, Value>(
      capacity: keysAndValues.underestimatedCount)
    // '_MergeError.keyCollision' is caught and handled with an appropriate
    // error message one level down, inside native.merge(_:...). We throw an
    // error instead of calling fatalError() directly because we want the
    // message to include the duplicate key, and the closure only has access to
    // the conflicting values.
    try! native.merge(
      keysAndValues,
      isUnique: true,
      uniquingKeysWith: { _, _ in throw _MergeError.keyCollision })
    self.init(_native: native)
  }

  /// Creates a new dictionary from the key-value pairs in the given sequence,
  /// using a combining closure to determine the value for any duplicate keys.
  ///
  /// You use this initializer to create a dictionary when you have a sequence
  /// of key-value tuples that might have duplicate keys. As the dictionary is
  /// built, the initializer calls the `combine` closure with the current and
  /// new values for any duplicate keys. Pass a closure as `combine` that
  /// returns the value to use in the resulting dictionary: The closure can
  /// choose between the two values, combine them to produce a new value, or
  /// even throw an error.
  ///
  /// The following example shows how to choose the first and last values for
  /// any duplicate keys:
  ///
  ///     let pairsWithDuplicateKeys = [("a", 1), ("b", 2), ("a", 3), ("b", 4)]
  ///
  ///     let firstValues = Dictionary(pairsWithDuplicateKeys,
  ///                                  uniquingKeysWith: { (first, _) in first })
  ///     // ["b": 2, "a": 1]
  ///
  ///     let lastValues = Dictionary(pairsWithDuplicateKeys,
  ///                                 uniquingKeysWith: { (_, last) in last })
  ///     // ["b": 4, "a": 3]
  ///
  /// - Parameters:
  ///   - keysAndValues: A sequence of key-value pairs to use for the new
  ///     dictionary.
  ///   - combine: A closure that is called with the values for any duplicate
  ///     keys that are encountered. The closure returns the desired value for
  ///     the final dictionary.
  @inlinable
  public init<S: Sequence>(
    _ keysAndValues: __owned S,
    uniquingKeysWith combine: (Value, Value) throws -> Value
  ) rethrows where S.Element == (Key, Value) {
    var native = _NativeDictionary<Key, Value>(
      capacity: keysAndValues.underestimatedCount)
    try native.merge(keysAndValues, isUnique: true, uniquingKeysWith: combine)
    self.init(_native: native)
  }

  /// Creates a new dictionary whose keys are the groupings returned by the
  /// given closure and whose values are arrays of the elements that returned
  /// each key.
  ///
  /// The arrays in the "values" position of the new dictionary each contain at
  /// least one element, with the elements in the same order as the source
  /// sequence.
  ///
  /// The following example declares an array of names, and then creates a
  /// dictionary from that array by grouping the names by first letter:
  ///
  ///     let students = ["Kofi", "Abena", "Efua", "Kweku", "Akosua"]
  ///     let studentsByLetter = Dictionary(grouping: students, by: { $0.first! })
  ///     // ["E": ["Efua"], "K": ["Kofi", "Kweku"], "A": ["Abena", "Akosua"]]
  ///
  /// The new `studentsByLetter` dictionary has three entries, with students'
  /// names grouped by the keys `"E"`, `"K"`, and `"A"`.
  ///
  /// - Parameters:
  ///   - values: A sequence of values to group into a dictionary.
  ///   - keyForValue: A closure that returns a key for each element in
  ///     `values`.
  @inlinable
  public init<S: Sequence>(
    grouping values: __owned S,
    by keyForValue: (S.Element) throws -> Key
  ) rethrows where Value == [S.Element] {
    try self.init(_native: _NativeDictionary(grouping: values, by: keyForValue))
  }
}

//
// All APIs below should dispatch to `_variant`, without doing any
// additional processing.
//

extension Dictionary: Sequence {
  /// Returns an iterator over the dictionary's key-value pairs.
  ///
  /// Iterating over a dictionary yields the key-value pairs as two-element
  /// tuples. You can decompose the tuple in a `for`-`in` loop, which calls
  /// `makeIterator()` behind the scenes, or when calling the iterator's
  /// `next()` method directly.
  ///
  ///     let hues = ["Heliotrope": 296, "Coral": 16, "Aquamarine": 156]
  ///     for (name, hueValue) in hues {
  ///         print("The hue of \(name) is \(hueValue).")
  ///     }
  ///     // Prints "The hue of Heliotrope is 296."
  ///     // Prints "The hue of Coral is 16."
  ///     // Prints "The hue of Aquamarine is 156."
  ///
  /// - Returns: An iterator over the dictionary with elements of type
  ///   `(key: Key, value: Value)`.
  @inlinable
  @inline(__always)
  public __consuming func makeIterator() -> Iterator {
    return _variant.makeIterator()
  }
}

// This is not quite Sequence.filter, because that returns [Element], not Self
extension Dictionary {
  /// Returns a new dictionary containing the key-value pairs of the dictionary
  /// that satisfy the given predicate.
  ///
  /// - Parameter isIncluded: A closure that takes a key-value pair as its
  ///   argument and returns a Boolean value indicating whether the pair
  ///   should be included in the returned dictionary.
  /// - Returns: A dictionary of the key-value pairs that `isIncluded` allows.
  @inlinable
  @available(swift, introduced: 4.0)
  public __consuming func filter(
    _ isIncluded: (Element) throws -> Bool
  ) rethrows -> [Key: Value] {
  #if _runtime(_ObjC)
    guard _variant.isNative else {
      // Slow path for bridged dictionaries
      var result = _NativeDictionary<Key, Value>()
      for element in self {
        if try isIncluded(element) {
          result.insertNew(key: element.key, value: element.value)
        }
      }
      return Dictionary(_native: result)
    }
  #endif
    return Dictionary(_native: try _variant.asNative.filter(isIncluded))
  }
}

extension Dictionary: Collection {
  public typealias SubSequence = Slice<Dictionary>
  
  /// The position of the first element in a nonempty dictionary.
  ///
  /// If the collection is empty, `startIndex` is equal to `endIndex`.
  ///
  /// - Complexity: Amortized O(1) if the dictionary does not wrap a bridged
  ///   `NSDictionary`. If the dictionary wraps a bridged `NSDictionary`, the
  ///   performance is unspecified.
  @inlinable
  public var startIndex: Index {
    return _variant.startIndex
  }

  /// The dictionary's "past the end" position---that is, the position one
  /// greater than the last valid subscript argument.
  ///
  /// If the collection is empty, `endIndex` is equal to `startIndex`.
  ///
  /// - Complexity: Amortized O(1) if the dictionary does not wrap a bridged
  ///   `NSDictionary`; otherwise, the performance is unspecified.
  @inlinable
  public var endIndex: Index {
    return _variant.endIndex
  }

  @inlinable
  public func index(after i: Index) -> Index {
    return _variant.index(after: i)
  }

  @inlinable
  public func formIndex(after i: inout Index) {
    _variant.formIndex(after: &i)
  }

  /// Returns the index for the given key.
  ///
  /// If the given key is found in the dictionary, this method returns an index
  /// into the dictionary that corresponds with the key-value pair.
  ///
  ///     let countryCodes = ["BR": "Brazil", "GH": "Ghana", "JP": "Japan"]
  ///     let index = countryCodes.index(forKey: "JP")
  ///
  ///     print("Country code for \(countryCodes[index!].value): '\(countryCodes[index!].key)'.")
  ///     // Prints "Country code for Japan: 'JP'."
  ///
  /// - Parameter key: The key to find in the dictionary.
  /// - Returns: The index for `key` and its associated value if `key` is in
  ///   the dictionary; otherwise, `nil`.
  @inlinable
  @inline(__always)
  public func index(forKey key: Key) -> Index? {
    // Complexity: amortized O(1) for native dictionary, O(*n*) when wrapping an
    // NSDictionary.
    return _variant.index(forKey: key)
  }

  /// Accesses the key-value pair at the specified position.
  ///
  /// This subscript takes an index into the dictionary, instead of a key, and
  /// returns the corresponding key-value pair as a tuple. When performing
  /// collection-based operations that return an index into a dictionary, use
  /// this subscript with the resulting value.
  ///
  /// For example, to find the key for a particular value in a dictionary, use
  /// the `firstIndex(where:)` method.
  ///
  ///     let countryCodes = ["BR": "Brazil", "GH": "Ghana", "JP": "Japan"]
  ///     if let index = countryCodes.firstIndex(where: { $0.value == "Japan" }) {
  ///         print(countryCodes[index])
  ///         print("Japan's country code is '\(countryCodes[index].key)'.")
  ///     } else {
  ///         print("Didn't find 'Japan' as a value in the dictionary.")
  ///     }
  ///     // Prints "(key: "JP", value: "Japan")"
  ///     // Prints "Japan's country code is 'JP'."
  ///
  /// - Parameter position: The position of the key-value pair to access.
  ///   `position` must be a valid index of the dictionary and not equal to
  ///   `endIndex`.
  /// - Returns: A two-element tuple with the key and value corresponding to
  ///   `position`.
  @inlinable
  public subscript(position: Index) -> Element {
    return _variant.lookup(position)
  }

  /// The number of key-value pairs in the dictionary.
  ///
  /// - Complexity: O(1).
  @inlinable
  public var count: Int {
    return _variant.count
  }

  //
  // `Sequence` conformance
  //

  /// A Boolean value that indicates whether the dictionary is empty.
  ///
  /// Dictionaries are empty when created with an initializer or an empty
  /// dictionary literal.
  ///
  ///     var frequencies: [String: Int] = [:]
  ///     print(frequencies.isEmpty)
  ///     // Prints "true"
  @inlinable
  public var isEmpty: Bool {
    return count == 0
  }
}

extension Dictionary {
  /// Accesses the value associated with the given key for reading and writing.
  ///
  /// This *key-based* subscript returns the value for the given key if the key
  /// is found in the dictionary, or `nil` if the key is not found.
  ///
  /// The following example creates a new dictionary and prints the value of a
  /// key found in the dictionary (`"Coral"`) and a key not found in the
  /// dictionary (`"Cerise"`).
  ///
  ///     var hues = ["Heliotrope": 296, "Coral": 16, "Aquamarine": 156]
  ///     print(hues["Coral"])
  ///     // Prints "Optional(16)"
  ///     print(hues["Cerise"])
  ///     // Prints "nil"
  ///
  /// When you assign a value for a key and that key already exists, the
  /// dictionary overwrites the existing value. If the dictionary doesn't
  /// contain the key, the key and value are added as a new key-value pair.
  ///
  /// Here, the value for the key `"Coral"` is updated from `16` to `18` and a
  /// new key-value pair is added for the key `"Cerise"`.
  ///
  ///     hues["Coral"] = 18
  ///     print(hues["Coral"])
  ///     // Prints "Optional(18)"
  ///
  ///     hues["Cerise"] = 330
  ///     print(hues["Cerise"])
  ///     // Prints "Optional(330)"
  ///
  /// If you assign `nil` as the value for the given key, the dictionary
  /// removes that key and its associated value.
  ///
  /// In the following example, the key-value pair for the key `"Aquamarine"`
  /// is removed from the dictionary by assigning `nil` to the key-based
  /// subscript.
  ///
  ///     hues["Aquamarine"] = nil
  ///     print(hues)
  ///     // Prints "["Coral": 18, "Heliotrope": 296, "Cerise": 330]"
  ///
  /// - Parameter key: The key to find in the dictionary.
  /// - Returns: The value associated with `key` if `key` is in the dictionary;
  ///   otherwise, `nil`.
  @inlinable
  public subscript(key: Key) -> Value? {
    get {
      return _variant.lookup(key)
    }
    set(newValue) {
      if let x = newValue {
        _variant.setValue(x, forKey: key)
      } else {
        removeValue(forKey: key)
      }
    }
    _modify {
      defer { _fixLifetime(self) }
      yield &_variant[key]
    }
  }
}

extension Dictionary: ExpressibleByDictionaryLiteral {
  /// Creates a dictionary initialized with a dictionary literal.
  ///
  /// Do not call this initializer directly. It is called by the compiler to
  /// handle dictionary literals. To use a dictionary literal as the initial
  /// value of a dictionary, enclose a comma-separated list of key-value pairs
  /// in square brackets.
  ///
  /// For example, the code sample below creates a dictionary with string keys
  /// and values.
  ///
  ///     let countryCodes = ["BR": "Brazil", "GH": "Ghana", "JP": "Japan"]
  ///     print(countryCodes)
  ///     // Prints "["BR": "Brazil", "JP": "Japan", "GH": "Ghana"]"
  ///
  /// - Parameter elements: The key-value pairs that will make up the new
  ///   dictionary. Each key in `elements` must be unique.
  @inlinable
  @_semantics("optimize.sil.specialize.generic.size.never")
  public init(dictionaryLiteral elements: (Key, Value)...) {
    let native = _NativeDictionary<Key, Value>(capacity: elements.count)
    for (key, value) in elements {
      let (bucket, found) = native.find(key)
      _precondition(!found, "Dictionary literal contains duplicate keys")
      native._insert(at: bucket, key: key, value: value)
    }
    self.init(_native: native)
  }
}

extension Dictionary {
  /// Accesses the value with the given key, falling back to the given default
  /// value if the key isn't found.
  ///
  /// Use this subscript when you want either the value for a particular key
  /// or, when that key is not present in the dictionary, a default value. This
  /// example uses the subscript with a message to use in case an HTTP response
  /// code isn't recognized:
  ///
  ///     var responseMessages = [200: "OK",
  ///                             403: "Access forbidden",
  ///                             404: "File not found",
  ///                             500: "Internal server error"]
  ///
  ///     let httpResponseCodes = [200, 403, 301]
  ///     for code in httpResponseCodes {
  ///         let message = responseMessages[code, default: "Unknown response"]
  ///         print("Response \(code): \(message)")
  ///     }
  ///     // Prints "Response 200: OK"
  ///     // Prints "Response 403: Access forbidden"
  ///     // Prints "Response 301: Unknown response"
  ///
  /// When a dictionary's `Value` type has value semantics, you can use this
  /// subscript to perform in-place operations on values in the dictionary.
  /// The following example uses this subscript while counting the occurrences
  /// of each letter in a string:
  ///
  ///     let message = "Hello, Elle!"
  ///     var letterCounts: [Character: Int] = [:]
  ///     for letter in message {
  ///         letterCounts[letter, default: 0] += 1
  ///     }
  ///     // letterCounts == ["H": 1, "e": 2, "l": 4, "o": 1, ...]
  ///
  /// When `letterCounts[letter, default: 0] += 1` is executed with a
  /// value of `letter` that isn't already a key in `letterCounts`, the
  /// specified default value (`0`) is returned from the subscript,
  /// incremented, and then added to the dictionary under that key.
  ///
  /// - Note: Do not use this subscript to modify dictionary values if the
  ///   dictionary's `Value` type is a class. In that case, the default value
  ///   and key are not written back to the dictionary after an operation.
  ///
  /// - Parameters:
  ///   - key: The key the look up in the dictionary.
  ///   - defaultValue: The default value to use if `key` doesn't exist in the
  ///     dictionary.
  /// - Returns: The value associated with `key` in the dictionary; otherwise,
  ///   `defaultValue`.
  @inlinable
  public subscript(
    key: Key, default defaultValue: @autoclosure () -> Value
  ) -> Value {
    @inline(__always)
    get {
      return _variant.lookup(key) ?? defaultValue()
    }
    @inline(__always)
    _modify {
      let (bucket, found) = _variant.mutatingFind(key)
      let native = _variant.asNative
      if !found {
        let value = defaultValue()
        native._insert(at: bucket, key: key, value: value)
      }
      let address = native._values + bucket.offset
      defer { _fixLifetime(self) }
      yield &address.pointee
    }
  }

  /// Returns a new dictionary containing the keys of this dictionary with the
  /// values transformed by the given closure.
  ///
  /// - Parameter transform: A closure that transforms a value. `transform`
  ///   accepts each value of the dictionary as its parameter and returns a
  ///   transformed value of the same or of a different type.
  /// - Returns: A dictionary containing the keys and transformed values of
  ///   this dictionary.
  ///
  /// - Complexity: O(*n*), where *n* is the length of the dictionary.
  @inlinable
  public func mapValues<T>(
    _ transform: (Value) throws -> T
  ) rethrows -> Dictionary<Key, T> {
    return try Dictionary<Key, T>(_native: _variant.mapValues(transform))
  }

  /// Returns a new dictionary containing only the key-value pairs that have
  /// non-`nil` values as the result of transformation by the given closure.
  ///
  /// Use this method to receive a dictionary with non-optional values when
  /// your transformation produces optional values.
  ///
  /// In this example, note the difference in the result of using `mapValues`
  /// and `compactMapValues` with a transformation that returns an optional
  /// `Int` value.
  ///
  ///     let data = ["a": "1", "b": "three", "c": "///4///"]
  ///
  ///     let m: [String: Int?] = data.mapValues { str in Int(str) }
  ///     // ["a": Optional(1), "b": nil, "c": nil]
  ///
  ///     let c: [String: Int] = data.compactMapValues { str in Int(str) }
  ///     // ["a": 1]
  ///
  /// - Parameter transform: A closure that transforms a value. `transform`
  ///   accepts each value of the dictionary as its parameter and returns an
  ///   optional transformed value of the same or of a different type.
  /// - Returns: A dictionary containing the keys and non-`nil` transformed
  ///   values of this dictionary.
  ///
  /// - Complexity: O(*m* + *n*), where *n* is the length of the original
  ///   dictionary and *m* is the length of the resulting dictionary.
  @inlinable
  public func compactMapValues<T>(
    _ transform: (Value) throws -> T?
  ) rethrows -> Dictionary<Key, T> {
    let result: _NativeDictionary<Key, T> =
      try self.reduce(into: _NativeDictionary<Key, T>()) { (result, element) in
      if let value = try transform(element.value) {
        result.insertNew(key: element.key, value: value)
      }
    }
    return Dictionary<Key, T>(_native: result)
  }

  /// Updates the value stored in the dictionary for the given key, or adds a
  /// new key-value pair if the key does not exist.
  ///
  /// Use this method instead of key-based subscripting when you need to know
  /// whether the new value supplants the value of an existing key. If the
  /// value of an existing key is updated, `updateValue(_:forKey:)` returns
  /// the original value.
  ///
  ///     var hues = ["Heliotrope": 296, "Coral": 16, "Aquamarine": 156]
  ///
  ///     if let oldValue = hues.updateValue(18, forKey: "Coral") {
  ///         print("The old value of \(oldValue) was replaced with a new one.")
  ///     }
  ///     // Prints "The old value of 16 was replaced with a new one."
  ///
  /// If the given key is not present in the dictionary, this method adds the
  /// key-value pair and returns `nil`.
  ///
  ///     if let oldValue = hues.updateValue(330, forKey: "Cerise") {
  ///         print("The old value of \(oldValue) was replaced with a new one.")
  ///     } else {
  ///         print("No value was found in the dictionary for that key.")
  ///     }
  ///     // Prints "No value was found in the dictionary for that key."
  ///
  /// - Parameters:
  ///   - value: The new value to add to the dictionary.
  ///   - key: The key to associate with `value`. If `key` already exists in
  ///     the dictionary, `value` replaces the existing associated value. If
  ///     `key` isn't already a key of the dictionary, the `(key, value)` pair
  ///     is added.
  /// - Returns: The value that was replaced, or `nil` if a new key-value pair
  ///   was added.
  @inlinable
  @discardableResult
  public mutating func updateValue(
    _ value: __owned Value,
    forKey key: Key
  ) -> Value? {
    return _variant.updateValue(value, forKey: key)
  }

  /// Merges the key-value pairs in the given sequence into the dictionary,
  /// using a combining closure to determine the value for any duplicate keys.
  ///
  /// Use the `combine` closure to select a value to use in the updated
  /// dictionary, or to combine existing and new values. As the key-value
  /// pairs are merged with the dictionary, the `combine` closure is called
  /// with the current and new values for any duplicate keys that are
  /// encountered.
  ///
  /// This example shows how to choose the current or new values for any
  /// duplicate keys:
  ///
  ///     var dictionary = ["a": 1, "b": 2]
  ///
  ///     // Keeping existing value for key "a":
  ///     dictionary.merge(zip(["a", "c"], [3, 4])) { (current, _) in current }
  ///     // ["b": 2, "a": 1, "c": 4]
  ///
  ///     // Taking the new value for key "a":
  ///     dictionary.merge(zip(["a", "d"], [5, 6])) { (_, new) in new }
  ///     // ["b": 2, "a": 5, "c": 4, "d": 6]
  ///
  /// - Parameters:
  ///   - other:  A sequence of key-value pairs.
  ///   - combine: A closure that takes the current and new values for any
  ///     duplicate keys. The closure returns the desired value for the final
  ///     dictionary.
  @inlinable
  public mutating func merge<S: Sequence>(
    _ other: __owned S,
    uniquingKeysWith combine: (Value, Value) throws -> Value
  ) rethrows where S.Element == (Key, Value) {
    try _variant.merge(other, uniquingKeysWith: combine)
  }

  /// Merges the given dictionary into this dictionary, using a combining
  /// closure to determine the value for any duplicate keys.
  ///
  /// Use the `combine` closure to select a value to use in the updated
  /// dictionary, or to combine existing and new values. As the key-values
  /// pairs in `other` are merged with this dictionary, the `combine` closure
  /// is called with the current and new values for any duplicate keys that
  /// are encountered.
  ///
  /// This example shows how to choose the current or new values for any
  /// duplicate keys:
  ///
  ///     var dictionary = ["a": 1, "b": 2]
  ///
  ///     // Keeping existing value for key "a":
  ///     dictionary.merge(["a": 3, "c": 4]) { (current, _) in current }
  ///     // ["b": 2, "a": 1, "c": 4]
  ///
  ///     // Taking the new value for key "a":
  ///     dictionary.merge(["a": 5, "d": 6]) { (_, new) in new }
  ///     // ["b": 2, "a": 5, "c": 4, "d": 6]
  ///
  /// - Parameters:
  ///   - other:  A dictionary to merge.
  ///   - combine: A closure that takes the current and new values for any
  ///     duplicate keys. The closure returns the desired value for the final
  ///     dictionary.
  @inlinable
  public mutating func merge(
    _ other: __owned [Key: Value],
    uniquingKeysWith combine: (Value, Value) throws -> Value
  ) rethrows {
    try _variant.merge(
      other.lazy.map { ($0, $1) }, uniquingKeysWith: combine)
  }

  /// Creates a dictionary by merging key-value pairs in a sequence into the
  /// dictionary, using a combining closure to determine the value for
  /// duplicate keys.
  ///
  /// Use the `combine` closure to select a value to use in the returned
  /// dictionary, or to combine existing and new values. As the key-value
  /// pairs are merged with the dictionary, the `combine` closure is called
  /// with the current and new values for any duplicate keys that are
  /// encountered.
  ///
  /// This example shows how to choose the current or new values for any
  /// duplicate keys:
  ///
  ///     let dictionary = ["a": 1, "b": 2]
  ///     let newKeyValues = zip(["a", "b"], [3, 4])
  ///
  ///     let keepingCurrent = dictionary.merging(newKeyValues) { (current, _) in current }
  ///     // ["b": 2, "a": 1]
  ///     let replacingCurrent = dictionary.merging(newKeyValues) { (_, new) in new }
  ///     // ["b": 4, "a": 3]
  ///
  /// - Parameters:
  ///   - other:  A sequence of key-value pairs.
  ///   - combine: A closure that takes the current and new values for any
  ///     duplicate keys. The closure returns the desired value for the final
  ///     dictionary.
  /// - Returns: A new dictionary with the combined keys and values of this
  ///   dictionary and `other`.
  @inlinable
  public __consuming func merging<S: Sequence>(
    _ other: __owned S,
    uniquingKeysWith combine: (Value, Value) throws -> Value
  ) rethrows -> [Key: Value] where S.Element == (Key, Value) {
    var result = self
    try result._variant.merge(other, uniquingKeysWith: combine)
    return result
  }

  /// Creates a dictionary by merging the given dictionary into this
  /// dictionary, using a combining closure to determine the value for
  /// duplicate keys.
  ///
  /// Use the `combine` closure to select a value to use in the returned
  /// dictionary, or to combine existing and new values. As the key-value
  /// pairs in `other` are merged with this dictionary, the `combine` closure
  /// is called with the current and new values for any duplicate keys that
  /// are encountered.
  ///
  /// This example shows how to choose the current or new values for any
  /// duplicate keys:
  ///
  ///     let dictionary = ["a": 1, "b": 2]
  ///     let otherDictionary = ["a": 3, "b": 4]
  ///
  ///     let keepingCurrent = dictionary.merging(otherDictionary)
  ///           { (current, _) in current }
  ///     // ["b": 2, "a": 1]
  ///     let replacingCurrent = dictionary.merging(otherDictionary)
  ///           { (_, new) in new }
  ///     // ["b": 4, "a": 3]
  ///
  /// - Parameters:
  ///   - other:  A dictionary to merge.
  ///   - combine: A closure that takes the current and new values for any
  ///     duplicate keys. The closure returns the desired value for the final
  ///     dictionary.
  /// - Returns: A new dictionary with the combined keys and values of this
  ///   dictionary and `other`.
  @inlinable
  public __consuming func merging(
    _ other: __owned [Key: Value],
    uniquingKeysWith combine: (Value, Value) throws -> Value
  ) rethrows -> [Key: Value] {
    var result = self
    try result.merge(other, uniquingKeysWith: combine)
    return result
  }

  /// Removes and returns the key-value pair at the specified index.
  ///
  /// Calling this method invalidates any existing indices for use with this
  /// dictionary.
  ///
  /// - Parameter index: The position of the key-value pair to remove. `index`
  ///   must be a valid index of the dictionary, and must not equal the
  ///   dictionary's end index.
  /// - Returns: The key-value pair that correspond to `index`.
  ///
  /// - Complexity: O(*n*), where *n* is the number of key-value pairs in the
  ///   dictionary.
  @inlinable
  @discardableResult
  public mutating func remove(at index: Index) -> Element {
    return _variant.remove(at: index)
  }

  /// Removes the given key and its associated value from the dictionary.
  ///
  /// If the key is found in the dictionary, this method returns the key's
  /// associated value. On removal, this method invalidates all indices with
  /// respect to the dictionary.
  ///
  ///     var hues = ["Heliotrope": 296, "Coral": 16, "Aquamarine": 156]
  ///     if let value = hues.removeValue(forKey: "Coral") {
  ///         print("The value \(value) was removed.")
  ///     }
  ///     // Prints "The value 16 was removed."
  ///
  /// If the key isn't found in the dictionary, `removeValue(forKey:)` returns
  /// `nil`.
  ///
  ///     if let value = hues.removeValue(forKey: "Cerise") {
  ///         print("The value \(value) was removed.")
  ///     } else {
  ///         print("No value found for that key.")
  ///     }
  ///     // Prints "No value found for that key.""
  ///
  /// - Parameter key: The key to remove along with its associated value.
  /// - Returns: The value that was removed, or `nil` if the key was not
  ///   present in the dictionary.
  ///
  /// - Complexity: O(*n*), where *n* is the number of key-value pairs in the
  ///   dictionary.
  @inlinable
  @discardableResult
  public mutating func removeValue(forKey key: Key) -> Value? {
    return _variant.removeValue(forKey: key)
  }

  /// Removes all key-value pairs from the dictionary.
  ///
  /// Calling this method invalidates all indices with respect to the
  /// dictionary.
  ///
  /// - Parameter keepCapacity: Whether the dictionary should keep its
  ///   underlying buffer. If you pass `true`, the operation preserves the
  ///   buffer capacity that the collection has, otherwise the underlying
  ///   buffer is released.  The default is `false`.
  ///
  /// - Complexity: O(*n*), where *n* is the number of key-value pairs in the
  ///   dictionary.
  @inlinable
  public mutating func removeAll(keepingCapacity keepCapacity: Bool = false) {
    // The 'will not decrease' part in the documentation comment is worded very
    // carefully.  The capacity can increase if we replace Cocoa dictionary with
    // native dictionary.
    _variant.removeAll(keepingCapacity: keepCapacity)
  }
}

extension Dictionary {
  /// A collection containing just the keys of the dictionary.
  ///
  /// When iterated over, keys appear in this collection in the same order as
  /// they occur in the dictionary's key-value pairs. Each key in the keys
  /// collection has a unique value.
  ///
  ///     let countryCodes = ["BR": "Brazil", "GH": "Ghana", "JP": "Japan"]
  ///     print(countryCodes)
  ///     // Prints "["BR": "Brazil", "JP": "Japan", "GH": "Ghana"]"
  ///
  ///     for k in countryCodes.keys {
  ///         print(k)
  ///     }
  ///     // Prints "BR"
  ///     // Prints "JP"
  ///     // Prints "GH"
  @inlinable
  @available(swift, introduced: 4.0)
  public var keys: Keys {
    // FIXME(accessors): Provide a _read
    get {
      return Keys(_dictionary: self)
    }
  }

  /// A collection containing just the values of the dictionary.
  ///
  /// When iterated over, values appear in this collection in the same order as
  /// they occur in the dictionary's key-value pairs.
  ///
  ///     let countryCodes = ["BR": "Brazil", "GH": "Ghana", "JP": "Japan"]
  ///     print(countryCodes)
  ///     // Prints "["BR": "Brazil", "JP": "Japan", "GH": "Ghana"]"
  ///
  ///     for v in countryCodes.values {
  ///         print(v)
  ///     }
  ///     // Prints "Brazil"
  ///     // Prints "Japan"
  ///     // Prints "Ghana"
  @inlinable
  @available(swift, introduced: 4.0)
  public var values: Values {
    // FIXME(accessors): Provide a _read
    get {
      return Values(_dictionary: self)
    }
    _modify {
      var values = Values(_variant: _Variant(dummy: ()))
      swap(&values._variant, &_variant)
      defer { self._variant = values._variant }
      yield &values
    }
  }

  /// A view of a dictionary's keys.
  @frozen
  public struct Keys: Collection, Equatable {
    public typealias Element = Key
    public typealias SubSequence = Slice<Dictionary.Keys>

    @usableFromInline
    internal var _variant: Dictionary<Key, Value>._Variant

    @inlinable
    internal init(_dictionary: __owned Dictionary) {
      self._variant = _dictionary._variant
    }

    // Collection Conformance
    // ----------------------

    @inlinable
    public var startIndex: Index {
      return _variant.startIndex
    }

    @inlinable
    public var endIndex: Index {
      return _variant.endIndex
    }

    @inlinable
    public func index(after i: Index) -> Index {
      return _variant.index(after: i)
    }

    @inlinable
    public func formIndex(after i: inout Index) {
      _variant.formIndex(after: &i)
    }

    @inlinable
    public subscript(position: Index) -> Element {
      return _variant.key(at: position)
    }

    // Customization
    // -------------

    /// The number of keys in the dictionary.
    ///
    /// - Complexity: O(1).
    @inlinable
    public var count: Int {
      return _variant.count
    }

    @inlinable
    public var isEmpty: Bool {
      return count == 0
    }

    @inlinable
    @inline(__always)
    public func _customContainsEquatableElement(_ element: Element) -> Bool? {
      return _variant.contains(element)
    }

    @inlinable
    @inline(__always)
    public func _customIndexOfEquatableElement(_ element: Element) -> Index?? {
      return Optional(_variant.index(forKey: element))
    }

    @inlinable
    @inline(__always)
    public func _customLastIndexOfEquatableElement(_ element: Element) -> Index?? {
      // The first and last elements are the same because each element is unique.
      return _customIndexOfEquatableElement(element)
    }

    @inlinable
    public static func ==(lhs: Keys, rhs: Keys) -> Bool {
      // Equal if the two dictionaries share storage.
#if _runtime(_ObjC)
      if
        lhs._variant.isNative,
        rhs._variant.isNative,
        lhs._variant.asNative._storage === rhs._variant.asNative._storage
      {
        return true
      }
      if
        !lhs._variant.isNative,
        !rhs._variant.isNative,
        lhs._variant.asCocoa.object === rhs._variant.asCocoa.object
      {
        return true
      }
#else
      if lhs._variant.asNative._storage === rhs._variant.asNative._storage {
        return true
      }
#endif

      // Not equal if the dictionaries are different sizes.
      if lhs.count != rhs.count {
        return false
      }

      // Perform unordered comparison of keys.
      for key in lhs {
        if !rhs.contains(key) {
          return false
        }
      }

      return true
    }
  }

  /// A view of a dictionary's values.
  @frozen
  public struct Values: MutableCollection {
    public typealias Element = Value

    @usableFromInline
    internal var _variant: Dictionary<Key, Value>._Variant

    @inlinable
    internal init(_variant: __owned Dictionary<Key, Value>._Variant) {
      self._variant = _variant
    }

    @inlinable
    internal init(_dictionary: __owned Dictionary) {
      self._variant = _dictionary._variant
    }

    // Collection Conformance
    // ----------------------

    @inlinable
    public var startIndex: Index {
      return _variant.startIndex
    }

    @inlinable
    public var endIndex: Index {
      return _variant.endIndex
    }

    @inlinable
    public func index(after i: Index) -> Index {
      return _variant.index(after: i)
    }

    @inlinable
    public func formIndex(after i: inout Index) {
      _variant.formIndex(after: &i)
    }

    @inlinable
    public subscript(position: Index) -> Element {
      // FIXME(accessors): Provide a _read
      get {
        return _variant.value(at: position)
      }
      _modify {
        let native = _variant.ensureUniqueNative()
        let bucket = native.validatedBucket(for: position)
        let address = native._values + bucket.offset
        defer { _fixLifetime(self) }
        yield &address.pointee
      }
    }

    // Customization
    // -------------

    /// The number of values in the dictionary.
    ///
    /// - Complexity: O(1).
    @inlinable
    public var count: Int {
      return _variant.count
    }

    @inlinable
    public var isEmpty: Bool {
      return count == 0
    }

    @inlinable
    public mutating func swapAt(_ i: Index, _ j: Index) {
      guard i != j else { return }
#if _runtime(_ObjC)
      if !_variant.isNative {
        _variant = .init(native: _NativeDictionary(_variant.asCocoa))
      }
#endif
      let isUnique = _variant.isUniquelyReferenced()
      let native = _variant.asNative
      let a = native.validatedBucket(for: i)
      let b = native.validatedBucket(for: j)
      _variant.asNative.swapValuesAt(a, b, isUnique: isUnique)
    }
  }
}

@_unavailableInEmbedded
extension Dictionary.Keys
  : CustomStringConvertible, CustomDebugStringConvertible {
  public var description: String {
    return _makeCollectionDescription()
  }

  public var debugDescription: String {
    return _makeCollectionDescription(withTypeName: "Dictionary.Keys")
  }
}

@_unavailableInEmbedded
extension Dictionary.Values
  : CustomStringConvertible, CustomDebugStringConvertible {
  public var description: String {
    return _makeCollectionDescription()
  }

  public var debugDescription: String {
    return _makeCollectionDescription(withTypeName: "Dictionary.Values")
  }
}

extension Dictionary.Keys {
  @frozen
  public struct Iterator: IteratorProtocol {
    @usableFromInline
    internal var _base: Dictionary<Key, Value>.Iterator

    @inlinable
    @inline(__always)
    internal init(_ base: Dictionary<Key, Value>.Iterator) {
      self._base = base
    }

    @inlinable
    @inline(__always)
    public mutating func next() -> Key? {
#if _runtime(_ObjC)
      if case .cocoa(let cocoa) = _base._variant {
        _base._cocoaPath()
        guard let cocoaKey = cocoa.nextKey() else { return nil }
        return _forceBridgeFromObjectiveC(cocoaKey, Key.self)
      }
#endif
      return _base._asNative.nextKey()
    }
  }

  @inlinable
  @inline(__always)
  public __consuming func makeIterator() -> Iterator {
    return Iterator(_variant.makeIterator())
  }
}

extension Dictionary.Values {
  @frozen
  public struct Iterator: IteratorProtocol {
    @usableFromInline
    internal var _base: Dictionary<Key, Value>.Iterator

    @inlinable
    @inline(__always)
    internal init(_ base: Dictionary<Key, Value>.Iterator) {
      self._base = base
    }

    @inlinable
    @inline(__always)
    public mutating func next() -> Value? {
#if _runtime(_ObjC)
      if case .cocoa(let cocoa) = _base._variant {
        _base._cocoaPath()
        guard let (_, cocoaValue) = cocoa.next() else { return nil }
        return _forceBridgeFromObjectiveC(cocoaValue, Value.self)
      }
#endif
      return _base._asNative.nextValue()
    }
  }

  @inlinable
  @inline(__always)
  public __consuming func makeIterator() -> Iterator {
    return Iterator(_variant.makeIterator())
  }
}

extension Dictionary: Equatable where Value: Equatable {
  @inlinable
  public static func == (lhs: [Key: Value], rhs: [Key: Value]) -> Bool {
#if _runtime(_ObjC)
    switch (lhs._variant.isNative, rhs._variant.isNative) {
    case (true, true):
      return lhs._variant.asNative.isEqual(to: rhs._variant.asNative)
    case (false, false):
      return lhs._variant.asCocoa.isEqual(to: rhs._variant.asCocoa)
    case (true, false):
      return lhs._variant.asNative.isEqual(to: rhs._variant.asCocoa)
    case (false, true):
      return rhs._variant.asNative.isEqual(to: lhs._variant.asCocoa)
    }
#else
    return lhs._variant.asNative.isEqual(to: rhs._variant.asNative)
#endif
  }
}

extension Dictionary: Hashable where Value: Hashable {
  /// Hashes the essential components of this value by feeding them into the
  /// given hasher.
  ///
  /// - Parameter hasher: The hasher to use when combining the components
  ///   of this instance.
  @inlinable
  public func hash(into hasher: inout Hasher) {
    var commutativeHash = 0
    for (k, v) in self {
      // Note that we use a copy of our own hasher here. This makes hash values
      // dependent on its state, eliminating static collision patterns.
      var elementHasher = hasher
      elementHasher.combine(k)
      elementHasher.combine(v)
      commutativeHash ^= elementHasher._finalize()
    }
    hasher.combine(commutativeHash)
  }
}

@_unavailableInEmbedded
extension Dictionary: _HasCustomAnyHashableRepresentation
where Value: Hashable {
  public __consuming func _toCustomAnyHashable() -> AnyHashable? {
    return AnyHashable(_box: _DictionaryAnyHashableBox(self))
  }
}

@_unavailableInEmbedded
internal struct _DictionaryAnyHashableBox<Key: Hashable, Value: Hashable>
  : _AnyHashableBox {
  internal let _value: Dictionary<Key, Value>
  internal let _canonical: Dictionary<AnyHashable, AnyHashable>

  internal init(_ value: __owned Dictionary<Key, Value>) {
    self._value = value
    self._canonical = value as Dictionary<AnyHashable, AnyHashable>
  }

  internal var _base: Any {
    return _value
  }

  internal var _canonicalBox: _AnyHashableBox {
    return _DictionaryAnyHashableBox<AnyHashable, AnyHashable>(_canonical)
  }

  internal func _isEqual(to other: _AnyHashableBox) -> Bool? {
    guard
      let other = other as? _DictionaryAnyHashableBox<AnyHashable, AnyHashable>
    else {
      return nil
    }
    return _canonical == other._value
  }

  internal var _hashValue: Int {
    return _canonical.hashValue
  }

  internal func _hash(into hasher: inout Hasher) {
    _canonical.hash(into: &hasher)
  }

  internal func _rawHashValue(_seed: Int) -> Int {
    return _canonical._rawHashValue(seed: _seed)
  }

  internal func _unbox<T: Hashable>() -> T? {
    return _value as? T
  }

  internal func _downCastConditional<T>(
    into result: UnsafeMutablePointer<T>
  ) -> Bool {
    guard let value = _value as? T else { return false }
    result.initialize(to: value)
    return true
  }
}

@_unavailableInEmbedded
extension Collection {
  // Utility method for KV collections that wish to implement
  // CustomStringConvertible and CustomDebugStringConvertible using a bracketed
  // list of elements.
  // FIXME: Doesn't use the withTypeName argument yet
  internal func _makeKeyValuePairDescription<K, V>(
    withTypeName type: String? = nil
  ) -> String where Element == (key: K, value: V) {
#if !SWIFT_STDLIB_STATIC_PRINT
    if self.isEmpty {
      return "[:]"
    }
    
    var result = "["
    var first = true
    for (k, v) in self {
      if first {
        first = false
      } else {
        result += ", "
      }
      debugPrint(k, terminator: "", to: &result)
      result += ": "
      debugPrint(v, terminator: "", to: &result)
    }
    result += "]"
    return result
#else
    return "(collection printing not available)"
#endif
  }
}

@_unavailableInEmbedded
extension Dictionary: CustomStringConvertible, CustomDebugStringConvertible {
  /// A string that represents the contents of the dictionary.
  public var description: String {
    return _makeKeyValuePairDescription()
  }

  /// A string that represents the contents of the dictionary, suitable for
  /// debugging.
  public var debugDescription: String {
    return _makeKeyValuePairDescription()
  }
}

@usableFromInline
@frozen
internal enum _MergeError: Error {
  case keyCollision
}

extension Dictionary {
  /// The position of a key-value pair in a dictionary.
  ///
  /// Dictionary has two subscripting interfaces:
  ///
  /// 1. Subscripting with a key, yielding an optional value:
  ///
  ///        v = d[k]!
  ///
  /// 2. Subscripting with an index, yielding a key-value pair:
  ///
  ///        (k, v) = d[i]
  @frozen
  public struct Index {
    // Index for native dictionary is efficient.  Index for bridged NSDictionary
    // is not, because neither NSEnumerator nor fast enumeration support moving
    // backwards.  Even if they did, there is another issue: NSEnumerator does
    // not support NSCopying, and fast enumeration does not document that it is
    // safe to copy the state.  So, we cannot implement Index that is a value
    // type for bridged NSDictionary in terms of Cocoa enumeration facilities.

    @frozen
    @usableFromInline
    internal enum _Variant {
      case native(_HashTable.Index)
#if _runtime(_ObjC)
      case cocoa(__CocoaDictionary.Index)
#endif
    }

    @usableFromInline
    internal var _variant: _Variant

    @inlinable
    @inline(__always)
    internal init(_variant: __owned _Variant) {
      self._variant = _variant
    }

    @inlinable
    @inline(__always)
    internal init(_native index: _HashTable.Index) {
      self.init(_variant: .native(index))
    }

#if _runtime(_ObjC)
    @inlinable
    @inline(__always)
    internal init(_cocoa index: __owned __CocoaDictionary.Index) {
      self.init(_variant: .cocoa(index))
    }
#endif
  }
}

extension Dictionary.Index._Variant: @unchecked Sendable {}

extension Dictionary.Index {
#if _runtime(_ObjC)
  @usableFromInline @_transparent
  internal var _guaranteedNative: Bool {
    return _canBeClass(Key.self) == 0 || _canBeClass(Value.self) == 0
  }

  // Allow the optimizer to consider the surrounding code unreachable if Element
  // is guaranteed to be native.
  @usableFromInline @_transparent
  internal func _cocoaPath() {
    if _guaranteedNative {
      _conditionallyUnreachable()
    }
  }

  @inlinable
  @inline(__always)
  internal mutating func _isUniquelyReferenced() -> Bool {
    defer { _fixLifetime(self) }
    var handle = _asCocoa.handleBitPattern
    return handle == 0 || _isUnique_native(&handle)
  }

  @usableFromInline @_transparent
  internal var _isNative: Bool {
    switch _variant {
    case .native:
      return true
    case .cocoa:
      _cocoaPath()
      return false
    }
  }
#endif

  @usableFromInline @_transparent
  internal var _asNative: _HashTable.Index {
    switch _variant {
    case .native(let nativeIndex):
      return nativeIndex
#if _runtime(_ObjC)
    case .cocoa:
      _preconditionFailure(
        "Attempting to access Dictionary elements using an invalid index")
#endif
    }
  }

#if _runtime(_ObjC)
  @usableFromInline
  internal var _asCocoa: __CocoaDictionary.Index {
    @_transparent
    get {
      switch _variant {
      case .native:
        _preconditionFailure(
          "Attempting to access Dictionary elements using an invalid index")
      case .cocoa(let cocoaIndex):
        return cocoaIndex
      }
    }
    _modify {
      guard case .cocoa(var cocoa) = _variant else {
        _preconditionFailure(
          "Attempting to access Dictionary elements using an invalid index")
      }
      let dummy = _HashTable.Index(bucket: _HashTable.Bucket(offset: 0), age: 0)
      _variant = .native(dummy)
      defer { _variant = .cocoa(cocoa) }
      yield &cocoa
    }
  }
#endif
}

extension Dictionary.Index: Equatable {
  @inlinable
  public static func == (
    lhs: Dictionary<Key, Value>.Index,
    rhs: Dictionary<Key, Value>.Index
  ) -> Bool {
    switch (lhs._variant, rhs._variant) {
    case (.native(let lhsNative), .native(let rhsNative)):
      return lhsNative == rhsNative
  #if _runtime(_ObjC)
    case (.cocoa(let lhsCocoa), .cocoa(let rhsCocoa)):
      lhs._cocoaPath()
      return lhsCocoa == rhsCocoa
    default:
      _preconditionFailure("Comparing indexes from different dictionaries")
  #endif
    }
  }
}

extension Dictionary.Index: Comparable {
  @inlinable
  public static func < (
    lhs: Dictionary<Key, Value>.Index,
    rhs: Dictionary<Key, Value>.Index
  ) -> Bool {
    switch (lhs._variant, rhs._variant) {
    case (.native(let lhsNative), .native(let rhsNative)):
      return lhsNative < rhsNative
  #if _runtime(_ObjC)
    case (.cocoa(let lhsCocoa), .cocoa(let rhsCocoa)):
      lhs._cocoaPath()
      return lhsCocoa < rhsCocoa
    default:
      _preconditionFailure("Comparing indexes from different dictionaries")
  #endif
    }
  }
}

extension Dictionary.Index: Hashable {
  public // FIXME(cocoa-index): Make inlinable
  func hash(into hasher: inout Hasher) {
#if _runtime(_ObjC)
    guard _isNative else {
      hasher.combine(1 as UInt8)
      hasher.combine(_asCocoa._offset)
      return
    }
    hasher.combine(0 as UInt8)
    hasher.combine(_asNative.bucket.offset)
#else
    hasher.combine(_asNative.bucket.offset)
#endif
  }
}

extension Dictionary {
  /// An iterator over the members of a `Dictionary<Key, Value>`.
  @frozen
  public struct Iterator {
    // Dictionary has a separate IteratorProtocol and Index because of
    // efficiency and implementability reasons.
    //
    // Native dictionaries have efficient indices.
    // Bridged NSDictionary instances don't.
    //
    // Even though fast enumeration is not suitable for implementing
    // Index, which is multi-pass, it is suitable for implementing a
    // IteratorProtocol, which is being consumed as iteration proceeds.

    @usableFromInline
    @frozen
    internal enum _Variant {
      case native(_NativeDictionary<Key, Value>.Iterator)
#if _runtime(_ObjC)
      case cocoa(__CocoaDictionary.Iterator)
#endif
    }

    @usableFromInline
    internal var _variant: _Variant

    @inlinable
    internal init(_variant: __owned _Variant) {
      self._variant = _variant
    }

    @inlinable
    internal init(_native: __owned _NativeDictionary<Key, Value>.Iterator) {
      self.init(_variant: .native(_native))
    }

#if _runtime(_ObjC)
    @inlinable
    internal init(_cocoa: __owned __CocoaDictionary.Iterator) {
      self.init(_variant: .cocoa(_cocoa))
    }
#endif
  }
}

extension Dictionary.Iterator._Variant: @unchecked Sendable
  where Key: Sendable, Value: Sendable {}

extension Dictionary.Iterator {
#if _runtime(_ObjC)
  @usableFromInline @_transparent
  internal var _guaranteedNative: Bool {
    return _canBeClass(Key.self) == 0 || _canBeClass(Value.self) == 0
  }

  /// Allow the optimizer to consider the surrounding code unreachable if
  /// Dictionary<Key, Value> is guaranteed to be native.
  @usableFromInline @_transparent
  internal func _cocoaPath() {
    if _guaranteedNative {
      _conditionallyUnreachable()
    }
  }

  @usableFromInline @_transparent
  internal var _isNative: Bool {
    switch _variant {
    case .native:
      return true
    case .cocoa:
      _cocoaPath()
      return false
    }
  }
#endif

  @usableFromInline @_transparent
  internal var _asNative: _NativeDictionary<Key, Value>.Iterator {
    get {
      switch _variant {
      case .native(let nativeIterator):
        return nativeIterator
#if _runtime(_ObjC)
      case .cocoa:
        _internalInvariantFailure("internal error: does not contain a native index")
#endif
      }
    }
    set {
      self._variant = .native(newValue)
    }
  }

#if _runtime(_ObjC)
  @usableFromInline @_transparent
  internal var _asCocoa: __CocoaDictionary.Iterator {
    get {
      switch _variant {
      case .native:
        _internalInvariantFailure("internal error: does not contain a Cocoa index")
      case .cocoa(let cocoa):
        return cocoa
      }
    }
  }
#endif

}

extension Dictionary.Iterator: IteratorProtocol {
  /// Advances to the next element and returns it, or `nil` if no next element
  /// exists.
  ///
  /// Once `nil` has been returned, all subsequent calls return `nil`.
  @inlinable
  @inline(__always)
  public mutating func next() -> (key: Key, value: Value)? {
#if _runtime(_ObjC)
    guard _isNative else {
      if let (cocoaKey, cocoaValue) = _asCocoa.next() {
        let nativeKey = _forceBridgeFromObjectiveC(cocoaKey, Key.self)
        let nativeValue = _forceBridgeFromObjectiveC(cocoaValue, Value.self)
        return (nativeKey, nativeValue)
      }
      return nil
    }
#endif
    return _asNative.next()
  }
}

#if SWIFT_ENABLE_REFLECTION
extension Dictionary.Iterator: CustomReflectable {
  /// A mirror that reflects the iterator.
  public var customMirror: Mirror {
    return Mirror(
      self,
      children: EmptyCollection<(label: String?, value: Any)>())
  }
}

extension Dictionary: CustomReflectable {
  /// A mirror that reflects the dictionary.
  public var customMirror: Mirror {
    let style = Mirror.DisplayStyle.dictionary
    return Mirror(self, unlabeledChildren: self, displayStyle: style)
  }
}
#endif

extension Dictionary {
  /// Removes and returns the first key-value pair of the dictionary if the
  /// dictionary isn't empty.
  ///
  /// The first element of the dictionary is not necessarily the first element
  /// added. Don't expect any particular ordering of key-value pairs.
  ///
  /// - Returns: The first key-value pair of the dictionary if the dictionary
  ///   is not empty; otherwise, `nil`.
  ///
  /// - Complexity: Averages to O(1) over many calls to `popFirst()`.
  @inlinable
  public mutating func popFirst() -> Element? {
    guard !isEmpty else { return nil }
    return remove(at: startIndex)
  }

  /// The total number of key-value pairs that the dictionary can contain without
  /// allocating new storage.
  @inlinable
  public var capacity: Int {
    return _variant.capacity
  }

  /// Reserves enough space to store the specified number of key-value pairs.
  ///
  /// If you are adding a known number of key-value pairs to a dictionary, use this
  /// method to avoid multiple reallocations. This method ensures that the
  /// dictionary has unique, mutable, contiguous storage, with space allocated
  /// for at least the requested number of key-value pairs.
  ///
  /// Calling the `reserveCapacity(_:)` method on a dictionary with bridged
  /// storage triggers a copy to contiguous storage even if the existing
  /// storage has room to store `minimumCapacity` key-value pairs.
  ///
  /// - Parameter minimumCapacity: The requested number of key-value pairs to
  ///   store.
  public // FIXME(reserveCapacity): Should be inlinable
  mutating func reserveCapacity(_ minimumCapacity: Int) {
    _variant.reserveCapacity(minimumCapacity)
    _internalInvariant(self.capacity >= minimumCapacity)
  }
}

public typealias DictionaryIndex<Key: Hashable, Value> =
  Dictionary<Key, Value>.Index
public typealias DictionaryIterator<Key: Hashable, Value> =
  Dictionary<Key, Value>.Iterator

extension Dictionary: @unchecked Sendable
  where Key: Sendable, Value: Sendable {}
extension Dictionary.Keys: @unchecked Sendable
  where Key: Sendable, Value: Sendable {}
extension Dictionary.Values: @unchecked Sendable
  where Key: Sendable, Value: Sendable {}
extension Dictionary.Keys.Iterator: @unchecked Sendable
  where Key: Sendable, Value: Sendable {}
extension Dictionary.Values.Iterator: @unchecked Sendable
  where Key: Sendable, Value: Sendable {}
extension Dictionary.Index: @unchecked Sendable
  where Key: Sendable, Value: Sendable {}
extension Dictionary.Iterator: @unchecked Sendable
  where Key: Sendable, Value: Sendable {}