File: Integers.swift

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (3844 lines) | stat: -rw-r--r-- 149,003 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
//===--- Integers.swift ---------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
//===--- Bits for the Stdlib ----------------------------------------------===//
//===----------------------------------------------------------------------===//

// FIXME(integers): This should go in the stdlib separately, probably.
extension ExpressibleByIntegerLiteral
  where Self: _ExpressibleByBuiltinIntegerLiteral {
  @_transparent
  public init(integerLiteral value: Self) {
    self = value
  }
}

//===----------------------------------------------------------------------===//
//===--- AdditiveArithmetic -----------------------------------------------===//
//===----------------------------------------------------------------------===//

/// A type with values that support addition and subtraction.
///
/// The `AdditiveArithmetic` protocol provides a suitable basis for additive
/// arithmetic on scalar values, such as integers and floating-point numbers,
/// or vectors. You can write generic methods that operate on any numeric type
/// in the standard library by using the `AdditiveArithmetic` protocol as a
/// generic constraint.
///
/// The following code declares a method that calculates the total of any
/// sequence with `AdditiveArithmetic` elements.
///
///     extension Sequence where Element: AdditiveArithmetic {
///         func sum() -> Element {
///             return reduce(.zero, +)
///         }
///     }
///
/// The `sum()` method is now available on any sequence with values that
/// conform to `AdditiveArithmetic`, whether it is an array of `Double` or a
/// range of `Int`.
///
///     let arraySum = [1.1, 2.2, 3.3, 4.4, 5.5].sum()
///     // arraySum == 16.5
///
///     let rangeSum = (1..<10).sum()
///     // rangeSum == 45
///
/// Conforming to the AdditiveArithmetic Protocol
/// =============================================
///
/// To add `AdditiveArithmetic` protocol conformance to your own custom type,
/// implement the required operators, and provide a static `zero` property.
public protocol AdditiveArithmetic: Equatable {
  /// The zero value.
  ///
  /// Zero is the identity element for addition. For any value,
  /// `x + .zero == x` and `.zero + x == x`.
  static var zero: Self { get }

  /// Adds two values and produces their sum.
  ///
  /// The addition operator (`+`) calculates the sum of its two arguments. For
  /// example:
  ///
  ///     1 + 2                   // 3
  ///     -10 + 15                // 5
  ///     -15 + -5                // -20
  ///     21.5 + 3.25             // 24.75
  ///
  /// You cannot use `+` with arguments of different types. To add values of
  /// different types, convert one of the values to the other value's type.
  ///
  ///     let x: Int8 = 21
  ///     let y: Int = 1000000
  ///     Int(x) + y              // 1000021
  ///
  /// - Parameters:
  ///   - lhs: The first value to add.
  ///   - rhs: The second value to add.
  static func +(lhs: Self, rhs: Self) -> Self

  /// Adds two values and stores the result in the left-hand-side variable.
  ///
  /// - Parameters:
  ///   - lhs: The first value to add.
  ///   - rhs: The second value to add.
  static func +=(lhs: inout Self, rhs: Self)

  /// Subtracts one value from another and produces their difference.
  ///
  /// The subtraction operator (`-`) calculates the difference of its two
  /// arguments. For example:
  ///
  ///     8 - 3                   // 5
  ///     -10 - 5                 // -15
  ///     100 - -5                // 105
  ///     10.5 - 100.0            // -89.5
  ///
  /// You cannot use `-` with arguments of different types. To subtract values
  /// of different types, convert one of the values to the other value's type.
  ///
  ///     let x: UInt8 = 21
  ///     let y: UInt = 1000000
  ///     y - UInt(x)             // 999979
  ///
  /// - Parameters:
  ///   - lhs: A numeric value.
  ///   - rhs: The value to subtract from `lhs`.
  static func -(lhs: Self, rhs: Self) -> Self

  /// Subtracts the second value from the first and stores the difference in the
  /// left-hand-side variable.
  ///
  /// - Parameters:
  ///   - lhs: A numeric value.
  ///   - rhs: The value to subtract from `lhs`.
  static func -=(lhs: inout Self, rhs: Self)
}

public extension AdditiveArithmetic {
  @_alwaysEmitIntoClient
  static func +=(lhs: inout Self, rhs: Self) {
    lhs = lhs + rhs
  }

  @_alwaysEmitIntoClient
  static func -=(lhs: inout Self, rhs: Self) {
    lhs = lhs - rhs
  }
}

public extension AdditiveArithmetic where Self: ExpressibleByIntegerLiteral {
  /// The zero value.
  ///
  /// Zero is the identity element for addition. For any value,
  /// `x + .zero == x` and `.zero + x == x`.
  @inlinable @inline(__always)
  static var zero: Self {
    return 0
  }
}

//===----------------------------------------------------------------------===//
//===--- Numeric ----------------------------------------------------------===//
//===----------------------------------------------------------------------===//

/// A type with values that support multiplication.
///
/// The `Numeric` protocol provides a suitable basis for arithmetic on
/// scalar values, such as integers and floating-point numbers. You can write
/// generic methods that operate on any numeric type in the standard library
/// by using the `Numeric` protocol as a generic constraint.
///
/// The following example extends `Sequence` with a method that returns an
/// array with the sequence's values multiplied by two.
///
///     extension Sequence where Element: Numeric {
///         func doublingAll() -> [Element] {
///             return map { $0 * 2 }
///         }
///     }
///
/// With this extension, any sequence with elements that conform to `Numeric`
/// has the `doublingAll()` method. For example, you can double the elements of
/// an array of doubles or a range of integers:
///
///     let observations = [1.5, 2.0, 3.25, 4.875, 5.5]
///     let doubledObservations = observations.doublingAll()
///     // doubledObservations == [3.0, 4.0, 6.5, 9.75, 11.0]
///
///     let integers = 0..<8
///     let doubledIntegers = integers.doublingAll()
///     // doubledIntegers == [0, 2, 4, 6, 8, 10, 12, 14]
///
/// Conforming to the Numeric Protocol
/// ==================================
///
/// To add `Numeric` protocol conformance to your own custom type, implement
/// the required initializer and operators, and provide a `magnitude` property
/// using a type that can represent the magnitude of any value of your custom
/// type.
public protocol Numeric: AdditiveArithmetic, ExpressibleByIntegerLiteral {
  /// Creates a new instance from the given integer, if it can be represented
  /// exactly.
  ///
  /// If the value passed as `source` is not representable exactly, the result
  /// is `nil`. In the following example, the constant `x` is successfully
  /// created from a value of `100`, while the attempt to initialize the
  /// constant `y` from `1_000` fails because the `Int8` type can represent
  /// `127` at maximum:
  ///
  ///     let x = Int8(exactly: 100)
  ///     // x == Optional(100)
  ///     let y = Int8(exactly: 1_000)
  ///     // y == nil
  ///
  /// - Parameter source: A value to convert to this type.
  init?<T: BinaryInteger>(exactly source: T)

  /// A type that can represent the absolute value of any possible value of the
  /// conforming type.
  associatedtype Magnitude: Comparable, Numeric

  /// The magnitude of this value.
  ///
  /// For any numeric value `x`, `x.magnitude` is the absolute value of `x`.
  /// You can use the `magnitude` property in operations that are simpler to
  /// implement in terms of unsigned values, such as printing the value of an
  /// integer, which is just printing a '-' character in front of an absolute
  /// value.
  ///
  ///     let x = -200
  ///     // x.magnitude == 200
  ///
  /// The global `abs(_:)` function provides more familiar syntax when you need
  /// to find an absolute value. In addition, because `abs(_:)` always returns
  /// a value of the same type, even in a generic context, using the function
  /// instead of the `magnitude` property is encouraged.
  var magnitude: Magnitude { get }

  /// Multiplies two values and produces their product.
  ///
  /// The multiplication operator (`*`) calculates the product of its two
  /// arguments. For example:
  ///
  ///     2 * 3                   // 6
  ///     100 * 21                // 2100
  ///     -10 * 15                // -150
  ///     3.5 * 2.25              // 7.875
  ///
  /// You cannot use `*` with arguments of different types. To multiply values
  /// of different types, convert one of the values to the other value's type.
  ///
  ///     let x: Int8 = 21
  ///     let y: Int = 1000000
  ///     Int(x) * y              // 21000000
  ///
  /// - Parameters:
  ///   - lhs: The first value to multiply.
  ///   - rhs: The second value to multiply.
  static func *(lhs: Self, rhs: Self) -> Self

  /// Multiplies two values and stores the result in the left-hand-side
  /// variable.
  ///
  /// - Parameters:
  ///   - lhs: The first value to multiply.
  ///   - rhs: The second value to multiply.
  static func *=(lhs: inout Self, rhs: Self)
}

/// A numeric type with a negation operation.
///
/// The `SignedNumeric` protocol extends the operations defined by the
/// `Numeric` protocol to include a value's additive inverse.
///
/// Conforming to the SignedNumeric Protocol
/// ========================================
///
/// Because the `SignedNumeric` protocol provides default implementations of
/// both of its required methods, you don't need to do anything beyond
/// declaring conformance to the protocol and ensuring that the values of your
/// type support negation. To customize your type's implementation, provide
/// your own mutating `negate()` method.
///
/// When the additive inverse of a value is unrepresentable in a conforming
/// type, the operation should either trap or return an exceptional value. For
/// example, using the negation operator (prefix `-`) with `Int.min` results in
/// a runtime error.
///
///     let x = Int.min
///     let y = -x
///     // Overflow error
public protocol SignedNumeric: Numeric {
  /// Returns the additive inverse of the specified value.
  ///
  /// The negation operator (prefix `-`) returns the additive inverse of its
  /// argument.
  ///
  ///     let x = 21
  ///     let y = -x
  ///     // y == -21
  ///
  /// The resulting value must be representable in the same type as the
  /// argument. In particular, negating a signed, fixed-width integer type's
  /// minimum results in a value that cannot be represented.
  ///
  ///     let z = -Int8.min
  ///     // Overflow error
  ///
  /// - Returns: The additive inverse of this value.
  static prefix func - (_ operand: Self) -> Self

  /// Replaces this value with its additive inverse.
  ///
  /// The following example uses the `negate()` method to negate the value of
  /// an integer `x`:
  ///
  ///     var x = 21
  ///     x.negate()
  ///     // x == -21
  ///
  /// The resulting value must be representable within the value's type. In
  /// particular, negating a signed, fixed-width integer type's minimum
  /// results in a value that cannot be represented.
  ///
  ///     var y = Int8.min
  ///     y.negate()
  ///     // Overflow error
  mutating func negate()
}

extension SignedNumeric {
  /// Returns the additive inverse of the specified value.
  ///
  /// The negation operator (prefix `-`) returns the additive inverse of its
  /// argument.
  ///
  ///     let x = 21
  ///     let y = -x
  ///     // y == -21
  ///
  /// The resulting value must be representable in the same type as the
  /// argument. In particular, negating a signed, fixed-width integer type's
  /// minimum results in a value that cannot be represented.
  ///
  ///     let z = -Int8.min
  ///     // Overflow error
  ///
  /// - Returns: The additive inverse of the argument.
  @_transparent
  public static prefix func - (_ operand: Self) -> Self {
    var result = operand
    result.negate()
    return result
  }

  /// Replaces this value with its additive inverse.
  ///
  /// The following example uses the `negate()` method to negate the value of
  /// an integer `x`:
  ///
  ///     var x = 21
  ///     x.negate()
  ///     // x == -21
  ///
  /// The resulting value must be representable within the value's type. In
  /// particular, negating a signed, fixed-width integer type's minimum
  /// results in a value that cannot be represented.
  ///
  ///     var y = Int8.min
  ///     y.negate()
  ///     // Overflow error
  @_transparent
  public mutating func negate() {
    self = 0 - self
  }
}

/// Returns the absolute value of the given number.
///
/// The absolute value of `x` must be representable in the same type. In
/// particular, the absolute value of a signed, fixed-width integer type's
/// minimum cannot be represented.
///
///     let x = Int8.min
///     // x == -128
///     let y = abs(x)
///     // Overflow error
///
/// - Parameter x: A signed number.
/// - Returns: The absolute value of `x`.
@inlinable
public func abs<T: SignedNumeric & Comparable>(_ x: T) -> T {
  if T.self == T.Magnitude.self {
    return unsafeBitCast(x.magnitude, to: T.self)
  }

  return x < (0 as T) ? -x : x
}

extension AdditiveArithmetic {
  /// Returns the given number unchanged.
  ///
  /// You can use the unary plus operator (`+`) to provide symmetry in your
  /// code for positive numbers when also using the unary minus operator.
  ///
  ///     let x = -21
  ///     let y = +21
  ///     // x == -21
  ///     // y == 21
  ///
  /// - Returns: The given argument without any changes.
  @_transparent
  public static prefix func + (x: Self) -> Self {
    return x
  }
}

#if !$Embedded
public typealias _CustomStringConvertibleOrNone = CustomStringConvertible
#else
public typealias _CustomStringConvertibleOrNone = Any
#endif

//===----------------------------------------------------------------------===//
//===--- BinaryInteger ----------------------------------------------------===//
//===----------------------------------------------------------------------===//

/// An integer type with a binary representation.
///
/// The `BinaryInteger` protocol is the basis for all the integer types
/// provided by the standard library. All of the standard library's integer
/// types, such as `Int` and `UInt32`, conform to `BinaryInteger`.
///
/// Converting Between Numeric Types
/// ================================
///
/// You can create new instances of a type that conforms to the `BinaryInteger`
/// protocol from a floating-point number or another binary integer of any
/// type. The `BinaryInteger` protocol provides initializers for four
/// different kinds of conversion.
///
/// Range-Checked Conversion
/// ------------------------
///
/// You use the default `init(_:)` initializer to create a new instance when
/// you're sure that the value passed is representable in the new type. For
/// example, an instance of `Int16` can represent the value `500`, so the
/// first conversion in the code sample below succeeds. That same value is too
/// large to represent as an `Int8` instance, so the second conversion fails,
/// triggering a runtime error.
///
///     let x: Int = 500
///     let y = Int16(x)
///     // y == 500
///
///     let z = Int8(x)
///     // Error: Not enough bits to represent...
///
/// When you create a binary integer from a floating-point value using the
/// default initializer, the value is rounded toward zero before the range is
/// checked. In the following example, the value `127.75` is rounded to `127`,
/// which is representable by the `Int8` type.  `128.25` is rounded to `128`,
/// which is not representable as an `Int8` instance, triggering a runtime
/// error.
///
///     let e = Int8(127.75)
///     // e == 127
///
///     let f = Int8(128.25)
///     // Error: Double value cannot be converted...
///
///
/// Exact Conversion
/// ----------------
///
/// Use the `init?(exactly:)` initializer to create a new instance after
/// checking whether the passed value is representable. Instead of trapping on
/// out-of-range values, using the failable `init?(exactly:)`
/// initializer results in `nil`.
///
///     let x = Int16(exactly: 500)
///     // x == Optional(500)
///
///     let y = Int8(exactly: 500)
///     // y == nil
///
/// When converting floating-point values, the `init?(exactly:)` initializer
/// checks both that the passed value has no fractional part and that the
/// value is representable in the resulting type.
///
///     let e = Int8(exactly: 23.0)       // integral value, representable
///     // e == Optional(23)
///
///     let f = Int8(exactly: 23.75)      // fractional value, representable
///     // f == nil
///
///     let g = Int8(exactly: 500.0)      // integral value, nonrepresentable
///     // g == nil
///
/// Clamping Conversion
/// -------------------
///
/// Use the `init(clamping:)` initializer to create a new instance of a binary
/// integer type where out-of-range values are clamped to the representable
/// range of the type. For a type `T`, the resulting value is in the range
/// `T.min...T.max`.
///
///     let x = Int16(clamping: 500)
///     // x == 500
///
///     let y = Int8(clamping: 500)
///     // y == 127
///
///     let z = UInt8(clamping: -500)
///     // z == 0
///
/// Bit Pattern Conversion
/// ----------------------
///
/// Use the `init(truncatingIfNeeded:)` initializer to create a new instance
/// with the same bit pattern as the passed value, extending or truncating the
/// value's representation as necessary. Note that the value may not be
/// preserved, particularly when converting between signed to unsigned integer
/// types or when the destination type has a smaller bit width than the source
/// type. The following example shows how extending and truncating work for
/// nonnegative integers:
///
///     let q: Int16 = 850
///     // q == 0b00000011_01010010
///
///     let r = Int8(truncatingIfNeeded: q)      // truncate 'q' to fit in 8 bits
///     // r == 82
///     //   == 0b01010010
///
///     let s = Int16(truncatingIfNeeded: r)     // extend 'r' to fill 16 bits
///     // s == 82
///     //   == 0b00000000_01010010
///
/// Any padding is performed by *sign-extending* the passed value. When
/// nonnegative integers are extended, the result is padded with zeroes. When
/// negative integers are extended, the result is padded with ones. This
/// example shows several extending conversions of a negative value---note
/// that negative values are sign-extended even when converting to an unsigned
/// type.
///
///     let t: Int8 = -100
///     // t == -100
///     // t's binary representation == 0b10011100
///
///     let u = UInt8(truncatingIfNeeded: t)
///     // u == 156
///     // u's binary representation == 0b10011100
///
///     let v = Int16(truncatingIfNeeded: t)
///     // v == -100
///     // v's binary representation == 0b11111111_10011100
///
///     let w = UInt16(truncatingIfNeeded: t)
///     // w == 65436
///     // w's binary representation == 0b11111111_10011100
///
///
/// Comparing Across Integer Types
/// ==============================
///
/// You can use relational operators, such as the less-than and equal-to
/// operators (`<` and `==`), to compare instances of different binary integer
/// types. The following example compares instances of the `Int`, `UInt`, and
/// `UInt8` types:
///
///     let x: Int = -23
///     let y: UInt = 1_000
///     let z: UInt8 = 23
///
///     if x < y {
///         print("\(x) is less than \(y).")
///     }
///     // Prints "-23 is less than 1000."
///
///     if z > x {
///         print("\(z) is greater than \(x).")
///     }
///     // Prints "23 is greater than -23."
public protocol BinaryInteger :
  Hashable, Numeric, _CustomStringConvertibleOrNone, Strideable
  where Magnitude: BinaryInteger, Magnitude.Magnitude == Magnitude
{
  /// A Boolean value indicating whether this type is a signed integer type.
  ///
  /// *Signed* integer types can represent both positive and negative values.
  /// *Unsigned* integer types can represent only nonnegative values.
  static var isSigned: Bool { get }

  /// Creates an integer from the given floating-point value, if it can be
  /// represented exactly.
  ///
  /// If the value passed as `source` is not representable exactly, the result
  /// is `nil`. In the following example, the constant `x` is successfully
  /// created from a value of `21.0`, while the attempt to initialize the
  /// constant `y` from `21.5` fails:
  ///
  ///     let x = Int(exactly: 21.0)
  ///     // x == Optional(21)
  ///     let y = Int(exactly: 21.5)
  ///     // y == nil
  ///
  /// - Parameter source: A floating-point value to convert to an integer.
  init?<T: BinaryFloatingPoint>(exactly source: T)

  /// Creates an integer from the given floating-point value, rounding toward
  /// zero.
  ///
  /// Any fractional part of the value passed as `source` is removed, rounding
  /// the value toward zero.
  ///
  ///     let x = Int(21.5)
  ///     // x == 21
  ///     let y = Int(-21.5)
  ///     // y == -21
  ///
  /// If `source` is outside the bounds of this type after rounding toward
  /// zero, a runtime error may occur.
  ///
  ///     let z = UInt(-21.5)
  ///     // Error: ...the result would be less than UInt.min
  ///
  /// - Parameter source: A floating-point value to convert to an integer.
  ///   `source` must be representable in this type after rounding toward
  ///   zero.
  init<T: BinaryFloatingPoint>(_ source: T)

  /// Creates a new instance from the given integer.
  ///
  /// If the value passed as `source` is not representable in this type, a
  /// runtime error may occur.
  ///
  ///     let x = -500 as Int
  ///     let y = Int32(x)
  ///     // y == -500
  ///
  ///     // -500 is not representable as a 'UInt32' instance
  ///     let z = UInt32(x)
  ///     // Error
  ///
  /// - Parameter source: An integer to convert. `source` must be representable
  ///   in this type.
  init<T: BinaryInteger>(_ source: T)

  /// Creates a new instance from the bit pattern of the given instance by
  /// sign-extending or truncating to fit this type.
  ///
  /// When the bit width of `T` (the type of `source`) is equal to or greater
  /// than this type's bit width, the result is the truncated
  /// least-significant bits of `source`. For example, when converting a
  /// 16-bit value to an 8-bit type, only the lower 8 bits of `source` are
  /// used.
  ///
  ///     let p: Int16 = -500
  ///     // 'p' has a binary representation of 11111110_00001100
  ///     let q = Int8(truncatingIfNeeded: p)
  ///     // q == 12
  ///     // 'q' has a binary representation of 00001100
  ///
  /// When the bit width of `T` is less than this type's bit width, the result
  /// is *sign-extended* to fill the remaining bits. That is, if `source` is
  /// negative, the result is padded with ones; otherwise, the result is
  /// padded with zeros.
  ///
  ///     let u: Int8 = 21
  ///     // 'u' has a binary representation of 00010101
  ///     let v = Int16(truncatingIfNeeded: u)
  ///     // v == 21
  ///     // 'v' has a binary representation of 00000000_00010101
  ///
  ///     let w: Int8 = -21
  ///     // 'w' has a binary representation of 11101011
  ///     let x = Int16(truncatingIfNeeded: w)
  ///     // x == -21
  ///     // 'x' has a binary representation of 11111111_11101011
  ///     let y = UInt16(truncatingIfNeeded: w)
  ///     // y == 65515
  ///     // 'y' has a binary representation of 11111111_11101011
  ///
  /// - Parameter source: An integer to convert to this type.
  init<T: BinaryInteger>(truncatingIfNeeded source: T)

  /// Creates a new instance with the representable value that's closest to the
  /// given integer.
  ///
  /// If the value passed as `source` is greater than the maximum representable
  /// value in this type, the result is the type's `max` value. If `source` is
  /// less than the smallest representable value in this type, the result is
  /// the type's `min` value.
  ///
  /// In this example, `x` is initialized as an `Int8` instance by clamping
  /// `500` to the range `-128...127`, and `y` is initialized as a `UInt`
  /// instance by clamping `-500` to the range `0...UInt.max`.
  ///
  ///     let x = Int8(clamping: 500)
  ///     // x == 127
  ///     // x == Int8.max
  ///
  ///     let y = UInt(clamping: -500)
  ///     // y == 0
  ///
  /// - Parameter source: An integer to convert to this type.
  init<T: BinaryInteger>(clamping source: T)

  /// A type that represents the words of a binary integer.
  ///
  /// The `Words` type must conform to the `RandomAccessCollection` protocol
  /// with an `Element` type of `UInt` and `Index` type of `Int`.
  associatedtype Words: RandomAccessCollection
      where Words.Element == UInt, Words.Index == Int

  /// A collection containing the words of this value's binary
  /// representation, in order from the least significant to most significant.
  ///
  /// Negative values are returned in two's complement representation,
  /// regardless of the type's underlying implementation.
  var words: Words { get }

  /// The least significant word in this value's binary representation.
  var _lowWord: UInt { get }

  /// The number of bits in the current binary representation of this value.
  ///
  /// This property is a constant for instances of fixed-width integer
  /// types.
  var bitWidth: Int { get }

  /// Returns the integer binary logarithm of this value.
  ///
  /// If the value is negative or zero, a runtime error will occur.
  func _binaryLogarithm() -> Int

  /// The number of trailing zeros in this value's binary representation.
  ///
  /// For example, in a fixed-width integer type with a `bitWidth` value of 8,
  /// the number -8 has three trailing zeros.
  ///
  ///     let x = Int8(bitPattern: 0b1111_1000)
  ///     // x == -8
  ///     // x.trailingZeroBitCount == 3
  ///
  /// If the value is zero, then `trailingZeroBitCount` is equal to `bitWidth`.
  var trailingZeroBitCount: Int { get }

  /// Returns the quotient of dividing the first value by the second.
  ///
  /// For integer types, any remainder of the division is discarded.
  ///
  ///     let x = 21 / 5
  ///     // x == 4
  ///
  /// - Parameters:
  ///   - lhs: The value to divide.
  ///   - rhs: The value to divide `lhs` by. `rhs` must not be zero.
  static func /(lhs: Self, rhs: Self) -> Self

  /// Divides the first value by the second and stores the quotient in the
  /// left-hand-side variable.
  ///
  /// For integer types, any remainder of the division is discarded.
  ///
  ///     var x = 21
  ///     x /= 5
  ///     // x == 4
  ///
  /// - Parameters:
  ///   - lhs: The value to divide.
  ///   - rhs: The value to divide `lhs` by. `rhs` must not be zero.
  static func /=(lhs: inout Self, rhs: Self)

  /// Returns the remainder of dividing the first value by the second.
  ///
  /// The result of the remainder operator (`%`) has the same sign as `lhs` and
  /// has a magnitude less than `rhs.magnitude`.
  ///
  ///     let x = 22 % 5
  ///     // x == 2
  ///     let y = 22 % -5
  ///     // y == 2
  ///     let z = -22 % -5
  ///     // z == -2
  ///
  /// For any two integers `a` and `b`, their quotient `q`, and their remainder
  /// `r`, `a == b * q + r`.
  ///
  /// - Parameters:
  ///   - lhs: The value to divide.
  ///   - rhs: The value to divide `lhs` by. `rhs` must not be zero.
  static func %(lhs: Self, rhs: Self) -> Self

  /// Divides the first value by the second and stores the remainder in the
  /// left-hand-side variable.
  ///
  /// The result has the same sign as `lhs` and has a magnitude less than
  /// `rhs.magnitude`.
  ///
  ///     var x = 22
  ///     x %= 5
  ///     // x == 2
  ///
  ///     var y = 22
  ///     y %= -5
  ///     // y == 2
  ///
  ///     var z = -22
  ///     z %= -5
  ///     // z == -2
  ///
  /// - Parameters:
  ///   - lhs: The value to divide.
  ///   - rhs: The value to divide `lhs` by. `rhs` must not be zero.
  static func %=(lhs: inout Self, rhs: Self)

  /// Adds two values and produces their sum.
  ///
  /// The addition operator (`+`) calculates the sum of its two arguments. For
  /// example:
  ///
  ///     1 + 2                   // 3
  ///     -10 + 15                // 5
  ///     -15 + -5                // -20
  ///     21.5 + 3.25             // 24.75
  ///
  /// You cannot use `+` with arguments of different types. To add values of
  /// different types, convert one of the values to the other value's type.
  ///
  ///     let x: Int8 = 21
  ///     let y: Int = 1000000
  ///     Int(x) + y              // 1000021
  ///
  /// - Parameters:
  ///   - lhs: The first value to add.
  ///   - rhs: The second value to add.
  override static func +(lhs: Self, rhs: Self) -> Self

  /// Adds two values and stores the result in the left-hand-side variable.
  ///
  /// - Parameters:
  ///   - lhs: The first value to add.
  ///   - rhs: The second value to add.
  override static func +=(lhs: inout Self, rhs: Self)

  /// Subtracts one value from another and produces their difference.
  ///
  /// The subtraction operator (`-`) calculates the difference of its two
  /// arguments. For example:
  ///
  ///     8 - 3                   // 5
  ///     -10 - 5                 // -15
  ///     100 - -5                // 105
  ///     10.5 - 100.0            // -89.5
  ///
  /// You cannot use `-` with arguments of different types. To subtract values
  /// of different types, convert one of the values to the other value's type.
  ///
  ///     let x: UInt8 = 21
  ///     let y: UInt = 1000000
  ///     y - UInt(x)             // 999979
  ///
  /// - Parameters:
  ///   - lhs: A numeric value.
  ///   - rhs: The value to subtract from `lhs`.
  override static func -(lhs: Self, rhs: Self) -> Self

  /// Subtracts the second value from the first and stores the difference in the
  /// left-hand-side variable.
  ///
  /// - Parameters:
  ///   - lhs: A numeric value.
  ///   - rhs: The value to subtract from `lhs`.
  override static func -=(lhs: inout Self, rhs: Self)

  /// Multiplies two values and produces their product.
  ///
  /// The multiplication operator (`*`) calculates the product of its two
  /// arguments. For example:
  ///
  ///     2 * 3                   // 6
  ///     100 * 21                // 2100
  ///     -10 * 15                // -150
  ///     3.5 * 2.25              // 7.875
  ///
  /// You cannot use `*` with arguments of different types. To multiply values
  /// of different types, convert one of the values to the other value's type.
  ///
  ///     let x: Int8 = 21
  ///     let y: Int = 1000000
  ///     Int(x) * y              // 21000000
  ///
  /// - Parameters:
  ///   - lhs: The first value to multiply.
  ///   - rhs: The second value to multiply.
  override static func *(lhs: Self, rhs: Self) -> Self

  /// Multiplies two values and stores the result in the left-hand-side
  /// variable.
  ///
  /// - Parameters:
  ///   - lhs: The first value to multiply.
  ///   - rhs: The second value to multiply.
  override static func *=(lhs: inout Self, rhs: Self)

  /// Returns the inverse of the bits set in the argument.
  ///
  /// The bitwise NOT operator (`~`) is a prefix operator that returns a value
  /// in which all the bits of its argument are flipped: Bits that are `1` in
  /// the argument are `0` in the result, and bits that are `0` in the argument
  /// are `1` in the result. This is equivalent to the inverse of a set. For
  /// example:
  ///
  ///     let x: UInt8 = 5        // 0b00000101
  ///     let notX = ~x           // 0b11111010
  ///
  /// Performing a bitwise NOT operation on 0 returns a value with every bit
  /// set to `1`.
  ///
  ///     let allOnes = ~UInt8.min   // 0b11111111
  ///
  /// - Complexity: O(1).
  static prefix func ~ (_ x: Self) -> Self

  /// Returns the result of performing a bitwise AND operation on the two given
  /// values.
  ///
  /// A bitwise AND operation results in a value that has each bit set to `1`
  /// where *both* of its arguments have that bit set to `1`. For example:
  ///
  ///     let x: UInt8 = 5          // 0b00000101
  ///     let y: UInt8 = 14         // 0b00001110
  ///     let z = x & y             // 0b00000100
  ///     // z == 4
  ///
  /// - Parameters:
  ///   - lhs: An integer value.
  ///   - rhs: Another integer value.
  static func &(lhs: Self, rhs: Self) -> Self

  /// Stores the result of performing a bitwise AND operation on the two given
  /// values in the left-hand-side variable.
  ///
  /// A bitwise AND operation results in a value that has each bit set to `1`
  /// where *both* of its arguments have that bit set to `1`. For example:
  ///
  ///     var x: UInt8 = 5          // 0b00000101
  ///     let y: UInt8 = 14         // 0b00001110
  ///     x &= y                    // 0b00000100
  ///
  /// - Parameters:
  ///   - lhs: An integer value.
  ///   - rhs: Another integer value.
  static func &=(lhs: inout Self, rhs: Self)

  /// Returns the result of performing a bitwise OR operation on the two given
  /// values.
  ///
  /// A bitwise OR operation results in a value that has each bit set to `1`
  /// where *one or both* of its arguments have that bit set to `1`. For
  /// example:
  ///
  ///     let x: UInt8 = 5          // 0b00000101
  ///     let y: UInt8 = 14         // 0b00001110
  ///     let z = x | y             // 0b00001111
  ///     // z == 15
  ///
  /// - Parameters:
  ///   - lhs: An integer value.
  ///   - rhs: Another integer value.
  static func |(lhs: Self, rhs: Self) -> Self

  /// Stores the result of performing a bitwise OR operation on the two given
  /// values in the left-hand-side variable.
  ///
  /// A bitwise OR operation results in a value that has each bit set to `1`
  /// where *one or both* of its arguments have that bit set to `1`. For
  /// example:
  ///
  ///     var x: UInt8 = 5          // 0b00000101
  ///     let y: UInt8 = 14         // 0b00001110
  ///     x |= y                    // 0b00001111
  ///
  /// - Parameters:
  ///   - lhs: An integer value.
  ///   - rhs: Another integer value.
  static func |=(lhs: inout Self, rhs: Self)

  /// Returns the result of performing a bitwise XOR operation on the two given
  /// values.
  ///
  /// A bitwise XOR operation, also known as an exclusive OR operation, results
  /// in a value that has each bit set to `1` where *one or the other but not
  /// both* of its arguments had that bit set to `1`. For example:
  ///
  ///     let x: UInt8 = 5          // 0b00000101
  ///     let y: UInt8 = 14         // 0b00001110
  ///     let z = x ^ y             // 0b00001011
  ///     // z == 11
  ///
  /// - Parameters:
  ///   - lhs: An integer value.
  ///   - rhs: Another integer value.
  static func ^(lhs: Self, rhs: Self) -> Self

  /// Stores the result of performing a bitwise XOR operation on the two given
  /// values in the left-hand-side variable.
  ///
  /// A bitwise XOR operation, also known as an exclusive OR operation, results
  /// in a value that has each bit set to `1` where *one or the other but not
  /// both* of its arguments had that bit set to `1`. For example:
  ///
  ///     var x: UInt8 = 5          // 0b00000101
  ///     let y: UInt8 = 14         // 0b00001110
  ///     x ^= y                    // 0b00001011
  ///
  /// - Parameters:
  ///   - lhs: An integer value.
  ///   - rhs: Another integer value.
  static func ^=(lhs: inout Self, rhs: Self)

  /// Returns the result of shifting a value's binary representation the
  /// specified number of digits to the right.
  ///
  /// The `>>` operator performs a *smart shift*, which defines a result for a
  /// shift of any value.
  ///
  /// - Using a negative value for `rhs` performs a left shift using
  ///   `abs(rhs)`.
  /// - Using a value for `rhs` that is greater than or equal to the bit width
  ///   of `lhs` is an *overshift*. An overshift results in `-1` for a
  ///   negative value of `lhs` or `0` for a nonnegative value.
  /// - Using any other value for `rhs` performs a right shift on `lhs` by that
  ///   amount.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the value is shifted right by two bits.
  ///
  ///     let x: UInt8 = 30                 // 0b00011110
  ///     let y = x >> 2
  ///     // y == 7                         // 0b00000111
  ///
  /// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
  /// are set to zero.
  ///
  ///     let z = x >> 11
  ///     // z == 0                         // 0b00000000
  ///
  /// Using a negative value as `rhs` is the same as performing a left shift
  /// using `abs(rhs)`.
  ///
  ///     let a = x >> -3
  ///     // a == 240                       // 0b11110000
  ///     let b = x << 3
  ///     // b == 240                       // 0b11110000
  ///
  /// Right shift operations on negative values "fill in" the high bits with
  /// ones instead of zeros.
  ///
  ///     let q: Int8 = -30                 // 0b11100010
  ///     let r = q >> 2
  ///     // r == -8                        // 0b11111000
  ///
  ///     let s = q >> 11
  ///     // s == -1                        // 0b11111111
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the right.
  static func >> <RHS: BinaryInteger>(lhs: Self, rhs: RHS) -> Self

  /// Stores the result of shifting a value's binary representation the
  /// specified number of digits to the right in the left-hand-side variable.
  ///
  /// The `>>=` operator performs a *smart shift*, which defines a result for a
  /// shift of any value.
  ///
  /// - Using a negative value for `rhs` performs a left shift using
  ///   `abs(rhs)`.
  /// - Using a value for `rhs` that is greater than or equal to the bit width
  ///   of `lhs` is an *overshift*. An overshift results in `-1` for a
  ///   negative value of `lhs` or `0` for a nonnegative value.
  /// - Using any other value for `rhs` performs a right shift on `lhs` by that
  ///   amount.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the value is shifted right by two bits.
  ///
  ///     var x: UInt8 = 30                 // 0b00011110
  ///     x >>= 2
  ///     // x == 7                         // 0b00000111
  ///
  /// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
  /// are set to zero.
  ///
  ///     var y: UInt8 = 30                 // 0b00011110
  ///     y >>= 11
  ///     // y == 0                         // 0b00000000
  ///
  /// Using a negative value as `rhs` is the same as performing a left shift
  /// using `abs(rhs)`.
  ///
  ///     var a: UInt8 = 30                 // 0b00011110
  ///     a >>= -3
  ///     // a == 240                       // 0b11110000
  ///
  ///     var b: UInt8 = 30                 // 0b00011110
  ///     b <<= 3
  ///     // b == 240                       // 0b11110000
  ///
  /// Right shift operations on negative values "fill in" the high bits with
  /// ones instead of zeros.
  ///
  ///     var q: Int8 = -30                 // 0b11100010
  ///     q >>= 2
  ///     // q == -8                        // 0b11111000
  ///
  ///     var r: Int8 = -30                 // 0b11100010
  ///     r >>= 11
  ///     // r == -1                        // 0b11111111
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the right.
  static func >>= <RHS: BinaryInteger>(lhs: inout Self, rhs: RHS)

  /// Returns the result of shifting a value's binary representation the
  /// specified number of digits to the left.
  ///
  /// The `<<` operator performs a *smart shift*, which defines a result for a
  /// shift of any value.
  ///
  /// - Using a negative value for `rhs` performs a right shift using
  ///   `abs(rhs)`.
  /// - Using a value for `rhs` that is greater than or equal to the bit width
  ///   of `lhs` is an *overshift*, resulting in zero.
  /// - Using any other value for `rhs` performs a left shift on `lhs` by that
  ///   amount.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the value is shifted left by two bits.
  ///
  ///     let x: UInt8 = 30                 // 0b00011110
  ///     let y = x << 2
  ///     // y == 120                       // 0b01111000
  ///
  /// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
  /// are set to zero.
  ///
  ///     let z = x << 11
  ///     // z == 0                         // 0b00000000
  ///
  /// Using a negative value as `rhs` is the same as performing a right shift
  /// with `abs(rhs)`.
  ///
  ///     let a = x << -3
  ///     // a == 3                         // 0b00000011
  ///     let b = x >> 3
  ///     // b == 3                         // 0b00000011
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the left.
  static func << <RHS: BinaryInteger>(lhs: Self, rhs: RHS) -> Self

  /// Stores the result of shifting a value's binary representation the
  /// specified number of digits to the left in the left-hand-side variable.
  ///
  /// The `<<` operator performs a *smart shift*, which defines a result for a
  /// shift of any value.
  ///
  /// - Using a negative value for `rhs` performs a right shift using
  ///   `abs(rhs)`.
  /// - Using a value for `rhs` that is greater than or equal to the bit width
  ///   of `lhs` is an *overshift*, resulting in zero.
  /// - Using any other value for `rhs` performs a left shift on `lhs` by that
  ///   amount.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the value is shifted left by two bits.
  ///
  ///     var x: UInt8 = 30                 // 0b00011110
  ///     x <<= 2
  ///     // x == 120                       // 0b01111000
  ///
  /// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
  /// are set to zero.
  ///
  ///     var y: UInt8 = 30                 // 0b00011110
  ///     y <<= 11
  ///     // y == 0                         // 0b00000000
  ///
  /// Using a negative value as `rhs` is the same as performing a right shift
  /// with `abs(rhs)`.
  ///
  ///     var a: UInt8 = 30                 // 0b00011110
  ///     a <<= -3
  ///     // a == 3                         // 0b00000011
  ///
  ///     var b: UInt8 = 30                 // 0b00011110
  ///     b >>= 3
  ///     // b == 3                         // 0b00000011
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the left.
  static func <<=<RHS: BinaryInteger>(lhs: inout Self, rhs: RHS)

  /// Returns the quotient and remainder of this value divided by the given
  /// value.
  ///
  /// Use this method to calculate the quotient and remainder of a division at
  /// the same time.
  ///
  ///     let x = 1_000_000
  ///     let (q, r) = x.quotientAndRemainder(dividingBy: 933)
  ///     // q == 1071
  ///     // r == 757
  ///
  /// - Parameter rhs: The value to divide this value by.
  /// - Returns: A tuple containing the quotient and remainder of this value
  ///   divided by `rhs`. The remainder has the same sign as `lhs`.
  func quotientAndRemainder(dividingBy rhs: Self)
    -> (quotient: Self, remainder: Self)

  /// Returns `true` if this value is a multiple of the given value, and `false`
  /// otherwise.
  ///
  /// For two integers *a* and *b*, *a* is a multiple of *b* if there exists a
  /// third integer *q* such that _a = q*b_. For example, *6* is a multiple of
  /// *3* because _6 = 2*3_. Zero is a multiple of everything because _0 = 0*x_
  /// for any integer *x*.
  ///
  /// Two edge cases are worth particular attention:
  /// - `x.isMultiple(of: 0)` is `true` if `x` is zero and `false` otherwise.
  /// - `T.min.isMultiple(of: -1)` is `true` for signed integer `T`, even
  ///   though the quotient `T.min / -1` isn't representable in type `T`.
  ///
  /// - Parameter other: The value to test.
  func isMultiple(of other: Self) -> Bool

  /// Returns `-1` if this value is negative and `1` if it's positive;
  /// otherwise, `0`.
  ///
  /// - Returns: The sign of this number, expressed as an integer of the same
  ///   type.
  func signum() -> Self
}

extension BinaryInteger {
  /// Creates a new value equal to zero.
  @_transparent
  public init() {
    self = 0
  }

  /// Returns `-1` if this value is negative and `1` if it's positive;
  /// otherwise, `0`.
  ///
  /// - Returns: The sign of this number, expressed as an integer of the same
  ///   type.
  @inlinable
  public func signum() -> Self {
    return (self > (0 as Self) ? 1 : 0) - (self < (0 as Self) ? 1 : 0)
  }

  @_transparent
  public var _lowWord: UInt {
    var it = words.makeIterator()
    return it.next() ?? 0
  }

  @inlinable
  public func _binaryLogarithm() -> Int {
    _precondition(self > (0 as Self))
    var (quotient, remainder) =
      (bitWidth &- 1).quotientAndRemainder(dividingBy: UInt.bitWidth)
    remainder = remainder &+ 1
    var word = UInt(truncatingIfNeeded: self >> (bitWidth &- remainder))
    // If, internally, a variable-width binary integer uses digits of greater
    // bit width than that of Magnitude.Words.Element (i.e., UInt), then it is
    // possible that `word` could be zero. Additionally, a signed variable-width
    // binary integer may have a leading word that is zero to store a clear sign
    // bit.
    while word == 0 {
      quotient = quotient &- 1
      remainder = remainder &+ UInt.bitWidth
      word = UInt(truncatingIfNeeded: self >> (bitWidth &- remainder))
    }
    // Note that the order of operations below is important to guarantee that
    // we won't overflow.
    return UInt.bitWidth &* quotient &+
        (UInt.bitWidth &- (word.leadingZeroBitCount &+ 1))
  }

  /// Returns the quotient and remainder of this value divided by the given
  /// value.
  ///
  /// Use this method to calculate the quotient and remainder of a division at
  /// the same time.
  ///
  ///     let x = 1_000_000
  ///     let (q, r) = x.quotientAndRemainder(dividingBy: 933)
  ///     // q == 1071
  ///     // r == 757
  ///
  /// - Parameter rhs: The value to divide this value by.
  /// - Returns: A tuple containing the quotient and remainder of this value
  ///   divided by `rhs`.
  @inlinable
  public func quotientAndRemainder(dividingBy rhs: Self)
    -> (quotient: Self, remainder: Self) {
    return (self / rhs, self % rhs)
  }
  
  @inlinable
  public func isMultiple(of other: Self) -> Bool {
    // Nothing but zero is a multiple of zero.
    if other == 0 { return self == 0 }
    // Do the test in terms of magnitude, which guarantees there are no other
    // edge cases. If we write this as `self % other` instead, it could trap
    // for types that are not symmetric around zero.
    return self.magnitude % other.magnitude == 0
  }

//===----------------------------------------------------------------------===//
//===--- Homogeneous ------------------------------------------------------===//
//===----------------------------------------------------------------------===//
  /// Returns the result of performing a bitwise AND operation on the two given
  /// values.
  ///
  /// A bitwise AND operation results in a value that has each bit set to `1`
  /// where *both* of its arguments have that bit set to `1`. For example:
  ///
  ///     let x: UInt8 = 5          // 0b00000101
  ///     let y: UInt8 = 14         // 0b00001110
  ///     let z = x & y             // 0b00000100
  ///     // z == 4
  ///
  /// - Parameters:
  ///   - lhs: An integer value.
  ///   - rhs: Another integer value.
  @_transparent
  public static func & (lhs: Self, rhs: Self) -> Self {
    var lhs = lhs
    lhs &= rhs
    return lhs
  }

  /// Returns the result of performing a bitwise OR operation on the two given
  /// values.
  ///
  /// A bitwise OR operation results in a value that has each bit set to `1`
  /// where *one or both* of its arguments have that bit set to `1`. For
  /// example:
  ///
  ///     let x: UInt8 = 5          // 0b00000101
  ///     let y: UInt8 = 14         // 0b00001110
  ///     let z = x | y             // 0b00001111
  ///     // z == 15
  ///
  /// - Parameters:
  ///   - lhs: An integer value.
  ///   - rhs: Another integer value.
  @_transparent
  public static func | (lhs: Self, rhs: Self) -> Self {
    var lhs = lhs
    lhs |= rhs
    return lhs
  }

  /// Returns the result of performing a bitwise XOR operation on the two given
  /// values.
  ///
  /// A bitwise XOR operation, also known as an exclusive OR operation, results
  /// in a value that has each bit set to `1` where *one or the other but not
  /// both* of its arguments had that bit set to `1`. For example:
  ///
  ///     let x: UInt8 = 5          // 0b00000101
  ///     let y: UInt8 = 14         // 0b00001110
  ///     let z = x ^ y             // 0b00001011
  ///     // z == 11
  ///
  /// - Parameters:
  ///   - lhs: An integer value.
  ///   - rhs: Another integer value.
  @_transparent
  public static func ^ (lhs: Self, rhs: Self) -> Self {
    var lhs = lhs
    lhs ^= rhs
    return lhs
  }

//===----------------------------------------------------------------------===//
//===--- Heterogeneous non-masking shift in terms of shift-assignment -----===//
//===----------------------------------------------------------------------===//
  /// Returns the result of shifting a value's binary representation the
  /// specified number of digits to the right.
  ///
  /// The `>>` operator performs a *smart shift*, which defines a result for a
  /// shift of any value.
  ///
  /// - Using a negative value for `rhs` performs a left shift using
  ///   `abs(rhs)`.
  /// - Using a value for `rhs` that is greater than or equal to the bit width
  ///   of `lhs` is an *overshift*. An overshift results in `-1` for a
  ///   negative value of `lhs` or `0` for a nonnegative value.
  /// - Using any other value for `rhs` performs a right shift on `lhs` by that
  ///   amount.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the value is shifted right by two bits.
  ///
  ///     let x: UInt8 = 30                 // 0b00011110
  ///     let y = x >> 2
  ///     // y == 7                         // 0b00000111
  ///
  /// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
  /// are set to zero.
  ///
  ///     let z = x >> 11
  ///     // z == 0                         // 0b00000000
  ///
  /// Using a negative value as `rhs` is the same as performing a left shift
  /// using `abs(rhs)`.
  ///
  ///     let a = x >> -3
  ///     // a == 240                       // 0b11110000
  ///     let b = x << 3
  ///     // b == 240                       // 0b11110000
  ///
  /// Right shift operations on negative values "fill in" the high bits with
  /// ones instead of zeros.
  ///
  ///     let q: Int8 = -30                 // 0b11100010
  ///     let r = q >> 2
  ///     // r == -8                        // 0b11111000
  ///
  ///     let s = q >> 11
  ///     // s == -1                        // 0b11111111
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the right.
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @_transparent
  public static func >> <RHS: BinaryInteger>(lhs: Self, rhs: RHS) -> Self {
    var r = lhs
    r >>= rhs
    return r
  }

  /// Returns the result of shifting a value's binary representation the
  /// specified number of digits to the left.
  ///
  /// The `<<` operator performs a *smart shift*, which defines a result for a
  /// shift of any value.
  ///
  /// - Using a negative value for `rhs` performs a right shift using
  ///   `abs(rhs)`.
  /// - Using a value for `rhs` that is greater than or equal to the bit width
  ///   of `lhs` is an *overshift*, resulting in zero.
  /// - Using any other value for `rhs` performs a left shift on `lhs` by that
  ///   amount.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the value is shifted left by two bits.
  ///
  ///     let x: UInt8 = 30                 // 0b00011110
  ///     let y = x << 2
  ///     // y == 120                       // 0b01111000
  ///
  /// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
  /// are set to zero.
  ///
  ///     let z = x << 11
  ///     // z == 0                         // 0b00000000
  ///
  /// Using a negative value as `rhs` is the same as performing a right shift
  /// with `abs(rhs)`.
  ///
  ///     let a = x << -3
  ///     // a == 3                         // 0b00000011
  ///     let b = x >> 3
  ///     // b == 3                         // 0b00000011
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the left.
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @_transparent
  public static func << <RHS: BinaryInteger>(lhs: Self, rhs: RHS) -> Self {
    var r = lhs
    r <<= rhs
    return r
  }
}


//===----------------------------------------------------------------------===//
//===--- CustomStringConvertible conformance ------------------------------===//
//===----------------------------------------------------------------------===//

@_unavailableInEmbedded
extension BinaryInteger {
  internal func _description(radix: Int, uppercase: Bool) -> String {
    _precondition(2...36 ~= radix, "Radix must be between 2 and 36")

    if bitWidth <= 64 {
      let radix_ = Int64(radix)
      return Self.isSigned
        ? _int64ToString(
          Int64(truncatingIfNeeded: self), radix: radix_, uppercase: uppercase)
        : _uint64ToString(
          UInt64(truncatingIfNeeded: self), radix: radix_, uppercase: uppercase)
    }

    if self == (0 as Self) { return "0" }

    // Bit shifting can be faster than division when `radix` is a power of two
    // (although not necessarily the case for builtin types).
    let isRadixPowerOfTwo = radix.nonzeroBitCount == 1
    let radix_ = Magnitude(radix)
    func _quotientAndRemainder(_ value: Magnitude) -> (Magnitude, Magnitude) {
      return isRadixPowerOfTwo
        ? (value >> radix.trailingZeroBitCount, value & (radix_ - 1))
        : value.quotientAndRemainder(dividingBy: radix_)
    }

    let hasLetters = radix > 10
    func _ascii(_ digit: UInt8) -> UInt8 {
      let base: UInt8
      if !hasLetters || digit < 10 {
        base = UInt8(("0" as Unicode.Scalar).value)
      } else if uppercase {
        base = UInt8(("A" as Unicode.Scalar).value) &- 10
      } else {
        base = UInt8(("a" as Unicode.Scalar).value) &- 10
      }
      return base &+ digit
    }

    let isNegative = Self.isSigned && self < (0 as Self)
    var value = magnitude

    // TODO(FIXME JIRA): All current stdlib types fit in small. Use a stack
    // buffer instead of an array on the heap.

    var result: [UInt8] = []
    while value != 0 {
      let (quotient, remainder) = _quotientAndRemainder(value)
      result.append(_ascii(UInt8(truncatingIfNeeded: remainder)))
      value = quotient
    }

    if isNegative {
      result.append(UInt8(("-" as Unicode.Scalar).value))
    }

    result.reverse()
    return result.withUnsafeBufferPointer {
      return String._fromASCII($0)
    }
  }

  /// A textual representation of this value.
  @_semantics("binaryInteger.description")
  public var description: String {
    return _description(radix: 10, uppercase: false)
  }
}


//===----------------------------------------------------------------------===//
//===--- Strideable conformance -------------------------------------------===//
//===----------------------------------------------------------------------===//

extension BinaryInteger {
  /// Returns the distance from this value to the given value, expressed as a
  /// stride.
  ///
  /// For two values `x` and `y`, and a distance `n = x.distance(to: y)`,
  /// `x.advanced(by: n) == y`.
  ///
  /// - Parameter other: The value to calculate the distance to.
  /// - Returns: The distance from this value to `other`.
  @inlinable
  @inline(__always)
  public func distance(to other: Self) -> Int {
    if !Self.isSigned {
      if self > other {
        if let result = Int(exactly: self - other) {
          return -result
        }
      } else {
        if let result = Int(exactly: other - self) {
          return result
        }
      }
    } else {
      let isNegative = self < (0 as Self)
      if isNegative == (other < (0 as Self)) {
        if let result = Int(exactly: other - self) {
          return result
        }
      } else {
        if let result = Int(exactly: self.magnitude + other.magnitude) {
          return isNegative ? result : -result
        }
      }
    }
    _preconditionFailure("Distance is not representable in Int")
  }

  /// Returns a value that is offset the specified distance from this value.
  ///
  /// Use the `advanced(by:)` method in generic code to offset a value by a
  /// specified distance. If you're working directly with numeric values, use
  /// the addition operator (`+`) instead of this method.
  ///
  /// For a value `x`, a distance `n`, and a value `y = x.advanced(by: n)`,
  /// `x.distance(to: y) == n`.
  ///
  /// - Parameter n: The distance to advance this value.
  /// - Returns: A value that is offset from this value by `n`.
  @inlinable
  @inline(__always)
  public func advanced(by n: Int) -> Self {
    if Self.isSigned {
      return self.bitWidth < n.bitWidth
        ? Self(Int(truncatingIfNeeded: self) + n)
        : self + Self(truncatingIfNeeded: n)
    } else {
      return n < (0 as Int)
        ? self - Self(UInt(bitPattern: ~n &+ 1))
        : self + Self(UInt(bitPattern: n))
    }
  }
}

//===----------------------------------------------------------------------===//
//===--- Heterogeneous comparison -----------------------------------------===//
//===----------------------------------------------------------------------===//

extension BinaryInteger {
  /// Returns a Boolean value indicating whether the two given values are
  /// equal.
  ///
  /// You can check the equality of instances of any `BinaryInteger` types
  /// using the equal-to operator (`==`). For example, you can test whether
  /// the first `UInt8` value in a string's UTF-8 encoding is equal to the
  /// first `UInt32` value in its Unicode scalar view:
  ///
  ///     let gameName = "Red Light, Green Light"
  ///     if let firstUTF8 = gameName.utf8.first,
  ///         let firstScalar = gameName.unicodeScalars.first?.value {
  ///         print("First code values are equal: \(firstUTF8 == firstScalar)")
  ///     }
  ///     // Prints "First code values are equal: true"
  ///
  /// - Parameters:
  ///   - lhs: An integer to compare.
  ///   - rhs: Another integer to compare.
  @_transparent
  public static func == <
    Other: BinaryInteger
  >(lhs: Self, rhs: Other) -> Bool {
    // Use bit pattern conversion to widen the comparand with smaller bit width.
    if Self.isSigned == Other.isSigned {
      return lhs.bitWidth >= rhs.bitWidth ?
        lhs == Self(truncatingIfNeeded: rhs) :
        Other(truncatingIfNeeded: lhs) == rhs
    }
    // If `Self` is signed but `Other` is unsigned, then we have to
    // be a little more careful about widening, since:
    // (1) a fixed-width signed type can't represent the largest values of
    //     a fixed-width unsigned type of equal bit width; and
    // (2) an unsigned type (obviously) can't represent a negative value.
    if Self.isSigned {    
      return lhs.bitWidth > rhs.bitWidth ? // (1)
        lhs == Self(truncatingIfNeeded: rhs) :
        (lhs >= (0 as Self) && Other(truncatingIfNeeded: lhs) == rhs) // (2)
    }
    // Analogous reasoning applies if `Other` is signed but `Self` is not.
    return lhs.bitWidth < rhs.bitWidth ?
      Other(truncatingIfNeeded: lhs) == rhs :
      (rhs >= (0 as Other) && lhs == Self(truncatingIfNeeded: rhs))
  }

  /// Returns a Boolean value indicating whether the two given values are not
  /// equal.
  ///
  /// You can check the inequality of instances of any `BinaryInteger` types
  /// using the not-equal-to operator (`!=`). For example, you can test
  /// whether the first `UInt8` value in a string's UTF-8 encoding is not
  /// equal to the first `UInt32` value in its Unicode scalar view:
  ///
  ///     let gameName = "Red Light, Green Light"
  ///     if let firstUTF8 = gameName.utf8.first,
  ///         let firstScalar = gameName.unicodeScalars.first?.value {
  ///         print("First code values are different: \(firstUTF8 != firstScalar)")
  ///     }
  ///     // Prints "First code values are different: false"
  ///
  /// - Parameters:
  ///   - lhs: An integer to compare.
  ///   - rhs: Another integer to compare.
  @_transparent
  public static func != <
    Other: BinaryInteger
  >(lhs: Self, rhs: Other) -> Bool {
    return !(lhs == rhs)
  }

  /// Returns a Boolean value indicating whether the value of the first
  /// argument is less than that of the second argument.
  ///
  /// You can compare instances of any `BinaryInteger` types using the
  /// less-than operator (`<`), even if the two instances are of different
  /// types.
  ///
  /// - Parameters:
  ///   - lhs: An integer to compare.
  ///   - rhs: Another integer to compare.
  @_transparent
  public static func < <Other: BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
    // Use bit pattern conversion to widen the comparand with smaller bit width.
    if Self.isSigned == Other.isSigned {
      return lhs.bitWidth >= rhs.bitWidth ?
        lhs < Self(truncatingIfNeeded: rhs) :
        Other(truncatingIfNeeded: lhs) < rhs
    }
    // If `Self` is signed but `Other` is unsigned, then we have to
    // be a little more careful about widening, since:
    // (1) a fixed-width signed type can't represent the largest values of
    //     a fixed-width unsigned type of equal bit width; and
    // (2) an unsigned type (obviously) can't represent a negative value.
    if Self.isSigned {
      return lhs.bitWidth > rhs.bitWidth ? // (1)
        lhs < Self(truncatingIfNeeded: rhs) :
        (lhs < (0 as Self) || Other(truncatingIfNeeded: lhs) < rhs) // (2)
    }
    // Analogous reasoning applies if `Other` is signed but `Self` is not.
    return lhs.bitWidth < rhs.bitWidth ?
      Other(truncatingIfNeeded: lhs) < rhs :
      (rhs > (0 as Other) && lhs < Self(truncatingIfNeeded: rhs))
  }

  /// Returns a Boolean value indicating whether the value of the first
  /// argument is less than or equal to that of the second argument.
  ///
  /// You can compare instances of any `BinaryInteger` types using the
  /// less-than-or-equal-to operator (`<=`), even if the two instances are of
  /// different types.
  ///
  /// - Parameters:
  ///   - lhs: An integer to compare.
  ///   - rhs: Another integer to compare.
  @_transparent
  public static func <= <Other: BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
    return !(rhs < lhs)
  }

  /// Returns a Boolean value indicating whether the value of the first
  /// argument is greater than or equal to that of the second argument.
  ///
  /// You can compare instances of any `BinaryInteger` types using the
  /// greater-than-or-equal-to operator (`>=`), even if the two instances are
  /// of different types.
  ///
  /// - Parameters:
  ///   - lhs: An integer to compare.
  ///   - rhs: Another integer to compare.
  @_transparent
  public static func >= <Other: BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
    return !(lhs < rhs)
  }

  /// Returns a Boolean value indicating whether the value of the first
  /// argument is greater than that of the second argument.
  ///
  /// You can compare instances of any `BinaryInteger` types using the
  /// greater-than operator (`>`), even if the two instances are of different
  /// types.
  ///
  /// - Parameters:
  ///   - lhs: An integer to compare.
  ///   - rhs: Another integer to compare.
  @_transparent
  public static func > <Other: BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
    return rhs < lhs
  }
}

//===----------------------------------------------------------------------===//
//===--- Ambiguity breakers -----------------------------------------------===//
//
// These two versions of the operators are not ordered with respect to one
// another, but the compiler choses the second one, and that results in infinite
// recursion.
//
//     <T: Comparable>(T, T) -> Bool
//     <T: BinaryInteger, U: BinaryInteger>(T, U) -> Bool
//
// so we define:
//
//     <T: BinaryInteger>(T, T) -> Bool
//
//===----------------------------------------------------------------------===//

extension BinaryInteger {
  @_transparent
  public static func != (lhs: Self, rhs: Self) -> Bool {
    return !(lhs == rhs)
  }

  @_transparent
  public static func <= (lhs: Self, rhs: Self) -> Bool {
    return !(rhs < lhs)
  }

  @_transparent
  public static func >= (lhs: Self, rhs: Self) -> Bool {
    return !(lhs < rhs)
  }

  @_transparent
  public static func > (lhs: Self, rhs: Self) -> Bool {
    return rhs < lhs
  }
}

#if !$Embedded
public typealias _LosslessStringConvertibleOrNone = LosslessStringConvertible
#else
public protocol _LosslessStringConvertibleOrNone {}
#endif

//===----------------------------------------------------------------------===//
//===--- FixedWidthInteger ------------------------------------------------===//
//===----------------------------------------------------------------------===//

/// An integer type that uses a fixed size for every instance.
///
/// The `FixedWidthInteger` protocol adds binary bitwise operations, bit
/// shifts, and overflow handling to the operations supported by the
/// `BinaryInteger` protocol.
///
/// Use the `FixedWidthInteger` protocol as a constraint or extension point
/// when writing operations that depend on bit shifting, performing bitwise
/// operations, catching overflows, or having access to the maximum or minimum
/// representable value of a type. For example, the following code provides a
/// `binaryString` property on every fixed-width integer that represents the
/// number's binary representation, split into 8-bit chunks.
///
///     extension FixedWidthInteger {
///         var binaryString: String {
///             var result: [String] = []
///             for i in 0..<(Self.bitWidth / 8) {
///                 let byte = UInt8(truncatingIfNeeded: self >> (i * 8))
///                 let byteString = String(byte, radix: 2)
///                 let padding = String(repeating: "0",
///                                      count: 8 - byteString.count)
///                 result.append(padding + byteString)
///             }
///             return "0b" + result.reversed().joined(separator: "_")
///         }
///     }
///
///     print(Int16.max.binaryString)
///     // Prints "0b01111111_11111111"
///     print((101 as UInt8).binaryString)
///     // Prints "0b01100101"
///
/// The `binaryString` implementation uses the static `bitWidth` property and
/// the right shift operator (`>>`), both of which are available to any type
/// that conforms to the `FixedWidthInteger` protocol.
///
/// The next example declares a generic `squared` function, which accepts an
/// instance `x` of any fixed-width integer type. The function uses the
/// `multipliedReportingOverflow(by:)` method to multiply `x` by itself and
/// check whether the result is too large to represent in the same type.
///
///     func squared<T: FixedWidthInteger>(_ x: T) -> T? {
///         let (result, overflow) = x.multipliedReportingOverflow(by: x)
///         if overflow {
///             return nil
///         }
///         return result
///     }
///
///     let (x, y): (Int8, Int8) = (9, 123)
///     print(squared(x))
///     // Prints "Optional(81)"
///     print(squared(y))
///     // Prints "nil"
///
/// Conforming to the FixedWidthInteger Protocol
/// ============================================
///
/// To make your own custom type conform to the `FixedWidthInteger` protocol,
/// declare the required initializers, properties, and methods. The required
/// methods that are suffixed with `ReportingOverflow` serve as the
/// customization points for arithmetic operations. When you provide just those
/// methods, the standard library provides default implementations for all
/// other arithmetic methods and operators.
public protocol FixedWidthInteger: BinaryInteger, _LosslessStringConvertibleOrNone
where Magnitude: FixedWidthInteger & UnsignedInteger,
      Stride: FixedWidthInteger & SignedInteger {
  /// The number of bits used for the underlying binary representation of
  /// values of this type.
  ///
  /// An unsigned, fixed-width integer type can represent values from 0 through
  /// `(2 ** bitWidth) - 1`, where `**` is exponentiation. A signed,
  /// fixed-width integer type can represent values from
  /// `-(2 ** (bitWidth - 1))` through `(2 ** (bitWidth - 1)) - 1`. For example,
  /// the `Int8` type has a `bitWidth` value of 8 and can store any integer in
  /// the range `-128...127`.
  static var bitWidth: Int { get }

  /// The maximum representable integer in this type.
  ///
  /// For unsigned integer types, this value is `(2 ** bitWidth) - 1`, where
  /// `**` is exponentiation. For signed integer types, this value is
  /// `(2 ** (bitWidth - 1)) - 1`.
  static var max: Self { get }

  /// The minimum representable integer in this type.
  ///
  /// For unsigned integer types, this value is always `0`. For signed integer
  /// types, this value is `-(2 ** (bitWidth - 1))`, where `**` is
  /// exponentiation.
  static var min: Self { get }

  /// Returns the sum of this value and the given value, along with a Boolean
  /// value indicating whether overflow occurred in the operation.
  ///
  /// - Parameter rhs: The value to add to this value.
  /// - Returns: A tuple containing the result of the addition along with a
  ///   Boolean value indicating whether overflow occurred. If the `overflow`
  ///   component is `false`, the `partialValue` component contains the entire
  ///   sum. If the `overflow` component is `true`, an overflow occurred and
  ///   the `partialValue` component contains the truncated sum of this value
  ///   and `rhs`.
  func addingReportingOverflow(
    _ rhs: Self
  ) -> (partialValue: Self, overflow: Bool)

  /// Returns the difference obtained by subtracting the given value from this
  /// value, along with a Boolean value indicating whether overflow occurred in
  /// the operation.
  ///
  /// - Parameter rhs: The value to subtract from this value.
  /// - Returns: A tuple containing the result of the subtraction along with a
  ///   Boolean value indicating whether overflow occurred. If the `overflow`
  ///   component is `false`, the `partialValue` component contains the entire
  ///   difference. If the `overflow` component is `true`, an overflow occurred
  ///   and the `partialValue` component contains the truncated result of `rhs`
  ///   subtracted from this value.
  func subtractingReportingOverflow(
    _ rhs: Self
  ) -> (partialValue: Self, overflow: Bool)

  /// Returns the product of this value and the given value, along with a
  /// Boolean value indicating whether overflow occurred in the operation.
  ///
  /// - Parameter rhs: The value to multiply by this value.
  /// - Returns: A tuple containing the result of the multiplication along with
  ///   a Boolean value indicating whether overflow occurred. If the `overflow`
  ///   component is `false`, the `partialValue` component contains the entire
  ///   product. If the `overflow` component is `true`, an overflow occurred and
  ///   the `partialValue` component contains the truncated product of this
  ///   value and `rhs`.
  func multipliedReportingOverflow(
    by rhs: Self
  ) -> (partialValue: Self, overflow: Bool)

  /// Returns the quotient obtained by dividing this value by the given value,
  /// along with a Boolean value indicating whether overflow occurred in the
  /// operation.
  ///
  /// Dividing by zero is not an error when using this method. For a value `x`,
  /// the result of `x.dividedReportingOverflow(by: 0)` is `(x, true)`.
  ///
  /// - Parameter rhs: The value to divide this value by.
  /// - Returns: A tuple containing the result of the division along with a
  ///   Boolean value indicating whether overflow occurred. If the `overflow`
  ///   component is `false`, the `partialValue` component contains the entire
  ///   quotient. If the `overflow` component is `true`, an overflow occurred
  ///   and the `partialValue` component contains either the truncated quotient
  ///   or, if the quotient is undefined, the dividend.
  func dividedReportingOverflow(
    by rhs: Self
  ) -> (partialValue: Self, overflow: Bool)

  /// Returns the remainder after dividing this value by the given value, along
  /// with a Boolean value indicating whether overflow occurred during division.
  ///
  /// Dividing by zero is not an error when using this method. For a value `x`,
  /// the result of `x.remainderReportingOverflow(dividingBy: 0)` is
  /// `(x, true)`.
  ///
  /// - Parameter rhs: The value to divide this value by.
  /// - Returns: A tuple containing the result of the operation along with a
  ///   Boolean value indicating whether overflow occurred. If the `overflow`
  ///   component is `false`, the `partialValue` component contains the entire
  ///   remainder. If the `overflow` component is `true`, an overflow occurred
  ///   during division and the `partialValue` component contains either the
  ///   entire remainder or, if the remainder is undefined, the dividend.
  func remainderReportingOverflow(
    dividingBy rhs: Self
  ) -> (partialValue: Self, overflow: Bool)

  /// Returns a tuple containing the high and low parts of the result of
  /// multiplying this value by the given value.
  ///
  /// Use this method to calculate the full result of a product that would
  /// otherwise overflow. Unlike traditional truncating multiplication, the
  /// `multipliedFullWidth(by:)` method returns a tuple containing both the
  /// `high` and `low` parts of the product of this value and `other`. The
  /// following example uses this method to multiply two `Int8` values that
  /// normally overflow when multiplied:
  ///
  ///     let x: Int8 = 48
  ///     let y: Int8 = -40
  ///     let result = x.multipliedFullWidth(by: y)
  ///     // result.high == -8
  ///     // result.low  == 128
  ///
  /// The product of `x` and `y` is `-1920`, which is too large to represent in
  /// an `Int8` instance. The `high` and `low` components of the `result` value
  /// represent `-1920` when concatenated to form a double-width integer; that
  /// is, using `result.high` as the high byte and `result.low` as the low byte
  /// of an `Int16` instance.
  ///
  ///     let z = Int16(result.high) << 8 | Int16(result.low)
  ///     // z == -1920
  ///
  /// - Parameter other: The value to multiply this value by.
  /// - Returns: A tuple containing the high and low parts of the result of
  ///   multiplying this value and `other`.
  func multipliedFullWidth(by other: Self) -> (high: Self, low: Self.Magnitude)

  /// Returns a tuple containing the quotient and remainder obtained by dividing
  /// the given value by this value.
  ///
  /// The resulting quotient must be representable within the bounds of the
  /// type. If the quotient is too large to represent in the type, a runtime
  /// error may occur.
  ///
  /// The following example divides a value that is too large to be represented
  /// using a single `Int` instance by another `Int` value. Because the quotient
  /// is representable as an `Int`, the division succeeds.
  ///
  ///     // 'dividend' represents the value 0x506f70652053616e74612049494949
  ///     let dividend = (22640526660490081, 7959093232766896457 as UInt)
  ///     let divisor = 2241543570477705381
  ///
  ///     let (quotient, remainder) = divisor.dividingFullWidth(dividend)
  ///     // quotient == 186319822866995413
  ///     // remainder == 0
  ///
  /// - Parameter dividend: A tuple containing the high and low parts of a
  ///   double-width integer.
  /// - Returns: A tuple containing the quotient and remainder obtained by
  ///   dividing `dividend` by this value.
  func dividingFullWidth(_ dividend: (high: Self, low: Self.Magnitude))
    -> (quotient: Self, remainder: Self)

  init(_truncatingBits bits: UInt)

  /// The number of bits equal to 1 in this value's binary representation.
  ///
  /// For example, in a fixed-width integer type with a `bitWidth` value of 8,
  /// the number *31* has five bits equal to *1*.
  ///
  ///     let x: Int8 = 0b0001_1111
  ///     // x == 31
  ///     // x.nonzeroBitCount == 5
  var nonzeroBitCount: Int { get }

  /// The number of leading zeros in this value's binary representation.
  ///
  /// For example, in a fixed-width integer type with a `bitWidth` value of 8,
  /// the number *31* has three leading zeros.
  ///
  ///     let x: Int8 = 0b0001_1111
  ///     // x == 31
  ///     // x.leadingZeroBitCount == 3
  ///
  /// If the value is zero, then `leadingZeroBitCount` is equal to `bitWidth`.
  var leadingZeroBitCount: Int { get }

  /// Creates an integer from its big-endian representation, changing the byte
  /// order if necessary.
  ///
  /// - Parameter value: A value to use as the big-endian representation of the
  ///   new integer.
  init(bigEndian value: Self)

  /// Creates an integer from its little-endian representation, changing the
  /// byte order if necessary.
  ///
  /// - Parameter value: A value to use as the little-endian representation of
  ///   the new integer.
  init(littleEndian value: Self)

  /// The big-endian representation of this integer.
  ///
  /// If necessary, the byte order of this value is reversed from the typical
  /// byte order of this integer type. On a big-endian platform, for any
  /// integer `x`, `x == x.bigEndian`.
  var bigEndian: Self { get }

  /// The little-endian representation of this integer.
  ///
  /// If necessary, the byte order of this value is reversed from the typical
  /// byte order of this integer type. On a little-endian platform, for any
  /// integer `x`, `x == x.littleEndian`.
  var littleEndian: Self { get }

  /// A representation of this integer with the byte order swapped.
  var byteSwapped: Self { get }

  /// Returns the result of shifting a value's binary representation the
  /// specified number of digits to the right, masking the shift amount to the
  /// type's bit width.
  ///
  /// Use the masking right shift operator (`&>>`) when you need to perform a
  /// shift and are sure that the shift amount is in the range
  /// `0..<lhs.bitWidth`. Before shifting, the masking right shift operator
  /// masks the shift to this range. The shift is performed using this masked
  /// value.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the shift amount requires no masking.
  ///
  ///     let x: UInt8 = 30                 // 0b00011110
  ///     let y = x &>> 2
  ///     // y == 7                         // 0b00000111
  ///
  /// However, if you use `8` as the shift amount, the method first masks the
  /// shift amount to zero, and then performs the shift, resulting in no change
  /// to the original value.
  ///
  ///     let z = x &>> 8
  ///     // z == 30                        // 0b00011110
  ///
  /// If the bit width of the shifted integer type is a power of two, masking
  /// is performed using a bitmask; otherwise, masking is performed using a
  /// modulo operation.
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
  ///     outside the range `0..<lhs.bitWidth`, it is masked to produce a
  ///     value within that range.
  static func &>>(lhs: Self, rhs: Self) -> Self

  /// Calculates the result of shifting a value's binary representation the
  /// specified number of digits to the right, masking the shift amount to the
  /// type's bit width, and stores the result in the left-hand-side variable.
  ///
  /// The `&>>=` operator performs a *masking shift*, where the value passed as
  /// `rhs` is masked to produce a value in the range `0..<lhs.bitWidth`. The
  /// shift is performed using this masked value.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the shift amount requires no masking.
  ///
  ///     var x: UInt8 = 30                 // 0b00011110
  ///     x &>>= 2
  ///     // x == 7                         // 0b00000111
  ///
  /// However, if you use `19` as `rhs`, the operation first bitmasks `rhs` to
  /// `3`, and then uses that masked value as the number of bits to shift `lhs`.
  ///
  ///     var y: UInt8 = 30                 // 0b00011110
  ///     y &>>= 19
  ///     // y == 3                         // 0b00000011
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
  ///     outside the range `0..<lhs.bitWidth`, it is masked to produce a
  ///     value within that range.
  static func &>>=(lhs: inout Self, rhs: Self)

  /// Returns the result of shifting a value's binary representation the
  /// specified number of digits to the left, masking the shift amount to the
  /// type's bit width.
  ///
  /// Use the masking left shift operator (`&<<`) when you need to perform a
  /// shift and are sure that the shift amount is in the range
  /// `0..<lhs.bitWidth`. Before shifting, the masking left shift operator
  /// masks the shift to this range. The shift is performed using this masked
  /// value.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the shift amount requires no masking.
  ///
  ///     let x: UInt8 = 30                 // 0b00011110
  ///     let y = x &<< 2
  ///     // y == 120                       // 0b01111000
  ///
  /// However, if you use `8` as the shift amount, the method first masks the
  /// shift amount to zero, and then performs the shift, resulting in no change
  /// to the original value.
  ///
  ///     let z = x &<< 8
  ///     // z == 30                        // 0b00011110
  ///
  /// If the bit width of the shifted integer type is a power of two, masking
  /// is performed using a bitmask; otherwise, masking is performed using a
  /// modulo operation.
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
  ///     outside the range `0..<lhs.bitWidth`, it is masked to produce a
  ///     value within that range.
  static func &<<(lhs: Self, rhs: Self) -> Self

  /// Returns the result of shifting a value's binary representation the
  /// specified number of digits to the left, masking the shift amount to the
  /// type's bit width, and stores the result in the left-hand-side variable.
  ///
  /// The `&<<=` operator performs a *masking shift*, where the value used as
  /// `rhs` is masked to produce a value in the range `0..<lhs.bitWidth`. The
  /// shift is performed using this masked value.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the shift amount requires no masking.
  ///
  ///     var x: UInt8 = 30                 // 0b00011110
  ///     x &<<= 2
  ///     // x == 120                       // 0b01111000
  ///
  /// However, if you pass `19` as `rhs`, the method first bitmasks `rhs` to
  /// `3`, and then uses that masked value as the number of bits to shift `lhs`.
  ///
  ///     var y: UInt8 = 30                 // 0b00011110
  ///     y &<<= 19
  ///     // y == 240                       // 0b11110000
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
  ///     outside the range `0..<lhs.bitWidth`, it is masked to produce a
  ///     value within that range.
  static func &<<=(lhs: inout Self, rhs: Self)
  
  /// Returns the product of the two given values, wrapping the result in case
  /// of any overflow.
  ///
  /// The overflow multiplication operator (`&*`) discards any bits that
  /// overflow the fixed width of the integer type. In the following example,
  /// the product of `10` and `50` is greater than the maximum representable
  /// `Int8` value, so the result is the partial value after discarding the
  /// overflowing bits.
  ///
  ///     let x: Int8 = 10 &* 5
  ///     // x == 50
  ///     let y: Int8 = 10 &* 50
  ///     // y == -12 (after overflow)
  ///
  /// For more about arithmetic with overflow operators, see [Overflow
  /// Operators][overflow] in *[The Swift Programming Language][tspl]*.
  ///
  /// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
  /// [tspl]: https://docs.swift.org/swift-book/
  ///
  /// - Parameters:
  ///   - lhs: The first value to multiply.
  ///   - rhs: The second value to multiply.
  @available(SwiftStdlib 6.0, *)
  static func &*(lhs: Self, rhs: Self) -> Self
}

extension FixedWidthInteger {
  /// The number of bits in the binary representation of this value.
  @inlinable
  public var bitWidth: Int { return Self.bitWidth }

  @inlinable
  public func _binaryLogarithm() -> Int {
    _precondition(self > (0 as Self))
    return Self.bitWidth &- (leadingZeroBitCount &+ 1)
  }

  /// Creates an integer from its little-endian representation, changing the
  /// byte order if necessary.
  ///
  /// - Parameter value: A value to use as the little-endian representation of
  ///   the new integer.
  @inlinable
  public init(littleEndian value: Self) {
#if _endian(little)
    self = value
#else
    self = value.byteSwapped
#endif
  }

  /// Creates an integer from its big-endian representation, changing the byte
  /// order if necessary.
  ///
  /// - Parameter value: A value to use as the big-endian representation of the
  ///   new integer.
  @inlinable
  public init(bigEndian value: Self) {
#if _endian(big)
    self = value
#else
    self = value.byteSwapped
#endif
  }

  /// The little-endian representation of this integer.
  ///
  /// If necessary, the byte order of this value is reversed from the typical
  /// byte order of this integer type. On a little-endian platform, for any
  /// integer `x`, `x == x.littleEndian`.
  @inlinable
  public var littleEndian: Self {
#if _endian(little)
    return self
#else
    return byteSwapped
#endif
  }

  /// The big-endian representation of this integer.
  ///
  /// If necessary, the byte order of this value is reversed from the typical
  /// byte order of this integer type. On a big-endian platform, for any
  /// integer `x`, `x == x.bigEndian`.
  @inlinable
  public var bigEndian: Self {
#if _endian(big)
    return self
#else
    return byteSwapped
#endif
  }
  
  // Default implementation of multipliedFullWidth.
  //
  // This implementation is mainly intended for [U]Int64 on 32b platforms. It
  // will not be especially efficient for other types that do not provide their
  // own implementation, but neither will it be catastrophically bad. It can
  // surely be improved on even for Int64, but that is mostly an optimization
  // problem; the basic algorithm here gives the compiler all the information
  // that it needs to generate efficient code.
  @_alwaysEmitIntoClient
  public func multipliedFullWidth(by other: Self) -> (high: Self, low: Magnitude) {
    // We define a utility function for splitting an integer into high and low
    // halves. Note that the low part is always unsigned, while the high part
    // matches the signedness of the input type. Both result types are the
    // full width of the original number; this may be surprising at first, but
    // there are two reasons for it:
    //
    // - we're going to use these as inputs to a multiplication operation, and
    //   &* is quite a bit less verbose than `multipliedFullWidth`, so it makes
    //   the rest of the code in this function somewhat easier to read.
    //
    // - there's no "half width type" that we can get at from this generic
    //   context, so there's not really another option anyway.
    //
    // Fortunately, the compiler is pretty good about propagating the necessary
    // information to optimize away unnecessary arithmetic.
    func split<T: FixedWidthInteger>(_ x: T) -> (high: T, low: T.Magnitude) {
      let n = T.bitWidth/2
      return (x >> n, T.Magnitude(truncatingIfNeeded: x) & ((1 &<< n) &- 1))
    }
    // Split `self` and `other` into high and low parts, compute the partial
    // products carrying high words in as we go. We use the wrapping operators
    // and `truncatingIfNeeded` inits purely as an optimization hint to the
    // compiler; none of these operations will ever wrap due to the constraints
    // on the arithmetic. The bounds are documented before each line for signed
    // types. For unsigned types, the bounds are much more well known and
    // easier to derive, so I haven't bothered to document them here, but they
    // all boil down to the fact that a*b + c + d cannot overflow a double-
    // width result with unsigned a, b, c, d.
    let (x1, x0) = split(self)
    let (y1, y0) = split(other)
    // If B is 2^bitWidth/2, x0 and y0 are in 0 ... B-1, so their product is
    // in 0 ... B^2-2B+1. For further analysis, we'll need the fact that
    // the high word is in 0 ... B-2.
    let p00 = x0 &* y0
    // x1 is in -B/2 ... B/2-1, so the product x1*y0 is in
    // -(B^2-B)/2 ... (B^2-3B+2)/2; after adding the high word of p00, the
    // result is in -(B^2-B)/2 ... (B^2-B-2)/2.
    let p01 = x1 &* Self(y0) &+ Self(split(p00).high)
    // The previous analysis holds for this product as well, and the sum is
    // in -(B^2-B)/2 ... (B^2-B)/2.
    let p10 = Self(x0) &* y1 &+ Self(split(p01).low)
    // No analysis is necessary for this term, because we know the product as
    // a whole cannot overflow, and this term is the final high word of the
    // product.
    let p11 = x1 &* y1 &+ split(p01).high &+ split(p10).high
    // Now we only need to assemble the low word of the product.
    return (p11, split(p10).low << (bitWidth/2) | split(p00).low)
  }

  /// Returns the result of shifting a value's binary representation the
  /// specified number of digits to the right, masking the shift amount to the
  /// type's bit width.
  ///
  /// Use the masking right shift operator (`&>>`) when you need to perform a
  /// shift and are sure that the shift amount is in the range
  /// `0..<lhs.bitWidth`. Before shifting, the masking right shift operator
  /// masks the shift to this range. The shift is performed using this masked
  /// value.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the shift amount requires no masking.
  ///
  ///     let x: UInt8 = 30                 // 0b00011110
  ///     let y = x &>> 2
  ///     // y == 7                         // 0b00000111
  ///
  /// However, if you use `8` as the shift amount, the method first masks the
  /// shift amount to zero, and then performs the shift, resulting in no change
  /// to the original value.
  ///
  ///     let z = x &>> 8
  ///     // z == 30                        // 0b00011110
  ///
  /// If the bit width of the shifted integer type is a power of two, masking
  /// is performed using a bitmask; otherwise, masking is performed using a
  /// modulo operation.
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
  ///     outside the range `0..<lhs.bitWidth`, it is masked to produce a
  ///     value within that range.
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @_transparent
  public static func &>> (lhs: Self, rhs: Self) -> Self {
    var lhs = lhs
    lhs &>>= rhs
    return lhs
  }

  /// Returns the result of shifting a value's binary representation the
  /// specified number of digits to the right, masking the shift amount to the
  /// type's bit width.
  ///
  /// Use the masking right shift operator (`&>>`) when you need to perform a
  /// shift and are sure that the shift amount is in the range
  /// `0..<lhs.bitWidth`. Before shifting, the masking right shift operator
  /// masks the shift to this range. The shift is performed using this masked
  /// value.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the shift amount requires no masking.
  ///
  ///     let x: UInt8 = 30                 // 0b00011110
  ///     let y = x &>> 2
  ///     // y == 7                         // 0b00000111
  ///
  /// However, if you use `8` as the shift amount, the method first masks the
  /// shift amount to zero, and then performs the shift, resulting in no change
  /// to the original value.
  ///
  ///     let z = x &>> 8
  ///     // z == 30                        // 0b00011110
  ///
  /// If the bit width of the shifted integer type is a power of two, masking
  /// is performed using a bitmask; otherwise, masking is performed using a
  /// modulo operation.
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
  ///     outside the range `0..<lhs.bitWidth`, it is masked to produce a
  ///     value within that range.
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @_transparent
  public static func &>> <
    Other: BinaryInteger
  >(lhs: Self, rhs: Other) -> Self {
    return lhs &>> Self(truncatingIfNeeded: rhs)
  }

  /// Calculates the result of shifting a value's binary representation the
  /// specified number of digits to the right, masking the shift amount to the
  /// type's bit width, and stores the result in the left-hand-side variable.
  ///
  /// The `&>>=` operator performs a *masking shift*, where the value passed as
  /// `rhs` is masked to produce a value in the range `0..<lhs.bitWidth`. The
  /// shift is performed using this masked value.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the shift amount requires no masking.
  ///
  ///     var x: UInt8 = 30                 // 0b00011110
  ///     x &>>= 2
  ///     // x == 7                         // 0b00000111
  ///
  /// However, if you use `19` as `rhs`, the operation first bitmasks `rhs` to
  /// `3`, and then uses that masked value as the number of bits to shift `lhs`.
  ///
  ///     var y: UInt8 = 30                 // 0b00011110
  ///     y &>>= 19
  ///     // y == 3                         // 0b00000011
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
  ///     outside the range `0..<lhs.bitWidth`, it is masked to produce a
  ///     value within that range.
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @_transparent
  public static func &>>= <
    Other: BinaryInteger
  >(lhs: inout Self, rhs: Other) {
    lhs = lhs &>> rhs
  }

  /// Returns the result of shifting a value's binary representation the
  /// specified number of digits to the left, masking the shift amount to the
  /// type's bit width.
  ///
  /// Use the masking left shift operator (`&<<`) when you need to perform a
  /// shift and are sure that the shift amount is in the range
  /// `0..<lhs.bitWidth`. Before shifting, the masking left shift operator
  /// masks the shift to this range. The shift is performed using this masked
  /// value.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the shift amount requires no masking.
  ///
  ///     let x: UInt8 = 30                 // 0b00011110
  ///     let y = x &<< 2
  ///     // y == 120                       // 0b01111000
  ///
  /// However, if you use `8` as the shift amount, the method first masks the
  /// shift amount to zero, and then performs the shift, resulting in no change
  /// to the original value.
  ///
  ///     let z = x &<< 8
  ///     // z == 30                        // 0b00011110
  ///
  /// If the bit width of the shifted integer type is a power of two, masking
  /// is performed using a bitmask; otherwise, masking is performed using a
  /// modulo operation.
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
  ///     outside the range `0..<lhs.bitWidth`, it is masked to produce a
  ///     value within that range.
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @_transparent
  public static func &<< (lhs: Self, rhs: Self) -> Self {
    var lhs = lhs
    lhs &<<= rhs
    return lhs
  }

  /// Returns the result of shifting a value's binary representation the
  /// specified number of digits to the left, masking the shift amount to the
  /// type's bit width.
  ///
  /// Use the masking left shift operator (`&<<`) when you need to perform a
  /// shift and are sure that the shift amount is in the range
  /// `0..<lhs.bitWidth`. Before shifting, the masking left shift operator
  /// masks the shift to this range. The shift is performed using this masked
  /// value.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the shift amount requires no masking.
  ///
  ///     let x: UInt8 = 30                 // 0b00011110
  ///     let y = x &<< 2
  ///     // y == 120                       // 0b01111000
  ///
  /// However, if you use `8` as the shift amount, the method first masks the
  /// shift amount to zero, and then performs the shift, resulting in no change
  /// to the original value.
  ///
  ///     let z = x &<< 8
  ///     // z == 30                        // 0b00011110
  ///
  /// If the bit width of the shifted integer type is a power of two, masking
  /// is performed using a bitmask; otherwise, masking is performed using a
  /// modulo operation.
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
  ///     outside the range `0..<lhs.bitWidth`, it is masked to produce a
  ///     value within that range.
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @_transparent
  public static func &<< <
    Other: BinaryInteger
  >(lhs: Self, rhs: Other) -> Self {
    return lhs &<< Self(truncatingIfNeeded: rhs)
  }

  /// Returns the result of shifting a value's binary representation the
  /// specified number of digits to the left, masking the shift amount to the
  /// type's bit width, and stores the result in the left-hand-side variable.
  ///
  /// The `&<<=` operator performs a *masking shift*, where the value used as
  /// `rhs` is masked to produce a value in the range `0..<lhs.bitWidth`. The
  /// shift is performed using this masked value.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the shift amount requires no masking.
  ///
  ///     var x: UInt8 = 30                 // 0b00011110
  ///     x &<<= 2
  ///     // x == 120                       // 0b01111000
  ///
  /// However, if you pass `19` as `rhs`, the method first bitmasks `rhs` to
  /// `3`, and then uses that masked value as the number of bits to shift `lhs`.
  ///
  ///     var y: UInt8 = 30                 // 0b00011110
  ///     y &<<= 19
  ///     // y == 240                       // 0b11110000
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
  ///     outside the range `0..<lhs.bitWidth`, it is masked to produce a
  ///     value within that range.
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @_transparent
  public static func &<<= <
    Other: BinaryInteger
  >(lhs: inout Self, rhs: Other) {
    lhs = lhs &<< rhs
  }
}

extension FixedWidthInteger {
  /// Returns a random value within the specified range, using the given
  /// generator as a source for randomness.
  ///
  /// Use this method to generate an integer within a specific range when you
  /// are using a custom random number generator. This example creates three
  /// new values in the range `1..<100`.
  ///
  ///     for _ in 1...3 {
  ///         print(Int.random(in: 1..<100, using: &myGenerator))
  ///     }
  ///     // Prints "7"
  ///     // Prints "44"
  ///     // Prints "21"
  ///
  /// - Note: The algorithm used to create random values may change in a future
  ///   version of Swift. If you're passing a generator that results in the
  ///   same sequence of integer values each time you run your program, that
  ///   sequence may change when your program is compiled using a different
  ///   version of Swift.
  ///
  /// - Parameters:
  ///   - range: The range in which to create a random value.
  ///     `range` must not be empty.
  ///   - generator: The random number generator to use when creating the
  ///     new random value.
  /// - Returns: A random value within the bounds of `range`.
  @inlinable
  public static func random<T: RandomNumberGenerator>(
    in range: Range<Self>,
    using generator: inout T
  ) -> Self {
    _precondition(
      !range.isEmpty,
      "Can't get random value with an empty range"
    )

    // Compute delta, the distance between the lower and upper bounds. This
    // value may not representable by the type Bound if Bound is signed, but
    // is always representable as Bound.Magnitude.
    let delta = Magnitude(truncatingIfNeeded: range.upperBound &- range.lowerBound)
    // The mathematical result we want is lowerBound plus a random value in
    // 0 ..< delta. We need to be slightly careful about how we do this
    // arithmetic; the Bound type cannot generally represent the random value,
    // so we use a wrapping addition on Bound.Magnitude. This will often
    // overflow, but produces the correct bit pattern for the result when
    // converted back to Bound.
    return Self(truncatingIfNeeded:
      Magnitude(truncatingIfNeeded: range.lowerBound) &+
      generator.next(upperBound: delta)
    )
  }
  
  /// Returns a random value within the specified range.
  ///
  /// Use this method to generate an integer within a specific range. This
  /// example creates three new values in the range `1..<100`.
  ///
  ///     for _ in 1...3 {
  ///         print(Int.random(in: 1..<100))
  ///     }
  ///     // Prints "53"
  ///     // Prints "64"
  ///     // Prints "5"
  ///
  /// This method is equivalent to calling the version that takes a generator,
  /// passing in the system's default random generator.
  ///
  /// - Parameter range: The range in which to create a random value.
  ///   `range` must not be empty.
  /// - Returns: A random value within the bounds of `range`.
  @inlinable
  public static func random(in range: Range<Self>) -> Self {
    var g = SystemRandomNumberGenerator()
    return Self.random(in: range, using: &g)
  }

  /// Returns a random value within the specified range, using the given
  /// generator as a source for randomness.
  ///
  /// Use this method to generate an integer within a specific range when you
  /// are using a custom random number generator. This example creates three
  /// new values in the range `1...100`.
  ///
  ///     for _ in 1...3 {
  ///         print(Int.random(in: 1...100, using: &myGenerator))
  ///     }
  ///     // Prints "7"
  ///     // Prints "44"
  ///     // Prints "21"
  ///
  /// - Parameters:
  ///   - range: The range in which to create a random value.
  ///   - generator: The random number generator to use when creating the
  ///     new random value.
  /// - Returns: A random value within the bounds of `range`.
  @inlinable
  public static func random<T: RandomNumberGenerator>(
    in range: ClosedRange<Self>,
    using generator: inout T
  ) -> Self {
    // Compute delta, the distance between the lower and upper bounds. This
    // value may not representable by the type Bound if Bound is signed, but
    // is always representable as Bound.Magnitude.
    var delta = Magnitude(truncatingIfNeeded: range.upperBound &- range.lowerBound)
    // Subtle edge case: if the range is the whole set of representable values,
    // then adding one to delta to account for a closed range will overflow.
    // If we used &+ instead, the result would be zero, which isn't helpful,
    // so we actually need to handle this case separately.
    if delta == Magnitude.max {
      return Self(truncatingIfNeeded: generator.next() as Magnitude)
    }
    // Need to widen delta to account for the right-endpoint of a closed range.
    delta += 1
    // The mathematical result we want is lowerBound plus a random value in
    // 0 ..< delta. We need to be slightly careful about how we do this
    // arithmetic; the Bound type cannot generally represent the random value,
    // so we use a wrapping addition on Bound.Magnitude. This will often
    // overflow, but produces the correct bit pattern for the result when
    // converted back to Bound.
    return Self(truncatingIfNeeded:
      Magnitude(truncatingIfNeeded: range.lowerBound) &+
      generator.next(upperBound: delta)
    )
  }
  
  /// Returns a random value within the specified range.
  ///
  /// Use this method to generate an integer within a specific range. This
  /// example creates three new values in the range `1...100`.
  ///
  ///     for _ in 1...3 {
  ///         print(Int.random(in: 1...100))
  ///     }
  ///     // Prints "53"
  ///     // Prints "64"
  ///     // Prints "5"
  ///
  /// This method is equivalent to calling `random(in:using:)`, passing in the
  /// system's default random generator.
  ///
  /// - Parameter range: The range in which to create a random value.
  /// - Returns: A random value within the bounds of `range`.
  @inlinable
  public static func random(in range: ClosedRange<Self>) -> Self {
    var g = SystemRandomNumberGenerator()
    return Self.random(in: range, using: &g)
  }
}

//===----------------------------------------------------------------------===//
//===--- Operators on FixedWidthInteger -----------------------------------===//
//===----------------------------------------------------------------------===//

extension FixedWidthInteger {
  /// Returns the inverse of the bits set in the argument.
  ///
  /// The bitwise NOT operator (`~`) is a prefix operator that returns a value
  /// in which all the bits of its argument are flipped: Bits that are `1` in
  /// the argument are `0` in the result, and bits that are `0` in the argument
  /// are `1` in the result. This is equivalent to the inverse of a set. For
  /// example:
  ///
  ///     let x: UInt8 = 5        // 0b00000101
  ///     let notX = ~x           // 0b11111010
  ///
  /// Performing a bitwise NOT operation on 0 returns a value with every bit
  /// set to `1`.
  ///
  ///     let allOnes = ~UInt8.min   // 0b11111111
  ///
  /// - Complexity: O(1).
  @_transparent
  public static prefix func ~ (x: Self) -> Self {
    return 0 &- x &- 1
  }

//===----------------------------------------------------------------------===//
//=== "Smart right shift", supporting overshifts and negative shifts ------===//
//===----------------------------------------------------------------------===//

  /// Returns the result of shifting a value's binary representation the
  /// specified number of digits to the right.
  ///
  /// The `>>` operator performs a *smart shift*, which defines a result for a
  /// shift of any value.
  ///
  /// - Using a negative value for `rhs` performs a left shift using
  ///   `abs(rhs)`.
  /// - Using a value for `rhs` that is greater than or equal to the bit width
  ///   of `lhs` is an *overshift*. An overshift results in `-1` for a
  ///   negative value of `lhs` or `0` for a nonnegative value.
  /// - Using any other value for `rhs` performs a right shift on `lhs` by that
  ///   amount.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the value is shifted right by two bits.
  ///
  ///     let x: UInt8 = 30                 // 0b00011110
  ///     let y = x >> 2
  ///     // y == 7                         // 0b00000111
  ///
  /// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
  /// are set to zero.
  ///
  ///     let z = x >> 11
  ///     // z == 0                         // 0b00000000
  ///
  /// Using a negative value as `rhs` is the same as performing a left shift
  /// using `abs(rhs)`.
  ///
  ///     let a = x >> -3
  ///     // a == 240                       // 0b11110000
  ///     let b = x << 3
  ///     // b == 240                       // 0b11110000
  ///
  /// Right shift operations on negative values "fill in" the high bits with
  /// ones instead of zeros.
  ///
  ///     let q: Int8 = -30                 // 0b11100010
  ///     let r = q >> 2
  ///     // r == -8                        // 0b11111000
  ///
  ///     let s = q >> 11
  ///     // s == -1                        // 0b11111111
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the right.
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @_transparent
  public static func >> <
    Other: BinaryInteger
  >(lhs: Self, rhs: Other) -> Self {
    var lhs = lhs
    _nonMaskingRightShiftGeneric(&lhs, rhs)
    return lhs
  }

  @_transparent
  @_semantics("optimize.sil.specialize.generic.partial.never")
  public static func >>= <
    Other: BinaryInteger
  >(lhs: inout Self, rhs: Other) {
    _nonMaskingRightShiftGeneric(&lhs, rhs)
  }

  @_transparent
  public static func _nonMaskingRightShiftGeneric <
    Other: BinaryInteger
  >(_ lhs: inout Self, _ rhs: Other) {
    let shift = rhs < -Self.bitWidth ? -Self.bitWidth
                : rhs > Self.bitWidth ? Self.bitWidth
                : Int(rhs)
    lhs = _nonMaskingRightShift(lhs, shift)
  }

  @_transparent
  public static func _nonMaskingRightShift(_ lhs: Self, _ rhs: Int) -> Self {
    let overshiftR = Self.isSigned ? lhs &>> (Self.bitWidth - 1) : 0
    let overshiftL: Self = 0
    if _fastPath(rhs >= 0) {
      if _fastPath(rhs < Self.bitWidth) {
        return lhs &>> Self(truncatingIfNeeded: rhs)
      }
      return overshiftR
    }

    if _slowPath(rhs <= -Self.bitWidth) {
      return overshiftL
    }
    return lhs &<< -rhs
  }

//===----------------------------------------------------------------------===//
//=== "Smart left shift", supporting overshifts and negative shifts -------===//
//===----------------------------------------------------------------------===//

  /// Returns the result of shifting a value's binary representation the
  /// specified number of digits to the left.
  ///
  /// The `<<` operator performs a *smart shift*, which defines a result for a
  /// shift of any value.
  ///
  /// - Using a negative value for `rhs` performs a right shift using
  ///   `abs(rhs)`.
  /// - Using a value for `rhs` that is greater than or equal to the bit width
  ///   of `lhs` is an *overshift*, resulting in zero.
  /// - Using any other value for `rhs` performs a left shift on `lhs` by that
  ///   amount.
  ///
  /// The following example defines `x` as an instance of `UInt8`, an 8-bit,
  /// unsigned integer type. If you use `2` as the right-hand-side value in an
  /// operation on `x`, the value is shifted left by two bits.
  ///
  ///     let x: UInt8 = 30                 // 0b00011110
  ///     let y = x << 2
  ///     // y == 120                       // 0b01111000
  ///
  /// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
  /// are set to zero.
  ///
  ///     let z = x << 11
  ///     // z == 0                         // 0b00000000
  ///
  /// Using a negative value as `rhs` is the same as performing a right shift
  /// with `abs(rhs)`.
  ///
  ///     let a = x << -3
  ///     // a == 3                         // 0b00000011
  ///     let b = x >> 3
  ///     // b == 3                         // 0b00000011
  ///
  /// - Parameters:
  ///   - lhs: The value to shift.
  ///   - rhs: The number of bits to shift `lhs` to the left.
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @_transparent
  public static func << <
    Other: BinaryInteger
  >(lhs: Self, rhs: Other) -> Self {
    var lhs = lhs
    _nonMaskingLeftShiftGeneric(&lhs, rhs)
    return lhs
  }

  @_transparent
  @_semantics("optimize.sil.specialize.generic.partial.never")
  public static func <<= <
    Other: BinaryInteger
  >(lhs: inout Self, rhs: Other) {
    _nonMaskingLeftShiftGeneric(&lhs, rhs)
  }

  @_transparent
  public static func _nonMaskingLeftShiftGeneric <
    Other: BinaryInteger
  >(_ lhs: inout Self, _ rhs: Other) {
    let shift = rhs < -Self.bitWidth ? -Self.bitWidth
                : rhs > Self.bitWidth ? Self.bitWidth
                : Int(rhs)
    lhs = _nonMaskingLeftShift(lhs, shift)
  }

  @_transparent
  public static func _nonMaskingLeftShift(_ lhs: Self, _ rhs: Int) -> Self {
    let overshiftR = Self.isSigned ? lhs &>> (Self.bitWidth - 1) : 0
    let overshiftL: Self = 0
    if _fastPath(rhs >= 0) {
      if _fastPath(rhs < Self.bitWidth) {
        return lhs &<< Self(truncatingIfNeeded: rhs)
      }
      return overshiftL
    }

    if _slowPath(rhs <= -Self.bitWidth) {
      return overshiftR
    }
    return lhs &>> -rhs
  }
}

extension FixedWidthInteger {
  @inlinable
  @_semantics("optimize.sil.specialize.generic.partial.never")
  public // @testable
  static func _convert<Source: BinaryFloatingPoint>(
    from source: Source
  ) -> (value: Self?, exact: Bool) {
    guard _fastPath(!source.isZero) else { return (0, true) }
    guard _fastPath(source.isFinite) else { return (nil, false) }
    guard Self.isSigned || source > -1 else { return (nil, false) }
    let exponent = source.exponent
    if _slowPath(Self.bitWidth <= exponent) { return (nil, false) }
    let minBitWidth = source.significandWidth
    let isExact = (minBitWidth <= exponent)
    let bitPattern = source.significandBitPattern
    // Determine the actual number of fractional significand bits.
    // `Source.significandBitCount` would not reflect the actual number of
    // fractional significand bits if `Source` is not a fixed-width floating-point
    // type; we can compute this value as follows if `source` is finite:
    let bitWidth = minBitWidth &+ bitPattern.trailingZeroBitCount
    let shift = exponent - Source.Exponent(bitWidth)
    // Use `Self.Magnitude` to prevent sign extension if `shift < 0`.
    let shiftedBitPattern = Self.Magnitude.bitWidth > bitWidth
      ? Self.Magnitude(truncatingIfNeeded: bitPattern) << shift
      : Self.Magnitude(truncatingIfNeeded: bitPattern << shift)
    if _slowPath(Self.isSigned && Self.bitWidth &- 1 == exponent) {
      return source < 0 && shiftedBitPattern == 0
        ? (Self.min, isExact)
        : (nil, false)
    }
    let magnitude = ((1 as Self.Magnitude) << exponent) | shiftedBitPattern
    return (
      Self.isSigned && source < 0 ? 0 &- Self(magnitude) : Self(magnitude),
      isExact)
  }

  /// Creates an integer from the given floating-point value, rounding toward
  /// zero. Any fractional part of the value passed as `source` is removed.
  ///
  ///     let x = Int(21.5)
  ///     // x == 21
  ///     let y = Int(-21.5)
  ///     // y == -21
  ///
  /// If `source` is outside the bounds of this type after rounding toward
  /// zero, a runtime error may occur.
  ///
  ///     let z = UInt(-21.5)
  ///     // Error: ...outside the representable range
  ///
  /// - Parameter source: A floating-point value to convert to an integer.
  ///   `source` must be representable in this type after rounding toward
  ///   zero.
  @inlinable
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @inline(__always)
  public init<T: BinaryFloatingPoint>(_ source: T) {
    guard let value = Self._convert(from: source).value else {
      #if !$Embedded
      fatalError("""
        \(T.self) value cannot be converted to \(Self.self) because it is \
        outside the representable range
        """)
      #else
      fatalError("value not representable")
      #endif
    }
    self = value
  }

  /// Creates an integer from the given floating-point value, if it can be
  /// represented exactly.
  ///
  /// If the value passed as `source` is not representable exactly, the result
  /// is `nil`. In the following example, the constant `x` is successfully
  /// created from a value of `21.0`, while the attempt to initialize the
  /// constant `y` from `21.5` fails:
  ///
  ///     let x = Int(exactly: 21.0)
  ///     // x == Optional(21)
  ///     let y = Int(exactly: 21.5)
  ///     // y == nil
  ///
  /// - Parameter source: A floating-point value to convert to an integer.
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @inlinable
  public init?<T: BinaryFloatingPoint>(exactly source: T) {
    let (temporary, exact) = Self._convert(from: source)
    guard exact, let value = temporary else {
      return nil
    }
    self = value
  }

  /// Creates a new instance with the representable value that's closest to the
  /// given integer.
  ///
  /// If the value passed as `source` is greater than the maximum representable
  /// value in this type, the result is the type's `max` value. If `source` is
  /// less than the smallest representable value in this type, the result is
  /// the type's `min` value.
  ///
  /// In this example, `x` is initialized as an `Int8` instance by clamping
  /// `500` to the range `-128...127`, and `y` is initialized as a `UInt`
  /// instance by clamping `-500` to the range `0...UInt.max`.
  ///
  ///     let x = Int8(clamping: 500)
  ///     // x == 127
  ///     // x == Int8.max
  ///
  ///     let y = UInt(clamping: -500)
  ///     // y == 0
  ///
  /// - Parameter source: An integer to convert to this type.
  @inlinable
  @_semantics("optimize.sil.specialize.generic.partial.never")
  public init<Other: BinaryInteger>(clamping source: Other) {
    if _slowPath(source < Self.min) {
      self = Self.min
    }
    else if _slowPath(source > Self.max) {
      self = Self.max
    }
    else { self = Self(truncatingIfNeeded: source) }
  }

  /// Creates a new instance from the bit pattern of the given instance by
  /// truncating or sign-extending if needed to fit this type.
  ///
  /// When the bit width of `T` (the type of `source`) is equal to or greater
  /// than this type's bit width, the result is the truncated
  /// least-significant bits of `source`. For example, when converting a
  /// 16-bit value to an 8-bit type, only the lower 8 bits of `source` are
  /// used.
  ///
  ///     let p: Int16 = -500
  ///     // 'p' has a binary representation of 11111110_00001100
  ///     let q = Int8(truncatingIfNeeded: p)
  ///     // q == 12
  ///     // 'q' has a binary representation of 00001100
  ///
  /// When the bit width of `T` is less than this type's bit width, the result
  /// is *sign-extended* to fill the remaining bits. That is, if `source` is
  /// negative, the result is padded with ones; otherwise, the result is
  /// padded with zeros.
  ///
  ///     let u: Int8 = 21
  ///     // 'u' has a binary representation of 00010101
  ///     let v = Int16(truncatingIfNeeded: u)
  ///     // v == 21
  ///     // 'v' has a binary representation of 00000000_00010101
  ///
  ///     let w: Int8 = -21
  ///     // 'w' has a binary representation of 11101011
  ///     let x = Int16(truncatingIfNeeded: w)
  ///     // x == -21
  ///     // 'x' has a binary representation of 11111111_11101011
  ///     let y = UInt16(truncatingIfNeeded: w)
  ///     // y == 65515
  ///     // 'y' has a binary representation of 11111111_11101011
  ///
  /// - Parameter source: An integer to convert to this type.
  @inlinable // FIXME(inline-always)
  @inline(__always)
  public init<T: BinaryInteger>(truncatingIfNeeded source: T) {
    if Self.bitWidth <= Int.bitWidth {
      self = Self(_truncatingBits: source._lowWord)
    }
    else {
      self = Self._truncatingInit(source)
    }
  }

  @_alwaysEmitIntoClient
  internal static func _truncatingInit<T: BinaryInteger>(_ source: T) -> Self {
    let neg = source < (0 as T)
    var result: Self = neg ? ~0 : 0
    var shift: Self = 0
    let width = Self(_truncatingBits: Self.bitWidth._lowWord)
    for word in source.words {
      guard shift < width else { break }
      // Masking shift is OK here because we have already ensured
      // that shift < Self.bitWidth. Not masking results in
      // infinite recursion.
      result ^= Self(_truncatingBits: neg ? ~word : word) &<< shift
      shift += Self(_truncatingBits: Int.bitWidth._lowWord)
    }
    return result
  }

  @_transparent
  public // transparent
  static var _highBitIndex: Self {
    return Self.init(_truncatingBits: UInt(Self.bitWidth._value) &- 1)
  }

  /// Returns the sum of the two given values, wrapping the result in case of
  /// any overflow.
  ///
  /// The overflow addition operator (`&+`) discards any bits that overflow the
  /// fixed width of the integer type. In the following example, the sum of
  /// `100` and `121` is greater than the maximum representable `Int8` value,
  /// so the result is the partial value after discarding the overflowing
  /// bits.
  ///
  ///     let x: Int8 = 10 &+ 21
  ///     // x == 31
  ///     let y: Int8 = 100 &+ 121
  ///     // y == -35 (after overflow)
  ///
  /// For more about arithmetic with overflow operators, see [Overflow
  /// Operators][overflow] in *[The Swift Programming Language][tspl]*.
  ///
  /// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
  /// [tspl]: https://docs.swift.org/swift-book/
  ///
  /// - Parameters:
  ///   - lhs: The first value to add.
  ///   - rhs: The second value to add.
  @_transparent
  public static func &+ (lhs: Self, rhs: Self) -> Self {
    return lhs.addingReportingOverflow(rhs).partialValue
  }

  /// Adds two values and stores the result in the left-hand-side variable,
  /// wrapping any overflow.
  ///
  /// The masking addition assignment operator (`&+=`) silently wraps any
  /// overflow that occurs during the operation. In the following example, the
  /// sum of `100` and `121` is greater than the maximum representable `Int8`
  /// value, so the result is the partial value after discarding the
  /// overflowing bits.
  ///
  ///     var x: Int8 = 10
  ///     x &+= 21
  ///     // x == 31
  ///     var y: Int8 = 100
  ///     y &+= 121
  ///     // y == -35 (after overflow)
  ///
  /// For more about arithmetic with overflow operators, see [Overflow
  /// Operators][overflow] in *[The Swift Programming Language][tspl]*.
  ///
  /// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
  /// [tspl]: https://docs.swift.org/swift-book/
  ///
  /// - Parameters:
  ///   - lhs: The first value to add.
  ///   - rhs: The second value to add.
  @_transparent
  public static func &+= (lhs: inout Self, rhs: Self) {
    lhs = lhs &+ rhs
  }

  /// Returns the difference of the two given values, wrapping the result in
  /// case of any overflow.
  ///
  /// The overflow subtraction operator (`&-`) discards any bits that overflow
  /// the fixed width of the integer type. In the following example, the
  /// difference of `10` and `21` is less than zero, the minimum representable
  /// `UInt` value, so the result is the partial value after discarding the
  /// overflowing bits.
  ///
  ///     let x: UInt8 = 21 &- 10
  ///     // x == 11
  ///     let y: UInt8 = 10 &- 21
  ///     // y == 245 (after overflow)
  ///
  /// For more about arithmetic with overflow operators, see [Overflow
  /// Operators][overflow] in *[The Swift Programming Language][tspl]*.
  ///
  /// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
  /// [tspl]: https://docs.swift.org/swift-book/
  ///
  /// - Parameters:
  ///   - lhs: A numeric value.
  ///   - rhs: The value to subtract from `lhs`.
  @_transparent
  public static func &- (lhs: Self, rhs: Self) -> Self {
    return lhs.subtractingReportingOverflow(rhs).partialValue
  }

  /// Subtracts the second value from the first and stores the difference in the
  /// left-hand-side variable, wrapping any overflow.
  ///
  /// The masking subtraction assignment operator (`&-=`) silently wraps any
  /// overflow that occurs during the operation. In the following example, the
  /// difference of `10` and `21` is less than zero, the minimum representable
  /// `UInt` value, so the result is the result is the partial value after
  /// discarding the overflowing bits.
  ///
  ///     var x: Int8 = 21
  ///     x &-= 10
  ///     // x == 11
  ///     var y: UInt8 = 10
  ///     y &-= 21
  ///     // y == 245 (after overflow)
  ///
  /// For more about arithmetic with overflow operators, see [Overflow
  /// Operators][overflow] in *[The Swift Programming Language][tspl]*.
  ///
  /// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
  /// [tspl]: https://docs.swift.org/swift-book/
  ///
  /// - Parameters:
  ///   - lhs: A numeric value.
  ///   - rhs: The value to subtract from `lhs`.
  @_transparent
  public static func &-= (lhs: inout Self, rhs: Self) {
    lhs = lhs &- rhs
  }

  @_transparent
  public static func &*(lhs: Self, rhs: Self) -> Self {
    return rhs.multipliedReportingOverflow(by: lhs).partialValue
  }

  /// Multiplies two values and stores the result in the left-hand-side
  /// variable, wrapping any overflow.
  ///
  /// The masking multiplication assignment operator (`&*=`) silently wraps
  /// any overflow that occurs during the operation. In the following example,
  /// the product of `10` and `50` is greater than the maximum representable
  /// `Int8` value, so the result is the partial value after discarding the
  /// overflowing bits.
  ///
  ///     var x: Int8 = 10
  ///     x &*= 5
  ///     // x == 50
  ///     var y: Int8 = 10
  ///     y &*= 50
  ///     // y == -12 (after overflow)
  ///
  /// For more about arithmetic with overflow operators, see [Overflow
  /// Operators][overflow] in *[The Swift Programming Language][tspl]*.
  ///
  /// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
  /// [tspl]: https://docs.swift.org/swift-book/
  ///
  /// - Parameters:
  ///   - lhs: The first value to multiply.
  ///   - rhs: The second value to multiply.
  @_transparent
  public static func &*= (lhs: inout Self, rhs: Self) {
    lhs = lhs &* rhs
  }
}

extension FixedWidthInteger {
  @inlinable
  public static func _random<R: RandomNumberGenerator>(
    using generator: inout R
  ) -> Self {
    if bitWidth <= UInt64.bitWidth {
      return Self(truncatingIfNeeded: generator.next())
    }

    let (quotient, remainder) = bitWidth.quotientAndRemainder(
      dividingBy: UInt64.bitWidth
    )
    var tmp: Self = 0
    for i in 0 ..< quotient + remainder.signum() {
      let next: UInt64 = generator.next()
      tmp += Self(truncatingIfNeeded: next) &<< (UInt64.bitWidth * i)
    }
    return tmp
  }
}

//===----------------------------------------------------------------------===//
//===--- UnsignedInteger --------------------------------------------------===//
//===----------------------------------------------------------------------===//

// Implementor's note: UnsignedInteger should have required Magnitude == Self,
// because it can necessarily represent the magnitude of every value and every
// recursive generic constraint should terminate unless there is a good
// semantic reason for it not to do so.
//
// However, we cannot easily add this constraint because it changes the
// mangling of generics constrained on <T: FixedWidthInteger & UnsignedInteger>
// to be <T: FixedWidthInteger where T.Magnitude == T>. As a practical matter,
// every unsigned type will satisfy this constraint, so converting between
// Magnitude and Self in generic code is acceptable.

/// An integer type that can represent only nonnegative values.
public protocol UnsignedInteger: BinaryInteger { }

extension UnsignedInteger {
  /// The magnitude of this value.
  ///
  /// Every unsigned integer is its own magnitude, so for any value `x`,
  /// `x == x.magnitude`.
  ///
  /// The global `abs(_:)` function provides more familiar syntax when you need
  /// to find an absolute value. In addition, because `abs(_:)` always returns
  /// a value of the same type, even in a generic context, using the function
  /// instead of the `magnitude` property is encouraged.
  @inlinable // FIXME(inline-always)
  public var magnitude: Self {
    @inline(__always)
    get { return self }
  }

  /// A Boolean value indicating whether this type is a signed integer type.
  ///
  /// This property is always `false` for unsigned integer types.
  @inlinable // FIXME(inline-always)
  public static var isSigned: Bool {
    @inline(__always)
    get { return false }
  }
}

extension UnsignedInteger where Self: FixedWidthInteger {
  /// Creates a new instance from the given integer.
  ///
  /// Use this initializer to convert from another integer type when you know
  /// the value is within the bounds of this type. Passing a value that can't
  /// be represented in this type results in a runtime error.
  ///
  /// In the following example, the constant `y` is successfully created from
  /// `x`, an `Int` instance with a value of `100`. Because the `Int8` type
  /// can represent `127` at maximum, the attempt to create `z` with a value
  /// of `1000` results in a runtime error.
  ///
  ///     let x = 100
  ///     let y = Int8(x)
  ///     // y == 100
  ///     let z = Int8(x * 10)
  ///     // Error: Not enough bits to represent the given value
  ///
  /// - Parameter source: A value to convert to this type of integer. The value
  ///   passed as `source` must be representable in this type.
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @inlinable // FIXME(inline-always)
  @inline(__always)
  public init<T: BinaryInteger>(_ source: T) {
    // This check is potentially removable by the optimizer
    if T.isSigned {
      _precondition(source >= (0 as T), "Negative value is not representable")
    }
    // This check is potentially removable by the optimizer
    if source.bitWidth >= Self.bitWidth {
      _precondition(source <= Self.max,
        "Not enough bits to represent the passed value")
    }
    self.init(truncatingIfNeeded: source)
  }

  /// Creates a new instance from the given integer, if it can be represented
  /// exactly.
  ///
  /// If the value passed as `source` is not representable exactly, the result
  /// is `nil`. In the following example, the constant `x` is successfully
  /// created from a value of `100`, while the attempt to initialize the
  /// constant `y` from `1_000` fails because the `Int8` type can represent
  /// `127` at maximum:
  ///
  ///     let x = Int8(exactly: 100)
  ///     // x == Optional(100)
  ///     let y = Int8(exactly: 1_000)
  ///     // y == nil
  ///
  /// - Parameter source: A value to convert to this type of integer.
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @inlinable // FIXME(inline-always)
  @inline(__always)
  public init?<T: BinaryInteger>(exactly source: T) {
    // This check is potentially removable by the optimizer
    if T.isSigned && source < (0 as T) {
      return nil
    }
    // The width check can be eliminated by the optimizer
    if source.bitWidth >= Self.bitWidth &&
       source > Self.max {
      return nil
    }
    self.init(truncatingIfNeeded: source)
  }

  /// The maximum representable integer in this type.
  ///
  /// For unsigned integer types, this value is `(2 ** bitWidth) - 1`, where
  /// `**` is exponentiation.
  @_transparent
  public static var max: Self { return ~0 }

  /// The minimum representable integer in this type.
  ///
  /// For unsigned integer types, this value is always `0`.
  @_transparent
  public static var min: Self { return 0 }
  
  @_alwaysEmitIntoClient
  public func dividingFullWidth(
    _ dividend: (high: Self, low: Magnitude)
  ) -> (quotient: Self, remainder: Self) {
    // Validate preconditions to guarantee that the quotient is representable.
    precondition(self != .zero, "Division by zero")
    precondition(dividend.high < self,
                 "Dividend.high must be smaller than divisor")
    // UnsignedInteger should have a Magnitude = Self constraint, but does not,
    // so we have to do this conversion (we can't easily add the constraint
    // because it changes how generic signatures constrained to
    // <FixedWidth & Unsigned> are minimized, which changes the mangling).
    // In practice, "every" UnsignedInteger type will satisfy this, and if one
    // somehow manages not to in a way that would break this conversion then
    // a default implementation of this method never could have worked anyway.
    let low = Self(dividend.low)
    
    // The basic algorithm is taken from Knuth (TAoCP, Vol 2, §4.3.1), using
    // words that are half the size of Self (so the dividend has four words
    // and the divisor has two). The fact that the denominator has exactly
    // two words allows for a slight simplification vs. Knuth's Algorithm D,
    // in that our computed quotient digit is always exactly right, while
    // in the more general case it can be one too large, requiring a subsequent
    // borrow.
    //
    // Knuth's algorithm (and any long division, really), requires that the
    // divisor (self) be normalized (meaning that the high-order bit is set).
    // We begin by counting the leading zeros so we know how many bits we
    // have to shift to normalize.
    let lz = leadingZeroBitCount
    
    // If the divisor is actually a power of two, division is just a shift,
    // which we can handle much more efficiently. So we do a check for that
    // case and early-out if possible.
    if (self &- 1) & self == .zero {
      let shift = Self.bitWidth - 1 - lz
      let q = low &>> shift | dividend.high &<< -shift
      let r = low & (self &- 1)
      return (q, r)
    }
    
    // Shift the divisor left by lz bits to normalize it. We shift the
    // dividend left by the same amount so that we get the quotient is
    // preserved (we will have to shift right to recover the remainder).
    // Note that the right shift `low >> (Self.bitWidth - lz)` is
    // deliberately a non-masking shift because lz might be zero.
    let v = self &<< lz
    let uh = dividend.high &<< lz | low >> (Self.bitWidth - lz)
    let ul = low &<< lz
    
    // Now we have a normalized dividend (uh:ul) and divisor (v). Split
    // v into half-words (vh:vl) so that we can use the "normal" division
    // on Self as a word / halfword -> halfword division get one halfword
    // digit of the quotient at a time.
    let n_2 = Self.bitWidth/2
    let mask = Self(1) &<< n_2 &- 1
    let vh = v &>> n_2
    let vl = v & mask
    
    // For the (fairly-common) special case where vl is zero, we can simplify
    // the arithmetic quite a bit:
    if vl == .zero {
      let qh = uh / vh
      let residual = (uh &- qh &* vh) &<< n_2 | ul &>> n_2
      let ql = residual / vh
      
      return (
        // Assemble quotient from half-word digits
        quotient: qh &<< n_2 | ql,
        // Compute remainder (we can re-use the residual to make this simpler).
        remainder: ((residual &- ql &* vh) &<< n_2 | ul & mask) &>> lz
      )
    }
    
    // Helper function: performs a (1½ word)/word division to produce a
    // half quotient word q. We'll need to use this twice to generate the
    // full quotient.
    //
    // high is the high word of the quotient for this sub-division.
    // low is the low half-word of the quotient for this sub-division (the
    //     high half of low must be zero).
    //
    // returns the quotient half-word digit. In a more general setting, this
    // computed digit might be one too large, which has to be accounted for
    // later on (see Knuth, Algorithm D), but when the divisor is only two
    // half-words (as here), that can never happen, because we use the full
    // divisor in the check for the while loop.
    func generateHalfDigit(high: Self, low: Self) -> Self {
      // Get q̂ satisfying a = vh q̂ + r̂ with 0 ≤ r̂ < vh:
      var (q̂, r̂) = high.quotientAndRemainder(dividingBy: vh)
      // Knuth's "Theorem A" establishes that q̂ is an approximation to
      // the quotient digit q, satisfying q ≤ q̂ ≤ q + 2. We adjust it
      // downward as needed until we have the correct q.
      while q̂ > mask || q̂ &* vl > (r̂ &<< n_2 | low) {
        q̂ &-= 1
        r̂ &+= vh
        if r̂ > mask { break }
      }
      return q̂
    }
    
    // Generate the first quotient digit, subtract off its product with the
    // divisor to generate the residual, then compute the second quotient
    // digit from that.
    let qh = generateHalfDigit(high: uh, low: ul &>> n_2)
    let residual = (uh &<< n_2 | ul &>> n_2) &- (qh &* v)
    let ql = generateHalfDigit(high: residual, low: ul & mask)
    
    return (
      // Assemble quotient from half-word digits
      quotient: qh &<< n_2 | ql,
      // Compute remainder (we can re-use the residual to make this simpler).
      remainder: ((residual &<< n_2 | ul & mask) &- (ql &* v)) &>> lz
    )
  }
}

//===----------------------------------------------------------------------===//
//===--- SignedInteger ----------------------------------------------------===//
//===----------------------------------------------------------------------===//

/// An integer type that can represent both positive and negative values.
public protocol SignedInteger: BinaryInteger, SignedNumeric {
  // These requirements are needed for binary compatibility; the following:
  //
  // func foo<T>(_ a: T) -> T
  // where T: SignedInteger & FixedWidthInteger {
  //   a &+ 1
  // }
  //
  // generated a call to `static Swift.SignedInteger._maskingAdd(A, A) -> A`
  // when compiled with Swift 5.5 and earlier.
  @available(*, deprecated, message: "Use &+ instead.")
  static func _maskingAdd(_ lhs: Self, _ rhs: Self) -> Self
  
  @available(*, deprecated, message: "Use &- instead.")
  static func _maskingSubtract(_ lhs: Self, _ rhs: Self) -> Self
}

extension SignedInteger {
  /// A Boolean value indicating whether this type is a signed integer type.
  ///
  /// This property is always `true` for signed integer types.
  @inlinable // FIXME(inline-always)
  public static var isSigned: Bool {
    @inline(__always)
    get { return true }
  }
}

extension SignedInteger where Self: FixedWidthInteger {
  /// Creates a new instance from the given integer.
  ///
  /// Use this initializer to convert from another integer type when you know
  /// the value is within the bounds of this type. Passing a value that can't
  /// be represented in this type results in a runtime error.
  ///
  /// In the following example, the constant `y` is successfully created from
  /// `x`, an `Int` instance with a value of `100`. Because the `Int8` type
  /// can represent `127` at maximum, the attempt to create `z` with a value
  /// of `1000` results in a runtime error.
  ///
  ///     let x = 100
  ///     let y = Int8(x)
  ///     // y == 100
  ///     let z = Int8(x * 10)
  ///     // Error: Not enough bits to represent the given value
  ///
  /// - Parameter source: A value to convert to this type of integer. The value
  ///   passed as `source` must be representable in this type.
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @inlinable // FIXME(inline-always)
  @inline(__always)
  public init<T: BinaryInteger>(_ source: T) {
    // This check is potentially removable by the optimizer
    if T.isSigned && source.bitWidth > Self.bitWidth {
      _precondition(source >= Self.min,
        "Not enough bits to represent a signed value")
    }
    // This check is potentially removable by the optimizer
    if (source.bitWidth > Self.bitWidth) ||
       (source.bitWidth == Self.bitWidth && !T.isSigned) {
      _precondition(source <= Self.max,
        "Not enough bits to represent the passed value")
    }
    self.init(truncatingIfNeeded: source)
  }

  /// Creates a new instance from the given integer, if it can be represented
  /// exactly.
  ///
  /// If the value passed as `source` is not representable exactly, the result
  /// is `nil`. In the following example, the constant `x` is successfully
  /// created from a value of `100`, while the attempt to initialize the
  /// constant `y` from `1_000` fails because the `Int8` type can represent
  /// `127` at maximum:
  ///
  ///     let x = Int8(exactly: 100)
  ///     // x == Optional(100)
  ///     let y = Int8(exactly: 1_000)
  ///     // y == nil
  ///
  /// - Parameter source: A value to convert to this type of integer.
  @_semantics("optimize.sil.specialize.generic.partial.never")
  @inlinable // FIXME(inline-always)
  @inline(__always)
  public init?<T: BinaryInteger>(exactly source: T) {
    // This check is potentially removable by the optimizer
    if T.isSigned && source.bitWidth > Self.bitWidth && source < Self.min {
      return nil
    }
    // The width check can be eliminated by the optimizer
    if (source.bitWidth > Self.bitWidth ||
        (source.bitWidth == Self.bitWidth && !T.isSigned)) &&
       source > Self.max {
      return nil
    }
    self.init(truncatingIfNeeded: source)
  }

  /// The maximum representable integer in this type.
  ///
  /// For signed integer types, this value is `(2 ** (bitWidth - 1)) - 1`,
  /// where `**` is exponentiation.
  @_transparent
  public static var max: Self { return ~min }

  /// The minimum representable integer in this type.
  ///
  /// For signed integer types, this value is `-(2 ** (bitWidth - 1))`, where
  /// `**` is exponentiation.
  @_transparent
  public static var min: Self {
    return (-1 as Self) &<< Self._highBitIndex
  }
  
  @inlinable
  public func isMultiple(of other: Self) -> Bool {
    // Nothing but zero is a multiple of zero.
    if other == 0 { return self == 0 }
    // Special case to avoid overflow on .min / -1 for signed types.
    if other == -1 { return true }
    // Having handled those special cases, this is safe.
    return self % other == 0
  }
  
  @_alwaysEmitIntoClient
  public func dividingFullWidth(
    _ dividend: (high: Self, low: Magnitude)
  ) -> (quotient: Self, remainder: Self) {
    // Get magnitude of dividend:
    var magnitudeHigh = Magnitude(truncatingIfNeeded: dividend.high)
    var magnitudeLow  = dividend.low
    if dividend.high < .zero {
      let carry: Bool
      (magnitudeLow, carry) = (~magnitudeLow).addingReportingOverflow(1)
      magnitudeHigh = ~magnitudeHigh &+ (carry ? 1 : 0)
    }
    // Do division on magnitudes (using unsigned implementation):
    let (unsignedQuotient, unsignedRemainder) = magnitude.dividingFullWidth(
      (high: magnitudeHigh, low: magnitudeLow)
    )
    // Fixup sign: quotient is negative if dividend and divisor disagree.
    // We will also trap here if the quotient does not fit in Self.
    let quotient: Self
    if self ^ dividend.high < .zero {
      // It is possible that the quotient is representable but its magnitude
      // is not representable as Self (if quotient is Self.min), so we have
      // to handle that case carefully here.
      precondition(unsignedQuotient <= Self.min.magnitude,
                   "Quotient is not representable.")
      quotient = Self(truncatingIfNeeded: 0 &- unsignedQuotient)
    } else {
      quotient = Self(unsignedQuotient)
    }
    var remainder = Self(unsignedRemainder)
    if dividend.high < .zero { remainder = 0 &- remainder }
    return (quotient, remainder)
  }
}

/// Returns the given integer as the equivalent value in a different integer
/// type.
///
/// Calling the `numericCast(_:)` function is equivalent to calling an
/// initializer for the destination type. `numericCast(_:)` traps on overflow 
/// in `-O` and `-Onone` builds.
///
/// - Parameter x: The integer to convert, an instance of type `T`.
/// - Returns: The value of `x` converted to type `U`.
@inlinable
public func numericCast<T: BinaryInteger, U: BinaryInteger>(_ x: T) -> U {
  return U(x)
}

// Needed to support user-defined types conformance to SignedInteger.
// We need these defaults to exist, but they are not called.
extension SignedInteger {
  @available(*, deprecated, message: "Use &+ instead.")
  public static func _maskingAdd(_ lhs: Self, _ rhs: Self) -> Self {
    fatalError("Should be overridden in a more specific type")
  }
  
  @available(*, deprecated, message: "Use &- instead.")
  public static func _maskingSubtract(_ lhs: Self, _ rhs: Self) -> Self {
    fatalError("Should be overridden in a more specific type")
  }
}

// These symbols have to exist for ABI compatibility, but should not be used
// any longer; we want to find the FixedWidthInteger definitions instead.
extension SignedInteger where Self: FixedWidthInteger {
  @available(*, unavailable)
  public static func &+(lhs: Self, rhs: Self) -> Self {
    lhs.addingReportingOverflow(rhs).partialValue
  }
  
  // This may be called in rare situations by binaries compiled with
  // Swift 5.5 and earlier, so we need to keep it around for compatibility.
  // We can't mark it unavailable, because then the concrete signed integer
  // types in the standard library would not satisfy the protocol requirements.
  @available(*, deprecated, message: "Use &+ instead.")
  public static func _maskingAdd(_ lhs: Self, _ rhs: Self) -> Self {
    lhs.addingReportingOverflow(rhs).partialValue
  }

  @available(*, unavailable)
  public static func &-(lhs: Self, rhs: Self) -> Self {
    lhs.subtractingReportingOverflow(rhs).partialValue
  }
  
  // This may be called in rare situations by binaries compiled with
  // Swift 5.5 and earlier, so we need to keep it around for compatibility.
  // We can't mark it unavailable, because then the concrete signed integer
  // types in the standard library would not satisfy the protocol requirements.
  @available(*, deprecated, message: "Use &- instead.")
  public static func _maskingSubtract(_ lhs: Self, _ rhs: Self) -> Self {
    lhs.subtractingReportingOverflow(rhs).partialValue
  }
}