1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// A collection that supports subscript assignment.
///
/// Collections that conform to `MutableCollection` gain the ability to
/// change the value of their elements. This example shows how you can
/// modify one of the names in an array of students.
///
/// var students = ["Ben", "Ivy", "Jordell", "Maxime"]
/// if let i = students.firstIndex(of: "Maxime") {
/// students[i] = "Max"
/// }
/// print(students)
/// // Prints "["Ben", "Ivy", "Jordell", "Max"]"
///
/// In addition to changing the value of an individual element, you can also
/// change the values of a slice of elements in a mutable collection. For
/// example, you can sort *part* of a mutable collection by calling the
/// mutable `sort()` method on a subscripted subsequence. Here's an
/// example that sorts the first half of an array of integers:
///
/// var numbers = [15, 40, 10, 30, 60, 25, 5, 100]
/// numbers[0..<4].sort()
/// print(numbers)
/// // Prints "[10, 15, 30, 40, 60, 25, 5, 100]"
///
/// The `MutableCollection` protocol allows changing the values of a
/// collection's elements but not the length of the collection itself. For
/// operations that require adding or removing elements, see the
/// `RangeReplaceableCollection` protocol instead.
///
/// Conforming to the MutableCollection Protocol
/// ============================================
///
/// To add conformance to the `MutableCollection` protocol to your own
/// custom collection, upgrade your type's subscript to support both read
/// and write access.
///
/// A value stored into a subscript of a `MutableCollection` instance must
/// subsequently be accessible at that same position. That is, for a mutable
/// collection instance `a`, index `i`, and value `x`, the two sets of
/// assignments in the following code sample must be equivalent:
///
/// a[i] = x
/// let y = a[i]
///
/// // Must be equivalent to:
/// a[i] = x
/// let y = x
public protocol MutableCollection<Element>: Collection
where SubSequence: MutableCollection
{
// FIXME: Associated type inference requires these.
override associatedtype Element
override associatedtype Index
override associatedtype SubSequence
/// Accesses the element at the specified position.
///
/// For example, you can replace an element of an array by using its
/// subscript.
///
/// var streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// streets[1] = "Butler"
/// print(streets[1])
/// // Prints "Butler"
///
/// You can subscript a collection with any valid index other than the
/// collection's end index. The end index refers to the position one
/// past the last element of a collection, so it doesn't correspond with an
/// element.
///
/// - Parameter position: The position of the element to access. `position`
/// must be a valid index of the collection that is not equal to the
/// `endIndex` property.
///
/// - Complexity: O(1)
@_borrowed
override subscript(position: Index) -> Element { get set }
/// Accesses a contiguous subrange of the collection's elements.
///
/// The accessed slice uses the same indices for the same elements as the
/// original collection. Always use the slice's `startIndex` property
/// instead of assuming that its indices start at a particular value.
///
/// This example demonstrates getting a slice of an array of strings, finding
/// the index of one of the strings in the slice, and then using that index
/// in the original array.
///
/// var streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// let streetsSlice = streets[2 ..< streets.endIndex]
/// print(streetsSlice)
/// // Prints "["Channing", "Douglas", "Evarts"]"
///
/// let index = streetsSlice.firstIndex(of: "Evarts") // 4
/// streets[index!] = "Eustace"
/// print(streets[index!])
/// // Prints "Eustace"
///
/// - Parameter bounds: A range of the collection's indices. The bounds of
/// the range must be valid indices of the collection.
///
/// - Complexity: O(1)
override subscript(bounds: Range<Index>) -> SubSequence { get set }
/// Reorders the elements of the collection such that all the elements
/// that match the given predicate are after all the elements that don't
/// match.
///
/// After partitioning a collection, there is a pivot index `p` where
/// no element before `p` satisfies the `belongsInSecondPartition`
/// predicate and every element at or after `p` satisfies
/// `belongsInSecondPartition`. This operation isn't guaranteed to be
/// stable, so the relative ordering of elements within the partitions might
/// change.
///
/// In the following example, an array of numbers is partitioned by a
/// predicate that matches elements greater than 30.
///
/// var numbers = [30, 40, 20, 30, 30, 60, 10]
/// let p = numbers.partition(by: { $0 > 30 })
/// // p == 5
/// // numbers == [30, 10, 20, 30, 30, 60, 40]
///
/// The `numbers` array is now arranged in two partitions. The first
/// partition, `numbers[..<p]`, is made up of the elements that
/// are not greater than 30. The second partition, `numbers[p...]`,
/// is made up of the elements that *are* greater than 30.
///
/// let first = numbers[..<p]
/// // first == [30, 10, 20, 30, 30]
/// let second = numbers[p...]
/// // second == [60, 40]
///
/// Note that the order of elements in both partitions changed.
/// That is, `40` appears before `60` in the original collection,
/// but, after calling `partition(by:)`, `60` appears before `40`.
///
/// - Parameter belongsInSecondPartition: A predicate used to partition
/// the collection. All elements satisfying this predicate are ordered
/// after all elements not satisfying it.
/// - Returns: The index of the first element in the reordered collection
/// that matches `belongsInSecondPartition`. If no elements in the
/// collection match `belongsInSecondPartition`, the returned index is
/// equal to the collection's `endIndex`.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
mutating func partition(
by belongsInSecondPartition: (Element) throws -> Bool
) rethrows -> Index
/// Exchanges the values at the specified indices of the collection.
///
/// Both parameters must be valid indices of the collection and not
/// equal to `endIndex`. Passing the same index as both `i` and `j` has no
/// effect.
///
/// - Parameters:
/// - i: The index of the first value to swap.
/// - j: The index of the second value to swap.
///
/// - Complexity: O(1)
mutating func swapAt(_ i: Index, _ j: Index)
/// Call `body(buffer)`, where `buffer` provides access to the contiguous
/// mutable storage of the entire collection. If no such storage exists, it is
/// first created. If the collection does not support an internal
/// representation in the form of contiguous mutable storage, `body` is not
/// called and `nil` is returned.
///
/// The optimizer can often eliminate bounds- and uniqueness-checking
/// within an algorithm. When that fails, however, invoking the same
/// algorithm on `body`\ 's argument may let you trade safety for speed.
///
/// A `Collection` that provides its own implementation of this method
/// must provide contiguous storage to its elements in the same order
/// as they appear in the collection. This guarantees that contiguous
/// mutable storage to any of its subsequences can be generated by slicing
/// `buffer` with a range formed from the distances to the subsequence's
/// `startIndex` and `endIndex`, respectively.
@available(*, deprecated, renamed: "withContiguousMutableStorageIfAvailable")
mutating func _withUnsafeMutableBufferPointerIfSupported<R>(
_ body: (inout UnsafeMutableBufferPointer<Element>) throws -> R
) rethrows -> R?
/// Executes a closure on the collection's contiguous storage.
///
/// This method calls `body(buffer)`, where `buffer` provides access to the
/// contiguous mutable storage of the entire collection. If the contiguous
/// storage doesn't exist, the collection creates it. If the collection
/// doesn't support an internal representation in the form of contiguous
/// mutable storage, this method doesn't call `body` --- it immediately
/// returns `nil`.
///
/// The optimizer can often eliminate bounds- and uniqueness-checking
/// within an algorithm. When that fails, however, invoking the same
/// algorithm on the `buffer` argument may let you trade safety for speed.
///
/// Always perform any necessary cleanup in the closure, because the
/// method makes no guarantees about the state of the collection if the
/// closure throws an error. Your changes to the collection may be absent
/// from the collection after throwing the error, because the closure could
/// receive a temporary copy rather than direct access to the collection's
/// storage.
///
/// - Warning: Your `body` closure must not replace `buffer`. This leads
/// to a crash in all implementations of this method within the standard
/// library.
///
/// Successive calls to this method may provide a different pointer on each
/// call. Don't store `buffer` outside of this method.
///
/// A `Collection` that provides its own implementation of this method
/// must provide contiguous storage to its elements in the same order
/// as they appear in the collection. This guarantees that it's possible to
/// generate contiguous mutable storage to any of its subsequences by slicing
/// `buffer` with a range formed from the distances to the subsequence's
/// `startIndex` and `endIndex`, respectively.
///
/// - Parameters:
/// - body: A closure that receives an in-out
/// `UnsafeMutableBufferPointer` to the collection's contiguous storage.
/// - Returns: The value returned from `body`, unless the collection doesn't
/// support contiguous storage, in which case the method ignores `body` and
/// returns `nil`.
mutating func withContiguousMutableStorageIfAvailable<R>(
_ body: (_ buffer: inout UnsafeMutableBufferPointer<Element>) throws -> R
) rethrows -> R?
}
// TODO: swift-3-indexing-model - review the following
extension MutableCollection {
@inlinable
@available(*, deprecated, renamed: "withContiguousMutableStorageIfAvailable")
public mutating func _withUnsafeMutableBufferPointerIfSupported<R>(
_ body: (inout UnsafeMutableBufferPointer<Element>) throws -> R
) rethrows -> R? {
return nil
}
@inlinable
public mutating func withContiguousMutableStorageIfAvailable<R>(
_ body: (inout UnsafeMutableBufferPointer<Element>) throws -> R
) rethrows -> R? {
return nil
}
/// Accesses a contiguous subrange of the collection's elements.
///
/// The accessed slice uses the same indices for the same elements as the
/// original collection. Always use the slice's `startIndex` property
/// instead of assuming that its indices start at a particular value.
///
/// This example demonstrates getting a slice of an array of strings, finding
/// the index of one of the strings in the slice, and then using that index
/// in the original array.
///
/// var streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// let streetsSlice = streets[2 ..< streets.endIndex]
/// print(streetsSlice)
/// // Prints "["Channing", "Douglas", "Evarts"]"
///
/// let index = streetsSlice.firstIndex(of: "Evarts") // 4
/// streets[index!] = "Eustace"
/// print(streets[index!])
/// // Prints "Eustace"
///
/// - Parameter bounds: A range of the collection's indices. The bounds of
/// the range must be valid indices of the collection.
///
/// - Complexity: O(1)
@available(*, unavailable)
@inlinable
public subscript(bounds: Range<Index>) -> Slice<Self> {
get {
_failEarlyRangeCheck(bounds, bounds: startIndex..<endIndex)
return Slice(base: self, bounds: bounds)
}
set {
_writeBackMutableSlice(&self, bounds: bounds, slice: newValue)
}
}
// This unavailable default implementation of `subscript(bounds: Range<_>)`
// prevents incomplete MutableCollection implementations from satisfying the
// protocol through the use of the generic convenience implementation
// `subscript<R: RangeExpression>(r: R)`. If that were the case, at
// runtime the generic implementation would call itself
// in an infinite recursion due to the absence of a better option.
@available(*, unavailable)
@_alwaysEmitIntoClient
public subscript(bounds: Range<Index>) -> SubSequence {
get { fatalError() }
set { fatalError() }
}
/// Exchanges the values at the specified indices of the collection.
///
/// Both parameters must be valid indices of the collection that are not
/// equal to `endIndex`. Calling `swapAt(_:_:)` with the same index as both
/// `i` and `j` has no effect.
///
/// - Parameters:
/// - i: The index of the first value to swap.
/// - j: The index of the second value to swap.
///
/// - Complexity: O(1)
@inlinable
public mutating func swapAt(_ i: Index, _ j: Index) {
guard i != j else { return }
let tmp = self[i]
self[i] = self[j]
self[j] = tmp
}
}
extension MutableCollection where SubSequence == Slice<Self> {
/// Accesses a contiguous subrange of the collection's elements.
///
/// The accessed slice uses the same indices for the same elements as the
/// original collection. Always use the slice's `startIndex` property
/// instead of assuming that its indices start at a particular value.
///
/// This example demonstrates getting a slice of an array of strings, finding
/// the index of one of the strings in the slice, and then using that index
/// in the original array.
///
/// var streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// let streetsSlice = streets[2 ..< streets.endIndex]
/// print(streetsSlice)
/// // Prints "["Channing", "Douglas", "Evarts"]"
///
/// let index = streetsSlice.firstIndex(of: "Evarts") // 4
/// streets[index!] = "Eustace"
/// print(streets[index!])
/// // Prints "Eustace"
///
/// - Parameter bounds: A range of the collection's indices. The bounds of
/// the range must be valid indices of the collection.
///
/// - Complexity: O(1)
@inlinable
@_alwaysEmitIntoClient
public subscript(bounds: Range<Index>) -> Slice<Self> {
get {
_failEarlyRangeCheck(bounds, bounds: startIndex..<endIndex)
return Slice(base: self, bounds: bounds)
}
set {
_writeBackMutableSlice(&self, bounds: bounds, slice: newValue)
}
}
}
//===----------------------------------------------------------------------===//
// moveSubranges(_:to:)
//===----------------------------------------------------------------------===//
#if !$Embedded
extension MutableCollection {
/// Moves the elements in the given subranges to just before the element at
/// the specified index.
///
/// This example finds all the uppercase letters in the array and then
/// moves them to between `"i"` and `"j"`.
///
/// var letters = Array("ABCdeFGhijkLMNOp")
/// let uppercaseRanges = letters.subranges(where: { $0.isUppercase })
/// let rangeOfUppercase = letters.moveSubranges(uppercaseRanges, to: 10)
/// // String(letters) == "dehiABCFGLMNOjkp"
/// // rangeOfUppercase == 4..<13
///
/// - Parameters:
/// - subranges: The subranges of the elements to move.
/// - insertionPoint: The index to use as the destination of the elements.
/// - Returns: The new bounds of the moved elements.
///
/// - Complexity: O(*n* log *n*) where *n* is the length of the collection.
@available(SwiftStdlib 6.0, *)
@discardableResult
public mutating func moveSubranges(
_ subranges: RangeSet<Index>, to insertionPoint: Index
) -> Range<Index> {
let lowerCount = distance(from: startIndex, to: insertionPoint)
let upperCount = distance(from: insertionPoint, to: endIndex)
let start = _indexedStablePartition(
count: lowerCount,
range: startIndex..<insertionPoint,
by: { subranges.contains($0) })
let end = _indexedStablePartition(
count: upperCount,
range: insertionPoint..<endIndex,
by: { !subranges.contains($0) })
return start..<end
}
}
#endif
//===----------------------------------------------------------------------===//
// _rotate(in:shiftingToStart:)
//===----------------------------------------------------------------------===//
extension MutableCollection {
/// Rotates the elements of the collection so that the element at `middle`
/// ends up first.
///
/// - Returns: The new index of the element that was first pre-rotation.
///
/// - Complexity: O(*n*)
@discardableResult
internal mutating func _rotate(
in subrange: Range<Index>,
shiftingToStart middle: Index
) -> Index {
var m = middle, s = subrange.lowerBound
let e = subrange.upperBound
// Handle the trivial cases
if s == m { return e }
if m == e { return s }
// We have two regions of possibly-unequal length that need to be
// exchanged. The return value of this method is going to be the
// position following that of the element that is currently last
// (element j).
//
// [a b c d e f g|h i j] or [a b c|d e f g h i j]
// ^ ^ ^ ^ ^ ^
// s m e s m e
//
var ret = e // start with a known incorrect result.
while true {
// Exchange the leading elements of each region (up to the
// length of the shorter region).
//
// [a b c d e f g|h i j] or [a b c|d e f g h i j]
// ^^^^^ ^^^^^ ^^^^^ ^^^^^
// [h i j d e f g|a b c] or [d e f|a b c g h i j]
// ^ ^ ^ ^ ^ ^ ^ ^
// s s1 m m1/e s s1/m m1 e
//
let (s1, m1) = _swapNonemptySubrangePrefixes(s..<m, m..<e)
if m1 == e {
// Left-hand case: we have moved element j into position. if
// we haven't already, we can capture the return value which
// is in s1.
//
// Note: the STL breaks the loop into two just to avoid this
// comparison once the return value is known. I'm not sure
// it's a worthwhile optimization, though.
if ret == e { ret = s1 }
// If both regions were the same size, we're done.
if s1 == m { break }
}
// Now we have a smaller problem that is also a rotation, so we
// can adjust our bounds and repeat.
//
// h i j[d e f g|a b c] or d e f[a b c|g h i j]
// ^ ^ ^ ^ ^ ^
// s m e s m e
s = s1
if s == m { m = m1 }
}
return ret
}
/// Swaps the elements of the two given subranges, up to the upper bound of
/// the smaller subrange. The returned indices are the ends of the two
/// ranges that were actually swapped.
///
/// Input:
/// [a b c d e f g h i j k l m n o p]
/// ^^^^^^^ ^^^^^^^^^^^^^
/// lhs rhs
///
/// Output:
/// [i j k l e f g h a b c d m n o p]
/// ^ ^
/// p q
///
/// - Precondition: !lhs.isEmpty && !rhs.isEmpty
/// - Postcondition: For returned indices `(p, q)`:
///
/// - distance(from: lhs.lowerBound, to: p) == distance(from:
/// rhs.lowerBound, to: q)
/// - p == lhs.upperBound || q == rhs.upperBound
internal mutating func _swapNonemptySubrangePrefixes(
_ lhs: Range<Index>, _ rhs: Range<Index>
) -> (Index, Index) {
_internalInvariant(!lhs.isEmpty)
_internalInvariant(!rhs.isEmpty)
var p = lhs.lowerBound
var q = rhs.lowerBound
repeat {
swapAt(p, q)
formIndex(after: &p)
formIndex(after: &q)
} while p != lhs.upperBound && q != rhs.upperBound
return (p, q)
}
}
/// Exchanges the values of the two arguments.
///
/// The two arguments must not alias each other. To swap two elements of a
/// mutable collection, use the `swapAt(_:_:)` method of that collection
/// instead of this function.
///
/// - Parameters:
/// - a: The first value to swap.
/// - b: The second value to swap.
@inlinable
@_preInverseGenerics
public func swap<T: ~Copyable>(_ a: inout T, _ b: inout T) {
let temp = consume a
a = consume b
b = consume temp
}
/// Replaces the value of a mutable value with the supplied new value,
/// returning the original.
///
/// - Parameters:
/// - item: A mutable binding.
/// - newValue: The new value of `item`.
/// - Returns: The original value of `item`.
@_alwaysEmitIntoClient
public func exchange<T: ~Copyable>(
_ item: inout T,
with newValue: consuming T
) -> T {
let oldValue = consume item
item = consume newValue
return oldValue
}
|