1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// Swift Standard Prolog Library.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Standardized uninhabited type
//===----------------------------------------------------------------------===//
/// A type that has no values and can't be constructed.
///
/// Use `Never` as the return type of a function
/// that doesn't return normally --- for example,
/// because it runs forever or terminates the program.
///
/// // An infinite loop never returns.
/// func forever() -> Never {
/// while true {
/// print("I will print forever.")
/// }
/// }
///
/// // Calling fatalError(_:file:line:) unconditionally stops the program.
/// func crashAndBurn() -> Never {
/// fatalError("Something very, very bad happened")
/// }
///
/// A function that returns `Never` is called a _nonreturning_ function.
/// Closures, methods, computed properties, and subscripts
/// can also be nonreturning.
///
/// There's no way to create an instance of `Never`;
/// this characteristic makes it an _uninhabited_ type.
/// You can use an uninhabited type like `Never`
/// to represent states in your program
/// that are impossible to reach during execution.
/// Swift's type system uses this information ---
/// for example, to reason about control statements
/// in cases that are known to be unreachable.
///
/// let favoriteNumber: Result<Int, Never> = .success(42)
/// switch favoriteNumber {
/// case .success(let value):
/// print("My favorite number is", value)
/// }
///
/// In the code above,
/// `favoriteNumber` has a failure type of `Never`,
/// indicating that it always succeeds.
/// The switch statement is therefore exhaustive,
/// even though it doesn't contain a `.failure` case,
/// because that case could never be reached.
@frozen
public enum Never {}
extension Never: BitwiseCopyable {}
extension Never: Sendable {}
extension Never: Error {}
extension Never: Equatable, Comparable, Hashable {}
@available(SwiftStdlib 5.5, *)
@_unavailableInEmbedded
extension Never: Identifiable {
@available(SwiftStdlib 5.5, *)
public var id: Never {
switch self {}
}
}
@available(SwiftStdlib 5.9, *)
@_unavailableInEmbedded
extension Never: Encodable {
@available(SwiftStdlib 5.9, *)
public func encode(to encoder: any Encoder) throws {}
}
@available(SwiftStdlib 5.9, *)
@_unavailableInEmbedded
extension Never: Decodable {
@available(SwiftStdlib 5.9, *)
public init(from decoder: any Decoder) throws {
let context = DecodingError.Context(
codingPath: decoder.codingPath,
debugDescription: "Unable to decode an instance of Never.")
throw DecodingError.typeMismatch(Never.self, context)
}
}
//===----------------------------------------------------------------------===//
// Standardized aliases
//===----------------------------------------------------------------------===//
/// The return type of functions that don't explicitly specify a return type,
/// that is, an empty tuple `()`.
///
/// When declaring a function or method, you don't need to specify a return
/// type if no value will be returned. However, the type of a function,
/// method, or closure always includes a return type, which is `Void` if
/// otherwise unspecified.
///
/// Use `Void` or an empty tuple as the return type when declaring a closure,
/// function, or method that doesn't return a value.
///
/// // No return type declared:
/// func logMessage(_ s: String) {
/// print("Message: \(s)")
/// }
///
/// let logger: (String) -> Void = logMessage
/// logger("This is a void function")
/// // Prints "Message: This is a void function"
public typealias Void = ()
//===----------------------------------------------------------------------===//
// Aliases for floating point types
//===----------------------------------------------------------------------===//
// FIXME: it should be the other way round, Float = Float32, Double = Float64,
// but the type checker loses sugar currently, and ends up displaying 'FloatXX'
// in diagnostics.
/// A 32-bit floating point type.
public typealias Float32 = Float
/// A 64-bit floating point type.
public typealias Float64 = Double
//===----------------------------------------------------------------------===//
// Default types for unconstrained literals
//===----------------------------------------------------------------------===//
/// The default type for an otherwise-unconstrained integer literal.
public typealias IntegerLiteralType = Int
/// The default type for an otherwise-unconstrained floating-point literal.
public typealias FloatLiteralType = Double
/// The default type for an otherwise-unconstrained Boolean literal.
///
/// When you create a constant or variable using one of the Boolean literals
/// `true` or `false`, the resulting type is determined by the
/// `BooleanLiteralType` alias. For example:
///
/// let isBool = true
/// print("isBool is a '\(type(of: isBool))'")
/// // Prints "isBool is a 'Bool'"
///
/// The type aliased by `BooleanLiteralType` must conform to the
/// `ExpressibleByBooleanLiteral` protocol.
public typealias BooleanLiteralType = Bool
/// The default type for an otherwise-unconstrained unicode scalar literal.
@_unavailableInEmbedded
public typealias UnicodeScalarType = String
/// The default type for an otherwise-unconstrained Unicode extended
/// grapheme cluster literal.
@_unavailableInEmbedded
public typealias ExtendedGraphemeClusterType = String
/// The default type for an otherwise-unconstrained string literal.
@_unavailableInEmbedded
public typealias StringLiteralType = String
//===----------------------------------------------------------------------===//
// Default types for unconstrained number literals
//===----------------------------------------------------------------------===//
#if !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS)))) && (arch(i386) || arch(x86_64))
public typealias _MaxBuiltinFloatType = Builtin.FPIEEE80
#else
public typealias _MaxBuiltinFloatType = Builtin.FPIEEE64
#endif
//===----------------------------------------------------------------------===//
// Standard protocols
//===----------------------------------------------------------------------===//
#if _runtime(_ObjC)
/// The protocol to which all classes implicitly conform.
///
/// You use `AnyObject` when you need the flexibility of an untyped object or
/// when you use bridged Objective-C methods and properties that return an
/// untyped result. `AnyObject` can be used as the concrete type for an
/// instance of any class, class type, or class-only protocol. For example:
///
/// class FloatRef {
/// let value: Float
/// init(_ value: Float) {
/// self.value = value
/// }
/// }
///
/// let x = FloatRef(2.3)
/// let y: AnyObject = x
/// let z: AnyObject = FloatRef.self
///
/// `AnyObject` can also be used as the concrete type for an instance of a type
/// that bridges to an Objective-C class. Many value types in Swift bridge to
/// Objective-C counterparts, like `String` and `Int`.
///
/// let s: AnyObject = "This is a bridged string." as NSString
/// print(s is NSString)
/// // Prints "true"
///
/// let v: AnyObject = 100 as NSNumber
/// print(type(of: v))
/// // Prints "__NSCFNumber"
///
/// The flexible behavior of the `AnyObject` protocol is similar to
/// Objective-C's `id` type. For this reason, imported Objective-C types
/// frequently use `AnyObject` as the type for properties, method parameters,
/// and return values.
///
/// Casting AnyObject Instances to a Known Type
/// ===========================================
///
/// Objects with a concrete type of `AnyObject` maintain a specific dynamic
/// type and can be cast to that type using one of the type-cast operators
/// (`as`, `as?`, or `as!`).
///
/// This example uses the conditional downcast operator (`as?`) to
/// conditionally cast the `s` constant declared above to an instance of
/// Swift's `String` type.
///
/// if let message = s as? String {
/// print("Successful cast to String: \(message)")
/// }
/// // Prints "Successful cast to String: This is a bridged string."
///
/// If you have prior knowledge that an `AnyObject` instance has a particular
/// type, you can use the unconditional downcast operator (`as!`). Performing
/// an invalid cast triggers a runtime error.
///
/// let message = s as! String
/// print("Successful cast to String: \(message)")
/// // Prints "Successful cast to String: This is a bridged string."
///
/// let badCase = v as! String
/// // Runtime error
///
/// Casting is always safe in the context of a `switch` statement.
///
/// let mixedArray: [AnyObject] = [s, v]
/// for object in mixedArray {
/// switch object {
/// case let x as String:
/// print("'\(x)' is a String")
/// default:
/// print("'\(object)' is not a String")
/// }
/// }
/// // Prints "'This is a bridged string.' is a String"
/// // Prints "'100' is not a String"
///
/// Accessing Objective-C Methods and Properties
/// ============================================
///
/// When you use `AnyObject` as a concrete type, you have at your disposal
/// every `@objc` method and property---that is, methods and properties
/// imported from Objective-C or marked with the `@objc` attribute. Because
/// Swift can't guarantee at compile time that these methods and properties
/// are actually available on an `AnyObject` instance's underlying type, these
/// `@objc` symbols are available as implicitly unwrapped optional methods and
/// properties, respectively.
///
/// This example defines an `IntegerRef` type with an `@objc` method named
/// `getIntegerValue()`.
///
/// class IntegerRef {
/// let value: Int
/// init(_ value: Int) {
/// self.value = value
/// }
///
/// @objc func getIntegerValue() -> Int {
/// return value
/// }
/// }
///
/// func getObject() -> AnyObject {
/// return IntegerRef(100)
/// }
///
/// let obj: AnyObject = getObject()
///
/// In the example, `obj` has a static type of `AnyObject` and a dynamic type
/// of `IntegerRef`. You can use optional chaining to call the `@objc` method
/// `getIntegerValue()` on `obj` safely. If you're sure of the dynamic type of
/// `obj`, you can call `getIntegerValue()` directly.
///
/// let possibleValue = obj.getIntegerValue?()
/// print(possibleValue)
/// // Prints "Optional(100)"
///
/// let certainValue = obj.getIntegerValue()
/// print(certainValue)
/// // Prints "100"
///
/// If the dynamic type of `obj` doesn't implement a `getIntegerValue()`
/// method, the system returns a runtime error when you initialize
/// `certainValue`.
///
/// Alternatively, if you need to test whether `obj.getIntegerValue()` exists,
/// use optional binding before calling the method.
///
/// if let f = obj.getIntegerValue {
/// print("The value of 'obj' is \(f())")
/// } else {
/// print("'obj' does not have a 'getIntegerValue()' method")
/// }
/// // Prints "The value of 'obj' is 100"
public typealias AnyObject = Builtin.AnyObject
#else
/// The protocol to which all classes implicitly conform.
public typealias AnyObject = Builtin.AnyObject
#endif
/// The protocol to which all class types implicitly conform.
///
/// You can use the `AnyClass` protocol as the concrete type for an instance of
/// any class. When you do, all known `@objc` class methods and properties are
/// available as implicitly unwrapped optional methods and properties,
/// respectively. For example:
///
/// class IntegerRef {
/// @objc class func getDefaultValue() -> Int {
/// return 42
/// }
/// }
///
/// func getDefaultValue(_ c: AnyClass) -> Int? {
/// return c.getDefaultValue?()
/// }
///
/// The `getDefaultValue(_:)` function uses optional chaining to safely call
/// the implicitly unwrapped class method on `c`. Calling the function with
/// different class types shows how the `getDefaultValue()` class method is
/// only conditionally available.
///
/// print(getDefaultValue(IntegerRef.self))
/// // Prints "Optional(42)"
///
/// print(getDefaultValue(NSString.self))
/// // Prints "nil"
public typealias AnyClass = AnyObject.Type
//===----------------------------------------------------------------------===//
// Standard pattern matching forms
//===----------------------------------------------------------------------===//
/// Returns a Boolean value indicating whether two arguments match by value
/// equality.
///
/// The pattern-matching operator (`~=`) is used internally in `case`
/// statements for pattern matching. When you match against an `Equatable`
/// value in a `case` statement, this operator is called behind the scenes.
///
/// let weekday = 3
/// let lunch: String
/// switch weekday {
/// case 3:
/// lunch = "Taco Tuesday!"
/// default:
/// lunch = "Pizza again."
/// }
/// // lunch == "Taco Tuesday!"
///
/// In this example, the `case 3` expression uses this pattern-matching
/// operator to test whether `weekday` is equal to the value `3`.
///
/// - Note: In most cases, you should use the equal-to operator (`==`) to test
/// whether two instances are equal. The pattern-matching operator is
/// primarily intended to enable `case` statement pattern matching.
///
/// - Parameters:
/// - lhs: A value to compare.
/// - rhs: Another value to compare.
@_transparent
public func ~= <T: Equatable>(a: T, b: T) -> Bool {
return a == b
}
//===----------------------------------------------------------------------===//
// Standard precedence groups
//===----------------------------------------------------------------------===//
precedencegroup AssignmentPrecedence {
assignment: true
associativity: right
}
precedencegroup FunctionArrowPrecedence {
associativity: right
higherThan: AssignmentPrecedence
}
precedencegroup TernaryPrecedence {
associativity: right
higherThan: FunctionArrowPrecedence
}
precedencegroup DefaultPrecedence {
higherThan: TernaryPrecedence
}
precedencegroup LogicalDisjunctionPrecedence {
associativity: left
higherThan: TernaryPrecedence
}
precedencegroup LogicalConjunctionPrecedence {
associativity: left
higherThan: LogicalDisjunctionPrecedence
}
precedencegroup ComparisonPrecedence {
higherThan: LogicalConjunctionPrecedence
}
precedencegroup NilCoalescingPrecedence {
associativity: right
higherThan: ComparisonPrecedence
}
precedencegroup CastingPrecedence {
higherThan: NilCoalescingPrecedence
}
precedencegroup RangeFormationPrecedence {
higherThan: CastingPrecedence
}
precedencegroup AdditionPrecedence {
associativity: left
higherThan: RangeFormationPrecedence
}
precedencegroup MultiplicationPrecedence {
associativity: left
higherThan: AdditionPrecedence
}
precedencegroup BitwiseShiftPrecedence {
higherThan: MultiplicationPrecedence
}
//===----------------------------------------------------------------------===//
// Standard operators
//===----------------------------------------------------------------------===//
// Standard postfix operators.
postfix operator ++
postfix operator --
postfix operator ...
// Optional<T> unwrapping operator is built into the compiler as a part of
// postfix expression grammar.
//
// postfix operator !
// Standard prefix operators.
prefix operator ++
prefix operator --
prefix operator !
prefix operator ~
prefix operator +
prefix operator -
prefix operator ...
prefix operator ..<
// Standard infix operators.
// "Exponentiative"
infix operator <<: BitwiseShiftPrecedence
infix operator &<<: BitwiseShiftPrecedence
infix operator >>: BitwiseShiftPrecedence
infix operator &>>: BitwiseShiftPrecedence
// "Multiplicative"
infix operator *: MultiplicationPrecedence
infix operator &*: MultiplicationPrecedence
infix operator /: MultiplicationPrecedence
infix operator %: MultiplicationPrecedence
infix operator &: MultiplicationPrecedence
// "Additive"
infix operator +: AdditionPrecedence
infix operator &+: AdditionPrecedence
infix operator -: AdditionPrecedence
infix operator &-: AdditionPrecedence
infix operator |: AdditionPrecedence
infix operator ^: AdditionPrecedence
// FIXME: is this the right precedence level for "..." ?
infix operator ...: RangeFormationPrecedence
infix operator ..<: RangeFormationPrecedence
// The cast operators 'as' and 'is' are hardcoded as if they had the
// following attributes:
// infix operator as: CastingPrecedence
// "Coalescing"
infix operator ??: NilCoalescingPrecedence
// "Comparative"
infix operator <: ComparisonPrecedence
infix operator <=: ComparisonPrecedence
infix operator >: ComparisonPrecedence
infix operator >=: ComparisonPrecedence
infix operator ==: ComparisonPrecedence
infix operator !=: ComparisonPrecedence
infix operator ===: ComparisonPrecedence
infix operator !==: ComparisonPrecedence
// FIXME: ~= will be built into the compiler.
infix operator ~=: ComparisonPrecedence
// "Conjunctive"
infix operator &&: LogicalConjunctionPrecedence
// "Disjunctive"
infix operator ||: LogicalDisjunctionPrecedence
// User-defined ternary operators are not supported. The ? : operator is
// hardcoded as if it had the following attributes:
// operator ternary ? : : TernaryPrecedence
// User-defined assignment operators are not supported. The = operator is
// hardcoded as if it had the following attributes:
// infix operator =: AssignmentPrecedence
// Compound
infix operator *=: AssignmentPrecedence
infix operator &*=: AssignmentPrecedence
infix operator /=: AssignmentPrecedence
infix operator %=: AssignmentPrecedence
infix operator +=: AssignmentPrecedence
infix operator &+=: AssignmentPrecedence
infix operator -=: AssignmentPrecedence
infix operator &-=: AssignmentPrecedence
infix operator <<=: AssignmentPrecedence
infix operator &<<=: AssignmentPrecedence
infix operator >>=: AssignmentPrecedence
infix operator &>>=: AssignmentPrecedence
infix operator &=: AssignmentPrecedence
infix operator ^=: AssignmentPrecedence
infix operator |=: AssignmentPrecedence
// Workaround for <rdar://problem/14011860> SubTLF: Default
// implementations in protocols. Library authors should ensure
// that this operator never needs to be seen by end-users. See
// test/Prototypes/GenericDispatch.swift for a fully documented
// example of how this operator is used, and how its use can be hidden
// from users.
infix operator ~>
|