1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
|
//===--- SequenceAlgorithms.swift -----------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// enumerated()
//===----------------------------------------------------------------------===//
extension Sequence {
/// Returns a sequence of pairs (*n*, *x*), where *n* represents a
/// consecutive integer starting at zero and *x* represents an element of
/// the sequence.
///
/// This example enumerates the characters of the string "Swift" and prints
/// each character along with its place in the string.
///
/// for (n, c) in "Swift".enumerated() {
/// print("\(n): '\(c)'")
/// }
/// // Prints "0: 'S'"
/// // Prints "1: 'w'"
/// // Prints "2: 'i'"
/// // Prints "3: 'f'"
/// // Prints "4: 't'"
///
/// When you enumerate a collection, the integer part of each pair is a counter
/// for the enumeration, but is not necessarily the index of the paired value.
/// These counters can be used as indices only in instances of zero-based,
/// integer-indexed collections, such as `Array` and `ContiguousArray`. For
/// other collections the counters may be out of range or of the wrong type
/// to use as an index. To iterate over the elements of a collection with its
/// indices, use the `zip(_:_:)` function.
///
/// This example iterates over the indices and elements of a set, building a
/// list consisting of indices of names with five or fewer letters.
///
/// let names: Set = ["Sofia", "Camilla", "Martina", "Mateo", "Nicolás"]
/// var shorterIndices: [Set<String>.Index] = []
/// for (i, name) in zip(names.indices, names) {
/// if name.count <= 5 {
/// shorterIndices.append(i)
/// }
/// }
///
/// Now that the `shorterIndices` array holds the indices of the shorter
/// names in the `names` set, you can use those indices to access elements in
/// the set.
///
/// for i in shorterIndices {
/// print(names[i])
/// }
/// // Prints "Sofia"
/// // Prints "Mateo"
///
/// - Returns: A sequence of pairs enumerating the sequence.
///
/// - Complexity: O(1)
@inlinable // protocol-only
public func enumerated() -> EnumeratedSequence<Self> {
return EnumeratedSequence(_base: self)
}
}
//===----------------------------------------------------------------------===//
// min(), max()
//===----------------------------------------------------------------------===//
extension Sequence {
/// Returns the minimum element in the sequence, using the given predicate as
/// the comparison between elements.
///
/// The predicate must be a *strict weak ordering* over the elements. That
/// is, for any elements `a`, `b`, and `c`, the following conditions must
/// hold:
///
/// - `areInIncreasingOrder(a, a)` is always `false`. (Irreflexivity)
/// - If `areInIncreasingOrder(a, b)` and `areInIncreasingOrder(b, c)` are
/// both `true`, then `areInIncreasingOrder(a, c)` is also
/// `true`. (Transitive comparability)
/// - Two elements are *incomparable* if neither is ordered before the other
/// according to the predicate. If `a` and `b` are incomparable, and `b`
/// and `c` are incomparable, then `a` and `c` are also incomparable.
/// (Transitive incomparability)
///
/// This example shows how to use the `min(by:)` method on a
/// dictionary to find the key-value pair with the lowest value.
///
/// let hues = ["Heliotrope": 296, "Coral": 16, "Aquamarine": 156]
/// let leastHue = hues.min { a, b in a.value < b.value }
/// print(leastHue)
/// // Prints "Optional((key: "Coral", value: 16))"
///
/// - Parameter areInIncreasingOrder: A predicate that returns `true`
/// if its first argument should be ordered before its second
/// argument; otherwise, `false`.
/// - Returns: The sequence's minimum element, according to
/// `areInIncreasingOrder`. If the sequence has no elements, returns
/// `nil`.
///
/// - Complexity: O(*n*), where *n* is the length of the sequence.
@inlinable // protocol-only
@warn_unqualified_access
public func min(
by areInIncreasingOrder: (Element, Element) throws -> Bool
) rethrows -> Element? {
var it = makeIterator()
guard var result = it.next() else { return nil }
while let e = it.next() {
if try areInIncreasingOrder(e, result) { result = e }
}
return result
}
/// Returns the maximum element in the sequence, using the given predicate
/// as the comparison between elements.
///
/// The predicate must be a *strict weak ordering* over the elements. That
/// is, for any elements `a`, `b`, and `c`, the following conditions must
/// hold:
///
/// - `areInIncreasingOrder(a, a)` is always `false`. (Irreflexivity)
/// - If `areInIncreasingOrder(a, b)` and `areInIncreasingOrder(b, c)` are
/// both `true`, then `areInIncreasingOrder(a, c)` is also
/// `true`. (Transitive comparability)
/// - Two elements are *incomparable* if neither is ordered before the other
/// according to the predicate. If `a` and `b` are incomparable, and `b`
/// and `c` are incomparable, then `a` and `c` are also incomparable.
/// (Transitive incomparability)
///
/// This example shows how to use the `max(by:)` method on a
/// dictionary to find the key-value pair with the highest value.
///
/// let hues = ["Heliotrope": 296, "Coral": 16, "Aquamarine": 156]
/// let greatestHue = hues.max { a, b in a.value < b.value }
/// print(greatestHue)
/// // Prints "Optional((key: "Heliotrope", value: 296))"
///
/// - Parameter areInIncreasingOrder: A predicate that returns `true` if its
/// first argument should be ordered before its second argument;
/// otherwise, `false`.
/// - Returns: The sequence's maximum element if the sequence is not empty;
/// otherwise, `nil`.
///
/// - Complexity: O(*n*), where *n* is the length of the sequence.
@inlinable // protocol-only
@warn_unqualified_access
public func max(
by areInIncreasingOrder: (Element, Element) throws -> Bool
) rethrows -> Element? {
var it = makeIterator()
guard var result = it.next() else { return nil }
while let e = it.next() {
if try areInIncreasingOrder(result, e) { result = e }
}
return result
}
}
extension Sequence where Element: Comparable {
/// Returns the minimum element in the sequence.
///
/// This example finds the smallest value in an array of height measurements.
///
/// let heights = [67.5, 65.7, 64.3, 61.1, 58.5, 60.3, 64.9]
/// let lowestHeight = heights.min()
/// print(lowestHeight)
/// // Prints "Optional(58.5)"
///
/// - Returns: The sequence's minimum element. If the sequence has no
/// elements, returns `nil`.
///
/// - Complexity: O(*n*), where *n* is the length of the sequence.
@inlinable
@warn_unqualified_access
public func min() -> Element? {
return self.min(by: <)
}
/// Returns the maximum element in the sequence.
///
/// This example finds the largest value in an array of height measurements.
///
/// let heights = [67.5, 65.7, 64.3, 61.1, 58.5, 60.3, 64.9]
/// let greatestHeight = heights.max()
/// print(greatestHeight)
/// // Prints "Optional(67.5)"
///
/// - Returns: The sequence's maximum element. If the sequence has no
/// elements, returns `nil`.
///
/// - Complexity: O(*n*), where *n* is the length of the sequence.
@inlinable
@warn_unqualified_access
public func max() -> Element? {
return self.max(by: <)
}
}
//===----------------------------------------------------------------------===//
// starts(with:)
//===----------------------------------------------------------------------===//
extension Sequence {
/// Returns a Boolean value indicating whether the initial elements of the
/// sequence are equivalent to the elements in another sequence, using
/// the given predicate as the equivalence test.
///
/// The predicate must be an *equivalence relation* over the elements. That
/// is, for any elements `a`, `b`, and `c`, the following conditions must
/// hold:
///
/// - `areEquivalent(a, a)` is always `true`. (Reflexivity)
/// - `areEquivalent(a, b)` implies `areEquivalent(b, a)`. (Symmetry)
/// - If `areEquivalent(a, b)` and `areEquivalent(b, c)` are both `true`, then
/// `areEquivalent(a, c)` is also `true`. (Transitivity)
///
/// - Parameters:
/// - possiblePrefix: A sequence to compare to this sequence.
/// - areEquivalent: A predicate that returns `true` if its two arguments
/// are equivalent; otherwise, `false`.
/// - Returns: `true` if the initial elements of the sequence are equivalent
/// to the elements of `possiblePrefix`; otherwise, `false`. If
/// `possiblePrefix` has no elements, the return value is `true`.
///
/// - Complexity: O(*m*), where *m* is the lesser of the length of the
/// sequence and the length of `possiblePrefix`.
@inlinable
public func starts<PossiblePrefix: Sequence>(
with possiblePrefix: PossiblePrefix,
by areEquivalent: (Element, PossiblePrefix.Element) throws -> Bool
) rethrows -> Bool {
var possiblePrefixIterator = possiblePrefix.makeIterator()
for e0 in self {
if let e1 = possiblePrefixIterator.next() {
if try !areEquivalent(e0, e1) {
return false
}
}
else {
return true
}
}
return possiblePrefixIterator.next() == nil
}
}
extension Sequence where Element: Equatable {
/// Returns a Boolean value indicating whether the initial elements of the
/// sequence are the same as the elements in another sequence.
///
/// This example tests whether one countable range begins with the elements
/// of another countable range.
///
/// let a = 1...3
/// let b = 1...10
///
/// print(b.starts(with: a))
/// // Prints "true"
///
/// Passing a sequence with no elements or an empty collection as
/// `possiblePrefix` always results in `true`.
///
/// print(b.starts(with: []))
/// // Prints "true"
///
/// - Parameter possiblePrefix: A sequence to compare to this sequence.
/// - Returns: `true` if the initial elements of the sequence are the same as
/// the elements of `possiblePrefix`; otherwise, `false`. If
/// `possiblePrefix` has no elements, the return value is `true`.
///
/// - Complexity: O(*m*), where *m* is the lesser of the length of the
/// sequence and the length of `possiblePrefix`.
@inlinable
public func starts<PossiblePrefix: Sequence>(
with possiblePrefix: PossiblePrefix
) -> Bool where PossiblePrefix.Element == Element {
return self.starts(with: possiblePrefix, by: ==)
}
}
//===----------------------------------------------------------------------===//
// elementsEqual()
//===----------------------------------------------------------------------===//
extension Sequence {
/// Returns a Boolean value indicating whether this sequence and another
/// sequence contain equivalent elements in the same order, using the given
/// predicate as the equivalence test.
///
/// At least one of the sequences must be finite.
///
/// The predicate must be an *equivalence relation* over the elements. That
/// is, for any elements `a`, `b`, and `c`, the following conditions must
/// hold:
///
/// - `areEquivalent(a, a)` is always `true`. (Reflexivity)
/// - `areEquivalent(a, b)` implies `areEquivalent(b, a)`. (Symmetry)
/// - If `areEquivalent(a, b)` and `areEquivalent(b, c)` are both `true`, then
/// `areEquivalent(a, c)` is also `true`. (Transitivity)
///
/// - Parameters:
/// - other: A sequence to compare to this sequence.
/// - areEquivalent: A predicate that returns `true` if its two arguments
/// are equivalent; otherwise, `false`.
/// - Returns: `true` if this sequence and `other` contain equivalent items,
/// using `areEquivalent` as the equivalence test; otherwise, `false.`
///
/// - Complexity: O(*m*), where *m* is the lesser of the length of the
/// sequence and the length of `other`.
@inlinable
public func elementsEqual<OtherSequence: Sequence>(
_ other: OtherSequence,
by areEquivalent: (Element, OtherSequence.Element) throws -> Bool
) rethrows -> Bool {
var iter1 = self.makeIterator()
var iter2 = other.makeIterator()
while true {
switch (iter1.next(), iter2.next()) {
case let (e1?, e2?):
if try !areEquivalent(e1, e2) {
return false
}
case (_?, nil), (nil, _?): return false
case (nil, nil): return true
}
}
}
}
extension Sequence where Element: Equatable {
/// Returns a Boolean value indicating whether this sequence and another
/// sequence contain the same elements in the same order.
///
/// At least one of the sequences must be finite.
///
/// This example tests whether one countable range shares the same elements
/// as another countable range and an array.
///
/// let a = 1...3
/// let b = 1...10
///
/// print(a.elementsEqual(b))
/// // Prints "false"
/// print(a.elementsEqual([1, 2, 3]))
/// // Prints "true"
///
/// - Parameter other: A sequence to compare to this sequence.
/// - Returns: `true` if this sequence and `other` contain the same elements
/// in the same order.
///
/// - Complexity: O(*m*), where *m* is the lesser of the length of the
/// sequence and the length of `other`.
@inlinable
public func elementsEqual<OtherSequence: Sequence>(
_ other: OtherSequence
) -> Bool where OtherSequence.Element == Element {
return self.elementsEqual(other, by: ==)
}
}
//===----------------------------------------------------------------------===//
// lexicographicallyPrecedes()
//===----------------------------------------------------------------------===//
extension Sequence {
/// Returns a Boolean value indicating whether the sequence precedes another
/// sequence in a lexicographical (dictionary) ordering, using the given
/// predicate to compare elements.
///
/// The predicate must be a *strict weak ordering* over the elements. That
/// is, for any elements `a`, `b`, and `c`, the following conditions must
/// hold:
///
/// - `areInIncreasingOrder(a, a)` is always `false`. (Irreflexivity)
/// - If `areInIncreasingOrder(a, b)` and `areInIncreasingOrder(b, c)` are
/// both `true`, then `areInIncreasingOrder(a, c)` is also
/// `true`. (Transitive comparability)
/// - Two elements are *incomparable* if neither is ordered before the other
/// according to the predicate. If `a` and `b` are incomparable, and `b`
/// and `c` are incomparable, then `a` and `c` are also incomparable.
/// (Transitive incomparability)
///
/// - Parameters:
/// - other: A sequence to compare to this sequence.
/// - areInIncreasingOrder: A predicate that returns `true` if its first
/// argument should be ordered before its second argument; otherwise,
/// `false`.
/// - Returns: `true` if this sequence precedes `other` in a dictionary
/// ordering as ordered by `areInIncreasingOrder`; otherwise, `false`.
///
/// - Note: This method implements the mathematical notion of lexicographical
/// ordering, which has no connection to Unicode. If you are sorting
/// strings to present to the end user, use `String` APIs that perform
/// localized comparison instead.
///
/// - Complexity: O(*m*), where *m* is the lesser of the length of the
/// sequence and the length of `other`.
@inlinable
public func lexicographicallyPrecedes<OtherSequence: Sequence>(
_ other: OtherSequence,
by areInIncreasingOrder: (Element, Element) throws -> Bool
) rethrows -> Bool
where OtherSequence.Element == Element {
var iter1 = self.makeIterator()
var iter2 = other.makeIterator()
while true {
guard let e1 = iter1.next() else {
return iter2.next() != nil
}
guard let e2 = iter2.next() else {
return false
}
if try areInIncreasingOrder(e1, e2) {
return true
}
if try areInIncreasingOrder(e2, e1) {
return false
}
}
}
}
extension Sequence where Element: Comparable {
/// Returns a Boolean value indicating whether the sequence precedes another
/// sequence in a lexicographical (dictionary) ordering, using the
/// less-than operator (`<`) to compare elements.
///
/// This example uses the `lexicographicallyPrecedes` method to test which
/// array of integers comes first in a lexicographical ordering.
///
/// let a = [1, 2, 2, 2]
/// let b = [1, 2, 3, 4]
///
/// print(a.lexicographicallyPrecedes(b))
/// // Prints "true"
/// print(b.lexicographicallyPrecedes(b))
/// // Prints "false"
///
/// - Parameter other: A sequence to compare to this sequence.
/// - Returns: `true` if this sequence precedes `other` in a dictionary
/// ordering; otherwise, `false`.
///
/// - Note: This method implements the mathematical notion of lexicographical
/// ordering, which has no connection to Unicode. If you are sorting
/// strings to present to the end user, use `String` APIs that
/// perform localized comparison.
///
/// - Complexity: O(*m*), where *m* is the lesser of the length of the
/// sequence and the length of `other`.
@inlinable
public func lexicographicallyPrecedes<OtherSequence: Sequence>(
_ other: OtherSequence
) -> Bool where OtherSequence.Element == Element {
return self.lexicographicallyPrecedes(other, by: <)
}
}
//===----------------------------------------------------------------------===//
// contains()
//===----------------------------------------------------------------------===//
extension Sequence {
/// Returns a Boolean value indicating whether the sequence contains an
/// element that satisfies the given predicate.
///
/// You can use the predicate to check for an element of a type that
/// doesn't conform to the `Equatable` protocol, such as the
/// `HTTPResponse` enumeration in this example.
///
/// enum HTTPResponse {
/// case ok
/// case error(Int)
/// }
///
/// let lastThreeResponses: [HTTPResponse] = [.ok, .ok, .error(404)]
/// let hadError = lastThreeResponses.contains { element in
/// if case .error = element {
/// return true
/// } else {
/// return false
/// }
/// }
/// // 'hadError' == true
///
/// Alternatively, a predicate can be satisfied by a range of `Equatable`
/// elements or a general condition. This example shows how you can check an
/// array for an expense greater than $100.
///
/// let expenses = [21.37, 55.21, 9.32, 10.18, 388.77, 11.41]
/// let hasBigPurchase = expenses.contains { $0 > 100 }
/// // 'hasBigPurchase' == true
///
/// - Parameter predicate: A closure that takes an element of the sequence
/// as its argument and returns a Boolean value that indicates whether
/// the passed element represents a match.
/// - Returns: `true` if the sequence contains an element that satisfies
/// `predicate`; otherwise, `false`.
///
/// - Complexity: O(*n*), where *n* is the length of the sequence.
@inlinable
public func contains(
where predicate: (Element) throws -> Bool
) rethrows -> Bool {
for e in self {
if try predicate(e) {
return true
}
}
return false
}
/// Returns a Boolean value indicating whether every element of a sequence
/// satisfies a given predicate.
///
/// The following code uses this method to test whether all the names in an
/// array have at least five characters:
///
/// let names = ["Sofia", "Camilla", "Martina", "Mateo", "Nicolás"]
/// let allHaveAtLeastFive = names.allSatisfy({ $0.count >= 5 })
/// // allHaveAtLeastFive == true
///
/// If the sequence is empty, this method returns `true`.
///
/// - Parameter predicate: A closure that takes an element of the sequence
/// as its argument and returns a Boolean value that indicates whether
/// the passed element satisfies a condition.
/// - Returns: `true` if the sequence contains only elements that satisfy
/// `predicate`; otherwise, `false`.
///
/// - Complexity: O(*n*), where *n* is the length of the sequence.
@inlinable
public func allSatisfy(
_ predicate: (Element) throws -> Bool
) rethrows -> Bool {
return try !contains { try !predicate($0) }
}
}
extension Sequence where Element: Equatable {
/// Returns a Boolean value indicating whether the sequence contains the
/// given element.
///
/// This example checks to see whether a favorite actor is in an array
/// storing a movie's cast.
///
/// let cast = ["Vivien", "Marlon", "Kim", "Karl"]
/// print(cast.contains("Marlon"))
/// // Prints "true"
/// print(cast.contains("James"))
/// // Prints "false"
///
/// - Parameter element: The element to find in the sequence.
/// - Returns: `true` if the element was found in the sequence; otherwise,
/// `false`.
///
/// - Complexity: O(*n*), where *n* is the length of the sequence.
@inlinable
public func contains(_ element: Element) -> Bool {
if let result = _customContainsEquatableElement(element) {
return result
} else {
return self.contains { $0 == element }
}
}
}
//===----------------------------------------------------------------------===//
// count(where:)
//===----------------------------------------------------------------------===//
extension Sequence {
/// Returns the number of elements in the sequence that satisfy the given
/// predicate.
///
/// You can use this method to count the number of elements that pass a test.
/// The following example finds the number of names that are fewer than
/// five characters long:
///
/// let names = ["Jacqueline", "Ian", "Amy", "Juan", "Soroush", "Tiffany"]
/// let shortNameCount = names.count(where: { $0.count < 5 })
/// // shortNameCount == 3
///
/// To find the number of times a specific element appears in the sequence,
/// use the equal to operator (`==`) in the closure to test for a match.
///
/// let birds = ["duck", "duck", "duck", "duck", "goose"]
/// let duckCount = birds.count(where: { $0 == "duck" })
/// // duckCount == 4
///
/// The sequence must be finite.
///
/// - Parameter predicate: A closure that takes each element of the sequence
/// as its argument and returns a Boolean value indicating whether
/// the element should be included in the count.
/// - Returns: The number of elements in the sequence that satisfy the given
/// predicate.
@_alwaysEmitIntoClient
public func count<E>(
where predicate: (Element) throws(E) -> Bool
) throws(E) -> Int {
var count = 0
for e in self {
count += try predicate(e) ? 1 : 0
}
return count
}
}
//===----------------------------------------------------------------------===//
// reduce()
//===----------------------------------------------------------------------===//
extension Sequence {
/// Returns the result of combining the elements of the sequence using the
/// given closure.
///
/// Use the `reduce(_:_:)` method to produce a single value from the elements
/// of an entire sequence. For example, you can use this method on an array
/// of numbers to find their sum or product.
///
/// The `nextPartialResult` closure is called sequentially with an
/// accumulating value initialized to `initialResult` and each element of
/// the sequence. This example shows how to find the sum of an array of
/// numbers.
///
/// let numbers = [1, 2, 3, 4]
/// let numberSum = numbers.reduce(0, { x, y in
/// x + y
/// })
/// // numberSum == 10
///
/// When `numbers.reduce(_:_:)` is called, the following steps occur:
///
/// 1. The `nextPartialResult` closure is called with `initialResult`---`0`
/// in this case---and the first element of `numbers`, returning the sum:
/// `1`.
/// 2. The closure is called again repeatedly with the previous call's return
/// value and each element of the sequence.
/// 3. When the sequence is exhausted, the last value returned from the
/// closure is returned to the caller.
///
/// If the sequence has no elements, `nextPartialResult` is never executed
/// and `initialResult` is the result of the call to `reduce(_:_:)`.
///
/// - Parameters:
/// - initialResult: The value to use as the initial accumulating value.
/// `initialResult` is passed to `nextPartialResult` the first time the
/// closure is executed.
/// - nextPartialResult: A closure that combines an accumulating value and
/// an element of the sequence into a new accumulating value, to be used
/// in the next call of the `nextPartialResult` closure or returned to
/// the caller.
/// - Returns: The final accumulated value. If the sequence has no elements,
/// the result is `initialResult`.
///
/// - Complexity: O(*n*), where *n* is the length of the sequence.
@inlinable
public func reduce<Result>(
_ initialResult: Result,
_ nextPartialResult:
(_ partialResult: Result, Element) throws -> Result
) rethrows -> Result {
var accumulator = initialResult
for element in self {
accumulator = try nextPartialResult(accumulator, element)
}
return accumulator
}
/// Returns the result of combining the elements of the sequence using the
/// given closure.
///
/// Use the `reduce(into:_:)` method to produce a single value from the
/// elements of an entire sequence. For example, you can use this method on an
/// array of integers to filter adjacent equal entries or count frequencies.
///
/// This method is preferred over `reduce(_:_:)` for efficiency when the
/// result is a copy-on-write type, for example an Array or a Dictionary.
///
/// The `updateAccumulatingResult` closure is called sequentially with a
/// mutable accumulating value initialized to `initialResult` and each element
/// of the sequence. This example shows how to build a dictionary of letter
/// frequencies of a string.
///
/// let letters = "abracadabra"
/// let letterCount = letters.reduce(into: [:]) { counts, letter in
/// counts[letter, default: 0] += 1
/// }
/// // letterCount == ["a": 5, "b": 2, "r": 2, "c": 1, "d": 1]
///
/// When `letters.reduce(into:_:)` is called, the following steps occur:
///
/// 1. The `updateAccumulatingResult` closure is called with the initial
/// accumulating value---`[:]` in this case---and the first character of
/// `letters`, modifying the accumulating value by setting `1` for the key
/// `"a"`.
/// 2. The closure is called again repeatedly with the updated accumulating
/// value and each element of the sequence.
/// 3. When the sequence is exhausted, the accumulating value is returned to
/// the caller.
///
/// If the sequence has no elements, `updateAccumulatingResult` is never
/// executed and `initialResult` is the result of the call to
/// `reduce(into:_:)`.
///
/// - Parameters:
/// - initialResult: The value to use as the initial accumulating value.
/// - updateAccumulatingResult: A closure that updates the accumulating
/// value with an element of the sequence.
/// - Returns: The final accumulated value. If the sequence has no elements,
/// the result is `initialResult`.
///
/// - Complexity: O(*n*), where *n* is the length of the sequence.
@inlinable
public func reduce<Result>(
into initialResult: __owned Result,
_ updateAccumulatingResult:
(_ partialResult: inout Result, Element) throws -> ()
) rethrows -> Result {
var accumulator = initialResult
for element in self {
try updateAccumulatingResult(&accumulator, element)
}
return accumulator
}
}
//===----------------------------------------------------------------------===//
// reversed()
//===----------------------------------------------------------------------===//
extension Sequence {
/// Returns an array containing the elements of this sequence in reverse
/// order.
///
/// The sequence must be finite.
///
/// - Returns: An array containing the elements of this sequence in
/// reverse order.
///
/// - Complexity: O(*n*), where *n* is the length of the sequence.
@inlinable
public __consuming func reversed() -> [Element] {
// FIXME(performance): optimize to 1 pass? But Array(self) can be
// optimized to a memcpy() sometimes. Those cases are usually collections,
// though.
var result = Array(self)
let count = result.count
for i in 0..<count/2 {
result.swapAt(i, count - ((i + 1) as Int))
}
return result
}
}
//===----------------------------------------------------------------------===//
// flatMap()
//===----------------------------------------------------------------------===//
extension Sequence {
/// Returns an array containing the concatenated results of calling the
/// given transformation with each element of this sequence.
///
/// Use this method to receive a single-level collection when your
/// transformation produces a sequence or collection for each element.
///
/// In this example, note the difference in the result of using `map` and
/// `flatMap` with a transformation that returns an array.
///
/// let numbers = [1, 2, 3, 4]
///
/// let mapped = numbers.map { Array(repeating: $0, count: $0) }
/// // [[1], [2, 2], [3, 3, 3], [4, 4, 4, 4]]
///
/// let flatMapped = numbers.flatMap { Array(repeating: $0, count: $0) }
/// // [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]
///
/// In fact, `s.flatMap(transform)` is equivalent to
/// `Array(s.map(transform).joined())`.
///
/// - Parameter transform: A closure that accepts an element of this
/// sequence as its argument and returns a sequence or collection.
/// - Returns: The resulting flattened array.
///
/// - Complexity: O(*m* + *n*), where *n* is the length of this sequence
/// and *m* is the length of the result.
@inlinable
public func flatMap<SegmentOfResult: Sequence>(
_ transform: (Element) throws -> SegmentOfResult
) rethrows -> [SegmentOfResult.Element] {
var result: [SegmentOfResult.Element] = []
for element in self {
result.append(contentsOf: try transform(element))
}
return result
}
}
extension Sequence {
/// Returns an array containing the non-`nil` results of calling the given
/// transformation with each element of this sequence.
///
/// Use this method to receive an array of non-optional values when your
/// transformation produces an optional value.
///
/// In this example, note the difference in the result of using `map` and
/// `compactMap` with a transformation that returns an optional `Int` value.
///
/// let possibleNumbers = ["1", "2", "three", "///4///", "5"]
///
/// let mapped: [Int?] = possibleNumbers.map { str in Int(str) }
/// // [1, 2, nil, nil, 5]
///
/// let compactMapped: [Int] = possibleNumbers.compactMap { str in Int(str) }
/// // [1, 2, 5]
///
/// - Parameter transform: A closure that accepts an element of this
/// sequence as its argument and returns an optional value.
/// - Returns: An array of the non-`nil` results of calling `transform`
/// with each element of the sequence.
///
/// - Complexity: O(*n*), where *n* is the length of this sequence.
@inlinable // protocol-only
public func compactMap<ElementOfResult>(
_ transform: (Element) throws -> ElementOfResult?
) rethrows -> [ElementOfResult] {
return try _compactMap(transform)
}
// The implementation of compactMap accepting a closure with an optional result.
// Factored out into a separate function in order to be used in multiple
// overloads.
@inlinable // protocol-only
@inline(__always)
public func _compactMap<ElementOfResult>(
_ transform: (Element) throws -> ElementOfResult?
) rethrows -> [ElementOfResult] {
var result: [ElementOfResult] = []
for element in self {
if let newElement = try transform(element) {
result.append(newElement)
}
}
return result
}
}
|