File: String.swift

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1204 lines) | stat: -rw-r--r-- 43,293 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

import SwiftShims

@inlinable @_transparent
internal func unimplemented_utf8_32bit(
  _ message: String = "",
  file: StaticString = #file, line: UInt = #line
) -> Never {
  fatalError("32-bit: Unimplemented for UTF-8 support", file: file, line: line)
}

/// A Unicode string value that is a collection of characters.
///
/// A string is a series of characters, such as `"Swift"`, that forms a
/// collection. Strings in Swift are Unicode correct and locale insensitive,
/// and are designed to be efficient. The `String` type bridges with the
/// Objective-C class `NSString` and offers interoperability with C functions
/// that works with strings.
///
/// You can create new strings using string literals or string interpolations.
/// A *string literal* is a series of characters enclosed in quotes.
///
///     let greeting = "Welcome!"
///
/// *String interpolations* are string literals that evaluate any included
/// expressions and convert the results to string form. String interpolations
/// give you an easy way to build a string from multiple pieces. Wrap each
/// expression in a string interpolation in parentheses, prefixed by a
/// backslash.
///
///     let name = "Rosa"
///     let personalizedGreeting = "Welcome, \(name)!"
///     // personalizedGreeting == "Welcome, Rosa!"
///
///     let price = 2
///     let number = 3
///     let cookiePrice = "\(number) cookies: $\(price * number)."
///     // cookiePrice == "3 cookies: $6."
///
/// Combine strings using the concatenation operator (`+`).
///
///     let longerGreeting = greeting + " We're glad you're here!"
///     // longerGreeting == "Welcome! We're glad you're here!"
///
/// Multiline string literals are enclosed in three double quotation marks
/// (`"""`), with each delimiter on its own line. Indentation is stripped from
/// each line of a multiline string literal to match the indentation of the
/// closing delimiter.
///
///     let banner = """
///               __,
///              (           o  /) _/_
///               `.  , , , ,  //  /
///             (___)(_(_/_(_ //_ (__
///                          /)
///                         (/
///             """
///
/// Modifying and Comparing Strings
/// ===============================
///
/// Strings always have value semantics. Modifying a copy of a string leaves
/// the original unaffected.
///
///     var otherGreeting = greeting
///     otherGreeting += " Have a nice time!"
///     // otherGreeting == "Welcome! Have a nice time!"
///
///     print(greeting)
///     // Prints "Welcome!"
///
/// Comparing strings for equality using the equal-to operator (`==`) or a
/// relational operator (like `<` or `>=`) is always performed using Unicode
/// canonical representation. As a result, different representations of a
/// string compare as being equal.
///
///     let cafe1 = "Cafe\u{301}"
///     let cafe2 = "Café"
///     print(cafe1 == cafe2)
///     // Prints "true"
///
/// The Unicode scalar value `"\u{301}"` modifies the preceding character to
/// include an accent, so `"e\u{301}"` has the same canonical representation
/// as the single Unicode scalar value `"é"`.
///
/// Basic string operations are not sensitive to locale settings, ensuring that
/// string comparisons and other operations always have a single, stable
/// result, allowing strings to be used as keys in `Dictionary` instances and
/// for other purposes.
///
/// Accessing String Elements
/// =========================
///
/// A string is a collection of *extended grapheme clusters*, which approximate
/// human-readable characters. Many individual characters, such as "é", "김",
/// and "🇮🇳", can be made up of multiple Unicode scalar values. These scalar
/// values are combined by Unicode's boundary algorithms into extended
/// grapheme clusters, represented by the Swift `Character` type. Each element
/// of a string is represented by a `Character` instance.
///
/// For example, to retrieve the first word of a longer string, you can search
/// for a space and then create a substring from a prefix of the string up to
/// that point:
///
///     let name = "Marie Curie"
///     let firstSpace = name.firstIndex(of: " ") ?? name.endIndex
///     let firstName = name[..<firstSpace]
///     // firstName == "Marie"
///
/// The `firstName` constant is an instance of the `Substring` type---a type
/// that represents substrings of a string while sharing the original string's
/// storage. Substrings present the same interface as strings.
///
///     print("\(name)'s first name has \(firstName.count) letters.")
///     // Prints "Marie Curie's first name has 5 letters."
///
/// Accessing a String's Unicode Representation
/// ===========================================
///
/// If you need to access the contents of a string as encoded in different
/// Unicode encodings, use one of the string's `unicodeScalars`, `utf16`, or
/// `utf8` properties. Each property provides access to a view of the string
/// as a series of code units, each encoded in a different Unicode encoding.
///
/// To demonstrate the different views available for every string, the
/// following examples use this `String` instance:
///
///     let cafe = "Cafe\u{301} du 🌍"
///     print(cafe)
///     // Prints "Café du 🌍"
///
/// The `cafe` string is a collection of the nine characters that are visible
/// when the string is displayed.
///
///     print(cafe.count)
///     // Prints "9"
///     print(Array(cafe))
///     // Prints "["C", "a", "f", "é", " ", "d", "u", " ", "🌍"]"
///
/// Unicode Scalar View
/// -------------------
///
/// A string's `unicodeScalars` property is a collection of Unicode scalar
/// values, the 21-bit codes that are the basic unit of Unicode. Each scalar
/// value is represented by a `Unicode.Scalar` instance and is equivalent to a
/// UTF-32 code unit.
///
///     print(cafe.unicodeScalars.count)
///     // Prints "10"
///     print(Array(cafe.unicodeScalars))
///     // Prints "["C", "a", "f", "e", "\u{0301}", " ", "d", "u", " ", "\u{0001F30D}"]"
///     print(cafe.unicodeScalars.map { $0.value })
///     // Prints "[67, 97, 102, 101, 769, 32, 100, 117, 32, 127757]"
///
/// The `unicodeScalars` view's elements comprise each Unicode scalar value in
/// the `cafe` string. In particular, because `cafe` was declared using the
/// decomposed form of the `"é"` character, `unicodeScalars` contains the
/// scalar values for both the letter `"e"` (101) and the accent character
/// `"´"` (769).
///
/// UTF-16 View
/// -----------
///
/// A string's `utf16` property is a collection of UTF-16 code units, the
/// 16-bit encoding form of the string's Unicode scalar values. Each code unit
/// is stored as a `UInt16` instance.
///
///     print(cafe.utf16.count)
///     // Prints "11"
///     print(Array(cafe.utf16))
///     // Prints "[67, 97, 102, 101, 769, 32, 100, 117, 32, 55356, 57101]"
///
/// The elements of the `utf16` view are the code units for the string when
/// encoded in UTF-16. These elements match those accessed through indexed
/// `NSString` APIs.
///
///     let nscafe = cafe as NSString
///     print(nscafe.length)
///     // Prints "11"
///     print(nscafe.character(at: 3))
///     // Prints "101"
///
/// UTF-8 View
/// ----------
///
/// A string's `utf8` property is a collection of UTF-8 code units, the 8-bit
/// encoding form of the string's Unicode scalar values. Each code unit is
/// stored as a `UInt8` instance.
///
///     print(cafe.utf8.count)
///     // Prints "14"
///     print(Array(cafe.utf8))
///     // Prints "[67, 97, 102, 101, 204, 129, 32, 100, 117, 32, 240, 159, 140, 141]"
///
/// The elements of the `utf8` view are the code units for the string when
/// encoded in UTF-8. This representation matches the one used when `String`
/// instances are passed to C APIs.
///
///     let cLength = strlen(cafe)
///     print(cLength)
///     // Prints "14"
///
/// Measuring the Length of a String
/// ================================
///
/// When you need to know the length of a string, you must first consider what
/// you'll use the length for. Are you measuring the number of characters that
/// will be displayed on the screen, or are you measuring the amount of
/// storage needed for the string in a particular encoding? A single string
/// can have greatly differing lengths when measured by its different views.
///
/// For example, an ASCII character like the capital letter *A* is represented
/// by a single element in each of its four views. The Unicode scalar value of
/// *A* is `65`, which is small enough to fit in a single code unit in both
/// UTF-16 and UTF-8.
///
///     let capitalA = "A"
///     print(capitalA.count)
///     // Prints "1"
///     print(capitalA.unicodeScalars.count)
///     // Prints "1"
///     print(capitalA.utf16.count)
///     // Prints "1"
///     print(capitalA.utf8.count)
///     // Prints "1"
///
/// On the other hand, an emoji flag character is constructed from a pair of
/// Unicode scalar values, like `"\u{1F1F5}"` and `"\u{1F1F7}"`. Each of these
/// scalar values, in turn, is too large to fit into a single UTF-16 or UTF-8
/// code unit. As a result, each view of the string `"🇵🇷"` reports a different
/// length.
///
///     let flag = "🇵🇷"
///     print(flag.count)
///     // Prints "1"
///     print(flag.unicodeScalars.count)
///     // Prints "2"
///     print(flag.utf16.count)
///     // Prints "4"
///     print(flag.utf8.count)
///     // Prints "8"
///
/// To check whether a string is empty, use its `isEmpty` property instead of
/// comparing the length of one of the views to `0`. Unlike with `isEmpty`,
/// calculating a view's `count` property requires iterating through the
/// elements of the string.
///
/// Accessing String View Elements
/// ==============================
///
/// To find individual elements of a string, use the appropriate view for your
/// task. For example, to retrieve the first word of a longer string, you can
/// search the string for a space and then create a new string from a prefix
/// of the string up to that point.
///
///     let name = "Marie Curie"
///     let firstSpace = name.firstIndex(of: " ") ?? name.endIndex
///     let firstName = name[..<firstSpace]
///     print(firstName)
///     // Prints "Marie"
///
/// Strings and their views share indices, so you can access the UTF-8 view of
/// the `name` string using the same `firstSpace` index.
///
///     print(Array(name.utf8[..<firstSpace]))
///     // Prints "[77, 97, 114, 105, 101]"
///
/// Note that an index into one view may not have an exact corresponding
/// position in another view. For example, the `flag` string declared above
/// comprises a single character, but is composed of eight code units when
/// encoded as UTF-8. The following code creates constants for the first and
/// second positions in the `flag.utf8` view. Accessing the `utf8` view with
/// these indices yields the first and second code UTF-8 units.
///
///     let firstCodeUnit = flag.startIndex
///     let secondCodeUnit = flag.utf8.index(after: firstCodeUnit)
///     // flag.utf8[firstCodeUnit] == 240
///     // flag.utf8[secondCodeUnit] == 159
///
/// When used to access the elements of the `flag` string itself, however, the
/// `secondCodeUnit` index does not correspond to the position of a specific
/// character. Instead of only accessing the specific UTF-8 code unit, that
/// index is treated as the position of the character at the index's encoded
/// offset. In the case of `secondCodeUnit`, that character is still the flag
/// itself.
///
///     // flag[firstCodeUnit] == "🇵🇷"
///     // flag[secondCodeUnit] == "🇵🇷"
///
/// If you need to validate that an index from one string's view corresponds
/// with an exact position in another view, use the index's
/// `samePosition(in:)` method or the `init(_:within:)` initializer.
///
///     if let exactIndex = secondCodeUnit.samePosition(in: flag) {
///         print(flag[exactIndex])
///     } else {
///         print("No exact match for this position.")
///     }
///     // Prints "No exact match for this position."
///
/// Performance Optimizations
/// =========================
///
/// Although strings in Swift have value semantics, strings use a copy-on-write
/// strategy to store their data in a buffer. This buffer can then be shared
/// by different copies of a string. A string's data is only copied lazily,
/// upon mutation, when more than one string instance is using the same
/// buffer. Therefore, the first in any sequence of mutating operations may
/// cost O(*n*) time and space.
///
/// When a string's contiguous storage fills up, a new buffer must be allocated
/// and data must be moved to the new storage. String buffers use an
/// exponential growth strategy that makes appending to a string a constant
/// time operation when averaged over many append operations.
///
/// Bridging Between String and NSString
/// ====================================
///
/// Any `String` instance can be bridged to `NSString` using the type-cast
/// operator (`as`), and any `String` instance that originates in Objective-C
/// may use an `NSString` instance as its storage. Because any arbitrary
/// subclass of `NSString` can become a `String` instance, there are no
/// guarantees about representation or efficiency when a `String` instance is
/// backed by `NSString` storage. Because `NSString` is immutable, it is just
/// as though the storage was shared by a copy. The first in any sequence of
/// mutating operations causes elements to be copied into unique, contiguous
/// storage which may cost O(*n*) time and space, where *n* is the length of
/// the string's encoded representation (or more, if the underlying `NSString`
/// has unusual performance characteristics).
///
/// For more information about the Unicode terms used in this discussion, see
/// the [Unicode.org glossary][glossary]. In particular, this discussion
/// mentions [extended grapheme clusters][clusters], [Unicode scalar
/// values][scalars], and [canonical equivalence][equivalence].
///
/// [glossary]: http://www.unicode.org/glossary/
/// [clusters]: http://www.unicode.org/glossary/#extended_grapheme_cluster
/// [scalars]: http://www.unicode.org/glossary/#unicode_scalar_value
/// [equivalence]: http://www.unicode.org/glossary/#canonical_equivalent
@frozen
@_eagerMove
public struct String {
  public // @SPI(Foundation)
  var _guts: _StringGuts

  @inlinable @inline(__always)
  internal init(_ _guts: _StringGuts) {
    self._guts = _guts
    _invariantCheck()
  }

  // This is intentionally a static function and not an initializer, because
  // an initializer would conflict with the Int-parsing initializer, when used
  // as function name, e.g.
  //   [1, 2, 3].map(String.init)
  @_alwaysEmitIntoClient
  @_semantics("string.init_empty_with_capacity")
  @_semantics("inline_late")
  @inlinable
  internal static func _createEmpty(withInitialCapacity: Int) -> String {
    return String(_StringGuts(_initialCapacity: withInitialCapacity))
  }

  /// Creates an empty string.
  ///
  /// Using this initializer is equivalent to initializing a string with an
  /// empty string literal.
  ///
  ///     let empty = ""
  ///     let alsoEmpty = String()
  @inlinable @inline(__always)
  @_semantics("string.init_empty")
  public init() { self.init(_StringGuts()) }
}

extension String: Sendable { }

extension String {
  #if !INTERNAL_CHECKS_ENABLED
  @inlinable @inline(__always) internal func _invariantCheck() {}
  #else
  @usableFromInline @inline(never) @_effects(releasenone)
  internal func _invariantCheck() {
  }
  #endif // INTERNAL_CHECKS_ENABLED

  public func _dump() {
    #if INTERNAL_CHECKS_ENABLED
    _guts._dump()
    #endif // INTERNAL_CHECKS_ENABLED
  }
}

extension String {
  /// Returns a boolean value indicating whether this string is identical to
  /// `other`.
  ///
  /// Two string values are identical if there is no way to distinguish between
  /// them.
  ///
  /// Comparing strings this way includes comparing (normally) hidden
  /// implementation details such as the memory location of any underlying
  /// string storage object. Therefore, identical strings are guaranteed to
  /// compare equal with `==`, but not all equal strings are considered
  /// identical.
  ///
  /// - Performance: O(1)
  @_alwaysEmitIntoClient
  public func _isIdentical(to other: Self) -> Bool {
    self._guts.rawBits == other._guts.rawBits
  }
}

extension String {
  // This force type-casts element to UInt8, since we cannot currently
  // communicate to the type checker that we proved this with our dynamic
  // check in String(decoding:as:).
  @_alwaysEmitIntoClient
  @inline(never) // slow-path
  private static func _fromNonContiguousUnsafeBitcastUTF8Repairing<
    C: Collection
  >(_ input: C) -> (result: String, repairsMade: Bool) {
    _internalInvariant(C.Element.self == UInt8.self)
    return Array(input).withUnsafeBufferPointer {
      let raw = UnsafeRawBufferPointer($0)
      return String._fromUTF8Repairing(raw.bindMemory(to: UInt8.self))
    }
  }


  /// Creates a string from the given Unicode code units in the specified
  /// encoding.
  ///
  /// - Parameters:
  ///   - codeUnits: A collection of code units encoded in the encoding
  ///     specified in `sourceEncoding`.
  ///   - sourceEncoding: The encoding in which `codeUnits` should be
  ///     interpreted.
  @inlinable
  @inline(__always) // Eliminate dynamic type check when possible
  public init<C: Collection, Encoding: Unicode.Encoding>(
    decoding codeUnits: C, as sourceEncoding: Encoding.Type
  ) where C.Iterator.Element == Encoding.CodeUnit {
    guard _fastPath(sourceEncoding == UTF8.self) else {
      self = String._fromCodeUnits(
        codeUnits, encoding: sourceEncoding, repair: true)!.0
      return
    }

    // Fast path for user-defined Collections and typed contiguous collections.
    //
    // Note: this comes first, as the optimizer nearly always has insight into
    // wCSIA, but cannot prove that a type does not have conformance to
    // _HasContiguousBytes.
    if let str = codeUnits.withContiguousStorageIfAvailable({
      (buffer: UnsafeBufferPointer<C.Element>) -> String in
      Builtin.onFastPath() // encourage SIL Optimizer to inline this closure :-(
      let rawBufPtr = UnsafeRawBufferPointer(buffer)
      return String._fromUTF8Repairing(
        UnsafeBufferPointer(
          start: rawBufPtr.baseAddress?.assumingMemoryBound(to: UInt8.self),
          count: rawBufPtr.count)).0
    }) {
      self = str
      return
    }

    // Fast path for untyped raw storage and known stdlib types
    if let contigBytes = codeUnits as? _HasContiguousBytes,
      contigBytes._providesContiguousBytesNoCopy
    {
      self = contigBytes.withUnsafeBytes { rawBufPtr in
        Builtin.onFastPath() // encourage SIL Optimizer to inline this closure
        return String._fromUTF8Repairing(
          UnsafeBufferPointer(
            start: rawBufPtr.baseAddress?.assumingMemoryBound(to: UInt8.self),
            count: rawBufPtr.count)).0
      }
      return
    }

    self = String._fromNonContiguousUnsafeBitcastUTF8Repairing(codeUnits).0
  }

  /// Creates a new string by copying and validating the sequence of
  /// code units passed in, according to the specified encoding.
  ///
  /// This initializer does not try to repair ill-formed code unit sequences.
  /// If any are found, the result of the initializer is `nil`.
  ///
  /// The following example calls this initializer with the contents of two
  /// different arrays---first with a well-formed UTF-8 code unit sequence and
  /// then with an ill-formed UTF-16 code unit sequence.
  ///
  ///     let validUTF8: [UInt8] = [67, 97, 0, 102, 195, 169]
  ///     let valid = String(validating: validUTF8, as: UTF8.self)
  ///     print(valid ?? "nil")
  ///     // Prints "Café"
  ///
  ///     let invalidUTF16: [UInt16] = [0x41, 0x42, 0xd801]
  ///     let invalid = String(validating: invalidUTF16, as: UTF16.self)
  ///     print(invalid ?? "nil")
  ///     // Prints "nil"
  ///
  /// - Parameters:
  ///   - codeUnits: A sequence of code units that encode a `String`
  ///   - encoding: A conformer to `Unicode.Encoding` to be used
  ///               to decode `codeUnits`.
  @inlinable
  @available(SwiftStdlib 6.0, *)
  public init?<Encoding: Unicode.Encoding>(
    validating codeUnits: some Sequence<Encoding.CodeUnit>,
    as encoding: Encoding.Type
  ) {
    let contiguousResult = codeUnits.withContiguousStorageIfAvailable {
      String._validate($0, as: Encoding.self)
    }
    if let validationResult = contiguousResult {
      guard let validatedString = validationResult else {
        return nil
      }
      self = validatedString
      return
    }

    // slow-path
    var transcoded: [UTF8.CodeUnit] = []
    transcoded.reserveCapacity(codeUnits.underestimatedCount)
    var isASCII = true
    let error = transcode(
      codeUnits.makeIterator(),
      from: Encoding.self,
      to: UTF8.self,
      stoppingOnError: true,
      into: {
        uint8 in
        transcoded.append(uint8)
        if isASCII && (uint8 & 0x80) == 0x80 { isASCII = false }
      }
    )
    if error { return nil }
    self = transcoded.withUnsafeBufferPointer{
      String._uncheckedFromUTF8($0, asciiPreScanResult: isASCII)
    }
  }

  /// Creates a new string by copying and validating the sequence of
  /// code units passed in, according to the specified encoding.
  ///
  /// This initializer does not try to repair ill-formed code unit sequences.
  /// If any are found, the result of the initializer is `nil`.
  ///
  /// The following example calls this initializer with the contents of two
  /// different arrays---first with a well-formed UTF-8 code unit sequence and
  /// then with an ill-formed ASCII code unit sequence.
  ///
  ///     let validUTF8: [Int8] = [67, 97, 0, 102, -61, -87]
  ///     let valid = String(validating: validUTF8, as: UTF8.self)
  ///     print(valid ?? "nil")
  ///     // Prints "Café"
  ///
  ///     let invalidASCII: [Int8] = [67, 97, -5]
  ///     let invalid = String(validating: invalidASCII, as: Unicode.ASCII.self)
  ///     print(invalid ?? "nil")
  ///     // Prints "nil"
  ///
  /// - Parameters:
  ///   - codeUnits: A sequence of code units that encode a `String`
  ///   - encoding: A conformer to `Unicode.Encoding` that can decode
  ///               `codeUnits` as `UInt8`
  @inlinable
  @available(SwiftStdlib 6.0, *)
  public init?<Encoding>(
    validating codeUnits: some Sequence<Int8>,
    as encoding: Encoding.Type
  ) where Encoding: Unicode.Encoding, Encoding.CodeUnit == UInt8 {
    let contiguousResult = codeUnits.withContiguousStorageIfAvailable {
      $0.withMemoryRebound(to: UInt8.self) {
        String._validate($0, as: Encoding.self)
      }
    }
    if let validationResult = contiguousResult {
      guard let validatedString = validationResult else {
        return nil
      }
      self = validatedString
      return
    }

    // slow-path
    let uint8s = codeUnits.lazy.map(UInt8.init(bitPattern:))
    self.init(validating: uint8s, as: Encoding.self)
  }

  /// Creates a new string with the specified capacity in UTF-8 code units, and
  /// then calls the given closure with a buffer covering the string's
  /// uninitialized memory.
  ///
  /// The closure should return the number of initialized code units,
  /// or 0 if it couldn't initialize the buffer (for example if the
  /// requested capacity was too small).
  ///
  /// This method replaces ill-formed UTF-8 sequences with the Unicode
  /// replacement character (`"\u{FFFD}"`). This may require resizing
  /// the buffer beyond its original capacity.
  ///
  /// The following examples use this initializer with the contents of two
  /// different `UInt8` arrays---the first with a well-formed UTF-8 code unit
  /// sequence, and the second with an ill-formed sequence at the end.
  ///
  ///     let validUTF8: [UInt8] = [0x43, 0x61, 0x66, 0xC3, 0xA9]
  ///     let invalidUTF8: [UInt8] = [0x43, 0x61, 0x66, 0xC3]
  ///
  ///     let cafe1 = String(unsafeUninitializedCapacity: validUTF8.count) {
  ///         _ = $0.initialize(from: validUTF8)
  ///         return validUTF8.count
  ///     }
  ///     // cafe1 == "Café"
  ///
  ///     let cafe2 = String(unsafeUninitializedCapacity: invalidUTF8.count) {
  ///         _ = $0.initialize(from: invalidUTF8)
  ///         return invalidUTF8.count
  ///     }
  ///     // cafe2 == "Caf�"
  ///
  ///     let empty = String(unsafeUninitializedCapacity: 16) { _ in
  ///         // Can't initialize the buffer (e.g. the capacity is too small).
  ///         return 0
  ///     }
  ///     // empty == ""
  ///
  /// - Parameters:
  ///   - capacity: The number of UTF-8 code units worth of memory to allocate
  ///     for the string (excluding the null terminator).
  ///   - initializer: A closure that accepts a buffer covering uninitialized
  ///     memory with room for `capacity` UTF-8 code units, initializes
  ///     that memory, and returns the number of initialized elements.
  @inline(__always)
  @available(SwiftStdlib 5.3, *)
  public init(
    unsafeUninitializedCapacity capacity: Int,
    initializingUTF8With initializer: (
      _ buffer: UnsafeMutableBufferPointer<UInt8>
    ) throws -> Int
  ) rethrows {
    self = try String(
      _uninitializedCapacity: capacity,
      initializingUTF8With: initializer
    )
  }

  @inline(__always)
  internal init(
    _uninitializedCapacity capacity: Int,
    initializingUTF8With initializer: (
      _ buffer: UnsafeMutableBufferPointer<UInt8>
    ) throws -> Int
  ) rethrows {
    if _fastPath(capacity <= _SmallString.capacity) {
      let smol = try _SmallString(initializingUTF8With: {
        try initializer(.init(start: $0.baseAddress, count: capacity))
      })
      // Fast case where we fit in a _SmallString and don't need UTF8 validation
      if _fastPath(smol.isASCII) {
        self = String(_StringGuts(smol))
      } else {
        // We succeeded in making a _SmallString, but may need to repair UTF8
        self = smol.withUTF8 { String._fromUTF8Repairing($0).result }
      }
      return
    }

    self = try String._fromLargeUTF8Repairing(
      uninitializedCapacity: capacity,
      initializingWith: initializer)
  }

  /// Calls the given closure with a pointer to the contents of the string,
  /// represented as a null-terminated sequence of code units.
  ///
  /// The pointer passed as an argument to `body` is valid only during the
  /// execution of `withCString(encodedAs:_:)`. Do not store or return the
  /// pointer for later use.
  ///
  /// - Parameters:
  ///   - body: A closure with a pointer parameter that points to a
  ///     null-terminated sequence of code units. If `body` has a return
  ///     value, that value is also used as the return value for the
  ///     `withCString(encodedAs:_:)` method. The pointer argument is valid
  ///     only for the duration of the method's execution.
  ///   - targetEncoding: The encoding in which the code units should be
  ///     interpreted.
  /// - Returns: The return value, if any, of the `body` closure parameter.
  @inlinable
  @inline(__always) // Eliminate dynamic type check when possible
  public func withCString<Result, TargetEncoding: Unicode.Encoding>(
    encodedAs targetEncoding: TargetEncoding.Type,
    _ body: (UnsafePointer<TargetEncoding.CodeUnit>) throws -> Result
  ) rethrows -> Result {
    if targetEncoding == UTF8.self {
      return try self.withCString {
        (cPtr: UnsafePointer<CChar>) -> Result  in
        _internalInvariant(UInt8.self == TargetEncoding.CodeUnit.self)
        let ptr = UnsafeRawPointer(cPtr).assumingMemoryBound(
          to: TargetEncoding.CodeUnit.self)
        return try body(ptr)
      }
    }
    return try _slowWithCString(encodedAs: targetEncoding, body)
  }

  @usableFromInline @inline(never) // slow-path
  @_effects(releasenone)
  internal func _slowWithCString<Result, TargetEncoding: Unicode.Encoding>(
    encodedAs targetEncoding: TargetEncoding.Type,
    _ body: (UnsafePointer<TargetEncoding.CodeUnit>) throws -> Result
  ) rethrows -> Result {
    var copy = self
    return try copy.withUTF8 { utf8 in
      var arg = Array<TargetEncoding.CodeUnit>()
      arg.reserveCapacity(1 &+ self._guts.count / 4)
      let repaired = transcode(
        utf8.makeIterator(),
        from: UTF8.self,
        to: targetEncoding,
        stoppingOnError: false,
        into: { arg.append($0) })
      arg.append(TargetEncoding.CodeUnit(0))
      _internalInvariant(!repaired)
      return try body(arg)
    }
  }
}

extension String: _ExpressibleByBuiltinUnicodeScalarLiteral {
  @_effects(readonly)
  @inlinable @inline(__always)
  public init(_builtinUnicodeScalarLiteral value: Builtin.Int32) {
    self.init(Unicode.Scalar(_unchecked: UInt32(value)))
  }

  @inlinable @inline(__always)
  public init(_ scalar: Unicode.Scalar) {
    self = scalar.withUTF8CodeUnits { String._uncheckedFromUTF8($0) }
  }
}

extension String: _ExpressibleByBuiltinExtendedGraphemeClusterLiteral {
  @inlinable @inline(__always)
  @_effects(readonly) @_semantics("string.makeUTF8")
  public init(
    _builtinExtendedGraphemeClusterLiteral start: Builtin.RawPointer,
    utf8CodeUnitCount: Builtin.Word,
    isASCII: Builtin.Int1
  ) {
    self.init(
      _builtinStringLiteral: start,
      utf8CodeUnitCount: utf8CodeUnitCount,
      isASCII: isASCII)
  }
}

extension String: _ExpressibleByBuiltinStringLiteral {
  @inlinable @inline(__always)
  @_effects(readonly) @_semantics("string.makeUTF8")
  public init(
    _builtinStringLiteral start: Builtin.RawPointer,
    utf8CodeUnitCount: Builtin.Word,
    isASCII: Builtin.Int1
    ) {
    let bufPtr = UnsafeBufferPointer(
      start: UnsafeRawPointer(start).assumingMemoryBound(to: UInt8.self),
      count: Int(utf8CodeUnitCount))
    if let smol = _SmallString(bufPtr) {
      self = String(_StringGuts(smol))
      return
    }
    self.init(_StringGuts(bufPtr, isASCII: Bool(isASCII)))
  }
}

extension String: ExpressibleByStringLiteral {
  /// Creates an instance initialized to the given string value.
  ///
  /// Do not call this initializer directly. It is used by the compiler when you
  /// initialize a string using a string literal. For example:
  ///
  ///     let nextStop = "Clark & Lake"
  ///
  /// This assignment to the `nextStop` constant calls this string literal
  /// initializer behind the scenes.
  @inlinable @inline(__always)
  public init(stringLiteral value: String) {
    self = value
  }
}

extension String: CustomDebugStringConvertible {
  /// A representation of the string that is suitable for debugging.
  public var debugDescription: String {
    func hasBreak(between left: String, and right: Unicode.Scalar) -> Bool {
      // Note: we know `left` ends with an ASCII character, so we only need to
      // look at its last scalar.
      var state = _GraphemeBreakingState()
      return state.shouldBreak(between: left.unicodeScalars.last!, and: right)
    }

    // Prevent unquoted scalars in the string from combining with the opening
    // `"` or the tail of the preceding quoted scalar.
    var result = "\""
    var wantBreak = true // true if next scalar must not combine with the last
    for us in self.unicodeScalars {
      if let escaped = us._escaped(asASCII: false) {
        result += escaped
        wantBreak = true
      } else if wantBreak && !hasBreak(between: result, and: us) {
        result += us.escaped(asASCII: true)
        wantBreak = true
      } else {
        result.unicodeScalars.append(us)
        wantBreak = false
      }
    }
    // Also prevent the last scalar from combining with the closing `"`.
    var suffix = "\"".unicodeScalars
    while !result.isEmpty {
      // Append first scalar of suffix, then check if it combines.
      result.unicodeScalars.append(suffix.first!)
      let i = result.index(before: result.endIndex)
      let j = result.unicodeScalars.index(before: result.endIndex)
      if i >= j {
        // All good; append the rest and we're done.
        result.unicodeScalars.append(contentsOf: suffix.dropFirst())
        break
      }
      // Cancel appending the scalar, then quote the last scalar in `result` and
      // prepend it to `suffix`.
      result.unicodeScalars.removeLast()
      let last = result.unicodeScalars.removeLast()
      suffix.insert(
        contentsOf: last.escaped(asASCII: true).unicodeScalars,
        at: suffix.startIndex)
    }
    return result
  }
}

extension String {
  @inlinable // Forward inlinability to append
  @_effects(readonly) @_semantics("string.concat")
  public static func + (lhs: String, rhs: String) -> String {
    var result = lhs
    result.append(rhs)
    return result
  }

  // String append
  @inlinable // Forward inlinability to append
  @_semantics("string.plusequals")
  public static func += (lhs: inout String, rhs: String) {
    lhs.append(rhs)
  }
}

extension Sequence where Element: StringProtocol {
  /// Returns a new string by concatenating the elements of the sequence,
  /// adding the given separator between each element.
  ///
  /// The following example shows how an array of strings can be joined to a
  /// single, comma-separated string:
  ///
  ///     let cast = ["Vivien", "Marlon", "Kim", "Karl"]
  ///     let list = cast.joined(separator: ", ")
  ///     print(list)
  ///     // Prints "Vivien, Marlon, Kim, Karl"
  ///
  /// - Parameter separator: A string to insert between each of the elements
  ///   in this sequence. The default separator is an empty string.
  /// - Returns: A single, concatenated string.
  @_specialize(where Self == Array<Substring>)
  @_specialize(where Self == Array<String>)
  public func joined(separator: String = "") -> String {
    return _joined(separator: separator)
  }

  @inline(__always) // Pick up @_specialize and devirtualize from two callers
  internal func _joined(separator: String) -> String {
    // A likely-under-estimate, but lets us skip some of the growth curve
    // for large Sequences.
    let underestimatedCap =
      (1 &+ separator._guts.count) &* self.underestimatedCount
    var result = ""
    result.reserveCapacity(underestimatedCap)
    if separator.isEmpty {
      for x in self {
        result.append(x._ephemeralString)
      }
      return result
    }

    var iter = makeIterator()
    if let first = iter.next() {
      result.append(first._ephemeralString)
      while let next = iter.next() {
        result.append(separator)
        result.append(next._ephemeralString)
      }
    }
    return result
  }
}

// This overload is necessary because String now conforms to
// BidirectionalCollection, and there are other `joined` overloads that are
// considered more specific. See Flatten.swift.gyb.
extension BidirectionalCollection where Element == String {
  /// Returns a new string by concatenating the elements of the sequence,
  /// adding the given separator between each element.
  ///
  /// The following example shows how an array of strings can be joined to a
  /// single, comma-separated string:
  ///
  ///     let cast = ["Vivien", "Marlon", "Kim", "Karl"]
  ///     let list = cast.joined(separator: ", ")
  ///     print(list)
  ///     // Prints "Vivien, Marlon, Kim, Karl"
  ///
  /// - Parameter separator: A string to insert between each of the elements
  ///   in this sequence. The default separator is an empty string.
  /// - Returns: A single, concatenated string.
  @_specialize(where Self == Array<String>)
  public func joined(separator: String = "") -> String {
    return _joined(separator: separator)
  }
}

// Unicode algorithms
extension String {
  @inline(__always)
  internal func _uppercaseASCII(_ x: UInt8) -> UInt8 {
    /// A "table" for which ASCII characters need to be upper cased.
    /// To determine which bit corresponds to which ASCII character, subtract 1
    /// from the ASCII value of that character and divide by 2. The bit is set if
    /// that character is a lower case character; otherwise, it's not set.
    let _lowercaseTable: UInt64 =
      0b0001_1111_1111_1111_0000_0000_0000_0000 &<< 32

    // Lookup if it should be shifted in our ascii table, then we subtract 0x20 if
    // it should, 0x0 if not.
    // This code is equivalent to:
    // This code is equivalent to:
    // switch sourcex {
    // case let x where (x >= 0x41 && x <= 0x5a):
    //   return x &- 0x20
    // case let x:
    //   return x
    // }
    let isLower = _lowercaseTable &>> UInt64(((x &- 1) & 0b0111_1111) &>> 1)
    let toSubtract = (isLower & 0x1) &<< 5
    return x &- UInt8(truncatingIfNeeded: toSubtract)
  }

  @inline(__always)
  internal func _lowercaseASCII(_ x: UInt8) -> UInt8 {
    /// A "table" for which ASCII characters need to be lower cased.
    /// To determine which bit corresponds to which ASCII character, subtract 1
    /// from the ASCII value of that character and divide by 2. The bit is set if
    /// that character is a upper case character; otherwise, it's not set.
    let _uppercaseTable: UInt64 =
      0b0000_0000_0000_0000_0001_1111_1111_1111 &<< 32

    // Lookup if it should be shifted in our ascii table, then we add 0x20 if
    // it should, 0x0 if not.
    // This code is equivalent to:
    // This code is equivalent to:
    // switch sourcex {
    // case let x where (x >= 0x41 && x <= 0x5a):
    //   return x &- 0x20
    // case let x:
    //   return x
    // }
    let isUpper = _uppercaseTable &>> UInt64(((x &- 1) & 0b0111_1111) &>> 1)
    let toAdd = (isUpper & 0x1) &<< 5
    return x &+ UInt8(truncatingIfNeeded: toAdd)
  }


  /// Returns a lowercase version of the string.
  ///
  /// Here's an example of transforming a string to all lowercase letters.
  ///
  ///     let cafe = "BBQ Café 🍵"
  ///     print(cafe.lowercased())
  ///     // Prints "bbq café 🍵"
  ///
  /// - Returns: A lowercase copy of the string.
  ///
  /// - Complexity: O(*n*)
  @_effects(releasenone)
  public func lowercased() -> String {
    if _fastPath(_guts.isFastASCII) {
      return _guts.withFastUTF8 { utf8 in
        return String(_uninitializedCapacity: utf8.count) { buffer in
          for i in 0 ..< utf8.count {
            buffer[i] = _lowercaseASCII(utf8[i])
          }
          return utf8.count
        }
      }
    }

    var result = ""
    result.reserveCapacity(utf8.count)

    for scalar in unicodeScalars {
      result += scalar.properties.lowercaseMapping
    }

    return result
  }

  /// Returns an uppercase version of the string.
  ///
  /// The following example transforms a string to uppercase letters:
  ///
  ///     let cafe = "Café 🍵"
  ///     print(cafe.uppercased())
  ///     // Prints "CAFÉ 🍵"
  ///
  /// - Returns: An uppercase copy of the string.
  ///
  /// - Complexity: O(*n*)
  @_effects(releasenone)
  public func uppercased() -> String {
    if _fastPath(_guts.isFastASCII) {
      return _guts.withFastUTF8 { utf8 in
        return String(_uninitializedCapacity: utf8.count) { buffer in
          for i in 0 ..< utf8.count {
            buffer[i] = _uppercaseASCII(utf8[i])
          }
          return utf8.count
        }
      }
    }

    var result = ""
    result.reserveCapacity(utf8.count)

    for scalar in unicodeScalars {
      result += scalar.properties.uppercaseMapping
    }

    return result
  }

  /// Creates an instance from the description of a given
  /// `LosslessStringConvertible` instance.
  @inlinable @inline(__always)
  public init<T: LosslessStringConvertible>(_ value: T) {
    self = value.description
  }
}

extension String: CustomStringConvertible {
  /// The value of this string.
  ///
  /// Using this property directly is discouraged. Instead, use simple
  /// assignment to create a new constant or variable equal to this string.
  @inlinable
  public var description: String { return self }
}

extension String {
  public // @testable
  var _nfcCodeUnits: [UInt8] {
    var codeUnits = [UInt8]()
    _withNFCCodeUnits {
      codeUnits.append($0)
    }
    return codeUnits
  }

  public // @testable
  func _withNFCCodeUnits(_ f: (UInt8) throws -> Void) rethrows {
    try _gutsSlice._withNFCCodeUnits(f)
  }
}

extension _StringGutsSlice {
  internal func _isScalarNFCQC(
    _ scalar: Unicode.Scalar,
    _ prevCCC: inout UInt8
  ) -> Bool {
    let normData = Unicode._NormData(scalar, fastUpperbound: 0x300)

    if prevCCC > normData.ccc, normData.ccc != 0 {
      return false
    }

    if !normData.isNFCQC {
      return false
    }

    prevCCC = normData.ccc
    return true
  }

  internal func _withNFCCodeUnits(_ f: (UInt8) throws -> Void) rethrows {
    let substring = String(_guts)[range]
    // Fast path: If we're already NFC (or ASCII), then we don't need to do
    // anything at all.
    if _fastPath(_guts.isNFC) {
      try substring.utf8.forEach(f)
      return
    }

    var isNFCQC = true
    var prevCCC: UInt8 = 0

    if _guts.isFastUTF8 {
      _fastNFCCheck(&isNFCQC, &prevCCC)

      // Because we have access to the fastUTF8, we can go through that instead
      // of accessing the UTF8 view on String.
      if isNFCQC {
        try withFastUTF8 {
          for byte in $0 {
            try f(byte)
          }
        }

        return
      }
    } else {
      for scalar in substring.unicodeScalars {
        if !_isScalarNFCQC(scalar, &prevCCC) {
          isNFCQC = false
          break
        }
      }

      if isNFCQC {
        for byte in substring.utf8 {
          try f(byte)
        }

        return
      }
    }

    for scalar in substring._internalNFC {
      try scalar.withUTF8CodeUnits {
        for byte in $0 {
          try f(byte)
        }
      }
    }
  }

  internal func _fastNFCCheck(_ isNFCQC: inout Bool, _ prevCCC: inout UInt8) {
    withFastUTF8 { utf8 in
      var position = 0

      while position < utf8.count {
        // If our first byte is less than 0xCC, then it means we're under the
        // 0x300 scalar value and everything up to 0x300 is NFC already.
        if utf8[position] < 0xCC {
          // If our first byte is less than 0xC0, then it means it is ASCII
          // and only takes up a single byte.
          if utf8[position] < 0xC0 {
            position &+= 1
          } else {
            // Otherwise, this is a 2 byte < 0x300 sequence.
            position &+= 2
          }
          // ASCII always has ccc of 0.
          prevCCC = 0

          continue
        }

        let (scalar, len) = _decodeScalar(utf8, startingAt: position)

        if !_isScalarNFCQC(scalar, &prevCCC) {
          isNFCQC = false
          return
        }

        position &+= len
      }
    }
  }
}