1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// An unordered collection of unique elements.
///
/// You use a set instead of an array when you need to test efficiently for
/// membership and you aren't concerned with the order of the elements in the
/// collection, or when you need to ensure that each element appears only once
/// in a collection.
///
/// You can create a set with any element type that conforms to the `Hashable`
/// protocol. By default, most types in the standard library are hashable,
/// including strings, numeric and Boolean types, enumeration cases without
/// associated values, and even sets themselves.
///
/// Swift makes it as easy to create a new set as to create a new array. Simply
/// assign an array literal to a variable or constant with the `Set` type
/// specified.
///
/// let ingredients: Set = ["cocoa beans", "sugar", "cocoa butter", "salt"]
/// if ingredients.contains("sugar") {
/// print("No thanks, too sweet.")
/// }
/// // Prints "No thanks, too sweet."
///
/// Set Operations
/// ==============
///
/// Sets provide a suite of mathematical set operations. For example, you can
/// efficiently test a set for membership of an element or check its
/// intersection with another set:
///
/// - Use the `contains(_:)` method to test whether a set contains a specific
/// element.
/// - Use the "equal to" operator (`==`) to test whether two sets contain the
/// same elements.
/// - Use the `isSubset(of:)` method to test whether a set contains all the
/// elements of another set or sequence.
/// - Use the `isSuperset(of:)` method to test whether all elements of a set
/// are contained in another set or sequence.
/// - Use the `isStrictSubset(of:)` and `isStrictSuperset(of:)` methods to test
/// whether a set is a subset or superset of, but not equal to, another set.
/// - Use the `isDisjoint(with:)` method to test whether a set has any elements
/// in common with another set.
///
/// You can also combine, exclude, or subtract the elements of two sets:
///
/// - Use the `union(_:)` method to create a new set with the elements of a set
/// and another set or sequence.
/// - Use the `intersection(_:)` method to create a new set with only the
/// elements common to a set and another set or sequence.
/// - Use the `symmetricDifference(_:)` method to create a new set with the
/// elements that are in either a set or another set or sequence, but not in
/// both.
/// - Use the `subtracting(_:)` method to create a new set with the elements of
/// a set that are not also in another set or sequence.
///
/// You can modify a set in place by using these methods' mutating
/// counterparts: `formUnion(_:)`, `formIntersection(_:)`,
/// `formSymmetricDifference(_:)`, and `subtract(_:)`.
///
/// Set operations are not limited to use with other sets. Instead, you can
/// perform set operations with another set, an array, or any other sequence
/// type.
///
/// var primes: Set = [2, 3, 5, 7]
///
/// // Tests whether primes is a subset of a Range<Int>
/// print(primes.isSubset(of: 0..<10))
/// // Prints "true"
///
/// // Performs an intersection with an Array<Int>
/// let favoriteNumbers = [5, 7, 15, 21]
/// print(primes.intersection(favoriteNumbers))
/// // Prints "[5, 7]"
///
/// Sequence and Collection Operations
/// ==================================
///
/// In addition to the `Set` type's set operations, you can use any nonmutating
/// sequence or collection methods with a set.
///
/// if primes.isEmpty {
/// print("No primes!")
/// } else {
/// print("We have \(primes.count) primes.")
/// }
/// // Prints "We have 4 primes."
///
/// let primesSum = primes.reduce(0, +)
/// // 'primesSum' == 17
///
/// let primeStrings = primes.sorted().map(String.init)
/// // 'primeStrings' == ["2", "3", "5", "7"]
///
/// You can iterate through a set's unordered elements with a `for`-`in` loop.
///
/// for number in primes {
/// print(number)
/// }
/// // Prints "5"
/// // Prints "7"
/// // Prints "2"
/// // Prints "3"
///
/// Many sequence and collection operations return an array or a type-erasing
/// collection wrapper instead of a set. To restore efficient set operations,
/// create a new set from the result.
///
/// let primesStrings = primes.map(String.init)
/// // 'primesStrings' is of type Array<String>
/// let primesStringsSet = Set(primes.map(String.init))
/// // 'primesStringsSet' is of type Set<String>
///
/// Bridging Between Set and NSSet
/// ==============================
///
/// You can bridge between `Set` and `NSSet` using the `as` operator. For
/// bridging to be possible, the `Element` type of a set must be a class, an
/// `@objc` protocol (a protocol imported from Objective-C or marked with the
/// `@objc` attribute), or a type that bridges to a Foundation type.
///
/// Bridging from `Set` to `NSSet` always takes O(1) time and space. When the
/// set's `Element` type is neither a class nor an `@objc` protocol, any
/// required bridging of elements occurs at the first access of each element,
/// so the first operation that uses the contents of the set (for example, a
/// membership test) can take O(*n*).
///
/// Bridging from `NSSet` to `Set` first calls the `copy(with:)` method
/// (`- copyWithZone:` in Objective-C) on the set to get an immutable copy and
/// then performs additional Swift bookkeeping work that takes O(1) time. For
/// instances of `NSSet` that are already immutable, `copy(with:)` returns the
/// same set in constant time; otherwise, the copying performance is
/// unspecified. The instances of `NSSet` and `Set` share buffer using the
/// same copy-on-write optimization that is used when two instances of `Set`
/// share buffer.
@frozen
@_eagerMove
public struct Set<Element: Hashable> {
@usableFromInline
internal var _variant: _Variant
/// Creates an empty set with preallocated space for at least the specified
/// number of elements.
///
/// Use this initializer to avoid intermediate reallocations of a set's
/// storage buffer when you know how many elements you'll insert into the set
/// after creation.
///
/// - Parameter minimumCapacity: The minimum number of elements that the
/// newly created set should be able to store without reallocating its
/// storage buffer.
public // FIXME(reserveCapacity): Should be inlinable
init(minimumCapacity: Int) {
_variant = _Variant(native: _NativeSet(capacity: minimumCapacity))
}
/// Private initializer.
@inlinable
internal init(_native: __owned _NativeSet<Element>) {
_variant = _Variant(native: _native)
}
#if _runtime(_ObjC)
@inlinable
internal init(_cocoa: __owned __CocoaSet) {
_variant = _Variant(cocoa: _cocoa)
}
/// Private initializer used for bridging.
///
/// Only use this initializer when both conditions are true:
///
/// * it is statically known that the given `NSSet` is immutable;
/// * `Element` is bridged verbatim to Objective-C (i.e.,
/// is a reference type).
@inlinable
public // SPI(Foundation)
init(_immutableCocoaSet: __owned AnyObject) {
_internalInvariant(_isBridgedVerbatimToObjectiveC(Element.self),
"Set can be backed by NSSet _variant only when the member type can be bridged verbatim to Objective-C")
self.init(_cocoa: __CocoaSet(_immutableCocoaSet))
}
#endif
}
extension Set: ExpressibleByArrayLiteral {
/// Creates a set containing the elements of the given array literal.
///
/// Do not call this initializer directly. It is used by the compiler when
/// you use an array literal. Instead, create a new set using an array
/// literal as its value by enclosing a comma-separated list of values in
/// square brackets. You can use an array literal anywhere a set is expected
/// by the type context.
///
/// Here, a set of strings is created from an array literal holding only
/// strings.
///
/// let ingredients: Set = ["cocoa beans", "sugar", "cocoa butter", "salt"]
/// if ingredients.isSuperset(of: ["sugar", "salt"]) {
/// print("Whatever it is, it's bound to be delicious!")
/// }
/// // Prints "Whatever it is, it's bound to be delicious!"
///
/// - Parameter elements: A variadic list of elements of the new set.
@inlinable
@inline(__always)
public init(arrayLiteral elements: Element...) {
if elements.isEmpty {
self.init()
return
}
self.init(_nonEmptyArrayLiteral: elements)
}
@_alwaysEmitIntoClient
internal init(_nonEmptyArrayLiteral elements: [Element]) {
let native = _NativeSet<Element>(capacity: elements.count)
for element in elements {
let (bucket, found) = native.find(element)
if found {
// FIXME: Shouldn't this trap?
continue
}
native._unsafeInsertNew(element, at: bucket)
}
self.init(_native: native)
}
}
extension Set: Sequence {
/// Returns an iterator over the members of the set.
@inlinable
@inline(__always)
public __consuming func makeIterator() -> Iterator {
return _variant.makeIterator()
}
/// Returns a Boolean value that indicates whether the given element exists
/// in the set.
///
/// This example uses the `contains(_:)` method to test whether an integer is
/// a member of a set of prime numbers.
///
/// let primes: Set = [2, 3, 5, 7]
/// let x = 5
/// if primes.contains(x) {
/// print("\(x) is prime!")
/// } else {
/// print("\(x). Not prime.")
/// }
/// // Prints "5 is prime!"
///
/// - Parameter member: An element to look for in the set.
/// - Returns: `true` if `member` exists in the set; otherwise, `false`.
///
/// - Complexity: O(1)
@inlinable
public func contains(_ member: Element) -> Bool {
return _variant.contains(member)
}
@inlinable
@inline(__always)
public func _customContainsEquatableElement(_ member: Element) -> Bool? {
return contains(member)
}
}
// This is not quite Sequence.filter, because that returns [Element], not Self
// (RangeReplaceableCollection.filter returns Self, but Set isn't an RRC)
extension Set {
/// Returns a new set containing the elements of the set that satisfy the
/// given predicate.
///
/// In this example, `filter(_:)` is used to include only names shorter than
/// five characters.
///
/// let cast: Set = ["Vivien", "Marlon", "Kim", "Karl"]
/// let shortNames = cast.filter { $0.count < 5 }
///
/// shortNames.isSubset(of: cast)
/// // true
/// shortNames.contains("Vivien")
/// // false
///
/// - Parameter isIncluded: A closure that takes an element as its argument
/// and returns a Boolean value indicating whether the element should be
/// included in the returned set.
/// - Returns: A set of the elements that `isIncluded` allows.
@inlinable
@available(swift, introduced: 4.0)
public __consuming func filter(
_ isIncluded: (Element) throws -> Bool
) rethrows -> Set {
return try Set(_native: _variant.filter(isIncluded))
}
}
extension Set: Collection {
/// The starting position for iterating members of the set.
///
/// If the set is empty, `startIndex` is equal to `endIndex`.
@inlinable
public var startIndex: Index {
return _variant.startIndex
}
/// The "past the end" position for the set---that is, the position one
/// greater than the last valid subscript argument.
///
/// If the set is empty, `endIndex` is equal to `startIndex`.
@inlinable
public var endIndex: Index {
return _variant.endIndex
}
/// Accesses the member at the given position.
@inlinable
public subscript(position: Index) -> Element {
// FIXME(accessors): Provide a _read
get {
return _variant.element(at: position)
}
}
@inlinable
public func index(after i: Index) -> Index {
return _variant.index(after: i)
}
@inlinable
public func formIndex(after i: inout Index) {
_variant.formIndex(after: &i)
}
// APINAMING: complexity docs are broadly missing in this file.
/// Returns the index of the given element in the set, or `nil` if the
/// element is not a member of the set.
///
/// - Parameter member: An element to search for in the set.
/// - Returns: The index of `member` if it exists in the set; otherwise,
/// `nil`.
///
/// - Complexity: O(1)
@inlinable
public func firstIndex(of member: Element) -> Index? {
return _variant.index(for: member)
}
@inlinable
@inline(__always)
public func _customIndexOfEquatableElement(
_ member: Element
) -> Index?? {
return Optional(firstIndex(of: member))
}
@inlinable
@inline(__always)
public func _customLastIndexOfEquatableElement(
_ member: Element
) -> Index?? {
// The first and last elements are the same because each element is unique.
return _customIndexOfEquatableElement(member)
}
/// The number of elements in the set.
///
/// - Complexity: O(1).
@inlinable
public var count: Int {
return _variant.count
}
/// A Boolean value that indicates whether the set is empty.
@inlinable
public var isEmpty: Bool {
return count == 0
}
}
// FIXME: rdar://problem/23549059 (Optimize == for Set)
// Look into initially trying to compare the two sets by directly comparing the
// contents of both buffers in order. If they happen to have the exact same
// ordering we can get the `true` response without ever hashing. If the two
// buffers' contents differ at all then we have to fall back to hashing the
// rest of the elements (but we don't need to hash any prefix that did match).
extension Set: Equatable {
/// Returns a Boolean value indicating whether two sets have equal elements.
///
/// - Parameters:
/// - lhs: A set.
/// - rhs: Another set.
/// - Returns: `true` if the `lhs` and `rhs` have the same elements; otherwise,
/// `false`.
@inlinable
public static func == (lhs: Set<Element>, rhs: Set<Element>) -> Bool {
#if _runtime(_ObjC)
switch (lhs._variant.isNative, rhs._variant.isNative) {
case (true, true):
return lhs._variant.asNative.isEqual(to: rhs._variant.asNative)
case (false, false):
return lhs._variant.asCocoa.isEqual(to: rhs._variant.asCocoa)
case (true, false):
return lhs._variant.asNative.isEqual(to: rhs._variant.asCocoa)
case (false, true):
return rhs._variant.asNative.isEqual(to: lhs._variant.asCocoa)
}
#else
return lhs._variant.asNative.isEqual(to: rhs._variant.asNative)
#endif
}
}
extension Set: Hashable {
/// Hashes the essential components of this value by feeding them into the
/// given hasher.
///
/// - Parameter hasher: The hasher to use when combining the components
/// of this instance.
@inlinable
public func hash(into hasher: inout Hasher) {
// FIXME(ABI)#177: <rdar://problem/18915294> Cache Set<T> hashValue
// Generate a seed from a snapshot of the hasher. This makes members' hash
// values depend on the state of the hasher, which improves hashing
// quality. (E.g., it makes it possible to resolve collisions by passing in
// a different hasher.)
var copy = hasher
let seed = copy._finalize()
var hash = 0
for member in self {
hash ^= member._rawHashValue(seed: seed)
}
hasher.combine(hash)
}
}
@_unavailableInEmbedded
extension Set: _HasCustomAnyHashableRepresentation {
public __consuming func _toCustomAnyHashable() -> AnyHashable? {
return AnyHashable(_box: _SetAnyHashableBox(self))
}
}
@_unavailableInEmbedded
internal struct _SetAnyHashableBox<Element: Hashable>: _AnyHashableBox {
internal let _value: Set<Element>
internal let _canonical: Set<AnyHashable>
internal init(_ value: __owned Set<Element>) {
self._value = value
self._canonical = value as Set<AnyHashable>
}
internal var _base: Any {
return _value
}
internal var _canonicalBox: _AnyHashableBox {
return _SetAnyHashableBox<AnyHashable>(_canonical)
}
internal func _isEqual(to other: _AnyHashableBox) -> Bool? {
guard let other = other as? _SetAnyHashableBox<AnyHashable> else {
return nil
}
return _canonical == other._value
}
internal var _hashValue: Int {
return _canonical.hashValue
}
internal func _hash(into hasher: inout Hasher) {
_canonical.hash(into: &hasher)
}
internal func _rawHashValue(_seed: Int) -> Int {
return _canonical._rawHashValue(seed: _seed)
}
internal func _unbox<T: Hashable>() -> T? {
return _value as? T
}
internal func _downCastConditional<T>(
into result: UnsafeMutablePointer<T>
) -> Bool {
guard let value = _value as? T else { return false }
result.initialize(to: value)
return true
}
}
extension Set: SetAlgebra {
/// Inserts the given element in the set if it is not already present.
///
/// If an element equal to `newMember` is already contained in the set, this
/// method has no effect. In the following example, a new element is
/// inserted into `classDays`, a set of days of the week. When an existing
/// element is inserted, the `classDays` set does not change.
///
/// enum DayOfTheWeek: Int {
/// case sunday, monday, tuesday, wednesday, thursday,
/// friday, saturday
/// }
///
/// var classDays: Set<DayOfTheWeek> = [.wednesday, .friday]
/// print(classDays.insert(.monday))
/// // Prints "(inserted: true, memberAfterInsert: DayOfTheWeek.monday)"
/// print(classDays)
/// // Prints "[DayOfTheWeek.friday, DayOfTheWeek.wednesday, DayOfTheWeek.monday]"
///
/// print(classDays.insert(.friday))
/// // Prints "(inserted: false, memberAfterInsert: DayOfTheWeek.friday)"
/// print(classDays)
/// // Prints "[DayOfTheWeek.friday, DayOfTheWeek.wednesday, DayOfTheWeek.monday]"
///
/// - Parameter newMember: An element to insert into the set.
/// - Returns: `(true, newMember)` if `newMember` was not contained in the
/// set. If an element equal to `newMember` was already contained in the
/// set, the method returns `(false, oldMember)`, where `oldMember` is the
/// element that was equal to `newMember`. In some cases, `oldMember` may
/// be distinguishable from `newMember` by identity comparison or some
/// other means.
@inlinable
@discardableResult
public mutating func insert(
_ newMember: __owned Element
) -> (inserted: Bool, memberAfterInsert: Element) {
return _variant.insert(newMember)
}
/// Inserts the given element into the set unconditionally.
///
/// If an element equal to `newMember` is already contained in the set,
/// `newMember` replaces the existing element. In this example, an existing
/// element is inserted into `classDays`, a set of days of the week.
///
/// enum DayOfTheWeek: Int {
/// case sunday, monday, tuesday, wednesday, thursday,
/// friday, saturday
/// }
///
/// var classDays: Set<DayOfTheWeek> = [.monday, .wednesday, .friday]
/// print(classDays.update(with: .monday))
/// // Prints "Optional(DayOfTheWeek.monday)"
///
/// - Parameter newMember: An element to insert into the set.
/// - Returns: An element equal to `newMember` if the set already contained
/// such a member; otherwise, `nil`. In some cases, the returned element
/// may be distinguishable from `newMember` by identity comparison or some
/// other means.
@inlinable
@discardableResult
public mutating func update(with newMember: __owned Element) -> Element? {
return _variant.update(with: newMember)
}
/// Removes the specified element from the set.
///
/// This example removes the element `"sugar"` from a set of ingredients.
///
/// var ingredients: Set = ["cocoa beans", "sugar", "cocoa butter", "salt"]
/// let toRemove = "sugar"
/// if let removed = ingredients.remove(toRemove) {
/// print("The recipe is now \(removed)-free.")
/// }
/// // Prints "The recipe is now sugar-free."
///
/// - Parameter member: The element to remove from the set.
/// - Returns: The value of the `member` parameter if it was a member of the
/// set; otherwise, `nil`.
@inlinable
@discardableResult
public mutating func remove(_ member: Element) -> Element? {
return _variant.remove(member)
}
/// Removes the element at the given index of the set.
///
/// - Parameter position: The index of the member to remove. `position` must
/// be a valid index of the set, and must not be equal to the set's end
/// index.
/// - Returns: The element that was removed from the set.
@inlinable
@discardableResult
public mutating func remove(at position: Index) -> Element {
return _variant.remove(at: position)
}
/// Removes all members from the set.
///
/// - Parameter keepingCapacity: If `true`, the set's buffer capacity is
/// preserved; if `false`, the underlying buffer is released. The
/// default is `false`.
@inlinable
public mutating func removeAll(keepingCapacity keepCapacity: Bool = false) {
_variant.removeAll(keepingCapacity: keepCapacity)
}
/// Removes the first element of the set.
///
/// Because a set is not an ordered collection, the "first" element may not
/// be the first element that was added to the set. The set must not be
/// empty.
///
/// - Complexity: Amortized O(1) if the set does not wrap a bridged `NSSet`.
/// If the set wraps a bridged `NSSet`, the performance is unspecified.
///
/// - Returns: A member of the set.
@inlinable
@discardableResult
public mutating func removeFirst() -> Element {
_precondition(!isEmpty, "Can't removeFirst from an empty Set")
return remove(at: startIndex)
}
//
// APIs below this comment should be implemented strictly in terms of
// *public* APIs above. `_variant` should not be accessed directly.
//
// This separates concerns for testing. Tests for the following APIs need
// not to concern themselves with testing correctness of behavior of
// underlying buffer (and different variants of it), only correctness of the
// API itself.
//
/// Creates an empty set.
///
/// This is equivalent to initializing with an empty array literal. For
/// example:
///
/// var emptySet = Set<Int>()
/// print(emptySet.isEmpty)
/// // Prints "true"
///
/// emptySet = []
/// print(emptySet.isEmpty)
/// // Prints "true"
@inlinable
public init() {
self = Set<Element>(_native: _NativeSet())
}
/// Creates a new set from a finite sequence of items.
///
/// Use this initializer to create a new set from an existing sequence, for
/// example, an array or a range.
///
/// let validIndices = Set(0..<7).subtracting([2, 4, 5])
/// print(validIndices)
/// // Prints "[6, 0, 1, 3]"
///
/// This initializer can also be used to restore set methods after performing
/// sequence operations such as `filter(_:)` or `map(_:)` on a set. For
/// example, after filtering a set of prime numbers to remove any below 10,
/// you can create a new set by using this initializer.
///
/// let primes: Set = [2, 3, 5, 7, 11, 13, 17, 19, 23]
/// let laterPrimes = Set(primes.lazy.filter { $0 > 10 })
/// print(laterPrimes)
/// // Prints "[17, 19, 23, 11, 13]"
///
/// - Parameter sequence: The elements to use as members of the new set.
@inlinable
public init<Source: Sequence>(_ sequence: __owned Source)
where Source.Element == Element {
if let s = sequence as? Set<Element> {
// If this sequence is actually a `Set`, then we can quickly
// adopt its storage and let COW handle uniquing only if necessary.
self = s
} else {
self.init(minimumCapacity: sequence.underestimatedCount)
for item in sequence {
insert(item)
}
}
}
/// Returns a Boolean value that indicates whether the set is a subset of the
/// given sequence.
///
/// Set *A* is a subset of another set *B* if every member of *A* is also a
/// member of *B*.
///
/// let employees = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(attendees.isSubset(of: employees))
/// // Prints "true"
///
/// - Parameter possibleSuperset: A sequence of elements. `possibleSuperset`
/// must be finite.
/// - Returns: `true` if the set is a subset of `possibleSuperset`;
/// otherwise, `false`.
@inlinable
public func isSubset<S: Sequence>(of possibleSuperset: S) -> Bool
where S.Element == Element {
guard !isEmpty else { return true }
if self.count == 1 { return possibleSuperset.contains(self.first!) }
if let s = possibleSuperset as? Set<Element> {
return isSubset(of: s)
}
return _variant.convertedToNative.isSubset(of: possibleSuperset)
}
/// Returns a Boolean value that indicates whether the set is a strict subset
/// of the given sequence.
///
/// Set *A* is a strict subset of another set *B* if every member of *A* is
/// also a member of *B* and *B* contains at least one element that is not a
/// member of *A*.
///
/// let employees = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(attendees.isStrictSubset(of: employees))
/// // Prints "true"
///
/// // A set is never a strict subset of itself:
/// print(attendees.isStrictSubset(of: attendees))
/// // Prints "false"
///
/// - Parameter possibleStrictSuperset: A sequence of elements.
/// `possibleStrictSuperset` must be finite.
/// - Returns: `true` is the set is strict subset of
/// `possibleStrictSuperset`; otherwise, `false`.
@inlinable
public func isStrictSubset<S: Sequence>(of possibleStrictSuperset: S) -> Bool
where S.Element == Element {
if let s = possibleStrictSuperset as? Set<Element> {
return isStrictSubset(of: s)
}
return _variant.convertedToNative.isStrictSubset(of: possibleStrictSuperset)
}
/// Returns a Boolean value that indicates whether the set is a superset of
/// the given sequence.
///
/// Set *A* is a superset of another set *B* if every member of *B* is also a
/// member of *A*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees = ["Alicia", "Bethany", "Diana"]
/// print(employees.isSuperset(of: attendees))
/// // Prints "true"
///
/// - Parameter possibleSubset: A sequence of elements. `possibleSubset` must
/// be finite.
/// - Returns: `true` if the set is a superset of `possibleSubset`;
/// otherwise, `false`.
@inlinable
public func isSuperset<S: Sequence>(of possibleSubset: __owned S) -> Bool
where S.Element == Element {
if let s = possibleSubset as? Set<Element> {
return isSuperset(of: s)
}
for member in possibleSubset {
if !contains(member) {
return false
}
}
return true
}
/// Returns a Boolean value that indicates whether the set is a strict
/// superset of the given sequence.
///
/// Set *A* is a strict superset of another set *B* if every member of *B* is
/// also a member of *A* and *A* contains at least one element that is *not*
/// a member of *B*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees = ["Alicia", "Bethany", "Diana"]
/// print(employees.isStrictSuperset(of: attendees))
/// // Prints "true"
/// print(employees.isStrictSuperset(of: employees))
/// // Prints "false"
///
/// - Parameter possibleStrictSubset: A sequence of elements.
/// `possibleStrictSubset` must be finite.
/// - Returns: `true` if the set is a strict superset of
/// `possibleStrictSubset`; otherwise, `false`.
@inlinable
public func isStrictSuperset<S: Sequence>(of possibleStrictSubset: S) -> Bool
where S.Element == Element {
if isEmpty { return false }
if let s = possibleStrictSubset as? Set<Element> {
return isStrictSuperset(of: s)
}
return _variant.convertedToNative.isStrictSuperset(of: possibleStrictSubset)
}
/// Returns a Boolean value that indicates whether the set has no members in
/// common with the given sequence.
///
/// In the following example, the `employees` set is disjoint with the
/// elements of the `visitors` array because no name appears in both.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let visitors = ["Marcia", "Nathaniel", "Olivia"]
/// print(employees.isDisjoint(with: visitors))
/// // Prints "true"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
/// - Returns: `true` if the set has no elements in common with `other`;
/// otherwise, `false`.
@inlinable
public func isDisjoint<S: Sequence>(with other: S) -> Bool
where S.Element == Element {
if let s = other as? Set<Element> {
return isDisjoint(with: s)
}
return _isDisjoint(with: other)
}
/// Returns a new set with the elements of both this set and the given
/// sequence.
///
/// In the following example, the `attendeesAndVisitors` set is made up
/// of the elements of the `attendees` set and the `visitors` array:
///
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// let visitors = ["Marcia", "Nathaniel"]
/// let attendeesAndVisitors = attendees.union(visitors)
/// print(attendeesAndVisitors)
/// // Prints "["Diana", "Nathaniel", "Bethany", "Alicia", "Marcia"]"
///
/// If the set already contains one or more elements that are also in
/// `other`, the existing members are kept. If `other` contains multiple
/// instances of equivalent elements, only the first instance is kept.
///
/// let initialIndices = Set(0..<5)
/// let expandedIndices = initialIndices.union([2, 3, 6, 6, 7, 7])
/// print(expandedIndices)
/// // Prints "[2, 4, 6, 7, 0, 1, 3]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
/// - Returns: A new set with the unique elements of this set and `other`.
@inlinable
public __consuming func union<S: Sequence>(_ other: __owned S) -> Set<Element>
where S.Element == Element {
var newSet = self
newSet.formUnion(other)
return newSet
}
/// Inserts the elements of the given sequence into the set.
///
/// If the set already contains one or more elements that are also in
/// `other`, the existing members are kept. If `other` contains multiple
/// instances of equivalent elements, only the first instance is kept.
///
/// var attendees: Set = ["Alicia", "Bethany", "Diana"]
/// let visitors = ["Diana", "Marcia", "Nathaniel"]
/// attendees.formUnion(visitors)
/// print(attendees)
/// // Prints "["Diana", "Nathaniel", "Bethany", "Alicia", "Marcia"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
@inlinable
public mutating func formUnion<S: Sequence>(_ other: __owned S)
where S.Element == Element {
for item in other {
insert(item)
}
}
/// Returns a new set containing the elements of this set that do not occur
/// in the given sequence.
///
/// In the following example, the `nonNeighbors` set is made up of the
/// elements of the `employees` set that are not elements of `neighbors`:
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
/// let nonNeighbors = employees.subtracting(neighbors)
/// print(nonNeighbors)
/// // Prints "["Chris", "Diana", "Alicia"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
/// - Returns: A new set.
@inlinable
public __consuming func subtracting<S: Sequence>(_ other: S) -> Set<Element>
where S.Element == Element {
return self._subtracting(other)
}
@inlinable
internal __consuming func _subtracting<S: Sequence>(
_ other: S
) -> Set<Element>
where S.Element == Element {
return Set(_native: _variant.convertedToNative.subtracting(other))
}
/// Removes the elements of the given sequence from the set.
///
/// In the following example, the elements of the `employees` set that are
/// also elements of the `neighbors` array are removed. In particular, the
/// names `"Bethany"` and `"Eric"` are removed from `employees`.
///
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
/// employees.subtract(neighbors)
/// print(employees)
/// // Prints "["Chris", "Diana", "Alicia"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
@inlinable
public mutating func subtract<S: Sequence>(_ other: S)
where S.Element == Element {
_subtract(other)
}
@inlinable
internal mutating func _subtract<S: Sequence>(_ other: S)
where S.Element == Element {
// If self is empty we don't need to iterate over `other` because there's
// nothing to remove on self.
guard !isEmpty else { return }
for item in other {
remove(item)
}
}
/// Returns a new set with the elements that are common to both this set and
/// the given sequence.
///
/// In the following example, the `bothNeighborsAndEmployees` set is made up
/// of the elements that are in *both* the `employees` and `neighbors` sets.
/// Elements that are in only one or the other are left out of the result of
/// the intersection.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
/// let bothNeighborsAndEmployees = employees.intersection(neighbors)
/// print(bothNeighborsAndEmployees)
/// // Prints "["Bethany", "Eric"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
/// - Returns: A new set.
@inlinable
public __consuming func intersection<S: Sequence>(_ other: S) -> Set<Element>
where S.Element == Element {
if let other = other as? Set<Element> {
return self.intersection(other)
}
return Set(_native: _variant.convertedToNative.genericIntersection(other))
}
/// Removes the elements of the set that aren't also in the given sequence.
///
/// In the following example, the elements of the `employees` set that are
/// not also members of the `neighbors` set are removed. In particular, the
/// names `"Alicia"`, `"Chris"`, and `"Diana"` are removed.
///
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
/// employees.formIntersection(neighbors)
/// print(employees)
/// // Prints "["Bethany", "Eric"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
@inlinable
public mutating func formIntersection<S: Sequence>(_ other: S)
where S.Element == Element {
// FIXME: This discards storage reserved with reserveCapacity.
// FIXME: Depending on the ratio of elements kept in the result, it may be
// faster to do the removals in place, in bulk.
self = self.intersection(other)
}
/// Returns a new set with the elements that are either in this set or in the
/// given sequence, but not in both.
///
/// In the following example, the `eitherNeighborsOrEmployees` set is made up
/// of the elements of the `employees` and `neighbors` sets that are not in
/// both `employees` *and* `neighbors`. In particular, the names `"Bethany"`
/// and `"Eric"` do not appear in `eitherNeighborsOrEmployees`.
///
/// let employees: Set = ["Alicia", "Bethany", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani"]
/// let eitherNeighborsOrEmployees = employees.symmetricDifference(neighbors)
/// print(eitherNeighborsOrEmployees)
/// // Prints "["Diana", "Forlani", "Alicia"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
/// - Returns: A new set.
@inlinable
public __consuming func symmetricDifference<S: Sequence>(
_ other: __owned S
) -> Set<Element>
where S.Element == Element {
var newSet = self
newSet.formSymmetricDifference(other)
return newSet
}
/// Replace this set with the elements contained in this set or the given
/// set, but not both.
///
/// In the following example, the elements of the `employees` set that are
/// also members of `neighbors` are removed from `employees`, while the
/// elements of `neighbors` that are not members of `employees` are added to
/// `employees`. In particular, the names `"Bethany"` and `"Eric"` are
/// removed from `employees` while the name `"Forlani"` is added.
///
/// var employees: Set = ["Alicia", "Bethany", "Diana", "Eric"]
/// let neighbors = ["Bethany", "Eric", "Forlani"]
/// employees.formSymmetricDifference(neighbors)
/// print(employees)
/// // Prints "["Diana", "Forlani", "Alicia"]"
///
/// - Parameter other: A sequence of elements. `other` must be finite.
@inlinable
public mutating func formSymmetricDifference<S: Sequence>(
_ other: __owned S)
where S.Element == Element {
let otherSet = Set(other)
formSymmetricDifference(otherSet)
}
}
@_unavailableInEmbedded
extension Set: CustomStringConvertible, CustomDebugStringConvertible {
/// A string that represents the contents of the set.
public var description: String {
return _makeCollectionDescription()
}
/// A string that represents the contents of the set, suitable for debugging.
public var debugDescription: String {
return _makeCollectionDescription(withTypeName: "Set")
}
}
extension Set {
/// Removes the elements of the given set from this set.
///
/// In the following example, the elements of the `employees` set that are
/// also members of the `neighbors` set are removed. In particular, the
/// names `"Bethany"` and `"Eric"` are removed from `employees`.
///
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
/// employees.subtract(neighbors)
/// print(employees)
/// // Prints "["Diana", "Chris", "Alicia"]"
///
/// - Parameter other: Another set.
@inlinable
public mutating func subtract(_ other: Set<Element>) {
_subtract(other)
}
/// Returns a Boolean value that indicates whether this set is a subset of
/// the given set.
///
/// Set *A* is a subset of another set *B* if every member of *A* is also a
/// member of *B*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(attendees.isSubset(of: employees))
/// // Prints "true"
///
/// - Parameter other: Another set.
/// - Returns: `true` if the set is a subset of `other`; otherwise, `false`.
@inlinable
public func isSubset(of other: Set<Element>) -> Bool {
guard self.count <= other.count else { return false }
for member in self {
guard other.contains(member) else {
return false
}
}
return true
}
/// Returns a Boolean value that indicates whether this set is a superset of
/// the given set.
///
/// Set *A* is a superset of another set *B* if every member of *B* is also a
/// member of *A*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(employees.isSuperset(of: attendees))
/// // Prints "true"
///
/// - Parameter other: Another set.
/// - Returns: `true` if the set is a superset of `other`; otherwise,
/// `false`.
@inlinable
public func isSuperset(of other: Set<Element>) -> Bool {
return other.isSubset(of: self)
}
/// Returns a Boolean value that indicates whether this set has no members in
/// common with the given set.
///
/// In the following example, the `employees` set is disjoint with the
/// `visitors` set because no name appears in both sets.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let visitors: Set = ["Marcia", "Nathaniel", "Olivia"]
/// print(employees.isDisjoint(with: visitors))
/// // Prints "true"
///
/// - Parameter other: Another set.
/// - Returns: `true` if the set has no elements in common with `other`;
/// otherwise, `false`.
@inlinable
public func isDisjoint(with other: Set<Element>) -> Bool {
guard !isEmpty && !other.isEmpty else { return true }
let (smaller, larger) =
count < other.count ? (self, other) : (other, self)
for member in smaller {
if larger.contains(member) {
return false
}
}
return true
}
@inlinable
internal func _isDisjoint<S: Sequence>(with other: S) -> Bool
where S.Element == Element {
guard !isEmpty else { return true }
for member in other {
if contains(member) {
return false
}
}
return true
}
/// Returns a new set containing the elements of this set that do not occur
/// in the given set.
///
/// In the following example, the `nonNeighbors` set is made up of the
/// elements of the `employees` set that are not elements of `neighbors`:
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
/// let nonNeighbors = employees.subtracting(neighbors)
/// print(nonNeighbors)
/// // Prints "["Diana", "Chris", "Alicia"]"
///
/// - Parameter other: Another set.
/// - Returns: A new set.
@inlinable
public __consuming func subtracting(_ other: Set<Element>) -> Set<Element> {
// Heuristic: if `other` is small enough, it's better to make a copy of the
// set and remove each item one by one. (The best cutoff point depends on
// the `Element` type; the one below is an educated guess.) FIXME: Derive a
// better cutoff by benchmarking.
if other.count <= self.count / 8 {
var copy = self
copy._subtract(other)
return copy
}
// Otherwise do a regular subtraction using a temporary bitmap.
return self._subtracting(other)
}
/// Returns a Boolean value that indicates whether the set is a strict
/// superset of the given sequence.
///
/// Set *A* is a strict superset of another set *B* if every member of *B* is
/// also a member of *A* and *A* contains at least one element that is *not*
/// a member of *B*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(employees.isStrictSuperset(of: attendees))
/// // Prints "true"
/// print(employees.isStrictSuperset(of: employees))
/// // Prints "false"
///
/// - Parameter other: Another set.
/// - Returns: `true` if the set is a strict superset of
/// `other`; otherwise, `false`.
@inlinable
public func isStrictSuperset(of other: Set<Element>) -> Bool {
return self.count > other.count && other.isSubset(of: self)
}
/// Returns a Boolean value that indicates whether the set is a strict subset
/// of the given sequence.
///
/// Set *A* is a strict subset of another set *B* if every member of *A* is
/// also a member of *B* and *B* contains at least one element that is not a
/// member of *A*.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
/// print(attendees.isStrictSubset(of: employees))
/// // Prints "true"
///
/// // A set is never a strict subset of itself:
/// print(attendees.isStrictSubset(of: attendees))
/// // Prints "false"
///
/// - Parameter other: Another set.
/// - Returns: `true` if the set is a strict subset of
/// `other`; otherwise, `false`.
@inlinable
public func isStrictSubset(of other: Set<Element>) -> Bool {
return self.count < other.count && self.isSubset(of: other)
}
/// Returns a new set with the elements that are common to both this set and
/// the given sequence.
///
/// In the following example, the `bothNeighborsAndEmployees` set is made up
/// of the elements that are in *both* the `employees` and `neighbors` sets.
/// Elements that are in only one or the other are left out of the result of
/// the intersection.
///
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
/// let bothNeighborsAndEmployees = employees.intersection(neighbors)
/// print(bothNeighborsAndEmployees)
/// // Prints "["Bethany", "Eric"]"
///
/// - Parameter other: Another set.
/// - Returns: A new set.
@inlinable
public __consuming func intersection(_ other: Set<Element>) -> Set<Element> {
Set(_native: _variant.intersection(other))
}
/// Removes the elements of the set that are also in the given sequence and
/// adds the members of the sequence that are not already in the set.
///
/// In the following example, the elements of the `employees` set that are
/// also members of `neighbors` are removed from `employees`, while the
/// elements of `neighbors` that are not members of `employees` are added to
/// `employees`. In particular, the names `"Alicia"`, `"Chris"`, and
/// `"Diana"` are removed from `employees` while the names `"Forlani"` and
/// `"Greta"` are added.
///
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
/// employees.formSymmetricDifference(neighbors)
/// print(employees)
/// // Prints "["Diana", "Chris", "Forlani", "Alicia", "Greta"]"
///
/// - Parameter other: Another set.
@inlinable
public mutating func formSymmetricDifference(_ other: __owned Set<Element>) {
for member in other {
if contains(member) {
remove(member)
} else {
insert(member)
}
}
}
}
extension Set {
/// The position of an element in a set.
@frozen
public struct Index {
// Index for native buffer is efficient. Index for bridged NSSet is
// not, because neither NSEnumerator nor fast enumeration support moving
// backwards. Even if they did, there is another issue: NSEnumerator does
// not support NSCopying, and fast enumeration does not document that it is
// safe to copy the state. So, we cannot implement Index that is a value
// type for bridged NSSet in terms of Cocoa enumeration facilities.
@frozen
@usableFromInline
internal enum _Variant {
case native(_HashTable.Index)
#if _runtime(_ObjC)
case cocoa(__CocoaSet.Index)
#endif
}
@usableFromInline
internal var _variant: _Variant
@inlinable
@inline(__always)
internal init(_variant: __owned _Variant) {
self._variant = _variant
}
@inlinable
@inline(__always)
internal init(_native index: _HashTable.Index) {
self.init(_variant: .native(index))
}
#if _runtime(_ObjC)
@inlinable
@inline(__always)
internal init(_cocoa index: __owned __CocoaSet.Index) {
self.init(_variant: .cocoa(index))
}
#endif
}
}
extension Set.Index {
#if _runtime(_ObjC)
@usableFromInline @_transparent
internal var _guaranteedNative: Bool {
return _canBeClass(Element.self) == 0
}
/// Allow the optimizer to consider the surrounding code unreachable if
/// Set<Element> is guaranteed to be native.
@usableFromInline
@_transparent
internal func _cocoaPath() {
if _guaranteedNative {
_conditionallyUnreachable()
}
}
@inlinable
@inline(__always)
internal mutating func _isUniquelyReferenced() -> Bool {
defer { _fixLifetime(self) }
var handle = _asCocoa.handleBitPattern
return handle == 0 || _isUnique_native(&handle)
}
#endif
#if _runtime(_ObjC)
@usableFromInline @_transparent
internal var _isNative: Bool {
switch _variant {
case .native:
return true
case .cocoa:
_cocoaPath()
return false
}
}
#endif
@usableFromInline @_transparent
internal var _asNative: _HashTable.Index {
switch _variant {
case .native(let nativeIndex):
return nativeIndex
#if _runtime(_ObjC)
case .cocoa:
_preconditionFailure(
"Attempting to access Set elements using an invalid index")
#endif
}
}
#if _runtime(_ObjC)
@usableFromInline
internal var _asCocoa: __CocoaSet.Index {
@_transparent
get {
switch _variant {
case .native:
_preconditionFailure(
"Attempting to access Set elements using an invalid index")
case .cocoa(let cocoaIndex):
return cocoaIndex
}
}
_modify {
guard case .cocoa(var cocoa) = _variant else {
_preconditionFailure(
"Attempting to access Set elements using an invalid index")
}
let dummy = _HashTable.Index(bucket: _HashTable.Bucket(offset: 0), age: 0)
_variant = .native(dummy)
defer { _variant = .cocoa(cocoa) }
yield &cocoa
}
}
#endif
}
extension Set.Index: Equatable {
@inlinable
public static func == (
lhs: Set<Element>.Index,
rhs: Set<Element>.Index
) -> Bool {
switch (lhs._variant, rhs._variant) {
case (.native(let lhsNative), .native(let rhsNative)):
return lhsNative == rhsNative
#if _runtime(_ObjC)
case (.cocoa(let lhsCocoa), .cocoa(let rhsCocoa)):
lhs._cocoaPath()
return lhsCocoa == rhsCocoa
default:
_preconditionFailure("Comparing indexes from different sets")
#endif
}
}
}
extension Set.Index: Comparable {
@inlinable
public static func < (
lhs: Set<Element>.Index,
rhs: Set<Element>.Index
) -> Bool {
switch (lhs._variant, rhs._variant) {
case (.native(let lhsNative), .native(let rhsNative)):
return lhsNative < rhsNative
#if _runtime(_ObjC)
case (.cocoa(let lhsCocoa), .cocoa(let rhsCocoa)):
lhs._cocoaPath()
return lhsCocoa < rhsCocoa
default:
_preconditionFailure("Comparing indexes from different sets")
#endif
}
}
}
extension Set.Index: Hashable {
/// Hashes the essential components of this value by feeding them into the
/// given hasher.
///
/// - Parameter hasher: The hasher to use when combining the components
/// of this instance.
public // FIXME(cocoa-index): Make inlinable
func hash(into hasher: inout Hasher) {
#if _runtime(_ObjC)
guard _isNative else {
hasher.combine(1 as UInt8)
hasher.combine(_asCocoa._offset)
return
}
hasher.combine(0 as UInt8)
hasher.combine(_asNative.bucket.offset)
#else
hasher.combine(_asNative.bucket.offset)
#endif
}
}
extension Set {
/// An iterator over the members of a `Set<Element>`.
@frozen
public struct Iterator {
// Set has a separate IteratorProtocol and Index because of efficiency
// and implementability reasons.
//
// Native sets have efficient indices. Bridged NSSet instances don't.
//
// Even though fast enumeration is not suitable for implementing
// Index, which is multi-pass, it is suitable for implementing a
// IteratorProtocol, which is being consumed as iteration proceeds.
@usableFromInline
@frozen
internal enum _Variant {
case native(_NativeSet<Element>.Iterator)
#if _runtime(_ObjC)
case cocoa(__CocoaSet.Iterator)
#endif
}
@usableFromInline
internal var _variant: _Variant
@inlinable
internal init(_variant: __owned _Variant) {
self._variant = _variant
}
@inlinable
internal init(_native: __owned _NativeSet<Element>.Iterator) {
self.init(_variant: .native(_native))
}
#if _runtime(_ObjC)
@usableFromInline
internal init(_cocoa: __owned __CocoaSet.Iterator) {
self.init(_variant: .cocoa(_cocoa))
}
#endif
}
}
@available(*, unavailable)
extension Set.Iterator._Variant: Sendable {}
extension Set.Iterator {
#if _runtime(_ObjC)
@usableFromInline @_transparent
internal var _guaranteedNative: Bool {
return _canBeClass(Element.self) == 0
}
/// Allow the optimizer to consider the surrounding code unreachable if
/// Set<Element> is guaranteed to be native.
@usableFromInline @_transparent
internal func _cocoaPath() {
if _guaranteedNative {
_conditionallyUnreachable()
}
}
#endif
#if _runtime(_ObjC)
@usableFromInline @_transparent
internal var _isNative: Bool {
switch _variant {
case .native:
return true
case .cocoa:
_cocoaPath()
return false
}
}
#endif
@usableFromInline @_transparent
internal var _asNative: _NativeSet<Element>.Iterator {
get {
switch _variant {
case .native(let nativeIterator):
return nativeIterator
#if _runtime(_ObjC)
case .cocoa:
_internalInvariantFailure("internal error: does not contain a native index")
#endif
}
}
set {
self._variant = .native(newValue)
}
}
#if _runtime(_ObjC)
@usableFromInline @_transparent
internal var _asCocoa: __CocoaSet.Iterator {
get {
switch _variant {
case .native:
_internalInvariantFailure("internal error: does not contain a Cocoa index")
case .cocoa(let cocoa):
return cocoa
}
}
}
#endif
}
extension Set.Iterator: IteratorProtocol {
/// Advances to the next element and returns it, or `nil` if no next element
/// exists.
///
/// Once `nil` has been returned, all subsequent calls return `nil`.
@inlinable
@inline(__always)
public mutating func next() -> Element? {
#if _runtime(_ObjC)
guard _isNative else {
guard let cocoaElement = _asCocoa.next() else { return nil }
return _forceBridgeFromObjectiveC(cocoaElement, Element.self)
}
#endif
return _asNative.next()
}
}
#if SWIFT_ENABLE_REFLECTION
extension Set.Iterator: CustomReflectable {
/// A mirror that reflects the iterator.
public var customMirror: Mirror {
return Mirror(
self,
children: EmptyCollection<(label: String?, value: Any)>())
}
}
extension Set: CustomReflectable {
/// A mirror that reflects the set.
public var customMirror: Mirror {
let style = Mirror.DisplayStyle.`set`
return Mirror(self, unlabeledChildren: self, displayStyle: style)
}
}
#endif
extension Set {
/// Removes and returns the first element of the set.
///
/// Because a set is not an ordered collection, the "first" element may not
/// be the first element that was added to the set.
///
/// - Returns: A member of the set. If the set is empty, returns `nil`.
@inlinable
public mutating func popFirst() -> Element? {
guard !isEmpty else { return nil }
return remove(at: startIndex)
}
/// The total number of elements that the set can contain without
/// allocating new storage.
@inlinable
public var capacity: Int {
return _variant.capacity
}
/// Reserves enough space to store the specified number of elements.
///
/// If you are adding a known number of elements to a set, use this
/// method to avoid multiple reallocations. This method ensures that the
/// set has unique, mutable, contiguous storage, with space allocated
/// for at least the requested number of elements.
///
/// Calling the `reserveCapacity(_:)` method on a set with bridged
/// storage triggers a copy to contiguous storage even if the existing
/// storage has room to store `minimumCapacity` elements.
///
/// - Parameter minimumCapacity: The requested number of elements to
/// store.
public // FIXME(reserveCapacity): Should be inlinable
mutating func reserveCapacity(_ minimumCapacity: Int) {
_variant.reserveCapacity(minimumCapacity)
_internalInvariant(self.capacity >= minimumCapacity)
}
}
public typealias SetIndex<Element: Hashable> = Set<Element>.Index
public typealias SetIterator<Element: Hashable> = Set<Element>.Iterator
extension Set: @unchecked Sendable
where Element: Sendable { }
extension Set.Index: @unchecked Sendable
where Element: Sendable { }
extension Set.Iterator: @unchecked Sendable
where Element: Sendable { }
|