1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
|
//===--- CrashHandlerLinux.cpp - Swift crash handler for Linux ----------- ===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// The Linux crash handler implementation.
//
//===----------------------------------------------------------------------===//
#ifdef __linux__
#ifndef _GNU_SOURCE
#define _GNU_SOURCE 1
#endif
#ifndef _LARGEFILE64_SOURCE
#define _LARGEFILE64_SOURCE 1
#endif
#include <linux/capability.h>
#include <linux/futex.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <sched.h>
#include <setjmp.h>
#include <signal.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "swift/Runtime/Backtrace.h"
#include <cstring>
#include "BacktracePrivate.h"
// Run the memserver in a thread (0) or separate process (1)
#define MEMSERVER_USE_PROCESS 0
#ifndef lengthof
#define lengthof(x) (sizeof(x) / sizeof(x[0]))
#endif
using namespace swift::runtime::backtrace;
namespace {
void handle_fatal_signal(int signum, siginfo_t *pinfo, void *uctx);
void suspend_other_threads(struct thread *self);
void resume_other_threads();
void take_thread_lock();
void release_thread_lock();
void notify_paused();
uint32_t currently_paused();
void wait_paused(uint32_t expected, const struct timespec *timeout);
int memserver_start();
int memserver_entry(void *);
bool run_backtracer(int fd);
ssize_t safe_read(int fd, void *buf, size_t len) {
uint8_t *ptr = (uint8_t *)buf;
uint8_t *end = ptr + len;
ssize_t total = 0;
while (ptr < end) {
ssize_t ret;
do {
ret = read(fd, buf, len);
} while (ret < 0 && errno == EINTR);
if (ret < 0)
return ret;
total += ret;
ptr += ret;
len -= ret;
}
return total;
}
ssize_t safe_write(int fd, const void *buf, size_t len) {
const uint8_t *ptr = (const uint8_t *)buf;
const uint8_t *end = ptr + len;
ssize_t total = 0;
while (ptr < end) {
ssize_t ret;
do {
ret = write(fd, buf, len);
} while (ret < 0 && errno == EINTR);
if (ret < 0)
return ret;
total += ret;
ptr += ret;
len -= ret;
}
return total;
}
CrashInfo crashInfo;
const int signalsToHandle[] = {
SIGQUIT,
SIGABRT,
SIGBUS,
SIGFPE,
SIGILL,
SIGSEGV,
SIGTRAP
};
} // namespace
namespace swift {
namespace runtime {
namespace backtrace {
SWIFT_RUNTIME_STDLIB_INTERNAL int
_swift_installCrashHandler()
{
stack_t ss;
// See if an alternate signal stack already exists
if (sigaltstack(NULL, &ss) < 0)
return errno;
if (ss.ss_sp == 0) {
/* No, so set one up; note that if we end up having to do a PLT lookup
for a function we call from the signal handler, we need additional
stack space for the dynamic linker, or we'll just explode. That's
what the extra 16KB is for here. */
ss.ss_flags = 0;
ss.ss_size = SIGSTKSZ + 16384;
ss.ss_sp = mmap(0, ss.ss_size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (ss.ss_sp == MAP_FAILED)
return errno;
if (sigaltstack(&ss, NULL) < 0)
return errno;
}
// Now register signal handlers
struct sigaction sa;
sigfillset(&sa.sa_mask);
for (unsigned n = 0; n < lengthof(signalsToHandle); ++n) {
sigdelset(&sa.sa_mask, signalsToHandle[n]);
}
sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_NODEFER;
sa.sa_sigaction = handle_fatal_signal;
for (unsigned n = 0; n < lengthof(signalsToHandle); ++n) {
struct sigaction osa;
// See if a signal handler for this signal is already installed
if (sigaction(signalsToHandle[n], NULL, &osa) < 0)
return errno;
if (osa.sa_handler == SIG_DFL) {
// No, so install ours
if (sigaction(signalsToHandle[n], &sa, NULL) < 0)
return errno;
}
}
return 0;
}
} // namespace backtrace
} // namespace runtime
} // namespace swift
namespace {
// Older glibc and musl don't have these two syscalls
pid_t
gettid()
{
return (pid_t)syscall(SYS_gettid);
}
int
tgkill(int tgid, int tid, int sig) {
return syscall(SYS_tgkill, tgid, tid, sig);
}
void
reset_signal(int signum)
{
struct sigaction sa;
sa.sa_handler = SIG_DFL;
sa.sa_flags = 0;
sigemptyset(&sa.sa_mask);
sigaction(signum, &sa, NULL);
}
void
handle_fatal_signal(int signum,
siginfo_t *pinfo,
void *uctx)
{
int old_err = errno;
struct thread self = { 0, (int64_t)gettid(), (uint64_t)uctx };
// Prevent this from exploding if more than one thread gets here at once
suspend_other_threads(&self);
// Remove our signal handlers; crashes should kill us here
for (unsigned n = 0; n < lengthof(signalsToHandle); ++n)
reset_signal(signalsToHandle[n]);
// Fill in crash info
crashInfo.crashing_thread = self.tid;
crashInfo.signal = signum;
crashInfo.fault_address = (uint64_t)pinfo->si_addr;
// Start the memory server
int fd = memserver_start();
// Display a progress message
void *pc = 0;
ucontext_t *ctx = (ucontext_t *)uctx;
#if defined(__x86_64__)
pc = (void *)(ctx->uc_mcontext.gregs[REG_RIP]);
#elif defined(__i386__)
pc = (void *)(ctx->uc_mcontext.gregs[REG_EIP]);
#elif defined(__arm64__) || defined(__aarch64__)
pc = (void *)(ctx->uc_mcontext.pc);
#elif defined(__arm__)
#if defined(__ANDROID__)
pc = (void *)(ctx->uc_mcontext.arm_pc);
#else
pc = (void *)(ctx->uc_mcontext.gprs[15]);
#endif
#endif
_swift_displayCrashMessage(signum, pc);
// Actually start the backtracer
if (!run_backtracer(fd)) {
const char *message = _swift_backtraceSettings.color == OnOffTty::On
? " failed\n\n" : " failed ***\n\n";
if (_swift_backtraceSettings.outputTo == OutputTo::Stderr)
write(STDERR_FILENO, message, strlen(message));
else
write(STDOUT_FILENO, message, strlen(message));
}
#if !MEMSERVER_USE_PROCESS
/* If the memserver is in-process, it may have set signal handlers,
so reset SIGSEGV and SIGBUS again */
reset_signal(SIGSEGV);
reset_signal(SIGBUS);
#endif
// Restart the other threads
resume_other_threads();
// Restore errno and exit (to crash)
errno = old_err;
}
// .. Thread handling ..........................................................
void
reset_threads(struct thread *first) {
__atomic_store_n(&crashInfo.thread_list, (uint64_t)first, __ATOMIC_RELEASE);
}
void
add_thread(struct thread *thread) {
uint64_t next = __atomic_load_n(&crashInfo.thread_list, __ATOMIC_ACQUIRE);
do {
thread->next = next;
} while (!__atomic_compare_exchange_n(&crashInfo.thread_list, &next,
(uint64_t)thread,
false,
__ATOMIC_RELEASE, __ATOMIC_ACQUIRE));
}
bool
seen_thread(pid_t tid) {
uint64_t next = __atomic_load_n(&crashInfo.thread_list, __ATOMIC_ACQUIRE);
while (next) {
struct thread *pthread = (struct thread *)next;
if (pthread->tid == tid)
return true;
next = pthread->next;
}
return false;
}
void
pause_thread(int signum __attribute__((unused)),
siginfo_t *pinfo __attribute__((unused)),
void *uctx)
{
int old_err = errno;
struct thread self = { 0, (int64_t)gettid(), (uint64_t)uctx };
add_thread(&self);
notify_paused();
take_thread_lock();
release_thread_lock();
errno = old_err;
}
struct linux_dirent64 {
ino64_t d_ino;
off64_t d_off;
unsigned short d_reclen;
unsigned char d_type;
char d_name[256];
};
int
getdents(int fd, void *buf, size_t bufsiz)
{
return syscall(SYS_getdents64, fd, buf, bufsiz);
}
/* Find the signal to use to suspend the given thread.
Sadly, libdispatch blocks SIGUSR1, so we can't just use that everywhere;
and on Ubuntu 20.04 *something* is starting a thread with SIGPROF blocked,
so we can't just use that either.
We also can't modify the signal mask for another thread, since there is
no syscall to do that.
As a workaround, read /proc/<pid>/task/<tid>/status to find the signal
mask so that we can decide which signal to try and send. */
int
signal_for_suspend(int pid, int tid)
{
char pid_buffer[22];
char tid_buffer[22];
_swift_formatUnsigned((unsigned)pid, pid_buffer);
_swift_formatUnsigned((unsigned)tid, tid_buffer);
char status_file[6 + 22 + 6 + 22 + 7 + 1];
strcpy(status_file, "/proc/"); // 6
strcat(status_file, pid_buffer); // 22
strcat(status_file, "/task/"); // 6
strcat(status_file, tid_buffer); // 22
strcat(status_file, "/status"); // 7 + 1 for NUL
int fd = open(status_file, O_RDONLY);
if (fd < 0)
return -1;
enum match_state {
Matching,
EatLine,
AfterMatch,
InHex,
// states after this terminate the loop
Done,
Bad
};
enum match_state state = Matching;
const char *toMatch = "SigBlk:";
const char *matchPtr = toMatch;
char buffer[256];
uint64_t mask = 0;
ssize_t count;
while (state < Done && (count = read(fd, buffer, sizeof(buffer))) > 0) {
char *ptr = buffer;
char *end = buffer + count;
while (state < Done && ptr < end) {
int ch = *ptr++;
switch (state) {
case Matching:
if (ch != *matchPtr) {
state = EatLine;
matchPtr = toMatch;
} else if (!*++matchPtr) {
state = AfterMatch;
}
break;
case EatLine:
if (ch == '\n')
state = Matching;
break;
case AfterMatch:
if (ch == ' ' || ch == '\t') {
break;
}
state = InHex;
SWIFT_FALLTHROUGH;
case InHex:
if (ch >= '0' && ch <= '9') {
mask = (mask << 4) | (ch - '0');
} else if (ch >= 'a' && ch <= 'f') {
mask = (mask << 4) | (ch - 'a' + 10);
} else if (ch >= 'A' && ch <= 'F') {
mask = (mask << 4) | (ch - 'A' + 10);
} else if (ch == '\n') {
state = Done;
break;
} else {
state = Bad;
}
break;
case Done:
case Bad:
break;
}
}
}
close(fd);
if (state == Done) {
if (!(mask & (1 << (SIGUSR1 - 1))))
return SIGUSR1;
else if (!(mask & (1 << (SIGUSR2 - 1))))
return SIGUSR2;
else if (!(mask & (1 << (SIGPROF - 1))))
return SIGPROF;
else
return -1;
}
return -1;
}
// Write a string to stderr
void
warn(const char *str) {
write(STDERR_FILENO, str, strlen(str));
}
/* Stop all other threads in this process; we do this by establishing a
signal handler for SIGPROF, then iterating through the threads sending
SIGPROF.
Finding the other threads is a pain, because Linux has no actual API
for that; instead, you have to read /proc. Unfortunately, opendir()
and readdir() are not async signal safe, so we get to do this with
the getdents system call instead.
The SIGPROF signals also serve to build the thread list. */
void
suspend_other_threads(struct thread *self)
{
struct sigaction sa, sa_old_prof, sa_old_usr1, sa_old_usr2;
// Take the lock
take_thread_lock();
// Start the thread list with this thread
reset_threads(self);
// Swap out the signal handlers first
sigfillset(&sa.sa_mask);
sa.sa_flags = 0;
sa.sa_handler = NULL;
sa.sa_sigaction = pause_thread;
sigaction(SIGPROF, &sa, &sa_old_prof);
sigaction(SIGUSR1, &sa, &sa_old_usr1);
sigaction(SIGUSR2, &sa, &sa_old_usr2);
/* Now scan /proc/self/task to get the tids of the threads in this
process. We need to ignore our own thread. */
int fd = open("/proc/self/task",
O_RDONLY|O_NDELAY|O_DIRECTORY|O_LARGEFILE|O_CLOEXEC);
int our_pid = getpid();
char buffer[4096];
size_t offset = 0;
size_t count = 0;
unsigned max_loops = 15;
uint32_t pending = 0;
do {
uint32_t paused = currently_paused();
pending = 0;
lseek(fd, 0, SEEK_SET);
for (;;) {
if (offset >= count) {
ssize_t bytes = getdents(fd, buffer, sizeof(buffer));
if (bytes <= 0)
break;
count = (size_t)bytes;
offset = 0;
}
struct linux_dirent64 *dp = (struct linux_dirent64 *)&buffer[offset];
offset += dp->d_reclen;
if (strcmp(dp->d_name, ".") == 0
|| strcmp(dp->d_name, "..") == 0)
continue;
int tid = atoi(dp->d_name);
if ((int64_t)tid != self->tid && !seen_thread(tid)) {
int sig_to_use = signal_for_suspend(our_pid, tid);
if (sig_to_use > 0) {
tgkill(our_pid, tid, sig_to_use);
++pending;
} else {
warn("swift-runtime: failed to suspend thread ");
warn(dp->d_name);
warn(" while processing a crash; backtraces will be missing "
"information\n");
}
}
}
// If we find no new threads, we're done
if (!pending)
break;
// Wait for the threads to suspend
struct timespec timeout = { 2, 0 };
wait_paused(paused + pending, &timeout);
} while (max_loops--);
// Close the directory
close(fd);
// Finally, reset the signal handlers
sigaction(SIGPROF, &sa_old_prof, NULL);
sigaction(SIGUSR1, &sa_old_usr1, NULL);
sigaction(SIGUSR2, &sa_old_usr2, NULL);
}
void
resume_other_threads()
{
// All we need to do here is release the lock.
release_thread_lock();
}
// .. Locking ..................................................................
/* We use a futex to block the threads; we also use one to let us work out
when all the threads we've asked to pause have actually paused. */
int
futex(uint32_t *uaddr, int futex_op, uint32_t val,
const struct timespec *timeout, uint32_t *uaddr2, uint32_t val3)
{
return syscall(SYS_futex, uaddr, futex_op, val, timeout, uaddr2, val3);
}
uint32_t thread_lock = 0;
void
take_thread_lock()
{
do {
uint32_t zero = 0;
if (__atomic_compare_exchange_n(&thread_lock,
&zero,
1,
true,
__ATOMIC_ACQUIRE,
__ATOMIC_RELAXED))
return;
} while (!futex(&thread_lock, FUTEX_WAIT, 1, NULL, NULL, 0)
|| errno == EAGAIN);
}
void
release_thread_lock()
{
__atomic_store_n(&thread_lock, 0, __ATOMIC_RELEASE);
futex(&thread_lock, FUTEX_WAKE, 1, NULL, NULL, 0);
}
uint32_t threads_paused = 0;
void
notify_paused()
{
__atomic_fetch_add(&threads_paused, 1, __ATOMIC_RELEASE);
futex(&threads_paused, FUTEX_WAKE, 1, NULL, NULL, 0);
}
uint32_t
currently_paused()
{
return __atomic_load_n(&threads_paused, __ATOMIC_ACQUIRE);
}
void
wait_paused(uint32_t expected, const struct timespec *timeout)
{
uint32_t current;
do {
current = __atomic_load_n(&threads_paused, __ATOMIC_ACQUIRE);
if (current == expected)
return;
} while (!futex(&threads_paused, FUTEX_WAIT, current, timeout, NULL, 0)
|| errno == EAGAIN);
}
// .. Memory server ............................................................
/* The memory server exists so that we can gain access to the crashing
process's memory space from the backtracer without having to use ptrace()
or process_vm_readv(), both of which need CAP_SYS_PTRACE.
We don't want to require CAP_SYS_PTRACE because we're potentially being
used inside of a Docker container, which won't have that enabled. */
char memserver_stack[4096] __attribute__((aligned(SWIFT_PAGE_SIZE)));
char memserver_buffer[4096];
int memserver_fd;
bool memserver_has_ptrace;
sigjmp_buf memserver_fault_buf;
pid_t memserver_pid;
int
memserver_start()
{
int ret;
int fds[2];
ret = socketpair(AF_UNIX, SOCK_STREAM, 0, fds);
if (ret < 0)
return ret;
memserver_fd = fds[0];
ret = clone(memserver_entry, memserver_stack + sizeof(memserver_stack),
#if MEMSERVER_USE_PROCESS
0,
#else
CLONE_THREAD | CLONE_VM | CLONE_FILES
| CLONE_FS | CLONE_IO | CLONE_SIGHAND,
#endif
NULL);
if (ret < 0)
return ret;
#if MEMSERVER_USE_PROCESS
memserver_pid = ret;
/* Tell the Yama LSM module, if it's running, that it's OK for
the memserver to read process memory */
prctl(PR_SET_PTRACER, ret);
close(fds[0]);
#else
memserver_pid = getpid();
#endif
return fds[1];
}
void
memserver_fault(int sig) {
(void)sig;
siglongjmp(memserver_fault_buf, -1);
}
ssize_t __attribute__((noinline))
memserver_read(void *to, const void *from, size_t len) {
if (memserver_has_ptrace) {
// This won't run for older Android APIs anyway, but it can't be compiled
// either, as process_vm_readv() isn't available.
#if !(defined(__ANDROID_API__) && __ANDROID_API__ < 23)
struct iovec local = { to, len };
struct iovec remote = { const_cast<void *>(from), len };
return process_vm_readv(memserver_pid, &local, 1, &remote, 1, 0);
#endif
} else {
if (!sigsetjmp(memserver_fault_buf, 1)) {
memcpy(to, from, len);
return len;
} else {
return -1;
}
}
}
int
memserver_entry(void *dummy __attribute__((unused))) {
int fd = memserver_fd;
int result = 1;
#if MEMSERVER_USE_PROCESS
prctl(PR_SET_NAME, "[backtrace]");
#endif
// process_vm_readv() is not available for older Android APIs.
#if defined(__ANDROID_API__) && __ANDROID_API__ < 23
memserver_has_ptrace = false;
#else
memserver_has_ptrace = !!prctl(PR_CAPBSET_READ, CAP_SYS_PTRACE);
#endif
if (!memserver_has_ptrace) {
struct sigaction sa;
sigfillset(&sa.sa_mask);
sa.sa_handler = memserver_fault;
sa.sa_flags = SA_NODEFER;
sigaction(SIGSEGV, &sa, NULL);
sigaction(SIGBUS, &sa, NULL);
}
for (;;) {
struct memserver_req req;
ssize_t ret;
ret = safe_read(fd, &req, sizeof(req));
if (ret != sizeof(req))
break;
uint64_t addr = req.addr;
uint64_t bytes = req.len;
while (bytes) {
uint64_t todo = (bytes < sizeof(memserver_buffer)
? bytes : sizeof(memserver_buffer));
ret = memserver_read(memserver_buffer, (void *)addr, (size_t)todo);
struct memserver_resp resp;
resp.addr = addr;
resp.len = ret;
ret = safe_write(fd, &resp, sizeof(resp));
if (ret != sizeof(resp))
goto fail;
if (resp.len < 0)
break;
ret = safe_write(fd, memserver_buffer, resp.len);
if (ret != resp.len)
goto fail;
addr += resp.len;
bytes -= resp.len;
}
}
result = 0;
fail:
close(fd);
return result;
}
// .. Starting the backtracer ..................................................
char addr_buf[18];
char timeout_buf[22];
char limit_buf[22];
char top_buf[22];
const char *backtracer_argv[] = {
"swift-backtrace", // 0
"--unwind", // 1
"precise", // 2
"--demangle", // 3
"true", // 4
"--interactive", // 5
"true", // 6
"--color", // 7
"true", // 8
"--timeout", // 9
timeout_buf, // 10
"--preset", // 11
"friendly", // 12
"--crashinfo", // 13
addr_buf, // 14
"--threads", // 15
"preset", // 16
"--registers", // 17
"preset", // 18
"--images", // 19
"preset", // 20
"--limit", // 21
limit_buf, // 22
"--top", // 23
top_buf, // 24
"--sanitize", // 25
"preset", // 26
"--cache", // 27
"true", // 28
"--output-to", // 29
"stdout", // 30
"--symbolicate", // 31
"full", // 32
NULL
};
const char *
trueOrFalse(bool b) {
return b ? "true" : "false";
}
const char *
trueOrFalse(OnOffTty oot) {
return trueOrFalse(oot == OnOffTty::On);
}
bool
run_backtracer(int memserver_fd)
{
// Set-up the backtracer's command line arguments
switch (_swift_backtraceSettings.algorithm) {
case UnwindAlgorithm::Fast:
backtracer_argv[2] = "fast";
break;
default:
backtracer_argv[2] = "precise";
break;
}
// (The TTY option has already been handled at this point, so these are
// all either "On" or "Off".)
backtracer_argv[4] = trueOrFalse(_swift_backtraceSettings.demangle);
backtracer_argv[6] = trueOrFalse(_swift_backtraceSettings.interactive);
backtracer_argv[8] = trueOrFalse(_swift_backtraceSettings.color);
switch (_swift_backtraceSettings.threads) {
case ThreadsToShow::Preset:
backtracer_argv[16] = "preset";
break;
case ThreadsToShow::All:
backtracer_argv[16] = "all";
break;
case ThreadsToShow::Crashed:
backtracer_argv[16] = "crashed";
break;
}
switch (_swift_backtraceSettings.registers) {
case RegistersToShow::Preset:
backtracer_argv[18] = "preset";
break;
case RegistersToShow::None:
backtracer_argv[18] = "none";
break;
case RegistersToShow::All:
backtracer_argv[18] = "all";
break;
case RegistersToShow::Crashed:
backtracer_argv[18] = "crashed";
break;
}
switch (_swift_backtraceSettings.images) {
case ImagesToShow::Preset:
backtracer_argv[20] = "preset";
break;
case ImagesToShow::None:
backtracer_argv[20] = "none";
break;
case ImagesToShow::All:
backtracer_argv[20] = "all";
break;
case ImagesToShow::Mentioned:
backtracer_argv[20] = "mentioned";
break;
}
switch (_swift_backtraceSettings.preset) {
case Preset::Friendly:
backtracer_argv[12] = "friendly";
break;
case Preset::Medium:
backtracer_argv[12] = "medium";
break;
default:
backtracer_argv[12] = "full";
break;
}
switch (_swift_backtraceSettings.sanitize) {
case SanitizePaths::Preset:
backtracer_argv[26] = "preset";
break;
case SanitizePaths::Off:
backtracer_argv[26] = "false";
break;
case SanitizePaths::On:
backtracer_argv[26] = "true";
break;
}
switch (_swift_backtraceSettings.outputTo) {
case OutputTo::Stdout:
backtracer_argv[30] = "stdout";
break;
case OutputTo::Auto: // Shouldn't happen, but if it does pick stderr
case OutputTo::Stderr:
backtracer_argv[30] = "stderr";
break;
}
backtracer_argv[28] = trueOrFalse(_swift_backtraceSettings.cache);
switch (_swift_backtraceSettings.symbolicate) {
case Symbolication::Off:
backtracer_argv[32] = "off";
break;
case Symbolication::Fast:
backtracer_argv[32] = "fast";
break;
case Symbolication::Full:
backtracer_argv[32] = "full";
break;
}
_swift_formatUnsigned(_swift_backtraceSettings.timeout, timeout_buf);
if (_swift_backtraceSettings.limit < 0)
std::strcpy(limit_buf, "none");
else
_swift_formatUnsigned(_swift_backtraceSettings.limit, limit_buf);
_swift_formatUnsigned(_swift_backtraceSettings.top, top_buf);
_swift_formatAddress(&crashInfo, addr_buf);
// Actually execute it
return _swift_spawnBacktracer(backtracer_argv, memserver_fd);
}
} // namespace
#endif // __linux__
|