1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
|
//===--- Integers.swift ---------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
//===--- Bits for the Stdlib ----------------------------------------------===//
//===----------------------------------------------------------------------===//
// FIXME(integers): This should go in the stdlib separately, probably.
extension ExpressibleByIntegerLiteral
where Self: _ExpressibleByBuiltinIntegerLiteral {
@_transparent
public init(integerLiteral value: Self) {
self = value
}
}
//===----------------------------------------------------------------------===//
//===--- AdditiveArithmetic -----------------------------------------------===//
//===----------------------------------------------------------------------===//
/// A type with values that support addition and subtraction.
///
/// The `AdditiveArithmetic` protocol provides a suitable basis for additive
/// arithmetic on scalar values, such as integers and floating-point numbers,
/// or vectors. You can write generic methods that operate on any numeric type
/// in the standard library by using the `AdditiveArithmetic` protocol as a
/// generic constraint.
///
/// The following code declares a method that calculates the total of any
/// sequence with `AdditiveArithmetic` elements.
///
/// extension Sequence where Element: AdditiveArithmetic {
/// func sum() -> Element {
/// return reduce(.zero, +)
/// }
/// }
///
/// The `sum()` method is now available on any sequence with values that
/// conform to `AdditiveArithmetic`, whether it is an array of `Double` or a
/// range of `Int`.
///
/// let arraySum = [1.1, 2.2, 3.3, 4.4, 5.5].sum()
/// // arraySum == 16.5
///
/// let rangeSum = (1..<10).sum()
/// // rangeSum == 45
///
/// Conforming to the AdditiveArithmetic Protocol
/// =============================================
///
/// To add `AdditiveArithmetic` protocol conformance to your own custom type,
/// implement the required operators, and provide a static `zero` property.
public protocol AdditiveArithmetic: Equatable {
/// The zero value.
///
/// Zero is the identity element for addition. For any value,
/// `x + .zero == x` and `.zero + x == x`.
static var zero: Self { get }
/// Adds two values and produces their sum.
///
/// The addition operator (`+`) calculates the sum of its two arguments. For
/// example:
///
/// 1 + 2 // 3
/// -10 + 15 // 5
/// -15 + -5 // -20
/// 21.5 + 3.25 // 24.75
///
/// You cannot use `+` with arguments of different types. To add values of
/// different types, convert one of the values to the other value's type.
///
/// let x: Int8 = 21
/// let y: Int = 1000000
/// Int(x) + y // 1000021
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
static func +(lhs: Self, rhs: Self) -> Self
/// Adds two values and stores the result in the left-hand-side variable.
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
static func +=(lhs: inout Self, rhs: Self)
/// Subtracts one value from another and produces their difference.
///
/// The subtraction operator (`-`) calculates the difference of its two
/// arguments. For example:
///
/// 8 - 3 // 5
/// -10 - 5 // -15
/// 100 - -5 // 105
/// 10.5 - 100.0 // -89.5
///
/// You cannot use `-` with arguments of different types. To subtract values
/// of different types, convert one of the values to the other value's type.
///
/// let x: UInt8 = 21
/// let y: UInt = 1000000
/// y - UInt(x) // 999979
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
static func -(lhs: Self, rhs: Self) -> Self
/// Subtracts the second value from the first and stores the difference in the
/// left-hand-side variable.
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
static func -=(lhs: inout Self, rhs: Self)
}
public extension AdditiveArithmetic {
@_alwaysEmitIntoClient
static func +=(lhs: inout Self, rhs: Self) {
lhs = lhs + rhs
}
@_alwaysEmitIntoClient
static func -=(lhs: inout Self, rhs: Self) {
lhs = lhs - rhs
}
}
public extension AdditiveArithmetic where Self: ExpressibleByIntegerLiteral {
/// The zero value.
///
/// Zero is the identity element for addition. For any value,
/// `x + .zero == x` and `.zero + x == x`.
@inlinable @inline(__always)
static var zero: Self {
return 0
}
}
//===----------------------------------------------------------------------===//
//===--- Numeric ----------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// A type with values that support multiplication.
///
/// The `Numeric` protocol provides a suitable basis for arithmetic on
/// scalar values, such as integers and floating-point numbers. You can write
/// generic methods that operate on any numeric type in the standard library
/// by using the `Numeric` protocol as a generic constraint.
///
/// The following example extends `Sequence` with a method that returns an
/// array with the sequence's values multiplied by two.
///
/// extension Sequence where Element: Numeric {
/// func doublingAll() -> [Element] {
/// return map { $0 * 2 }
/// }
/// }
///
/// With this extension, any sequence with elements that conform to `Numeric`
/// has the `doublingAll()` method. For example, you can double the elements of
/// an array of doubles or a range of integers:
///
/// let observations = [1.5, 2.0, 3.25, 4.875, 5.5]
/// let doubledObservations = observations.doublingAll()
/// // doubledObservations == [3.0, 4.0, 6.5, 9.75, 11.0]
///
/// let integers = 0..<8
/// let doubledIntegers = integers.doublingAll()
/// // doubledIntegers == [0, 2, 4, 6, 8, 10, 12, 14]
///
/// Conforming to the Numeric Protocol
/// ==================================
///
/// To add `Numeric` protocol conformance to your own custom type, implement
/// the required initializer and operators, and provide a `magnitude` property
/// using a type that can represent the magnitude of any value of your custom
/// type.
public protocol Numeric: AdditiveArithmetic, ExpressibleByIntegerLiteral {
/// Creates a new instance from the given integer, if it can be represented
/// exactly.
///
/// If the value passed as `source` is not representable exactly, the result
/// is `nil`. In the following example, the constant `x` is successfully
/// created from a value of `100`, while the attempt to initialize the
/// constant `y` from `1_000` fails because the `Int8` type can represent
/// `127` at maximum:
///
/// let x = Int8(exactly: 100)
/// // x == Optional(100)
/// let y = Int8(exactly: 1_000)
/// // y == nil
///
/// - Parameter source: A value to convert to this type.
init?<T: BinaryInteger>(exactly source: T)
/// A type that can represent the absolute value of any possible value of the
/// conforming type.
associatedtype Magnitude: Comparable, Numeric
/// The magnitude of this value.
///
/// For any numeric value `x`, `x.magnitude` is the absolute value of `x`.
/// You can use the `magnitude` property in operations that are simpler to
/// implement in terms of unsigned values, such as printing the value of an
/// integer, which is just printing a '-' character in front of an absolute
/// value.
///
/// let x = -200
/// // x.magnitude == 200
///
/// The global `abs(_:)` function provides more familiar syntax when you need
/// to find an absolute value. In addition, because `abs(_:)` always returns
/// a value of the same type, even in a generic context, using the function
/// instead of the `magnitude` property is encouraged.
var magnitude: Magnitude { get }
/// Multiplies two values and produces their product.
///
/// The multiplication operator (`*`) calculates the product of its two
/// arguments. For example:
///
/// 2 * 3 // 6
/// 100 * 21 // 2100
/// -10 * 15 // -150
/// 3.5 * 2.25 // 7.875
///
/// You cannot use `*` with arguments of different types. To multiply values
/// of different types, convert one of the values to the other value's type.
///
/// let x: Int8 = 21
/// let y: Int = 1000000
/// Int(x) * y // 21000000
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
static func *(lhs: Self, rhs: Self) -> Self
/// Multiplies two values and stores the result in the left-hand-side
/// variable.
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
static func *=(lhs: inout Self, rhs: Self)
}
/// A numeric type with a negation operation.
///
/// The `SignedNumeric` protocol extends the operations defined by the
/// `Numeric` protocol to include a value's additive inverse.
///
/// Conforming to the SignedNumeric Protocol
/// ========================================
///
/// Because the `SignedNumeric` protocol provides default implementations of
/// both of its required methods, you don't need to do anything beyond
/// declaring conformance to the protocol and ensuring that the values of your
/// type support negation. To customize your type's implementation, provide
/// your own mutating `negate()` method.
///
/// When the additive inverse of a value is unrepresentable in a conforming
/// type, the operation should either trap or return an exceptional value. For
/// example, using the negation operator (prefix `-`) with `Int.min` results in
/// a runtime error.
///
/// let x = Int.min
/// let y = -x
/// // Overflow error
public protocol SignedNumeric: Numeric {
/// Returns the additive inverse of the specified value.
///
/// The negation operator (prefix `-`) returns the additive inverse of its
/// argument.
///
/// let x = 21
/// let y = -x
/// // y == -21
///
/// The resulting value must be representable in the same type as the
/// argument. In particular, negating a signed, fixed-width integer type's
/// minimum results in a value that cannot be represented.
///
/// let z = -Int8.min
/// // Overflow error
///
/// - Returns: The additive inverse of this value.
static prefix func - (_ operand: Self) -> Self
/// Replaces this value with its additive inverse.
///
/// The following example uses the `negate()` method to negate the value of
/// an integer `x`:
///
/// var x = 21
/// x.negate()
/// // x == -21
///
/// The resulting value must be representable within the value's type. In
/// particular, negating a signed, fixed-width integer type's minimum
/// results in a value that cannot be represented.
///
/// var y = Int8.min
/// y.negate()
/// // Overflow error
mutating func negate()
}
extension SignedNumeric {
/// Returns the additive inverse of the specified value.
///
/// The negation operator (prefix `-`) returns the additive inverse of its
/// argument.
///
/// let x = 21
/// let y = -x
/// // y == -21
///
/// The resulting value must be representable in the same type as the
/// argument. In particular, negating a signed, fixed-width integer type's
/// minimum results in a value that cannot be represented.
///
/// let z = -Int8.min
/// // Overflow error
///
/// - Returns: The additive inverse of the argument.
@_transparent
public static prefix func - (_ operand: Self) -> Self {
var result = operand
result.negate()
return result
}
/// Replaces this value with its additive inverse.
///
/// The following example uses the `negate()` method to negate the value of
/// an integer `x`:
///
/// var x = 21
/// x.negate()
/// // x == -21
///
/// The resulting value must be representable within the value's type. In
/// particular, negating a signed, fixed-width integer type's minimum
/// results in a value that cannot be represented.
///
/// var y = Int8.min
/// y.negate()
/// // Overflow error
@_transparent
public mutating func negate() {
self = 0 - self
}
}
/// Returns the absolute value of the given number.
///
/// The absolute value of `x` must be representable in the same type. In
/// particular, the absolute value of a signed, fixed-width integer type's
/// minimum cannot be represented.
///
/// let x = Int8.min
/// // x == -128
/// let y = abs(x)
/// // Overflow error
///
/// - Parameter x: A signed number.
/// - Returns: The absolute value of `x`.
@inlinable
public func abs<T: SignedNumeric & Comparable>(_ x: T) -> T {
if T.self == T.Magnitude.self {
return unsafeBitCast(x.magnitude, to: T.self)
}
return x < (0 as T) ? -x : x
}
extension AdditiveArithmetic {
/// Returns the given number unchanged.
///
/// You can use the unary plus operator (`+`) to provide symmetry in your
/// code for positive numbers when also using the unary minus operator.
///
/// let x = -21
/// let y = +21
/// // x == -21
/// // y == 21
///
/// - Returns: The given argument without any changes.
@_transparent
public static prefix func + (x: Self) -> Self {
return x
}
}
#if !$Embedded
public typealias _CustomStringConvertibleOrNone = CustomStringConvertible
#else
public typealias _CustomStringConvertibleOrNone = Any
#endif
//===----------------------------------------------------------------------===//
//===--- BinaryInteger ----------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// An integer type with a binary representation.
///
/// The `BinaryInteger` protocol is the basis for all the integer types
/// provided by the standard library. All of the standard library's integer
/// types, such as `Int` and `UInt32`, conform to `BinaryInteger`.
///
/// Converting Between Numeric Types
/// ================================
///
/// You can create new instances of a type that conforms to the `BinaryInteger`
/// protocol from a floating-point number or another binary integer of any
/// type. The `BinaryInteger` protocol provides initializers for four
/// different kinds of conversion.
///
/// Range-Checked Conversion
/// ------------------------
///
/// You use the default `init(_:)` initializer to create a new instance when
/// you're sure that the value passed is representable in the new type. For
/// example, an instance of `Int16` can represent the value `500`, so the
/// first conversion in the code sample below succeeds. That same value is too
/// large to represent as an `Int8` instance, so the second conversion fails,
/// triggering a runtime error.
///
/// let x: Int = 500
/// let y = Int16(x)
/// // y == 500
///
/// let z = Int8(x)
/// // Error: Not enough bits to represent...
///
/// When you create a binary integer from a floating-point value using the
/// default initializer, the value is rounded toward zero before the range is
/// checked. In the following example, the value `127.75` is rounded to `127`,
/// which is representable by the `Int8` type. `128.25` is rounded to `128`,
/// which is not representable as an `Int8` instance, triggering a runtime
/// error.
///
/// let e = Int8(127.75)
/// // e == 127
///
/// let f = Int8(128.25)
/// // Error: Double value cannot be converted...
///
///
/// Exact Conversion
/// ----------------
///
/// Use the `init?(exactly:)` initializer to create a new instance after
/// checking whether the passed value is representable. Instead of trapping on
/// out-of-range values, using the failable `init?(exactly:)`
/// initializer results in `nil`.
///
/// let x = Int16(exactly: 500)
/// // x == Optional(500)
///
/// let y = Int8(exactly: 500)
/// // y == nil
///
/// When converting floating-point values, the `init?(exactly:)` initializer
/// checks both that the passed value has no fractional part and that the
/// value is representable in the resulting type.
///
/// let e = Int8(exactly: 23.0) // integral value, representable
/// // e == Optional(23)
///
/// let f = Int8(exactly: 23.75) // fractional value, representable
/// // f == nil
///
/// let g = Int8(exactly: 500.0) // integral value, nonrepresentable
/// // g == nil
///
/// Clamping Conversion
/// -------------------
///
/// Use the `init(clamping:)` initializer to create a new instance of a binary
/// integer type where out-of-range values are clamped to the representable
/// range of the type. For a type `T`, the resulting value is in the range
/// `T.min...T.max`.
///
/// let x = Int16(clamping: 500)
/// // x == 500
///
/// let y = Int8(clamping: 500)
/// // y == 127
///
/// let z = UInt8(clamping: -500)
/// // z == 0
///
/// Bit Pattern Conversion
/// ----------------------
///
/// Use the `init(truncatingIfNeeded:)` initializer to create a new instance
/// with the same bit pattern as the passed value, extending or truncating the
/// value's representation as necessary. Note that the value may not be
/// preserved, particularly when converting between signed to unsigned integer
/// types or when the destination type has a smaller bit width than the source
/// type. The following example shows how extending and truncating work for
/// nonnegative integers:
///
/// let q: Int16 = 850
/// // q == 0b00000011_01010010
///
/// let r = Int8(truncatingIfNeeded: q) // truncate 'q' to fit in 8 bits
/// // r == 82
/// // == 0b01010010
///
/// let s = Int16(truncatingIfNeeded: r) // extend 'r' to fill 16 bits
/// // s == 82
/// // == 0b00000000_01010010
///
/// Any padding is performed by *sign-extending* the passed value. When
/// nonnegative integers are extended, the result is padded with zeroes. When
/// negative integers are extended, the result is padded with ones. This
/// example shows several extending conversions of a negative value---note
/// that negative values are sign-extended even when converting to an unsigned
/// type.
///
/// let t: Int8 = -100
/// // t == -100
/// // t's binary representation == 0b10011100
///
/// let u = UInt8(truncatingIfNeeded: t)
/// // u == 156
/// // u's binary representation == 0b10011100
///
/// let v = Int16(truncatingIfNeeded: t)
/// // v == -100
/// // v's binary representation == 0b11111111_10011100
///
/// let w = UInt16(truncatingIfNeeded: t)
/// // w == 65436
/// // w's binary representation == 0b11111111_10011100
///
///
/// Comparing Across Integer Types
/// ==============================
///
/// You can use relational operators, such as the less-than and equal-to
/// operators (`<` and `==`), to compare instances of different binary integer
/// types. The following example compares instances of the `Int`, `UInt`, and
/// `UInt8` types:
///
/// let x: Int = -23
/// let y: UInt = 1_000
/// let z: UInt8 = 23
///
/// if x < y {
/// print("\(x) is less than \(y).")
/// }
/// // Prints "-23 is less than 1000."
///
/// if z > x {
/// print("\(z) is greater than \(x).")
/// }
/// // Prints "23 is greater than -23."
public protocol BinaryInteger :
Hashable, Numeric, _CustomStringConvertibleOrNone, Strideable
where Magnitude: BinaryInteger, Magnitude.Magnitude == Magnitude
{
/// A Boolean value indicating whether this type is a signed integer type.
///
/// *Signed* integer types can represent both positive and negative values.
/// *Unsigned* integer types can represent only nonnegative values.
static var isSigned: Bool { get }
/// Creates an integer from the given floating-point value, if it can be
/// represented exactly.
///
/// If the value passed as `source` is not representable exactly, the result
/// is `nil`. In the following example, the constant `x` is successfully
/// created from a value of `21.0`, while the attempt to initialize the
/// constant `y` from `21.5` fails:
///
/// let x = Int(exactly: 21.0)
/// // x == Optional(21)
/// let y = Int(exactly: 21.5)
/// // y == nil
///
/// - Parameter source: A floating-point value to convert to an integer.
init?<T: BinaryFloatingPoint>(exactly source: T)
/// Creates an integer from the given floating-point value, rounding toward
/// zero.
///
/// Any fractional part of the value passed as `source` is removed, rounding
/// the value toward zero.
///
/// let x = Int(21.5)
/// // x == 21
/// let y = Int(-21.5)
/// // y == -21
///
/// If `source` is outside the bounds of this type after rounding toward
/// zero, a runtime error may occur.
///
/// let z = UInt(-21.5)
/// // Error: ...the result would be less than UInt.min
///
/// - Parameter source: A floating-point value to convert to an integer.
/// `source` must be representable in this type after rounding toward
/// zero.
init<T: BinaryFloatingPoint>(_ source: T)
/// Creates a new instance from the given integer.
///
/// If the value passed as `source` is not representable in this type, a
/// runtime error may occur.
///
/// let x = -500 as Int
/// let y = Int32(x)
/// // y == -500
///
/// // -500 is not representable as a 'UInt32' instance
/// let z = UInt32(x)
/// // Error
///
/// - Parameter source: An integer to convert. `source` must be representable
/// in this type.
init<T: BinaryInteger>(_ source: T)
/// Creates a new instance from the bit pattern of the given instance by
/// sign-extending or truncating to fit this type.
///
/// When the bit width of `T` (the type of `source`) is equal to or greater
/// than this type's bit width, the result is the truncated
/// least-significant bits of `source`. For example, when converting a
/// 16-bit value to an 8-bit type, only the lower 8 bits of `source` are
/// used.
///
/// let p: Int16 = -500
/// // 'p' has a binary representation of 11111110_00001100
/// let q = Int8(truncatingIfNeeded: p)
/// // q == 12
/// // 'q' has a binary representation of 00001100
///
/// When the bit width of `T` is less than this type's bit width, the result
/// is *sign-extended* to fill the remaining bits. That is, if `source` is
/// negative, the result is padded with ones; otherwise, the result is
/// padded with zeros.
///
/// let u: Int8 = 21
/// // 'u' has a binary representation of 00010101
/// let v = Int16(truncatingIfNeeded: u)
/// // v == 21
/// // 'v' has a binary representation of 00000000_00010101
///
/// let w: Int8 = -21
/// // 'w' has a binary representation of 11101011
/// let x = Int16(truncatingIfNeeded: w)
/// // x == -21
/// // 'x' has a binary representation of 11111111_11101011
/// let y = UInt16(truncatingIfNeeded: w)
/// // y == 65515
/// // 'y' has a binary representation of 11111111_11101011
///
/// - Parameter source: An integer to convert to this type.
init<T: BinaryInteger>(truncatingIfNeeded source: T)
/// Creates a new instance with the representable value that's closest to the
/// given integer.
///
/// If the value passed as `source` is greater than the maximum representable
/// value in this type, the result is the type's `max` value. If `source` is
/// less than the smallest representable value in this type, the result is
/// the type's `min` value.
///
/// In this example, `x` is initialized as an `Int8` instance by clamping
/// `500` to the range `-128...127`, and `y` is initialized as a `UInt`
/// instance by clamping `-500` to the range `0...UInt.max`.
///
/// let x = Int8(clamping: 500)
/// // x == 127
/// // x == Int8.max
///
/// let y = UInt(clamping: -500)
/// // y == 0
///
/// - Parameter source: An integer to convert to this type.
init<T: BinaryInteger>(clamping source: T)
/// A type that represents the words of a binary integer.
///
/// The `Words` type must conform to the `RandomAccessCollection` protocol
/// with an `Element` type of `UInt` and `Index` type of `Int`.
associatedtype Words: RandomAccessCollection
where Words.Element == UInt, Words.Index == Int
/// A collection containing the words of this value's binary
/// representation, in order from the least significant to most significant.
///
/// Negative values are returned in two's complement representation,
/// regardless of the type's underlying implementation.
var words: Words { get }
/// The least significant word in this value's binary representation.
var _lowWord: UInt { get }
/// The number of bits in the current binary representation of this value.
///
/// This property is a constant for instances of fixed-width integer
/// types.
var bitWidth: Int { get }
/// Returns the integer binary logarithm of this value.
///
/// If the value is negative or zero, a runtime error will occur.
func _binaryLogarithm() -> Int
/// The number of trailing zeros in this value's binary representation.
///
/// For example, in a fixed-width integer type with a `bitWidth` value of 8,
/// the number -8 has three trailing zeros.
///
/// let x = Int8(bitPattern: 0b1111_1000)
/// // x == -8
/// // x.trailingZeroBitCount == 3
///
/// If the value is zero, then `trailingZeroBitCount` is equal to `bitWidth`.
var trailingZeroBitCount: Int { get }
/// Returns the quotient of dividing the first value by the second.
///
/// For integer types, any remainder of the division is discarded.
///
/// let x = 21 / 5
/// // x == 4
///
/// - Parameters:
/// - lhs: The value to divide.
/// - rhs: The value to divide `lhs` by. `rhs` must not be zero.
static func /(lhs: Self, rhs: Self) -> Self
/// Divides the first value by the second and stores the quotient in the
/// left-hand-side variable.
///
/// For integer types, any remainder of the division is discarded.
///
/// var x = 21
/// x /= 5
/// // x == 4
///
/// - Parameters:
/// - lhs: The value to divide.
/// - rhs: The value to divide `lhs` by. `rhs` must not be zero.
static func /=(lhs: inout Self, rhs: Self)
/// Returns the remainder of dividing the first value by the second.
///
/// The result of the remainder operator (`%`) has the same sign as `lhs` and
/// has a magnitude less than `rhs.magnitude`.
///
/// let x = 22 % 5
/// // x == 2
/// let y = 22 % -5
/// // y == 2
/// let z = -22 % -5
/// // z == -2
///
/// For any two integers `a` and `b`, their quotient `q`, and their remainder
/// `r`, `a == b * q + r`.
///
/// - Parameters:
/// - lhs: The value to divide.
/// - rhs: The value to divide `lhs` by. `rhs` must not be zero.
static func %(lhs: Self, rhs: Self) -> Self
/// Divides the first value by the second and stores the remainder in the
/// left-hand-side variable.
///
/// The result has the same sign as `lhs` and has a magnitude less than
/// `rhs.magnitude`.
///
/// var x = 22
/// x %= 5
/// // x == 2
///
/// var y = 22
/// y %= -5
/// // y == 2
///
/// var z = -22
/// z %= -5
/// // z == -2
///
/// - Parameters:
/// - lhs: The value to divide.
/// - rhs: The value to divide `lhs` by. `rhs` must not be zero.
static func %=(lhs: inout Self, rhs: Self)
/// Adds two values and produces their sum.
///
/// The addition operator (`+`) calculates the sum of its two arguments. For
/// example:
///
/// 1 + 2 // 3
/// -10 + 15 // 5
/// -15 + -5 // -20
/// 21.5 + 3.25 // 24.75
///
/// You cannot use `+` with arguments of different types. To add values of
/// different types, convert one of the values to the other value's type.
///
/// let x: Int8 = 21
/// let y: Int = 1000000
/// Int(x) + y // 1000021
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
override static func +(lhs: Self, rhs: Self) -> Self
/// Adds two values and stores the result in the left-hand-side variable.
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
override static func +=(lhs: inout Self, rhs: Self)
/// Subtracts one value from another and produces their difference.
///
/// The subtraction operator (`-`) calculates the difference of its two
/// arguments. For example:
///
/// 8 - 3 // 5
/// -10 - 5 // -15
/// 100 - -5 // 105
/// 10.5 - 100.0 // -89.5
///
/// You cannot use `-` with arguments of different types. To subtract values
/// of different types, convert one of the values to the other value's type.
///
/// let x: UInt8 = 21
/// let y: UInt = 1000000
/// y - UInt(x) // 999979
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
override static func -(lhs: Self, rhs: Self) -> Self
/// Subtracts the second value from the first and stores the difference in the
/// left-hand-side variable.
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
override static func -=(lhs: inout Self, rhs: Self)
/// Multiplies two values and produces their product.
///
/// The multiplication operator (`*`) calculates the product of its two
/// arguments. For example:
///
/// 2 * 3 // 6
/// 100 * 21 // 2100
/// -10 * 15 // -150
/// 3.5 * 2.25 // 7.875
///
/// You cannot use `*` with arguments of different types. To multiply values
/// of different types, convert one of the values to the other value's type.
///
/// let x: Int8 = 21
/// let y: Int = 1000000
/// Int(x) * y // 21000000
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
override static func *(lhs: Self, rhs: Self) -> Self
/// Multiplies two values and stores the result in the left-hand-side
/// variable.
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
override static func *=(lhs: inout Self, rhs: Self)
/// Returns the inverse of the bits set in the argument.
///
/// The bitwise NOT operator (`~`) is a prefix operator that returns a value
/// in which all the bits of its argument are flipped: Bits that are `1` in
/// the argument are `0` in the result, and bits that are `0` in the argument
/// are `1` in the result. This is equivalent to the inverse of a set. For
/// example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let notX = ~x // 0b11111010
///
/// Performing a bitwise NOT operation on 0 returns a value with every bit
/// set to `1`.
///
/// let allOnes = ~UInt8.min // 0b11111111
///
/// - Complexity: O(1).
static prefix func ~ (_ x: Self) -> Self
/// Returns the result of performing a bitwise AND operation on the two given
/// values.
///
/// A bitwise AND operation results in a value that has each bit set to `1`
/// where *both* of its arguments have that bit set to `1`. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x & y // 0b00000100
/// // z == 4
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
static func &(lhs: Self, rhs: Self) -> Self
/// Stores the result of performing a bitwise AND operation on the two given
/// values in the left-hand-side variable.
///
/// A bitwise AND operation results in a value that has each bit set to `1`
/// where *both* of its arguments have that bit set to `1`. For example:
///
/// var x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// x &= y // 0b00000100
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
static func &=(lhs: inout Self, rhs: Self)
/// Returns the result of performing a bitwise OR operation on the two given
/// values.
///
/// A bitwise OR operation results in a value that has each bit set to `1`
/// where *one or both* of its arguments have that bit set to `1`. For
/// example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x | y // 0b00001111
/// // z == 15
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
static func |(lhs: Self, rhs: Self) -> Self
/// Stores the result of performing a bitwise OR operation on the two given
/// values in the left-hand-side variable.
///
/// A bitwise OR operation results in a value that has each bit set to `1`
/// where *one or both* of its arguments have that bit set to `1`. For
/// example:
///
/// var x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// x |= y // 0b00001111
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
static func |=(lhs: inout Self, rhs: Self)
/// Returns the result of performing a bitwise XOR operation on the two given
/// values.
///
/// A bitwise XOR operation, also known as an exclusive OR operation, results
/// in a value that has each bit set to `1` where *one or the other but not
/// both* of its arguments had that bit set to `1`. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x ^ y // 0b00001011
/// // z == 11
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
static func ^(lhs: Self, rhs: Self) -> Self
/// Stores the result of performing a bitwise XOR operation on the two given
/// values in the left-hand-side variable.
///
/// A bitwise XOR operation, also known as an exclusive OR operation, results
/// in a value that has each bit set to `1` where *one or the other but not
/// both* of its arguments had that bit set to `1`. For example:
///
/// var x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// x ^= y // 0b00001011
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
static func ^=(lhs: inout Self, rhs: Self)
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the right.
///
/// The `>>` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a left shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*. An overshift results in `-1` for a
/// negative value of `lhs` or `0` for a nonnegative value.
/// - Using any other value for `rhs` performs a right shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted right by two bits.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x >> 2
/// // y == 7 // 0b00000111
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// let z = x >> 11
/// // z == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a left shift
/// using `abs(rhs)`.
///
/// let a = x >> -3
/// // a == 240 // 0b11110000
/// let b = x << 3
/// // b == 240 // 0b11110000
///
/// Right shift operations on negative values "fill in" the high bits with
/// ones instead of zeros.
///
/// let q: Int8 = -30 // 0b11100010
/// let r = q >> 2
/// // r == -8 // 0b11111000
///
/// let s = q >> 11
/// // s == -1 // 0b11111111
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right.
static func >> <RHS: BinaryInteger>(lhs: Self, rhs: RHS) -> Self
/// Stores the result of shifting a value's binary representation the
/// specified number of digits to the right in the left-hand-side variable.
///
/// The `>>=` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a left shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*. An overshift results in `-1` for a
/// negative value of `lhs` or `0` for a nonnegative value.
/// - Using any other value for `rhs` performs a right shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted right by two bits.
///
/// var x: UInt8 = 30 // 0b00011110
/// x >>= 2
/// // x == 7 // 0b00000111
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// var y: UInt8 = 30 // 0b00011110
/// y >>= 11
/// // y == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a left shift
/// using `abs(rhs)`.
///
/// var a: UInt8 = 30 // 0b00011110
/// a >>= -3
/// // a == 240 // 0b11110000
///
/// var b: UInt8 = 30 // 0b00011110
/// b <<= 3
/// // b == 240 // 0b11110000
///
/// Right shift operations on negative values "fill in" the high bits with
/// ones instead of zeros.
///
/// var q: Int8 = -30 // 0b11100010
/// q >>= 2
/// // q == -8 // 0b11111000
///
/// var r: Int8 = -30 // 0b11100010
/// r >>= 11
/// // r == -1 // 0b11111111
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right.
static func >>= <RHS: BinaryInteger>(lhs: inout Self, rhs: RHS)
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left.
///
/// The `<<` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a right shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*, resulting in zero.
/// - Using any other value for `rhs` performs a left shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted left by two bits.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x << 2
/// // y == 120 // 0b01111000
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// let z = x << 11
/// // z == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a right shift
/// with `abs(rhs)`.
///
/// let a = x << -3
/// // a == 3 // 0b00000011
/// let b = x >> 3
/// // b == 3 // 0b00000011
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left.
static func << <RHS: BinaryInteger>(lhs: Self, rhs: RHS) -> Self
/// Stores the result of shifting a value's binary representation the
/// specified number of digits to the left in the left-hand-side variable.
///
/// The `<<` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a right shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*, resulting in zero.
/// - Using any other value for `rhs` performs a left shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted left by two bits.
///
/// var x: UInt8 = 30 // 0b00011110
/// x <<= 2
/// // x == 120 // 0b01111000
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// var y: UInt8 = 30 // 0b00011110
/// y <<= 11
/// // y == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a right shift
/// with `abs(rhs)`.
///
/// var a: UInt8 = 30 // 0b00011110
/// a <<= -3
/// // a == 3 // 0b00000011
///
/// var b: UInt8 = 30 // 0b00011110
/// b >>= 3
/// // b == 3 // 0b00000011
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left.
static func <<=<RHS: BinaryInteger>(lhs: inout Self, rhs: RHS)
/// Returns the quotient and remainder of this value divided by the given
/// value.
///
/// Use this method to calculate the quotient and remainder of a division at
/// the same time.
///
/// let x = 1_000_000
/// let (q, r) = x.quotientAndRemainder(dividingBy: 933)
/// // q == 1071
/// // r == 757
///
/// - Parameter rhs: The value to divide this value by.
/// - Returns: A tuple containing the quotient and remainder of this value
/// divided by `rhs`. The remainder has the same sign as `lhs`.
func quotientAndRemainder(dividingBy rhs: Self)
-> (quotient: Self, remainder: Self)
/// Returns `true` if this value is a multiple of the given value, and `false`
/// otherwise.
///
/// For two integers *a* and *b*, *a* is a multiple of *b* if there exists a
/// third integer *q* such that _a = q*b_. For example, *6* is a multiple of
/// *3* because _6 = 2*3_. Zero is a multiple of everything because _0 = 0*x_
/// for any integer *x*.
///
/// Two edge cases are worth particular attention:
/// - `x.isMultiple(of: 0)` is `true` if `x` is zero and `false` otherwise.
/// - `T.min.isMultiple(of: -1)` is `true` for signed integer `T`, even
/// though the quotient `T.min / -1` isn't representable in type `T`.
///
/// - Parameter other: The value to test.
func isMultiple(of other: Self) -> Bool
/// Returns `-1` if this value is negative and `1` if it's positive;
/// otherwise, `0`.
///
/// - Returns: The sign of this number, expressed as an integer of the same
/// type.
func signum() -> Self
}
extension BinaryInteger {
/// Creates a new value equal to zero.
@_transparent
public init() {
self = 0
}
/// Returns `-1` if this value is negative and `1` if it's positive;
/// otherwise, `0`.
///
/// - Returns: The sign of this number, expressed as an integer of the same
/// type.
@inlinable
public func signum() -> Self {
return (self > (0 as Self) ? 1 : 0) - (self < (0 as Self) ? 1 : 0)
}
@_transparent
public var _lowWord: UInt {
var it = words.makeIterator()
return it.next() ?? 0
}
@inlinable
public func _binaryLogarithm() -> Int {
_precondition(self > (0 as Self))
var (quotient, remainder) =
(bitWidth &- 1).quotientAndRemainder(dividingBy: UInt.bitWidth)
remainder = remainder &+ 1
var word = UInt(truncatingIfNeeded: self >> (bitWidth &- remainder))
// If, internally, a variable-width binary integer uses digits of greater
// bit width than that of Magnitude.Words.Element (i.e., UInt), then it is
// possible that `word` could be zero. Additionally, a signed variable-width
// binary integer may have a leading word that is zero to store a clear sign
// bit.
while word == 0 {
quotient = quotient &- 1
remainder = remainder &+ UInt.bitWidth
word = UInt(truncatingIfNeeded: self >> (bitWidth &- remainder))
}
// Note that the order of operations below is important to guarantee that
// we won't overflow.
return UInt.bitWidth &* quotient &+
(UInt.bitWidth &- (word.leadingZeroBitCount &+ 1))
}
/// Returns the quotient and remainder of this value divided by the given
/// value.
///
/// Use this method to calculate the quotient and remainder of a division at
/// the same time.
///
/// let x = 1_000_000
/// let (q, r) = x.quotientAndRemainder(dividingBy: 933)
/// // q == 1071
/// // r == 757
///
/// - Parameter rhs: The value to divide this value by.
/// - Returns: A tuple containing the quotient and remainder of this value
/// divided by `rhs`.
@inlinable
public func quotientAndRemainder(dividingBy rhs: Self)
-> (quotient: Self, remainder: Self) {
return (self / rhs, self % rhs)
}
@inlinable
public func isMultiple(of other: Self) -> Bool {
// Nothing but zero is a multiple of zero.
if other == 0 { return self == 0 }
// Do the test in terms of magnitude, which guarantees there are no other
// edge cases. If we write this as `self % other` instead, it could trap
// for types that are not symmetric around zero.
return self.magnitude % other.magnitude == 0
}
//===----------------------------------------------------------------------===//
//===--- Homogeneous ------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// Returns the result of performing a bitwise AND operation on the two given
/// values.
///
/// A bitwise AND operation results in a value that has each bit set to `1`
/// where *both* of its arguments have that bit set to `1`. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x & y // 0b00000100
/// // z == 4
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
@_transparent
public static func & (lhs: Self, rhs: Self) -> Self {
var lhs = lhs
lhs &= rhs
return lhs
}
/// Returns the result of performing a bitwise OR operation on the two given
/// values.
///
/// A bitwise OR operation results in a value that has each bit set to `1`
/// where *one or both* of its arguments have that bit set to `1`. For
/// example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x | y // 0b00001111
/// // z == 15
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
@_transparent
public static func | (lhs: Self, rhs: Self) -> Self {
var lhs = lhs
lhs |= rhs
return lhs
}
/// Returns the result of performing a bitwise XOR operation on the two given
/// values.
///
/// A bitwise XOR operation, also known as an exclusive OR operation, results
/// in a value that has each bit set to `1` where *one or the other but not
/// both* of its arguments had that bit set to `1`. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x ^ y // 0b00001011
/// // z == 11
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
@_transparent
public static func ^ (lhs: Self, rhs: Self) -> Self {
var lhs = lhs
lhs ^= rhs
return lhs
}
//===----------------------------------------------------------------------===//
//===--- Heterogeneous non-masking shift in terms of shift-assignment -----===//
//===----------------------------------------------------------------------===//
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the right.
///
/// The `>>` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a left shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*. An overshift results in `-1` for a
/// negative value of `lhs` or `0` for a nonnegative value.
/// - Using any other value for `rhs` performs a right shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted right by two bits.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x >> 2
/// // y == 7 // 0b00000111
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// let z = x >> 11
/// // z == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a left shift
/// using `abs(rhs)`.
///
/// let a = x >> -3
/// // a == 240 // 0b11110000
/// let b = x << 3
/// // b == 240 // 0b11110000
///
/// Right shift operations on negative values "fill in" the high bits with
/// ones instead of zeros.
///
/// let q: Int8 = -30 // 0b11100010
/// let r = q >> 2
/// // r == -8 // 0b11111000
///
/// let s = q >> 11
/// // s == -1 // 0b11111111
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func >> <RHS: BinaryInteger>(lhs: Self, rhs: RHS) -> Self {
var r = lhs
r >>= rhs
return r
}
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left.
///
/// The `<<` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a right shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*, resulting in zero.
/// - Using any other value for `rhs` performs a left shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted left by two bits.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x << 2
/// // y == 120 // 0b01111000
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// let z = x << 11
/// // z == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a right shift
/// with `abs(rhs)`.
///
/// let a = x << -3
/// // a == 3 // 0b00000011
/// let b = x >> 3
/// // b == 3 // 0b00000011
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func << <RHS: BinaryInteger>(lhs: Self, rhs: RHS) -> Self {
var r = lhs
r <<= rhs
return r
}
}
//===----------------------------------------------------------------------===//
//===--- CustomStringConvertible conformance ------------------------------===//
//===----------------------------------------------------------------------===//
@_unavailableInEmbedded
extension BinaryInteger {
internal func _description(radix: Int, uppercase: Bool) -> String {
_precondition(2...36 ~= radix, "Radix must be between 2 and 36")
if bitWidth <= 64 {
let radix_ = Int64(radix)
return Self.isSigned
? _int64ToString(
Int64(truncatingIfNeeded: self), radix: radix_, uppercase: uppercase)
: _uint64ToString(
UInt64(truncatingIfNeeded: self), radix: radix_, uppercase: uppercase)
}
if self == (0 as Self) { return "0" }
// Bit shifting can be faster than division when `radix` is a power of two
// (although not necessarily the case for builtin types).
let isRadixPowerOfTwo = radix.nonzeroBitCount == 1
let radix_ = Magnitude(radix)
func _quotientAndRemainder(_ value: Magnitude) -> (Magnitude, Magnitude) {
return isRadixPowerOfTwo
? (value >> radix.trailingZeroBitCount, value & (radix_ - 1))
: value.quotientAndRemainder(dividingBy: radix_)
}
let hasLetters = radix > 10
func _ascii(_ digit: UInt8) -> UInt8 {
let base: UInt8
if !hasLetters || digit < 10 {
base = UInt8(("0" as Unicode.Scalar).value)
} else if uppercase {
base = UInt8(("A" as Unicode.Scalar).value) &- 10
} else {
base = UInt8(("a" as Unicode.Scalar).value) &- 10
}
return base &+ digit
}
let isNegative = Self.isSigned && self < (0 as Self)
var value = magnitude
// TODO(FIXME JIRA): All current stdlib types fit in small. Use a stack
// buffer instead of an array on the heap.
var result: [UInt8] = []
while value != 0 {
let (quotient, remainder) = _quotientAndRemainder(value)
result.append(_ascii(UInt8(truncatingIfNeeded: remainder)))
value = quotient
}
if isNegative {
result.append(UInt8(("-" as Unicode.Scalar).value))
}
result.reverse()
return result.withUnsafeBufferPointer {
return String._fromASCII($0)
}
}
/// A textual representation of this value.
@_semantics("binaryInteger.description")
public var description: String {
return _description(radix: 10, uppercase: false)
}
}
//===----------------------------------------------------------------------===//
//===--- Strideable conformance -------------------------------------------===//
//===----------------------------------------------------------------------===//
extension BinaryInteger {
/// Returns the distance from this value to the given value, expressed as a
/// stride.
///
/// For two values `x` and `y`, and a distance `n = x.distance(to: y)`,
/// `x.advanced(by: n) == y`.
///
/// - Parameter other: The value to calculate the distance to.
/// - Returns: The distance from this value to `other`.
@inlinable
@inline(__always)
public func distance(to other: Self) -> Int {
if !Self.isSigned {
if self > other {
if let result = Int(exactly: self - other) {
return -result
}
} else {
if let result = Int(exactly: other - self) {
return result
}
}
} else {
let isNegative = self < (0 as Self)
if isNegative == (other < (0 as Self)) {
if let result = Int(exactly: other - self) {
return result
}
} else {
if let result = Int(exactly: self.magnitude + other.magnitude) {
return isNegative ? result : -result
}
}
}
_preconditionFailure("Distance is not representable in Int")
}
/// Returns a value that is offset the specified distance from this value.
///
/// Use the `advanced(by:)` method in generic code to offset a value by a
/// specified distance. If you're working directly with numeric values, use
/// the addition operator (`+`) instead of this method.
///
/// For a value `x`, a distance `n`, and a value `y = x.advanced(by: n)`,
/// `x.distance(to: y) == n`.
///
/// - Parameter n: The distance to advance this value.
/// - Returns: A value that is offset from this value by `n`.
@inlinable
@inline(__always)
public func advanced(by n: Int) -> Self {
if Self.isSigned {
return self.bitWidth < n.bitWidth
? Self(Int(truncatingIfNeeded: self) + n)
: self + Self(truncatingIfNeeded: n)
} else {
return n < (0 as Int)
? self - Self(UInt(bitPattern: ~n &+ 1))
: self + Self(UInt(bitPattern: n))
}
}
}
//===----------------------------------------------------------------------===//
//===--- Heterogeneous comparison -----------------------------------------===//
//===----------------------------------------------------------------------===//
extension BinaryInteger {
/// Returns a Boolean value indicating whether the two given values are
/// equal.
///
/// You can check the equality of instances of any `BinaryInteger` types
/// using the equal-to operator (`==`). For example, you can test whether
/// the first `UInt8` value in a string's UTF-8 encoding is equal to the
/// first `UInt32` value in its Unicode scalar view:
///
/// let gameName = "Red Light, Green Light"
/// if let firstUTF8 = gameName.utf8.first,
/// let firstScalar = gameName.unicodeScalars.first?.value {
/// print("First code values are equal: \(firstUTF8 == firstScalar)")
/// }
/// // Prints "First code values are equal: true"
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public static func == <
Other: BinaryInteger
>(lhs: Self, rhs: Other) -> Bool {
// Use bit pattern conversion to widen the comparand with smaller bit width.
if Self.isSigned == Other.isSigned {
return lhs.bitWidth >= rhs.bitWidth ?
lhs == Self(truncatingIfNeeded: rhs) :
Other(truncatingIfNeeded: lhs) == rhs
}
// If `Self` is signed but `Other` is unsigned, then we have to
// be a little more careful about widening, since:
// (1) a fixed-width signed type can't represent the largest values of
// a fixed-width unsigned type of equal bit width; and
// (2) an unsigned type (obviously) can't represent a negative value.
if Self.isSigned {
return lhs.bitWidth > rhs.bitWidth ? // (1)
lhs == Self(truncatingIfNeeded: rhs) :
(lhs >= (0 as Self) && Other(truncatingIfNeeded: lhs) == rhs) // (2)
}
// Analogous reasoning applies if `Other` is signed but `Self` is not.
return lhs.bitWidth < rhs.bitWidth ?
Other(truncatingIfNeeded: lhs) == rhs :
(rhs >= (0 as Other) && lhs == Self(truncatingIfNeeded: rhs))
}
/// Returns a Boolean value indicating whether the two given values are not
/// equal.
///
/// You can check the inequality of instances of any `BinaryInteger` types
/// using the not-equal-to operator (`!=`). For example, you can test
/// whether the first `UInt8` value in a string's UTF-8 encoding is not
/// equal to the first `UInt32` value in its Unicode scalar view:
///
/// let gameName = "Red Light, Green Light"
/// if let firstUTF8 = gameName.utf8.first,
/// let firstScalar = gameName.unicodeScalars.first?.value {
/// print("First code values are different: \(firstUTF8 != firstScalar)")
/// }
/// // Prints "First code values are different: false"
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public static func != <
Other: BinaryInteger
>(lhs: Self, rhs: Other) -> Bool {
return !(lhs == rhs)
}
/// Returns a Boolean value indicating whether the value of the first
/// argument is less than that of the second argument.
///
/// You can compare instances of any `BinaryInteger` types using the
/// less-than operator (`<`), even if the two instances are of different
/// types.
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public static func < <Other: BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
// Use bit pattern conversion to widen the comparand with smaller bit width.
if Self.isSigned == Other.isSigned {
return lhs.bitWidth >= rhs.bitWidth ?
lhs < Self(truncatingIfNeeded: rhs) :
Other(truncatingIfNeeded: lhs) < rhs
}
// If `Self` is signed but `Other` is unsigned, then we have to
// be a little more careful about widening, since:
// (1) a fixed-width signed type can't represent the largest values of
// a fixed-width unsigned type of equal bit width; and
// (2) an unsigned type (obviously) can't represent a negative value.
if Self.isSigned {
return lhs.bitWidth > rhs.bitWidth ? // (1)
lhs < Self(truncatingIfNeeded: rhs) :
(lhs < (0 as Self) || Other(truncatingIfNeeded: lhs) < rhs) // (2)
}
// Analogous reasoning applies if `Other` is signed but `Self` is not.
return lhs.bitWidth < rhs.bitWidth ?
Other(truncatingIfNeeded: lhs) < rhs :
(rhs > (0 as Other) && lhs < Self(truncatingIfNeeded: rhs))
}
/// Returns a Boolean value indicating whether the value of the first
/// argument is less than or equal to that of the second argument.
///
/// You can compare instances of any `BinaryInteger` types using the
/// less-than-or-equal-to operator (`<=`), even if the two instances are of
/// different types.
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public static func <= <Other: BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
return !(rhs < lhs)
}
/// Returns a Boolean value indicating whether the value of the first
/// argument is greater than or equal to that of the second argument.
///
/// You can compare instances of any `BinaryInteger` types using the
/// greater-than-or-equal-to operator (`>=`), even if the two instances are
/// of different types.
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public static func >= <Other: BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
return !(lhs < rhs)
}
/// Returns a Boolean value indicating whether the value of the first
/// argument is greater than that of the second argument.
///
/// You can compare instances of any `BinaryInteger` types using the
/// greater-than operator (`>`), even if the two instances are of different
/// types.
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public static func > <Other: BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
return rhs < lhs
}
}
//===----------------------------------------------------------------------===//
//===--- Ambiguity breakers -----------------------------------------------===//
//
// These two versions of the operators are not ordered with respect to one
// another, but the compiler choses the second one, and that results in infinite
// recursion.
//
// <T: Comparable>(T, T) -> Bool
// <T: BinaryInteger, U: BinaryInteger>(T, U) -> Bool
//
// so we define:
//
// <T: BinaryInteger>(T, T) -> Bool
//
//===----------------------------------------------------------------------===//
extension BinaryInteger {
@_transparent
public static func != (lhs: Self, rhs: Self) -> Bool {
return !(lhs == rhs)
}
@_transparent
public static func <= (lhs: Self, rhs: Self) -> Bool {
return !(rhs < lhs)
}
@_transparent
public static func >= (lhs: Self, rhs: Self) -> Bool {
return !(lhs < rhs)
}
@_transparent
public static func > (lhs: Self, rhs: Self) -> Bool {
return rhs < lhs
}
}
#if !$Embedded
public typealias _LosslessStringConvertibleOrNone = LosslessStringConvertible
#else
public protocol _LosslessStringConvertibleOrNone {}
#endif
//===----------------------------------------------------------------------===//
//===--- FixedWidthInteger ------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// An integer type that uses a fixed size for every instance.
///
/// The `FixedWidthInteger` protocol adds binary bitwise operations, bit
/// shifts, and overflow handling to the operations supported by the
/// `BinaryInteger` protocol.
///
/// Use the `FixedWidthInteger` protocol as a constraint or extension point
/// when writing operations that depend on bit shifting, performing bitwise
/// operations, catching overflows, or having access to the maximum or minimum
/// representable value of a type. For example, the following code provides a
/// `binaryString` property on every fixed-width integer that represents the
/// number's binary representation, split into 8-bit chunks.
///
/// extension FixedWidthInteger {
/// var binaryString: String {
/// var result: [String] = []
/// for i in 0..<(Self.bitWidth / 8) {
/// let byte = UInt8(truncatingIfNeeded: self >> (i * 8))
/// let byteString = String(byte, radix: 2)
/// let padding = String(repeating: "0",
/// count: 8 - byteString.count)
/// result.append(padding + byteString)
/// }
/// return "0b" + result.reversed().joined(separator: "_")
/// }
/// }
///
/// print(Int16.max.binaryString)
/// // Prints "0b01111111_11111111"
/// print((101 as UInt8).binaryString)
/// // Prints "0b01100101"
///
/// The `binaryString` implementation uses the static `bitWidth` property and
/// the right shift operator (`>>`), both of which are available to any type
/// that conforms to the `FixedWidthInteger` protocol.
///
/// The next example declares a generic `squared` function, which accepts an
/// instance `x` of any fixed-width integer type. The function uses the
/// `multipliedReportingOverflow(by:)` method to multiply `x` by itself and
/// check whether the result is too large to represent in the same type.
///
/// func squared<T: FixedWidthInteger>(_ x: T) -> T? {
/// let (result, overflow) = x.multipliedReportingOverflow(by: x)
/// if overflow {
/// return nil
/// }
/// return result
/// }
///
/// let (x, y): (Int8, Int8) = (9, 123)
/// print(squared(x))
/// // Prints "Optional(81)"
/// print(squared(y))
/// // Prints "nil"
///
/// Conforming to the FixedWidthInteger Protocol
/// ============================================
///
/// To make your own custom type conform to the `FixedWidthInteger` protocol,
/// declare the required initializers, properties, and methods. The required
/// methods that are suffixed with `ReportingOverflow` serve as the
/// customization points for arithmetic operations. When you provide just those
/// methods, the standard library provides default implementations for all
/// other arithmetic methods and operators.
public protocol FixedWidthInteger: BinaryInteger, _LosslessStringConvertibleOrNone
where Magnitude: FixedWidthInteger & UnsignedInteger,
Stride: FixedWidthInteger & SignedInteger {
/// The number of bits used for the underlying binary representation of
/// values of this type.
///
/// An unsigned, fixed-width integer type can represent values from 0 through
/// `(2 ** bitWidth) - 1`, where `**` is exponentiation. A signed,
/// fixed-width integer type can represent values from
/// `-(2 ** (bitWidth - 1))` through `(2 ** (bitWidth - 1)) - 1`. For example,
/// the `Int8` type has a `bitWidth` value of 8 and can store any integer in
/// the range `-128...127`.
static var bitWidth: Int { get }
/// The maximum representable integer in this type.
///
/// For unsigned integer types, this value is `(2 ** bitWidth) - 1`, where
/// `**` is exponentiation. For signed integer types, this value is
/// `(2 ** (bitWidth - 1)) - 1`.
static var max: Self { get }
/// The minimum representable integer in this type.
///
/// For unsigned integer types, this value is always `0`. For signed integer
/// types, this value is `-(2 ** (bitWidth - 1))`, where `**` is
/// exponentiation.
static var min: Self { get }
/// Returns the sum of this value and the given value, along with a Boolean
/// value indicating whether overflow occurred in the operation.
///
/// - Parameter rhs: The value to add to this value.
/// - Returns: A tuple containing the result of the addition along with a
/// Boolean value indicating whether overflow occurred. If the `overflow`
/// component is `false`, the `partialValue` component contains the entire
/// sum. If the `overflow` component is `true`, an overflow occurred and
/// the `partialValue` component contains the truncated sum of this value
/// and `rhs`.
func addingReportingOverflow(
_ rhs: Self
) -> (partialValue: Self, overflow: Bool)
/// Returns the difference obtained by subtracting the given value from this
/// value, along with a Boolean value indicating whether overflow occurred in
/// the operation.
///
/// - Parameter rhs: The value to subtract from this value.
/// - Returns: A tuple containing the result of the subtraction along with a
/// Boolean value indicating whether overflow occurred. If the `overflow`
/// component is `false`, the `partialValue` component contains the entire
/// difference. If the `overflow` component is `true`, an overflow occurred
/// and the `partialValue` component contains the truncated result of `rhs`
/// subtracted from this value.
func subtractingReportingOverflow(
_ rhs: Self
) -> (partialValue: Self, overflow: Bool)
/// Returns the product of this value and the given value, along with a
/// Boolean value indicating whether overflow occurred in the operation.
///
/// - Parameter rhs: The value to multiply by this value.
/// - Returns: A tuple containing the result of the multiplication along with
/// a Boolean value indicating whether overflow occurred. If the `overflow`
/// component is `false`, the `partialValue` component contains the entire
/// product. If the `overflow` component is `true`, an overflow occurred and
/// the `partialValue` component contains the truncated product of this
/// value and `rhs`.
func multipliedReportingOverflow(
by rhs: Self
) -> (partialValue: Self, overflow: Bool)
/// Returns the quotient obtained by dividing this value by the given value,
/// along with a Boolean value indicating whether overflow occurred in the
/// operation.
///
/// Dividing by zero is not an error when using this method. For a value `x`,
/// the result of `x.dividedReportingOverflow(by: 0)` is `(x, true)`.
///
/// - Parameter rhs: The value to divide this value by.
/// - Returns: A tuple containing the result of the division along with a
/// Boolean value indicating whether overflow occurred. If the `overflow`
/// component is `false`, the `partialValue` component contains the entire
/// quotient. If the `overflow` component is `true`, an overflow occurred
/// and the `partialValue` component contains either the truncated quotient
/// or, if the quotient is undefined, the dividend.
func dividedReportingOverflow(
by rhs: Self
) -> (partialValue: Self, overflow: Bool)
/// Returns the remainder after dividing this value by the given value, along
/// with a Boolean value indicating whether overflow occurred during division.
///
/// Dividing by zero is not an error when using this method. For a value `x`,
/// the result of `x.remainderReportingOverflow(dividingBy: 0)` is
/// `(x, true)`.
///
/// - Parameter rhs: The value to divide this value by.
/// - Returns: A tuple containing the result of the operation along with a
/// Boolean value indicating whether overflow occurred. If the `overflow`
/// component is `false`, the `partialValue` component contains the entire
/// remainder. If the `overflow` component is `true`, an overflow occurred
/// during division and the `partialValue` component contains either the
/// entire remainder or, if the remainder is undefined, the dividend.
func remainderReportingOverflow(
dividingBy rhs: Self
) -> (partialValue: Self, overflow: Bool)
/// Returns a tuple containing the high and low parts of the result of
/// multiplying this value by the given value.
///
/// Use this method to calculate the full result of a product that would
/// otherwise overflow. Unlike traditional truncating multiplication, the
/// `multipliedFullWidth(by:)` method returns a tuple containing both the
/// `high` and `low` parts of the product of this value and `other`. The
/// following example uses this method to multiply two `Int8` values that
/// normally overflow when multiplied:
///
/// let x: Int8 = 48
/// let y: Int8 = -40
/// let result = x.multipliedFullWidth(by: y)
/// // result.high == -8
/// // result.low == 128
///
/// The product of `x` and `y` is `-1920`, which is too large to represent in
/// an `Int8` instance. The `high` and `low` components of the `result` value
/// represent `-1920` when concatenated to form a double-width integer; that
/// is, using `result.high` as the high byte and `result.low` as the low byte
/// of an `Int16` instance.
///
/// let z = Int16(result.high) << 8 | Int16(result.low)
/// // z == -1920
///
/// - Parameter other: The value to multiply this value by.
/// - Returns: A tuple containing the high and low parts of the result of
/// multiplying this value and `other`.
func multipliedFullWidth(by other: Self) -> (high: Self, low: Self.Magnitude)
/// Returns a tuple containing the quotient and remainder obtained by dividing
/// the given value by this value.
///
/// The resulting quotient must be representable within the bounds of the
/// type. If the quotient is too large to represent in the type, a runtime
/// error may occur.
///
/// The following example divides a value that is too large to be represented
/// using a single `Int` instance by another `Int` value. Because the quotient
/// is representable as an `Int`, the division succeeds.
///
/// // 'dividend' represents the value 0x506f70652053616e74612049494949
/// let dividend = (22640526660490081, 7959093232766896457 as UInt)
/// let divisor = 2241543570477705381
///
/// let (quotient, remainder) = divisor.dividingFullWidth(dividend)
/// // quotient == 186319822866995413
/// // remainder == 0
///
/// - Parameter dividend: A tuple containing the high and low parts of a
/// double-width integer.
/// - Returns: A tuple containing the quotient and remainder obtained by
/// dividing `dividend` by this value.
func dividingFullWidth(_ dividend: (high: Self, low: Self.Magnitude))
-> (quotient: Self, remainder: Self)
init(_truncatingBits bits: UInt)
/// The number of bits equal to 1 in this value's binary representation.
///
/// For example, in a fixed-width integer type with a `bitWidth` value of 8,
/// the number *31* has five bits equal to *1*.
///
/// let x: Int8 = 0b0001_1111
/// // x == 31
/// // x.nonzeroBitCount == 5
var nonzeroBitCount: Int { get }
/// The number of leading zeros in this value's binary representation.
///
/// For example, in a fixed-width integer type with a `bitWidth` value of 8,
/// the number *31* has three leading zeros.
///
/// let x: Int8 = 0b0001_1111
/// // x == 31
/// // x.leadingZeroBitCount == 3
///
/// If the value is zero, then `leadingZeroBitCount` is equal to `bitWidth`.
var leadingZeroBitCount: Int { get }
/// Creates an integer from its big-endian representation, changing the byte
/// order if necessary.
///
/// - Parameter value: A value to use as the big-endian representation of the
/// new integer.
init(bigEndian value: Self)
/// Creates an integer from its little-endian representation, changing the
/// byte order if necessary.
///
/// - Parameter value: A value to use as the little-endian representation of
/// the new integer.
init(littleEndian value: Self)
/// The big-endian representation of this integer.
///
/// If necessary, the byte order of this value is reversed from the typical
/// byte order of this integer type. On a big-endian platform, for any
/// integer `x`, `x == x.bigEndian`.
var bigEndian: Self { get }
/// The little-endian representation of this integer.
///
/// If necessary, the byte order of this value is reversed from the typical
/// byte order of this integer type. On a little-endian platform, for any
/// integer `x`, `x == x.littleEndian`.
var littleEndian: Self { get }
/// A representation of this integer with the byte order swapped.
var byteSwapped: Self { get }
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the right, masking the shift amount to the
/// type's bit width.
///
/// Use the masking right shift operator (`&>>`) when you need to perform a
/// shift and are sure that the shift amount is in the range
/// `0..<lhs.bitWidth`. Before shifting, the masking right shift operator
/// masks the shift to this range. The shift is performed using this masked
/// value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x &>> 2
/// // y == 7 // 0b00000111
///
/// However, if you use `8` as the shift amount, the method first masks the
/// shift amount to zero, and then performs the shift, resulting in no change
/// to the original value.
///
/// let z = x &>> 8
/// // z == 30 // 0b00011110
///
/// If the bit width of the shifted integer type is a power of two, masking
/// is performed using a bitmask; otherwise, masking is performed using a
/// modulo operation.
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
static func &>>(lhs: Self, rhs: Self) -> Self
/// Calculates the result of shifting a value's binary representation the
/// specified number of digits to the right, masking the shift amount to the
/// type's bit width, and stores the result in the left-hand-side variable.
///
/// The `&>>=` operator performs a *masking shift*, where the value passed as
/// `rhs` is masked to produce a value in the range `0..<lhs.bitWidth`. The
/// shift is performed using this masked value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// var x: UInt8 = 30 // 0b00011110
/// x &>>= 2
/// // x == 7 // 0b00000111
///
/// However, if you use `19` as `rhs`, the operation first bitmasks `rhs` to
/// `3`, and then uses that masked value as the number of bits to shift `lhs`.
///
/// var y: UInt8 = 30 // 0b00011110
/// y &>>= 19
/// // y == 3 // 0b00000011
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
static func &>>=(lhs: inout Self, rhs: Self)
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left, masking the shift amount to the
/// type's bit width.
///
/// Use the masking left shift operator (`&<<`) when you need to perform a
/// shift and are sure that the shift amount is in the range
/// `0..<lhs.bitWidth`. Before shifting, the masking left shift operator
/// masks the shift to this range. The shift is performed using this masked
/// value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x &<< 2
/// // y == 120 // 0b01111000
///
/// However, if you use `8` as the shift amount, the method first masks the
/// shift amount to zero, and then performs the shift, resulting in no change
/// to the original value.
///
/// let z = x &<< 8
/// // z == 30 // 0b00011110
///
/// If the bit width of the shifted integer type is a power of two, masking
/// is performed using a bitmask; otherwise, masking is performed using a
/// modulo operation.
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
static func &<<(lhs: Self, rhs: Self) -> Self
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left, masking the shift amount to the
/// type's bit width, and stores the result in the left-hand-side variable.
///
/// The `&<<=` operator performs a *masking shift*, where the value used as
/// `rhs` is masked to produce a value in the range `0..<lhs.bitWidth`. The
/// shift is performed using this masked value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// var x: UInt8 = 30 // 0b00011110
/// x &<<= 2
/// // x == 120 // 0b01111000
///
/// However, if you pass `19` as `rhs`, the method first bitmasks `rhs` to
/// `3`, and then uses that masked value as the number of bits to shift `lhs`.
///
/// var y: UInt8 = 30 // 0b00011110
/// y &<<= 19
/// // y == 240 // 0b11110000
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
static func &<<=(lhs: inout Self, rhs: Self)
/// Returns the product of the two given values, wrapping the result in case
/// of any overflow.
///
/// The overflow multiplication operator (`&*`) discards any bits that
/// overflow the fixed width of the integer type. In the following example,
/// the product of `10` and `50` is greater than the maximum representable
/// `Int8` value, so the result is the partial value after discarding the
/// overflowing bits.
///
/// let x: Int8 = 10 &* 5
/// // x == 50
/// let y: Int8 = 10 &* 50
/// // y == -12 (after overflow)
///
/// For more about arithmetic with overflow operators, see [Overflow
/// Operators][overflow] in *[The Swift Programming Language][tspl]*.
///
/// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
/// [tspl]: https://docs.swift.org/swift-book/
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
@available(SwiftStdlib 6.0, *)
static func &*(lhs: Self, rhs: Self) -> Self
}
extension FixedWidthInteger {
/// The number of bits in the binary representation of this value.
@inlinable
public var bitWidth: Int { return Self.bitWidth }
@inlinable
public func _binaryLogarithm() -> Int {
_precondition(self > (0 as Self))
return Self.bitWidth &- (leadingZeroBitCount &+ 1)
}
/// Creates an integer from its little-endian representation, changing the
/// byte order if necessary.
///
/// - Parameter value: A value to use as the little-endian representation of
/// the new integer.
@inlinable
public init(littleEndian value: Self) {
#if _endian(little)
self = value
#else
self = value.byteSwapped
#endif
}
/// Creates an integer from its big-endian representation, changing the byte
/// order if necessary.
///
/// - Parameter value: A value to use as the big-endian representation of the
/// new integer.
@inlinable
public init(bigEndian value: Self) {
#if _endian(big)
self = value
#else
self = value.byteSwapped
#endif
}
/// The little-endian representation of this integer.
///
/// If necessary, the byte order of this value is reversed from the typical
/// byte order of this integer type. On a little-endian platform, for any
/// integer `x`, `x == x.littleEndian`.
@inlinable
public var littleEndian: Self {
#if _endian(little)
return self
#else
return byteSwapped
#endif
}
/// The big-endian representation of this integer.
///
/// If necessary, the byte order of this value is reversed from the typical
/// byte order of this integer type. On a big-endian platform, for any
/// integer `x`, `x == x.bigEndian`.
@inlinable
public var bigEndian: Self {
#if _endian(big)
return self
#else
return byteSwapped
#endif
}
// Default implementation of multipliedFullWidth.
//
// This implementation is mainly intended for [U]Int64 on 32b platforms. It
// will not be especially efficient for other types that do not provide their
// own implementation, but neither will it be catastrophically bad. It can
// surely be improved on even for Int64, but that is mostly an optimization
// problem; the basic algorithm here gives the compiler all the information
// that it needs to generate efficient code.
@_alwaysEmitIntoClient
public func multipliedFullWidth(by other: Self) -> (high: Self, low: Magnitude) {
// We define a utility function for splitting an integer into high and low
// halves. Note that the low part is always unsigned, while the high part
// matches the signedness of the input type. Both result types are the
// full width of the original number; this may be surprising at first, but
// there are two reasons for it:
//
// - we're going to use these as inputs to a multiplication operation, and
// &* is quite a bit less verbose than `multipliedFullWidth`, so it makes
// the rest of the code in this function somewhat easier to read.
//
// - there's no "half width type" that we can get at from this generic
// context, so there's not really another option anyway.
//
// Fortunately, the compiler is pretty good about propagating the necessary
// information to optimize away unnecessary arithmetic.
func split<T: FixedWidthInteger>(_ x: T) -> (high: T, low: T.Magnitude) {
let n = T.bitWidth/2
return (x >> n, T.Magnitude(truncatingIfNeeded: x) & ((1 &<< n) &- 1))
}
// Split `self` and `other` into high and low parts, compute the partial
// products carrying high words in as we go. We use the wrapping operators
// and `truncatingIfNeeded` inits purely as an optimization hint to the
// compiler; none of these operations will ever wrap due to the constraints
// on the arithmetic. The bounds are documented before each line for signed
// types. For unsigned types, the bounds are much more well known and
// easier to derive, so I haven't bothered to document them here, but they
// all boil down to the fact that a*b + c + d cannot overflow a double-
// width result with unsigned a, b, c, d.
let (x1, x0) = split(self)
let (y1, y0) = split(other)
// If B is 2^bitWidth/2, x0 and y0 are in 0 ... B-1, so their product is
// in 0 ... B^2-2B+1. For further analysis, we'll need the fact that
// the high word is in 0 ... B-2.
let p00 = x0 &* y0
// x1 is in -B/2 ... B/2-1, so the product x1*y0 is in
// -(B^2-B)/2 ... (B^2-3B+2)/2; after adding the high word of p00, the
// result is in -(B^2-B)/2 ... (B^2-B-2)/2.
let p01 = x1 &* Self(y0) &+ Self(split(p00).high)
// The previous analysis holds for this product as well, and the sum is
// in -(B^2-B)/2 ... (B^2-B)/2.
let p10 = Self(x0) &* y1 &+ Self(split(p01).low)
// No analysis is necessary for this term, because we know the product as
// a whole cannot overflow, and this term is the final high word of the
// product.
let p11 = x1 &* y1 &+ split(p01).high &+ split(p10).high
// Now we only need to assemble the low word of the product.
return (p11, split(p10).low << (bitWidth/2) | split(p00).low)
}
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the right, masking the shift amount to the
/// type's bit width.
///
/// Use the masking right shift operator (`&>>`) when you need to perform a
/// shift and are sure that the shift amount is in the range
/// `0..<lhs.bitWidth`. Before shifting, the masking right shift operator
/// masks the shift to this range. The shift is performed using this masked
/// value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x &>> 2
/// // y == 7 // 0b00000111
///
/// However, if you use `8` as the shift amount, the method first masks the
/// shift amount to zero, and then performs the shift, resulting in no change
/// to the original value.
///
/// let z = x &>> 8
/// // z == 30 // 0b00011110
///
/// If the bit width of the shifted integer type is a power of two, masking
/// is performed using a bitmask; otherwise, masking is performed using a
/// modulo operation.
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func &>> (lhs: Self, rhs: Self) -> Self {
var lhs = lhs
lhs &>>= rhs
return lhs
}
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the right, masking the shift amount to the
/// type's bit width.
///
/// Use the masking right shift operator (`&>>`) when you need to perform a
/// shift and are sure that the shift amount is in the range
/// `0..<lhs.bitWidth`. Before shifting, the masking right shift operator
/// masks the shift to this range. The shift is performed using this masked
/// value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x &>> 2
/// // y == 7 // 0b00000111
///
/// However, if you use `8` as the shift amount, the method first masks the
/// shift amount to zero, and then performs the shift, resulting in no change
/// to the original value.
///
/// let z = x &>> 8
/// // z == 30 // 0b00011110
///
/// If the bit width of the shifted integer type is a power of two, masking
/// is performed using a bitmask; otherwise, masking is performed using a
/// modulo operation.
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func &>> <
Other: BinaryInteger
>(lhs: Self, rhs: Other) -> Self {
return lhs &>> Self(truncatingIfNeeded: rhs)
}
/// Calculates the result of shifting a value's binary representation the
/// specified number of digits to the right, masking the shift amount to the
/// type's bit width, and stores the result in the left-hand-side variable.
///
/// The `&>>=` operator performs a *masking shift*, where the value passed as
/// `rhs` is masked to produce a value in the range `0..<lhs.bitWidth`. The
/// shift is performed using this masked value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// var x: UInt8 = 30 // 0b00011110
/// x &>>= 2
/// // x == 7 // 0b00000111
///
/// However, if you use `19` as `rhs`, the operation first bitmasks `rhs` to
/// `3`, and then uses that masked value as the number of bits to shift `lhs`.
///
/// var y: UInt8 = 30 // 0b00011110
/// y &>>= 19
/// // y == 3 // 0b00000011
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func &>>= <
Other: BinaryInteger
>(lhs: inout Self, rhs: Other) {
lhs = lhs &>> rhs
}
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left, masking the shift amount to the
/// type's bit width.
///
/// Use the masking left shift operator (`&<<`) when you need to perform a
/// shift and are sure that the shift amount is in the range
/// `0..<lhs.bitWidth`. Before shifting, the masking left shift operator
/// masks the shift to this range. The shift is performed using this masked
/// value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x &<< 2
/// // y == 120 // 0b01111000
///
/// However, if you use `8` as the shift amount, the method first masks the
/// shift amount to zero, and then performs the shift, resulting in no change
/// to the original value.
///
/// let z = x &<< 8
/// // z == 30 // 0b00011110
///
/// If the bit width of the shifted integer type is a power of two, masking
/// is performed using a bitmask; otherwise, masking is performed using a
/// modulo operation.
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func &<< (lhs: Self, rhs: Self) -> Self {
var lhs = lhs
lhs &<<= rhs
return lhs
}
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left, masking the shift amount to the
/// type's bit width.
///
/// Use the masking left shift operator (`&<<`) when you need to perform a
/// shift and are sure that the shift amount is in the range
/// `0..<lhs.bitWidth`. Before shifting, the masking left shift operator
/// masks the shift to this range. The shift is performed using this masked
/// value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x &<< 2
/// // y == 120 // 0b01111000
///
/// However, if you use `8` as the shift amount, the method first masks the
/// shift amount to zero, and then performs the shift, resulting in no change
/// to the original value.
///
/// let z = x &<< 8
/// // z == 30 // 0b00011110
///
/// If the bit width of the shifted integer type is a power of two, masking
/// is performed using a bitmask; otherwise, masking is performed using a
/// modulo operation.
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func &<< <
Other: BinaryInteger
>(lhs: Self, rhs: Other) -> Self {
return lhs &<< Self(truncatingIfNeeded: rhs)
}
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left, masking the shift amount to the
/// type's bit width, and stores the result in the left-hand-side variable.
///
/// The `&<<=` operator performs a *masking shift*, where the value used as
/// `rhs` is masked to produce a value in the range `0..<lhs.bitWidth`. The
/// shift is performed using this masked value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// var x: UInt8 = 30 // 0b00011110
/// x &<<= 2
/// // x == 120 // 0b01111000
///
/// However, if you pass `19` as `rhs`, the method first bitmasks `rhs` to
/// `3`, and then uses that masked value as the number of bits to shift `lhs`.
///
/// var y: UInt8 = 30 // 0b00011110
/// y &<<= 19
/// // y == 240 // 0b11110000
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func &<<= <
Other: BinaryInteger
>(lhs: inout Self, rhs: Other) {
lhs = lhs &<< rhs
}
}
extension FixedWidthInteger {
/// Returns a random value within the specified range, using the given
/// generator as a source for randomness.
///
/// Use this method to generate an integer within a specific range when you
/// are using a custom random number generator. This example creates three
/// new values in the range `1..<100`.
///
/// for _ in 1...3 {
/// print(Int.random(in: 1..<100, using: &myGenerator))
/// }
/// // Prints "7"
/// // Prints "44"
/// // Prints "21"
///
/// - Note: The algorithm used to create random values may change in a future
/// version of Swift. If you're passing a generator that results in the
/// same sequence of integer values each time you run your program, that
/// sequence may change when your program is compiled using a different
/// version of Swift.
///
/// - Parameters:
/// - range: The range in which to create a random value.
/// `range` must not be empty.
/// - generator: The random number generator to use when creating the
/// new random value.
/// - Returns: A random value within the bounds of `range`.
@inlinable
public static func random<T: RandomNumberGenerator>(
in range: Range<Self>,
using generator: inout T
) -> Self {
_precondition(
!range.isEmpty,
"Can't get random value with an empty range"
)
// Compute delta, the distance between the lower and upper bounds. This
// value may not representable by the type Bound if Bound is signed, but
// is always representable as Bound.Magnitude.
let delta = Magnitude(truncatingIfNeeded: range.upperBound &- range.lowerBound)
// The mathematical result we want is lowerBound plus a random value in
// 0 ..< delta. We need to be slightly careful about how we do this
// arithmetic; the Bound type cannot generally represent the random value,
// so we use a wrapping addition on Bound.Magnitude. This will often
// overflow, but produces the correct bit pattern for the result when
// converted back to Bound.
return Self(truncatingIfNeeded:
Magnitude(truncatingIfNeeded: range.lowerBound) &+
generator.next(upperBound: delta)
)
}
/// Returns a random value within the specified range.
///
/// Use this method to generate an integer within a specific range. This
/// example creates three new values in the range `1..<100`.
///
/// for _ in 1...3 {
/// print(Int.random(in: 1..<100))
/// }
/// // Prints "53"
/// // Prints "64"
/// // Prints "5"
///
/// This method is equivalent to calling the version that takes a generator,
/// passing in the system's default random generator.
///
/// - Parameter range: The range in which to create a random value.
/// `range` must not be empty.
/// - Returns: A random value within the bounds of `range`.
@inlinable
public static func random(in range: Range<Self>) -> Self {
var g = SystemRandomNumberGenerator()
return Self.random(in: range, using: &g)
}
/// Returns a random value within the specified range, using the given
/// generator as a source for randomness.
///
/// Use this method to generate an integer within a specific range when you
/// are using a custom random number generator. This example creates three
/// new values in the range `1...100`.
///
/// for _ in 1...3 {
/// print(Int.random(in: 1...100, using: &myGenerator))
/// }
/// // Prints "7"
/// // Prints "44"
/// // Prints "21"
///
/// - Parameters:
/// - range: The range in which to create a random value.
/// - generator: The random number generator to use when creating the
/// new random value.
/// - Returns: A random value within the bounds of `range`.
@inlinable
public static func random<T: RandomNumberGenerator>(
in range: ClosedRange<Self>,
using generator: inout T
) -> Self {
// Compute delta, the distance between the lower and upper bounds. This
// value may not representable by the type Bound if Bound is signed, but
// is always representable as Bound.Magnitude.
var delta = Magnitude(truncatingIfNeeded: range.upperBound &- range.lowerBound)
// Subtle edge case: if the range is the whole set of representable values,
// then adding one to delta to account for a closed range will overflow.
// If we used &+ instead, the result would be zero, which isn't helpful,
// so we actually need to handle this case separately.
if delta == Magnitude.max {
return Self(truncatingIfNeeded: generator.next() as Magnitude)
}
// Need to widen delta to account for the right-endpoint of a closed range.
delta += 1
// The mathematical result we want is lowerBound plus a random value in
// 0 ..< delta. We need to be slightly careful about how we do this
// arithmetic; the Bound type cannot generally represent the random value,
// so we use a wrapping addition on Bound.Magnitude. This will often
// overflow, but produces the correct bit pattern for the result when
// converted back to Bound.
return Self(truncatingIfNeeded:
Magnitude(truncatingIfNeeded: range.lowerBound) &+
generator.next(upperBound: delta)
)
}
/// Returns a random value within the specified range.
///
/// Use this method to generate an integer within a specific range. This
/// example creates three new values in the range `1...100`.
///
/// for _ in 1...3 {
/// print(Int.random(in: 1...100))
/// }
/// // Prints "53"
/// // Prints "64"
/// // Prints "5"
///
/// This method is equivalent to calling `random(in:using:)`, passing in the
/// system's default random generator.
///
/// - Parameter range: The range in which to create a random value.
/// - Returns: A random value within the bounds of `range`.
@inlinable
public static func random(in range: ClosedRange<Self>) -> Self {
var g = SystemRandomNumberGenerator()
return Self.random(in: range, using: &g)
}
}
//===----------------------------------------------------------------------===//
//===--- Operators on FixedWidthInteger -----------------------------------===//
//===----------------------------------------------------------------------===//
extension FixedWidthInteger {
/// Returns the inverse of the bits set in the argument.
///
/// The bitwise NOT operator (`~`) is a prefix operator that returns a value
/// in which all the bits of its argument are flipped: Bits that are `1` in
/// the argument are `0` in the result, and bits that are `0` in the argument
/// are `1` in the result. This is equivalent to the inverse of a set. For
/// example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let notX = ~x // 0b11111010
///
/// Performing a bitwise NOT operation on 0 returns a value with every bit
/// set to `1`.
///
/// let allOnes = ~UInt8.min // 0b11111111
///
/// - Complexity: O(1).
@_transparent
public static prefix func ~ (x: Self) -> Self {
return 0 &- x &- 1
}
//===----------------------------------------------------------------------===//
//=== "Smart right shift", supporting overshifts and negative shifts ------===//
//===----------------------------------------------------------------------===//
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the right.
///
/// The `>>` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a left shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*. An overshift results in `-1` for a
/// negative value of `lhs` or `0` for a nonnegative value.
/// - Using any other value for `rhs` performs a right shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted right by two bits.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x >> 2
/// // y == 7 // 0b00000111
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// let z = x >> 11
/// // z == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a left shift
/// using `abs(rhs)`.
///
/// let a = x >> -3
/// // a == 240 // 0b11110000
/// let b = x << 3
/// // b == 240 // 0b11110000
///
/// Right shift operations on negative values "fill in" the high bits with
/// ones instead of zeros.
///
/// let q: Int8 = -30 // 0b11100010
/// let r = q >> 2
/// // r == -8 // 0b11111000
///
/// let s = q >> 11
/// // s == -1 // 0b11111111
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func >> <
Other: BinaryInteger
>(lhs: Self, rhs: Other) -> Self {
var lhs = lhs
_nonMaskingRightShiftGeneric(&lhs, rhs)
return lhs
}
@_transparent
@_semantics("optimize.sil.specialize.generic.partial.never")
public static func >>= <
Other: BinaryInteger
>(lhs: inout Self, rhs: Other) {
_nonMaskingRightShiftGeneric(&lhs, rhs)
}
@_transparent
public static func _nonMaskingRightShiftGeneric <
Other: BinaryInteger
>(_ lhs: inout Self, _ rhs: Other) {
let shift = rhs < -Self.bitWidth ? -Self.bitWidth
: rhs > Self.bitWidth ? Self.bitWidth
: Int(rhs)
lhs = _nonMaskingRightShift(lhs, shift)
}
@_transparent
public static func _nonMaskingRightShift(_ lhs: Self, _ rhs: Int) -> Self {
let overshiftR = Self.isSigned ? lhs &>> (Self.bitWidth - 1) : 0
let overshiftL: Self = 0
if _fastPath(rhs >= 0) {
if _fastPath(rhs < Self.bitWidth) {
return lhs &>> Self(truncatingIfNeeded: rhs)
}
return overshiftR
}
if _slowPath(rhs <= -Self.bitWidth) {
return overshiftL
}
return lhs &<< -rhs
}
//===----------------------------------------------------------------------===//
//=== "Smart left shift", supporting overshifts and negative shifts -------===//
//===----------------------------------------------------------------------===//
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left.
///
/// The `<<` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a right shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*, resulting in zero.
/// - Using any other value for `rhs` performs a left shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted left by two bits.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x << 2
/// // y == 120 // 0b01111000
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// let z = x << 11
/// // z == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a right shift
/// with `abs(rhs)`.
///
/// let a = x << -3
/// // a == 3 // 0b00000011
/// let b = x >> 3
/// // b == 3 // 0b00000011
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left.
@_semantics("optimize.sil.specialize.generic.partial.never")
@_transparent
public static func << <
Other: BinaryInteger
>(lhs: Self, rhs: Other) -> Self {
var lhs = lhs
_nonMaskingLeftShiftGeneric(&lhs, rhs)
return lhs
}
@_transparent
@_semantics("optimize.sil.specialize.generic.partial.never")
public static func <<= <
Other: BinaryInteger
>(lhs: inout Self, rhs: Other) {
_nonMaskingLeftShiftGeneric(&lhs, rhs)
}
@_transparent
public static func _nonMaskingLeftShiftGeneric <
Other: BinaryInteger
>(_ lhs: inout Self, _ rhs: Other) {
let shift = rhs < -Self.bitWidth ? -Self.bitWidth
: rhs > Self.bitWidth ? Self.bitWidth
: Int(rhs)
lhs = _nonMaskingLeftShift(lhs, shift)
}
@_transparent
public static func _nonMaskingLeftShift(_ lhs: Self, _ rhs: Int) -> Self {
let overshiftR = Self.isSigned ? lhs &>> (Self.bitWidth - 1) : 0
let overshiftL: Self = 0
if _fastPath(rhs >= 0) {
if _fastPath(rhs < Self.bitWidth) {
return lhs &<< Self(truncatingIfNeeded: rhs)
}
return overshiftL
}
if _slowPath(rhs <= -Self.bitWidth) {
return overshiftR
}
return lhs &>> -rhs
}
}
extension FixedWidthInteger {
@inlinable
@_semantics("optimize.sil.specialize.generic.partial.never")
public // @testable
static func _convert<Source: BinaryFloatingPoint>(
from source: Source
) -> (value: Self?, exact: Bool) {
guard _fastPath(!source.isZero) else { return (0, true) }
guard _fastPath(source.isFinite) else { return (nil, false) }
guard Self.isSigned || source > -1 else { return (nil, false) }
let exponent = source.exponent
if _slowPath(Self.bitWidth <= exponent) { return (nil, false) }
let minBitWidth = source.significandWidth
let isExact = (minBitWidth <= exponent)
let bitPattern = source.significandBitPattern
// Determine the actual number of fractional significand bits.
// `Source.significandBitCount` would not reflect the actual number of
// fractional significand bits if `Source` is not a fixed-width floating-point
// type; we can compute this value as follows if `source` is finite:
let bitWidth = minBitWidth &+ bitPattern.trailingZeroBitCount
let shift = exponent - Source.Exponent(bitWidth)
// Use `Self.Magnitude` to prevent sign extension if `shift < 0`.
let shiftedBitPattern = Self.Magnitude.bitWidth > bitWidth
? Self.Magnitude(truncatingIfNeeded: bitPattern) << shift
: Self.Magnitude(truncatingIfNeeded: bitPattern << shift)
if _slowPath(Self.isSigned && Self.bitWidth &- 1 == exponent) {
return source < 0 && shiftedBitPattern == 0
? (Self.min, isExact)
: (nil, false)
}
let magnitude = ((1 as Self.Magnitude) << exponent) | shiftedBitPattern
return (
Self.isSigned && source < 0 ? 0 &- Self(magnitude) : Self(magnitude),
isExact)
}
/// Creates an integer from the given floating-point value, rounding toward
/// zero. Any fractional part of the value passed as `source` is removed.
///
/// let x = Int(21.5)
/// // x == 21
/// let y = Int(-21.5)
/// // y == -21
///
/// If `source` is outside the bounds of this type after rounding toward
/// zero, a runtime error may occur.
///
/// let z = UInt(-21.5)
/// // Error: ...outside the representable range
///
/// - Parameter source: A floating-point value to convert to an integer.
/// `source` must be representable in this type after rounding toward
/// zero.
@inlinable
@_semantics("optimize.sil.specialize.generic.partial.never")
@inline(__always)
public init<T: BinaryFloatingPoint>(_ source: T) {
guard let value = Self._convert(from: source).value else {
#if !$Embedded
fatalError("""
\(T.self) value cannot be converted to \(Self.self) because it is \
outside the representable range
""")
#else
fatalError("value not representable")
#endif
}
self = value
}
/// Creates an integer from the given floating-point value, if it can be
/// represented exactly.
///
/// If the value passed as `source` is not representable exactly, the result
/// is `nil`. In the following example, the constant `x` is successfully
/// created from a value of `21.0`, while the attempt to initialize the
/// constant `y` from `21.5` fails:
///
/// let x = Int(exactly: 21.0)
/// // x == Optional(21)
/// let y = Int(exactly: 21.5)
/// // y == nil
///
/// - Parameter source: A floating-point value to convert to an integer.
@_semantics("optimize.sil.specialize.generic.partial.never")
@inlinable
public init?<T: BinaryFloatingPoint>(exactly source: T) {
let (temporary, exact) = Self._convert(from: source)
guard exact, let value = temporary else {
return nil
}
self = value
}
/// Creates a new instance with the representable value that's closest to the
/// given integer.
///
/// If the value passed as `source` is greater than the maximum representable
/// value in this type, the result is the type's `max` value. If `source` is
/// less than the smallest representable value in this type, the result is
/// the type's `min` value.
///
/// In this example, `x` is initialized as an `Int8` instance by clamping
/// `500` to the range `-128...127`, and `y` is initialized as a `UInt`
/// instance by clamping `-500` to the range `0...UInt.max`.
///
/// let x = Int8(clamping: 500)
/// // x == 127
/// // x == Int8.max
///
/// let y = UInt(clamping: -500)
/// // y == 0
///
/// - Parameter source: An integer to convert to this type.
@inlinable
@_semantics("optimize.sil.specialize.generic.partial.never")
public init<Other: BinaryInteger>(clamping source: Other) {
if _slowPath(source < Self.min) {
self = Self.min
}
else if _slowPath(source > Self.max) {
self = Self.max
}
else { self = Self(truncatingIfNeeded: source) }
}
/// Creates a new instance from the bit pattern of the given instance by
/// truncating or sign-extending if needed to fit this type.
///
/// When the bit width of `T` (the type of `source`) is equal to or greater
/// than this type's bit width, the result is the truncated
/// least-significant bits of `source`. For example, when converting a
/// 16-bit value to an 8-bit type, only the lower 8 bits of `source` are
/// used.
///
/// let p: Int16 = -500
/// // 'p' has a binary representation of 11111110_00001100
/// let q = Int8(truncatingIfNeeded: p)
/// // q == 12
/// // 'q' has a binary representation of 00001100
///
/// When the bit width of `T` is less than this type's bit width, the result
/// is *sign-extended* to fill the remaining bits. That is, if `source` is
/// negative, the result is padded with ones; otherwise, the result is
/// padded with zeros.
///
/// let u: Int8 = 21
/// // 'u' has a binary representation of 00010101
/// let v = Int16(truncatingIfNeeded: u)
/// // v == 21
/// // 'v' has a binary representation of 00000000_00010101
///
/// let w: Int8 = -21
/// // 'w' has a binary representation of 11101011
/// let x = Int16(truncatingIfNeeded: w)
/// // x == -21
/// // 'x' has a binary representation of 11111111_11101011
/// let y = UInt16(truncatingIfNeeded: w)
/// // y == 65515
/// // 'y' has a binary representation of 11111111_11101011
///
/// - Parameter source: An integer to convert to this type.
@inlinable // FIXME(inline-always)
@inline(__always)
public init<T: BinaryInteger>(truncatingIfNeeded source: T) {
if Self.bitWidth <= Int.bitWidth {
self = Self(_truncatingBits: source._lowWord)
}
else {
self = Self._truncatingInit(source)
}
}
@_alwaysEmitIntoClient
internal static func _truncatingInit<T: BinaryInteger>(_ source: T) -> Self {
let neg = source < (0 as T)
var result: Self = neg ? ~0 : 0
var shift: Self = 0
let width = Self(_truncatingBits: Self.bitWidth._lowWord)
for word in source.words {
guard shift < width else { break }
// Masking shift is OK here because we have already ensured
// that shift < Self.bitWidth. Not masking results in
// infinite recursion.
result ^= Self(_truncatingBits: neg ? ~word : word) &<< shift
shift += Self(_truncatingBits: Int.bitWidth._lowWord)
}
return result
}
@_transparent
public // transparent
static var _highBitIndex: Self {
return Self.init(_truncatingBits: UInt(Self.bitWidth._value) &- 1)
}
/// Returns the sum of the two given values, wrapping the result in case of
/// any overflow.
///
/// The overflow addition operator (`&+`) discards any bits that overflow the
/// fixed width of the integer type. In the following example, the sum of
/// `100` and `121` is greater than the maximum representable `Int8` value,
/// so the result is the partial value after discarding the overflowing
/// bits.
///
/// let x: Int8 = 10 &+ 21
/// // x == 31
/// let y: Int8 = 100 &+ 121
/// // y == -35 (after overflow)
///
/// For more about arithmetic with overflow operators, see [Overflow
/// Operators][overflow] in *[The Swift Programming Language][tspl]*.
///
/// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
/// [tspl]: https://docs.swift.org/swift-book/
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
@_transparent
public static func &+ (lhs: Self, rhs: Self) -> Self {
return lhs.addingReportingOverflow(rhs).partialValue
}
/// Adds two values and stores the result in the left-hand-side variable,
/// wrapping any overflow.
///
/// The masking addition assignment operator (`&+=`) silently wraps any
/// overflow that occurs during the operation. In the following example, the
/// sum of `100` and `121` is greater than the maximum representable `Int8`
/// value, so the result is the partial value after discarding the
/// overflowing bits.
///
/// var x: Int8 = 10
/// x &+= 21
/// // x == 31
/// var y: Int8 = 100
/// y &+= 121
/// // y == -35 (after overflow)
///
/// For more about arithmetic with overflow operators, see [Overflow
/// Operators][overflow] in *[The Swift Programming Language][tspl]*.
///
/// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
/// [tspl]: https://docs.swift.org/swift-book/
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
@_transparent
public static func &+= (lhs: inout Self, rhs: Self) {
lhs = lhs &+ rhs
}
/// Returns the difference of the two given values, wrapping the result in
/// case of any overflow.
///
/// The overflow subtraction operator (`&-`) discards any bits that overflow
/// the fixed width of the integer type. In the following example, the
/// difference of `10` and `21` is less than zero, the minimum representable
/// `UInt` value, so the result is the partial value after discarding the
/// overflowing bits.
///
/// let x: UInt8 = 21 &- 10
/// // x == 11
/// let y: UInt8 = 10 &- 21
/// // y == 245 (after overflow)
///
/// For more about arithmetic with overflow operators, see [Overflow
/// Operators][overflow] in *[The Swift Programming Language][tspl]*.
///
/// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
/// [tspl]: https://docs.swift.org/swift-book/
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
@_transparent
public static func &- (lhs: Self, rhs: Self) -> Self {
return lhs.subtractingReportingOverflow(rhs).partialValue
}
/// Subtracts the second value from the first and stores the difference in the
/// left-hand-side variable, wrapping any overflow.
///
/// The masking subtraction assignment operator (`&-=`) silently wraps any
/// overflow that occurs during the operation. In the following example, the
/// difference of `10` and `21` is less than zero, the minimum representable
/// `UInt` value, so the result is the result is the partial value after
/// discarding the overflowing bits.
///
/// var x: Int8 = 21
/// x &-= 10
/// // x == 11
/// var y: UInt8 = 10
/// y &-= 21
/// // y == 245 (after overflow)
///
/// For more about arithmetic with overflow operators, see [Overflow
/// Operators][overflow] in *[The Swift Programming Language][tspl]*.
///
/// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
/// [tspl]: https://docs.swift.org/swift-book/
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
@_transparent
public static func &-= (lhs: inout Self, rhs: Self) {
lhs = lhs &- rhs
}
@_transparent
public static func &*(lhs: Self, rhs: Self) -> Self {
return rhs.multipliedReportingOverflow(by: lhs).partialValue
}
/// Multiplies two values and stores the result in the left-hand-side
/// variable, wrapping any overflow.
///
/// The masking multiplication assignment operator (`&*=`) silently wraps
/// any overflow that occurs during the operation. In the following example,
/// the product of `10` and `50` is greater than the maximum representable
/// `Int8` value, so the result is the partial value after discarding the
/// overflowing bits.
///
/// var x: Int8 = 10
/// x &*= 5
/// // x == 50
/// var y: Int8 = 10
/// y &*= 50
/// // y == -12 (after overflow)
///
/// For more about arithmetic with overflow operators, see [Overflow
/// Operators][overflow] in *[The Swift Programming Language][tspl]*.
///
/// [overflow]: https://docs.swift.org/swift-book/LanguageGuide/AdvancedOperators.html#ID37
/// [tspl]: https://docs.swift.org/swift-book/
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
@_transparent
public static func &*= (lhs: inout Self, rhs: Self) {
lhs = lhs &* rhs
}
}
extension FixedWidthInteger {
@inlinable
public static func _random<R: RandomNumberGenerator>(
using generator: inout R
) -> Self {
if bitWidth <= UInt64.bitWidth {
return Self(truncatingIfNeeded: generator.next())
}
let (quotient, remainder) = bitWidth.quotientAndRemainder(
dividingBy: UInt64.bitWidth
)
var tmp: Self = 0
for i in 0 ..< quotient + remainder.signum() {
let next: UInt64 = generator.next()
tmp += Self(truncatingIfNeeded: next) &<< (UInt64.bitWidth * i)
}
return tmp
}
}
//===----------------------------------------------------------------------===//
//===--- UnsignedInteger --------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Implementor's note: UnsignedInteger should have required Magnitude == Self,
// because it can necessarily represent the magnitude of every value and every
// recursive generic constraint should terminate unless there is a good
// semantic reason for it not to do so.
//
// However, we cannot easily add this constraint because it changes the
// mangling of generics constrained on <T: FixedWidthInteger & UnsignedInteger>
// to be <T: FixedWidthInteger where T.Magnitude == T>. As a practical matter,
// every unsigned type will satisfy this constraint, so converting between
// Magnitude and Self in generic code is acceptable.
/// An integer type that can represent only nonnegative values.
public protocol UnsignedInteger: BinaryInteger { }
extension UnsignedInteger {
/// The magnitude of this value.
///
/// Every unsigned integer is its own magnitude, so for any value `x`,
/// `x == x.magnitude`.
///
/// The global `abs(_:)` function provides more familiar syntax when you need
/// to find an absolute value. In addition, because `abs(_:)` always returns
/// a value of the same type, even in a generic context, using the function
/// instead of the `magnitude` property is encouraged.
@inlinable // FIXME(inline-always)
public var magnitude: Self {
@inline(__always)
get { return self }
}
/// A Boolean value indicating whether this type is a signed integer type.
///
/// This property is always `false` for unsigned integer types.
@inlinable // FIXME(inline-always)
public static var isSigned: Bool {
@inline(__always)
get { return false }
}
}
extension UnsignedInteger where Self: FixedWidthInteger {
/// Creates a new instance from the given integer.
///
/// Use this initializer to convert from another integer type when you know
/// the value is within the bounds of this type. Passing a value that can't
/// be represented in this type results in a runtime error.
///
/// In the following example, the constant `y` is successfully created from
/// `x`, an `Int` instance with a value of `100`. Because the `Int8` type
/// can represent `127` at maximum, the attempt to create `z` with a value
/// of `1000` results in a runtime error.
///
/// let x = 100
/// let y = Int8(x)
/// // y == 100
/// let z = Int8(x * 10)
/// // Error: Not enough bits to represent the given value
///
/// - Parameter source: A value to convert to this type of integer. The value
/// passed as `source` must be representable in this type.
@_semantics("optimize.sil.specialize.generic.partial.never")
@inlinable // FIXME(inline-always)
@inline(__always)
public init<T: BinaryInteger>(_ source: T) {
// This check is potentially removable by the optimizer
if T.isSigned {
_precondition(source >= (0 as T), "Negative value is not representable")
}
// This check is potentially removable by the optimizer
if source.bitWidth >= Self.bitWidth {
_precondition(source <= Self.max,
"Not enough bits to represent the passed value")
}
self.init(truncatingIfNeeded: source)
}
/// Creates a new instance from the given integer, if it can be represented
/// exactly.
///
/// If the value passed as `source` is not representable exactly, the result
/// is `nil`. In the following example, the constant `x` is successfully
/// created from a value of `100`, while the attempt to initialize the
/// constant `y` from `1_000` fails because the `Int8` type can represent
/// `127` at maximum:
///
/// let x = Int8(exactly: 100)
/// // x == Optional(100)
/// let y = Int8(exactly: 1_000)
/// // y == nil
///
/// - Parameter source: A value to convert to this type of integer.
@_semantics("optimize.sil.specialize.generic.partial.never")
@inlinable // FIXME(inline-always)
@inline(__always)
public init?<T: BinaryInteger>(exactly source: T) {
// This check is potentially removable by the optimizer
if T.isSigned && source < (0 as T) {
return nil
}
// The width check can be eliminated by the optimizer
if source.bitWidth >= Self.bitWidth &&
source > Self.max {
return nil
}
self.init(truncatingIfNeeded: source)
}
/// The maximum representable integer in this type.
///
/// For unsigned integer types, this value is `(2 ** bitWidth) - 1`, where
/// `**` is exponentiation.
@_transparent
public static var max: Self { return ~0 }
/// The minimum representable integer in this type.
///
/// For unsigned integer types, this value is always `0`.
@_transparent
public static var min: Self { return 0 }
@_alwaysEmitIntoClient
public func dividingFullWidth(
_ dividend: (high: Self, low: Magnitude)
) -> (quotient: Self, remainder: Self) {
// Validate preconditions to guarantee that the quotient is representable.
precondition(self != .zero, "Division by zero")
precondition(dividend.high < self,
"Dividend.high must be smaller than divisor")
// UnsignedInteger should have a Magnitude = Self constraint, but does not,
// so we have to do this conversion (we can't easily add the constraint
// because it changes how generic signatures constrained to
// <FixedWidth & Unsigned> are minimized, which changes the mangling).
// In practice, "every" UnsignedInteger type will satisfy this, and if one
// somehow manages not to in a way that would break this conversion then
// a default implementation of this method never could have worked anyway.
let low = Self(dividend.low)
// The basic algorithm is taken from Knuth (TAoCP, Vol 2, §4.3.1), using
// words that are half the size of Self (so the dividend has four words
// and the divisor has two). The fact that the denominator has exactly
// two words allows for a slight simplification vs. Knuth's Algorithm D,
// in that our computed quotient digit is always exactly right, while
// in the more general case it can be one too large, requiring a subsequent
// borrow.
//
// Knuth's algorithm (and any long division, really), requires that the
// divisor (self) be normalized (meaning that the high-order bit is set).
// We begin by counting the leading zeros so we know how many bits we
// have to shift to normalize.
let lz = leadingZeroBitCount
// If the divisor is actually a power of two, division is just a shift,
// which we can handle much more efficiently. So we do a check for that
// case and early-out if possible.
if (self &- 1) & self == .zero {
let shift = Self.bitWidth - 1 - lz
let q = low &>> shift | dividend.high &<< -shift
let r = low & (self &- 1)
return (q, r)
}
// Shift the divisor left by lz bits to normalize it. We shift the
// dividend left by the same amount so that we get the quotient is
// preserved (we will have to shift right to recover the remainder).
// Note that the right shift `low >> (Self.bitWidth - lz)` is
// deliberately a non-masking shift because lz might be zero.
let v = self &<< lz
let uh = dividend.high &<< lz | low >> (Self.bitWidth - lz)
let ul = low &<< lz
// Now we have a normalized dividend (uh:ul) and divisor (v). Split
// v into half-words (vh:vl) so that we can use the "normal" division
// on Self as a word / halfword -> halfword division get one halfword
// digit of the quotient at a time.
let n_2 = Self.bitWidth/2
let mask = Self(1) &<< n_2 &- 1
let vh = v &>> n_2
let vl = v & mask
// For the (fairly-common) special case where vl is zero, we can simplify
// the arithmetic quite a bit:
if vl == .zero {
let qh = uh / vh
let residual = (uh &- qh &* vh) &<< n_2 | ul &>> n_2
let ql = residual / vh
return (
// Assemble quotient from half-word digits
quotient: qh &<< n_2 | ql,
// Compute remainder (we can re-use the residual to make this simpler).
remainder: ((residual &- ql &* vh) &<< n_2 | ul & mask) &>> lz
)
}
// Helper function: performs a (1½ word)/word division to produce a
// half quotient word q. We'll need to use this twice to generate the
// full quotient.
//
// high is the high word of the quotient for this sub-division.
// low is the low half-word of the quotient for this sub-division (the
// high half of low must be zero).
//
// returns the quotient half-word digit. In a more general setting, this
// computed digit might be one too large, which has to be accounted for
// later on (see Knuth, Algorithm D), but when the divisor is only two
// half-words (as here), that can never happen, because we use the full
// divisor in the check for the while loop.
func generateHalfDigit(high: Self, low: Self) -> Self {
// Get q̂ satisfying a = vh q̂ + r̂ with 0 ≤ r̂ < vh:
var (q̂, r̂) = high.quotientAndRemainder(dividingBy: vh)
// Knuth's "Theorem A" establishes that q̂ is an approximation to
// the quotient digit q, satisfying q ≤ q̂ ≤ q + 2. We adjust it
// downward as needed until we have the correct q.
while q̂ > mask || q̂ &* vl > (r̂ &<< n_2 | low) {
q̂ &-= 1
r̂ &+= vh
if r̂ > mask { break }
}
return q̂
}
// Generate the first quotient digit, subtract off its product with the
// divisor to generate the residual, then compute the second quotient
// digit from that.
let qh = generateHalfDigit(high: uh, low: ul &>> n_2)
let residual = (uh &<< n_2 | ul &>> n_2) &- (qh &* v)
let ql = generateHalfDigit(high: residual, low: ul & mask)
return (
// Assemble quotient from half-word digits
quotient: qh &<< n_2 | ql,
// Compute remainder (we can re-use the residual to make this simpler).
remainder: ((residual &<< n_2 | ul & mask) &- (ql &* v)) &>> lz
)
}
}
//===----------------------------------------------------------------------===//
//===--- SignedInteger ----------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// An integer type that can represent both positive and negative values.
public protocol SignedInteger: BinaryInteger, SignedNumeric {
// These requirements are needed for binary compatibility; the following:
//
// func foo<T>(_ a: T) -> T
// where T: SignedInteger & FixedWidthInteger {
// a &+ 1
// }
//
// generated a call to `static Swift.SignedInteger._maskingAdd(A, A) -> A`
// when compiled with Swift 5.5 and earlier.
@available(*, deprecated, message: "Use &+ instead.")
static func _maskingAdd(_ lhs: Self, _ rhs: Self) -> Self
@available(*, deprecated, message: "Use &- instead.")
static func _maskingSubtract(_ lhs: Self, _ rhs: Self) -> Self
}
extension SignedInteger {
/// A Boolean value indicating whether this type is a signed integer type.
///
/// This property is always `true` for signed integer types.
@inlinable // FIXME(inline-always)
public static var isSigned: Bool {
@inline(__always)
get { return true }
}
}
extension SignedInteger where Self: FixedWidthInteger {
/// Creates a new instance from the given integer.
///
/// Use this initializer to convert from another integer type when you know
/// the value is within the bounds of this type. Passing a value that can't
/// be represented in this type results in a runtime error.
///
/// In the following example, the constant `y` is successfully created from
/// `x`, an `Int` instance with a value of `100`. Because the `Int8` type
/// can represent `127` at maximum, the attempt to create `z` with a value
/// of `1000` results in a runtime error.
///
/// let x = 100
/// let y = Int8(x)
/// // y == 100
/// let z = Int8(x * 10)
/// // Error: Not enough bits to represent the given value
///
/// - Parameter source: A value to convert to this type of integer. The value
/// passed as `source` must be representable in this type.
@_semantics("optimize.sil.specialize.generic.partial.never")
@inlinable // FIXME(inline-always)
@inline(__always)
public init<T: BinaryInteger>(_ source: T) {
// This check is potentially removable by the optimizer
if T.isSigned && source.bitWidth > Self.bitWidth {
_precondition(source >= Self.min,
"Not enough bits to represent a signed value")
}
// This check is potentially removable by the optimizer
if (source.bitWidth > Self.bitWidth) ||
(source.bitWidth == Self.bitWidth && !T.isSigned) {
_precondition(source <= Self.max,
"Not enough bits to represent the passed value")
}
self.init(truncatingIfNeeded: source)
}
/// Creates a new instance from the given integer, if it can be represented
/// exactly.
///
/// If the value passed as `source` is not representable exactly, the result
/// is `nil`. In the following example, the constant `x` is successfully
/// created from a value of `100`, while the attempt to initialize the
/// constant `y` from `1_000` fails because the `Int8` type can represent
/// `127` at maximum:
///
/// let x = Int8(exactly: 100)
/// // x == Optional(100)
/// let y = Int8(exactly: 1_000)
/// // y == nil
///
/// - Parameter source: A value to convert to this type of integer.
@_semantics("optimize.sil.specialize.generic.partial.never")
@inlinable // FIXME(inline-always)
@inline(__always)
public init?<T: BinaryInteger>(exactly source: T) {
// This check is potentially removable by the optimizer
if T.isSigned && source.bitWidth > Self.bitWidth && source < Self.min {
return nil
}
// The width check can be eliminated by the optimizer
if (source.bitWidth > Self.bitWidth ||
(source.bitWidth == Self.bitWidth && !T.isSigned)) &&
source > Self.max {
return nil
}
self.init(truncatingIfNeeded: source)
}
/// The maximum representable integer in this type.
///
/// For signed integer types, this value is `(2 ** (bitWidth - 1)) - 1`,
/// where `**` is exponentiation.
@_transparent
public static var max: Self { return ~min }
/// The minimum representable integer in this type.
///
/// For signed integer types, this value is `-(2 ** (bitWidth - 1))`, where
/// `**` is exponentiation.
@_transparent
public static var min: Self {
return (-1 as Self) &<< Self._highBitIndex
}
@inlinable
public func isMultiple(of other: Self) -> Bool {
// Nothing but zero is a multiple of zero.
if other == 0 { return self == 0 }
// Special case to avoid overflow on .min / -1 for signed types.
if other == -1 { return true }
// Having handled those special cases, this is safe.
return self % other == 0
}
@_alwaysEmitIntoClient
public func dividingFullWidth(
_ dividend: (high: Self, low: Magnitude)
) -> (quotient: Self, remainder: Self) {
// Get magnitude of dividend:
var magnitudeHigh = Magnitude(truncatingIfNeeded: dividend.high)
var magnitudeLow = dividend.low
if dividend.high < .zero {
let carry: Bool
(magnitudeLow, carry) = (~magnitudeLow).addingReportingOverflow(1)
magnitudeHigh = ~magnitudeHigh &+ (carry ? 1 : 0)
}
// Do division on magnitudes (using unsigned implementation):
let (unsignedQuotient, unsignedRemainder) = magnitude.dividingFullWidth(
(high: magnitudeHigh, low: magnitudeLow)
)
// Fixup sign: quotient is negative if dividend and divisor disagree.
// We will also trap here if the quotient does not fit in Self.
let quotient: Self
if self ^ dividend.high < .zero {
// It is possible that the quotient is representable but its magnitude
// is not representable as Self (if quotient is Self.min), so we have
// to handle that case carefully here.
precondition(unsignedQuotient <= Self.min.magnitude,
"Quotient is not representable.")
quotient = Self(truncatingIfNeeded: 0 &- unsignedQuotient)
} else {
quotient = Self(unsignedQuotient)
}
var remainder = Self(unsignedRemainder)
if dividend.high < .zero { remainder = 0 &- remainder }
return (quotient, remainder)
}
}
/// Returns the given integer as the equivalent value in a different integer
/// type.
///
/// Calling the `numericCast(_:)` function is equivalent to calling an
/// initializer for the destination type. `numericCast(_:)` traps on overflow
/// in `-O` and `-Onone` builds.
///
/// - Parameter x: The integer to convert, an instance of type `T`.
/// - Returns: The value of `x` converted to type `U`.
@inlinable
public func numericCast<T: BinaryInteger, U: BinaryInteger>(_ x: T) -> U {
return U(x)
}
// Needed to support user-defined types conformance to SignedInteger.
// We need these defaults to exist, but they are not called.
extension SignedInteger {
@available(*, deprecated, message: "Use &+ instead.")
public static func _maskingAdd(_ lhs: Self, _ rhs: Self) -> Self {
fatalError("Should be overridden in a more specific type")
}
@available(*, deprecated, message: "Use &- instead.")
public static func _maskingSubtract(_ lhs: Self, _ rhs: Self) -> Self {
fatalError("Should be overridden in a more specific type")
}
}
// These symbols have to exist for ABI compatibility, but should not be used
// any longer; we want to find the FixedWidthInteger definitions instead.
extension SignedInteger where Self: FixedWidthInteger {
@available(*, unavailable)
public static func &+(lhs: Self, rhs: Self) -> Self {
lhs.addingReportingOverflow(rhs).partialValue
}
// This may be called in rare situations by binaries compiled with
// Swift 5.5 and earlier, so we need to keep it around for compatibility.
// We can't mark it unavailable, because then the concrete signed integer
// types in the standard library would not satisfy the protocol requirements.
@available(*, deprecated, message: "Use &+ instead.")
public static func _maskingAdd(_ lhs: Self, _ rhs: Self) -> Self {
lhs.addingReportingOverflow(rhs).partialValue
}
@available(*, unavailable)
public static func &-(lhs: Self, rhs: Self) -> Self {
lhs.subtractingReportingOverflow(rhs).partialValue
}
// This may be called in rare situations by binaries compiled with
// Swift 5.5 and earlier, so we need to keep it around for compatibility.
// We can't mark it unavailable, because then the concrete signed integer
// types in the standard library would not satisfy the protocol requirements.
@available(*, deprecated, message: "Use &- instead.")
public static func _maskingSubtract(_ lhs: Self, _ rhs: Self) -> Self {
lhs.subtractingReportingOverflow(rhs).partialValue
}
}
|